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“(...) I hope that researchers will strive to improve our understanding
of inflation dynamics and its interactions with monetary policy.”

Janet Yellen, October 2016

1 Introduction

Over the last decade, the increased availability of disaggregated data on consumer prices

has allowed economists to study in deep detail the role of price setting for the transmission

of shocks and the conduct of monetary policy. Micro price data can be usefully employed to

compute measures of aggregate price flexibility, which is broadly intended as the response of the

aggregate price level to monetary shocks. This concept lies at the core of the monetary policy

transmission mechanism, ultimately embodying Central Banks’ capacity to affect output and

inflation. Despite a large number of empirical contributions being concerned with measuring

the response of prices to nominal stimulus, little emphasis has been placed on the sources

and the extent of time variation in price flexibility.1 Accounting for these traits substantially

improves our understanding of inflation dynamics. Using micro price data underlying the

UK consumer price index (CPI), we show that aggregate inflation is deeply affected by price

flexibility, being substantially more persistent and less volatile in periods of relatively low

flexibility. Failing to account for this non-linearity in inflation dynamics leads to a substantial

bias in predicting future inflation. These results are of crucial importance to both practitioners

and central bankers.

Our analysis starts by documenting sizable time variation in the distribution of price changes

over the last twenty years. Most notably, while in the first half of the sample the frequency of

adjustment has been roughly stable, it has dropped markedly during the last decade. Moreover,

after the Great Recession the dispersion of price changes has denoted a sustained increase, and

its pairwise correlation with the frequency of adjustment has turned deeply negative.2 We

interpret time variation in the distribution of price changes through the prism of a stylized

menu cost model à la Barro (1972). Within this setting, we show how divergent movements in

the dispersion of price changes and the frequency of adjustment may result from changes in the

incentives that firms face when setting prices, as prompted by an increase in the fixed cost of

adjustment and/or a drop in the cost of deviating from the optimal price. To the extent that

the resulting expansion in the inaction region (i.e., the area where it is not worth adjusting

prices) overcomes the effects of shocks affecting the dispersion of price gaps (i.e., the wedge

between the actual and the optimal price), the distribution of price changes becomes more

dispersed and firms hit the adjustment bands less frequently.

To test this prediction and discipline our data, we estimate the generalized Ss model de-

veloped by Caballero and Engel (2007), fitting the distribution of price gaps and the hazard

1In this respect, Caballero and Engel (1993b) and Berger and Vavra (2017) represent notable exceptions.
2These facts stand in contrast with the behavior of US microdata, where the cross-sectional standard

deviation of price changes typically displays positive comovement with the frequency of adjustment (see, e.g.,
Vavra, 2014).
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function (i.e., the probability of a good’s price changing as a function of its price gap) over the

price quotes available in each month. Along with encompassing various price-setting protocols,

and allowing us to examine different determinants of the distribution of price changes, this

empirical framework is particularly well-suited to examine time variation and comovements

among various price-setting statistics. The estimation reveals that both the distribution of

price gaps and the adjustment hazard vary over time. In line with our prediction, about five

times as many firms appear ‘inactive’ by the end of the sample, as compared with the pre-2010

time period, thus reflecting a drop in the frequency of adjustment and a concurrent increase

in the dispersion of price changes. This confirms that changes in the width of the inaction

region may result not only from shocks to the dispersion of price gaps (Vavra, 2014), but also

from changes in firms’ incentives to adjust their prices, as embodied by their adjustment cost

structure.

At the macroeconomic level, time variation in the frequency of adjustment and the dis-

persion of micro price changes are important in that they reflect shifts in the price-setting

protocol that have the capacity to affect aggregate price stickiness. To see this, we employ the

Ss model of Caballero and Engel (2007) to condense large cross-sectional information on micro

price changes into a measure of price flexibility. According to our estimates, the response of

aggregate inflation to a nominal shock varies substantially, increasing by about 50% between

the start of the Great Recession and 2011, thus reverting and attaining its minimum in the

first quarter of 2016. As a result, the pass-through of aggregate nominal shocks to inflation

has decreased markedly during this period, thus reverting after the Brexit referendum. More

generally, changes in price flexibility tend to occur in correspondence with sizable departures of

CPI inflation from the Bank of England’s institutional target. In this respect, two facts stand

out when examining inflation dynamics in the post-Great Recession sample: first, inflation

has been outside the 1%-3% interval for a total of 22 out of 40 quarters, while this has only

occurred for 11 quarters in the previous decade; second, over the same period, inflation has

shot above and below the target, reaching both its maximum (+4.8%) and minimum (-0.1%)

in the overall sample. In light of this, time variation in price flexibility may help us understand

why hitting the inflation target may have proven to be rather arduous over the last decade,

with relatively high flexibility exacerbating the impact of inflationary shocks (e.g., movements

in the exchange rate and in commodity prices) during and straight after the recession, thus

reaching its minimum in correspondence with inflation hitting its historical low in 2015.

Time variation in price flexibility is extremely important to understand inflation dynamics.

The half-life of the rate of inflation is twice as large in periods of relatively low flexibility, along

with appearing remarkably close to the one observed in a linear setting. In light of this, we

posit that neglecting that inflationary shocks are propagated at different speeds depending on

the overall degree of price flexibility may lead to overstating inflation persistence. We test this

implication, and show that the Bank of England and market participants do not appear to be

taking into account changes in price flexibility when computing their inflation expectations.

In fact, price flexibility accounts for roughly 22% of the variability in the forecast error, at
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a four-quarter horizon. This reflects the fact that forecasters fail to incorporate the faster

pass-through of inflationary shocks in periods of relatively high flexibility.

A question that is typically posed in connection with the analysis of micro price data is the

following: to what extent does price setting behave in accordance with time-dependent models,

whereby the timing of all price changes is predetermined, as opposed to state-dependent proto-

cols, according to which the timing of price changes can itself respond to shocks? We revisit this

question through the lens of time variation in the distribution of price changes. To this end,

we decompose the time series of price flexibility into predetermined price adjustments—the

so-called intensive margin—and adjustments triggered or canceled by the shock—the extensive

margin.3 The latter appears quite important, and more so in periods of particularly volatile

inflation. In fact, during these episodes the difference between actual inflation and its ‘Calvo

counterfactual’—i.e., the inflation rate as if price adjustments only took place over the intensive

margin—is particularly large.

To refine our analysis, we examine adjustments along the extensive margin in the occur-

rence of changes in the value-added tax (VAT). As UK posted prices include the VAT, a key

advantage of examining the transmission of large first-moment shock of this type is that they

are particularly suitable to understand whether price setting works in line with the predictions

of menu cost models (Karadi and Reiff, 2014). In line with Gagnon et al. (2013), massive

repricing occurring in the face of a VAT shock does not emerge as a mere shift of the distri-

bution of price gaps, but reflects a major reallocation of probability mass over the price-gap

support. Most importantly, many firms seize the opportunity to adjust their prices by more

than the VAT change, which implies that inflationary/deflationary pressures from other sources

are released in the process. In fact, movements in the hazard function, as compared with those

in the distribution of price gaps, have most of the impact on adjustments along the extensive

margin and account for the bulk of the adjustment in aggregate inflation. This fact, which has

not been highlighted before, implies that price-setting units’ incentives to adjust prices may

vary markedly in the face of large first-moment shocks, even if the latter are largely foreseeable,

as in the case of a VAT change. Acknowledging this property may be an important avenue to

inform the design of structural models.

Related literature Our work relates to a number of studies that have examined the con-

nection between micro price changes and aggregate inflation.4 The paper that connects most

closely to our analysis is that of Berger and Vavra (2017), who report that price flexibility is

time-varying. We build on this, and stress the importance of time variation in price flexibility

to improve our understanding of inflation dynamics. In line with what expected on theoretical

grounds, we document that inflation is more persistent and less volatile in periods of relatively

3Adjustments occurring over the intensive margin characterize both time- and state-dependent models. The
extensive margin, instead, is a defining feature of state-dependent models.

4See, among others, Bils and Klenow (2004), Dotsey and King (2005), Alvarez et al. (2006), Gertler and
Leahy (2008), Klenow and Kryvtsov (2008), Nakamura and Steinsson (2008), Gagnon (2009), Costain and
Nakov (2011), Midrigan (2011), Nakamura et al. (2011), Alvarez and Lippi (2014), Karadi and Reiff (2014),
Berardi et al. (2015), Alvarez et al. (2016), Nakamura et al. (2018).
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low price flexibility, and show that neglecting this fact can lead to a large prediction bias.

Moreover, we employ the empirical framework of Caballero and Engel (2007) to build coun-

terfactual exercises that stress the prominence of state-dependent price setting, as well as the

distinctive role of the adjustment hazard in the occurrence of large first-moment shocks. Using

VAT changes as an identification device allows us to highlight the importance of endogenous

movements in firms’ incentives to price adjustment, in line with Hobijn et al. (2006). Our work

also relates to a number of papers that devise and estimate specific structural models that

connect movements in the distribution of price changes to price flexibility (see, e.g., Midrigan,

2011, Alvarez et al., 2016 and Vavra, 2014, among others). As discussed by Berger and Vavra

(2017), an empirical limitation of these models is to rely on specific shocks to the price-setting

units, while our approach is more agnostic. This represents a strategic advantage, and more so

in the analysis of UK microdata, where the pattern of time variation in the distribution of price

changes has been somewhat discontinuous, emerging at different points in time as the result

of a different mix of first- and second-moment shocks, as well as changes in the endogenous

incentives of firms to adjust their prices. Finally, we connect to Gagnon et al. (2013) in that

we focus on the distinction between price adjustments that are determined ahead of shocks,

and those that are triggered or canceled by the shocks, using VAT changes to devise an event

study. Compared with this paper, we employ the generalized Ss model to provide quantitative

statements about the importance of both types of adjustment—examining the behavior of the

distribution of price gaps in separation from that of the hazard function—and highlighting

important asymmetries over the two margins of price setting.

Our paper also features some broad connection with recent empirical contributions employ-

ing individual UK consumer prices. In this respect, Bunn and Ellis (2012) have been among

the first to investigate the key characteristics of the frequency of price setting and the hazard

functions implied by the microdata from the Office for National Statistics (ONS), while Dixon

et al. (2014) have focused on the impact of the Great Recession on price setting. As compared

with these papers, we place particular emphasis on state dependence in inflation dynamics, as

well as on its role for the transmission of nominal demand shocks. Moreover, our application

underlines the importance of the selection effect for aggregate inflation (see, on this, Carvalho

and Kryvtsov, 2018 and references therein). Specifically, we highlight the versatility of the

empirical approach of Caballero and Engel (2007), and show how this can be used to map

price flexibility into changes in inflation persistence and volatility. Employing UK data, Chu

et al. (2018) emphasize that information on the distribution of price changes can be exploited

to forecast inflation. Our results are in line with this finding. In fact, we show that accounting

for changes in the degree of price flexibility—which condenses valuable information from key

micro price statistics—improves our capacity to predict inflation.

Structure The rest of the paper is organized as follows. Section 2 discusses the key char-

acteristics of the ONS microdata on consumer prices. Section 3 reviews the menu cost model

that frames our empirical analysis. Section 4 reports the generalized Ss model and takes it to
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the data. Section 5 assesses time variation in price flexibility and discusses the relative con-

tribution of adjustments along the intensive and the extensive margin. Section 6 discusses the

implications of state dependence in price flexibility for inflation dynamics. Section 7 concludes.

2 Microdata on consumer prices

We use ONS microdata underpinning the UK CPI. Prices are collected on a monthly basis,

for more than 1, 100 categories of goods and services, and published with a month lag. Our

sample covers the 1996:M2-2017:M8 time window, thus resulting into about 27.5 million ob-

servations (see Table 1). Each month around 106, 000 prices are collected by a market research

firm on behalf of the ONS. There are also about 140 items for which the corresponding price

quotes are centrally collected. These are excluded from the publicly available dataset, as the

structure of their market segment theoretically allows the identification of some price setters,

or because of the need to frequently adjust for quality changes.5 Price quotes are recorded on

or around the second or third Tuesday of the month, with the exact date being kept secret to

avoid abnormal prices that, among other things, may be due to the collection of prices during

bank-holiday weeks, or to price manipulations by service providers and retailers. Furthermore,

to make sure the collected price quotes are valid prices, the ONS has set various checks in

place, both at the collection point and at later stages in the process. As a preliminary step in

handling the dataset, we only employ price quotes that have been marked as being validated

by the system or accepted by the ONS. Thus, any price quote that has been marked as miss-

ing, non-comparable, or temporarily out of stock is excluded from the sample. We refer to

the remaining subset of prices—which make for approximately 60% of those included in the

CPI—as Classification Of Individual COnsumption by Purpose (COICOP) price quotes.

Each price quote is classified by region, location, outlet and item. The region refers to the

geographical entity within the UK from which a given price quote is recorded. The location

is intended as a shopping district within a given region: on price-collection days, 146 different

locations are visited.6 For a given location, the shop code is a unique but anonymized id

associated with the outlet from which the quote is recorded. In turn, each shop is classified

according to whether it is independent (i.e., part of a group comprising less than 10 outlets

at the national level) or part of a chain (i.e., more than 10 outlets). Due to a confidentiality

agreement between the ONS and the individual shops, for each price quote only the region,

outlet and item classifications are published. In light of this, some of the price quotes may

not be uniquely identified. This is typically the case when the ONS samples the same item,

in the same outlet, but for multiple locations within the same region. As an example, in

March 2013 we pick an item with the following characteristics: ‘Women’s Long Sleeves Top’

5This is typically the case for personal computers, whose frequent model upgrades impose the use of hedonic
regressions, so as to enhance comparisons across time.

6Until August 1996, 180 different locations were being sampled. New locations are chosen every year, with
about 20% of them being replaced. As a result, a location is expected to survive an average of about four years
in the sample.
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Table 1: Summary Statistics

Categories

COICOP Unique History Regular

Price Quotes

Total 27, 479, 532 27, 314, 761 23, 258, 171 19, 954, 005

Avg. per Month 106, 099 105, 462 89, 800 77, 042

Price Trajectories 4, 333, 302 4, 314, 903 3, 196, 697 2, 880, 332

Avg. CPI Weight 60.73% 60.37% 52.22% 46.48%

Sales and Recoveries

Avg. per Month (Unweighted) 9.07% 9.10% 8.84%

Avg. per Month (Weighted) 7.46% 7.49% 7.15%

Product Substitutions

Avg. per Month (Unweighted) 6.67% 6.67% 5.30%

Avg. per Month (Weighted) 5.04% 5.05% 3.91%

Notes: COICOP stands for the Classification Of Individual COnsumption by Purpose price quotes used to
calculate the CPI index; Unique indicates the COICOP price quotes for which we uniquely identify a price
trajectory; History refers to the subset of price quotes in the Unique category for which we can identify
at least two consecutive price quotes; Regular refers to the price quotes in the History category that do
not correspond to sales, product substitutions, or recovery prices. For each of these categories, we compute
the total number of price trajectories, the weighted contribution of each category’s price quotes to the CPI
index, as well as the relative number of price quotes corresponding to sales, recovery prices, and product
substitutions. Whenever weighted, these statistics are obtained by accounting for CPI, item-specific, stratum
and shop (i.e., elementary aggregate) weights. Sample period: 1996:M2-2017:M8.

(id : 510223) sold in multiple outlets (shop type: 1) within the region of London (region: 2).

With these coordinates at hand we retrieve two different price quotes: one location sells the

item for £22, and one for £26. In February 2013 the price quotes for the same type of good

were recorded at £25 and £26, respectively. The price quotes are so close that telling the

two price trajectories apart may be challenging. To make sure that price trajectories can be

uniquely identified, we look at ‘base prices’, which are intended as the January’s price for each

of the items under scrutiny.7 Given this information, the price trajectories can be identified.

Even after conditioning on base prices, though, a small portion of price trajectories are still

not uniquely identified (about 0.1%, on average): we opt for discarding them. In Table 1 the

column labeled ‘History’ refers to the price quotes with an identifiable history that spans at

least two consecutive periods. Following the criteria outlined above, we drop about 12, 000

quotes per month.8,9

7The base price is typically relied upon to normalize price quotes and calculate price indices, or to adjust
for changes in the quality and/or quantity of a given good.

8Due to a particularly low coverage, Housing, Water, Electricity, Gas and Other Fuels (COICOP 4) and
Education (COICOP 10) are excluded from the sample. We also exclude price changes larger than 300%, which
we deem to be due to measurement errors. These take place rarely (< 0.01%). Appendix A provides additional
details on the construction of the dataset.

9The total number of available price quotes denotes a weak downward trend. However, it is important to
stress that the composition in terms of categories accounted for by Table 1 is roughly stable over time. This
implies the presence of no particular trends in the behavior of product substitutions and sales.
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To aggregate the individual price quotes into a single price, we also make use of the following

weights produced by the ONS:10 the shop weights, which are employed to account for the fact

that a single item’s price is the same in different shops of the same chain (e.g., a pint of milk at

a Tesco store);11 the stratification weights, which reflect the fact that purchasing patterns may

differ markedly by region or type of outlet;12 finally, the item and COICOP weights reflect

consumers’ expenditure shares in the national accounts.

2.1 Variable definition

After deriving our price quotes in line with the criteria set out above, it is important to

make a distinction between regular and temporary price changes such as sales, which tend to

behave significantly differently from that of regular prices (see Eichenbaum et al., 2011 and

Kehoe and Midrigan, 2015). To this end, we first exclude all the price quotes to which the

ONS attaches a sales indicator.13 As a second step, we implement a symmetric V-shaped filter,

as defined by Nakamura and Steinsson (2010b), for the remaining price quotes. According to

the filter, the sale price of item i at time t, P s
i,t, is identified as follows: i) it is lower than last

period’s price (i.e., P s
i,t < Pi,t−1) and ii) the next period’s price is equal to last period’s price

(i.e., Pi,t+1 = Pi,t−1). A recovery price P r
i,t, instead, meets the following criteria: i) it is greater

than last period’s price (i.e., P r
i,t > Pi,t−1) and ii) it is such that P r

i,t = Pi,t−2. Once a price

quote has been identified as being a sale or a recovery price, we discard it from the sample.14

Item substitutions are a further reason of concern when trying to identify price trajectories,

as they require a certain degree of judgment to establish what portion of a price change is

due to quality adjustment, and which component reflects a pure price adjustment. Product

substitutions occur whenever an item in the sample has been discontinued from its outlet,

and the ONS identifies a similar replacement item to the price going forward. Therefore, it is

reasonable to expect that product turnovers are followed by price changes that either reflect

uncaptured quality changes (Bils, 2009), or simply reflect a low-cost opportunity to reset prices

that has nothing to do with the underlying sources of price rigidity, as argued by Nakamura

and Steinsson (2008). In line with previous contributions, we interrupt a trajectory whenever

it encounters a substitution flag, as indicated by the ONS (see, e.g., Berardi et al., 2015, Berger

and Vavra, 2017, and Kryvtsov and Vincent, 2017).

10See Chapter 7 of the ONS CPI Manual (ONS, 2014).
11In this case the ONS enters a single price for a pint of milk, but the weight attached to this is large, so as

to reflect that all Tesco stores within the region have posted the same price.
12In this respect, four levels of sampling are considered for local price collection: locations, outlets within

location, items within location-outlet section and individual product varieties. For each geographical region,
locations and outlets are based on a probability-proportional-to-size systematic sampling, where size accounts
for the number of employees in the retail sector (locations) and the net retail floor space (outlets).

13For a price to be marked as being associated with a sale, the ONS requires the latter to be available to
all potential costumers—so as to exclude quantity discounts and membership deals—and that it only entails a
temporary or an end-of-season price reduction. This definition excludes clearance sales of products that have
reached the end of their life cycle.

14See also Nakamura and Steinsson (2008) and Vavra (2014). As an alternative approach, in place of the
price associated with a sale, Klenow and Kryvtsov (2008) report the last regular price, until a new regular price
is observed. Our analysis is robust to pursuing this approach.
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Table 1 shows that, after these preliminary steps, we are down to a monthly average

of 79, 000 price quotes. Finally, we define the price change of item i at time t as ∆pi,t =

log (Pi,t/Pi,t−1).15

2.2 Data facts

This section unveils key facts about the behavior of the ONS microdata.16 The top panels

of Figure 1 report the frequency of adjustment and the average magnitude of price changes:

decomposing inflation as the product of these statistics carries important information about

the relationship between the distribution of price changes and inflation itself (see, e.g., Gagnon,

2009). As expected, the average price change tends to display a high degree of positive co-

movement with CPI inflation, at least until the end of the Great Recession. Thus, in the last

part of 2015 the two series are back moving in tandem. As for the frequency of adjustment,

this tracks very closely the contraction in the rate of inflation that starts in 2012—moving well

below its sample average up to that point—while only displaying a weak reversion towards the

end of 2015.17

In the bottom panels of the figure, both statistics are split between positive and negative

price changes. Throughout the entire sample, the frequency of positive price changes is greater

than that associated with negative adjustments, while the opposite broadly holds true when

comparing average price changes in either direction. Focusing on the post-recession sample,

we appreciate two key aspects: i) the downward trend in the frequency, as depicted in the first

panel of the figure, is mostly due to the component associated with positive price changes;

ii) notwithstanding that the average of positive price changes displays a weak tendency to

increase, the (mirror image of the) average of negative price changes denotes a more robust

upward trend.18 Both facts point to a certain degree of asymmetry in price adjustment.

Figure 2 plots measures of dispersion of the distribution of (non-zero) price changes. Both

the cross-sectional standard deviation and the interdecile range display a very large increase

in the aftermath of the Great Recession. In fact, as displayed by the right panel of the figure,

dispersion increases on either side of the median, though negative price changes become more

dispersed than positive price changes. In light of this, it should be stressed that the fall in CPI

inflation occurred in the post-2010 sample is to a large extent a manifestation of the trend in the

15We also compute price changes as ∆pi,t = 2
Pi,t−Pi,t−1

Pi,t+Pi,t−1
. This definition has the advantage of being bounded

and less sensitive to outliers. The results—virtually unchanged with respect to the ones we report—are available
from the authors, upon request.

16Throughout the paper all the statistics derived from microdata on prices are reported as a 12-month
moving average, so as to get rid of seasonality.

17The average frequency of price adjustment prior to the fall is broadly in line with the figures reported by
previous studies on UK micro price data. To see this, one has to account for the fact that we exclude both
utility prices (COICOP 4) and sales. Bunn and Ellis (2012), instead, consider both categories, while Dixon and
LeBihan (2012) and Dixon and Tian (2017) include sales, but exclude utility prices.

18Figure B.1 in Appendix B shows that composition effects have no role in generating the facts presented
in this subsection. To this end, we compare the moments of the distribution of price changes with their
counterparts obtained by averaging the corresponding moments of the price quotes, for each of the 25 COICOP
group categories.
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Figure 1: Frequency of Adjustment and Average Price Changes

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

6.43

9.86

13.29

16.72

20.15
Frequency of Adjustment and Inflation

-0.4

1.1

2.6

4.1

5.6
Frequency of Adjustment
Inflation

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

0.62

1.34

2.06

2.78

3.5

Average Price Change and Inflation

-0.4

1.1

2.6

4.1

5.6
Average Price Change
Inflation

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016
2

4

6

8

10

12
Frequency of Positive/Negative Price Change

2

4

6

8

10

12

Positive
Negative

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016
6

8

10

12

14

16

18
Average of Positive/Negative Price Changes

6

8

10

12

14

16

18
Positive
(-) Negative

Notes: The frequency of adjustment, frt , is computed as
∑
i ωi,t1{∆pi,t 6=0}, where ωi,t denotes the CPI

weight associated to good i at time t, and 1{∆pi,t 6=0} = 1 if ∆pi,t 6= 0 and zero otherwise. The average price

change, instead, is computed as fr−1
t

∑
i ωi,t1{∆pi,t 6=0}∆pi,t. The positive and negative counterparts of these

statistics are obtained by conditioning them on positive and negative price changes, respectively. All series
are in percentage terms. In the bottom-right panel we report the mirror image of the average of negative
price changes. The inflation rate graphed in the upper panel of the figure is the official CPI inflation rate
published by the ONS. The shaded vertical band indicates the duration of the Great Recession.

dispersion of negative price changes—relative to that of positive ones—rather than reflecting

a mere shift in the mode of the density.

Table 2 reports the correlation between moments of the distribution of price changes, CPI

inflation and a business cycle indicator.19 To set aside potential spurious correlation emanating

from the low-frequency behavior of the series under examination, we detrend all of them,

aside of the inflation rate.20 Turning our attention to the frequency of adjustment and the

19Appendix C contains more details on the derivation of the monthly coincident indicator of economic
activity.

20Moreover, when splitting the sample, we exclude the period around the Great Recession (2007:M3-
2010:M6), so as to avoid that the correlations among the key variables are dominated by the macroeconomic
turmoil in that period. In light of this, it is worth stressing that, when interpreting the cyclical properties of the
data in the two subsamples, the correlations are likely to be captured by the behavior of the series in periods
of relatively stronger/weaker expansion, rather than by different cyclical phases.
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Figure 2: Dispersion of the Distribution of Price Changes
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Notes: Price dispersion on the right (left) side of the median price quote is computed as q50 − q10 (q90 − q50).
The shaded vertical band indicates the duration of the Great Recession.

Table 2: Correlations of Pricing Moments with Macroeconomic Variables

Full Sample

frt σ2
t q75,t − q25,t q90,t − q10,t Skewt Kurtt

yt −0.569∗∗∗ 0.264∗∗∗ 0.334∗∗∗ 0.422∗∗∗ −0.363∗∗∗ −0.322∗∗∗

πt 0.169∗∗∗ 0.000 −0.016 −0.147∗∗ −0.024 −0.281∗∗∗

frt – 0.162∗∗ −0.510∗∗∗ −0.737∗∗∗ 0.470∗∗∗ 0.286∗∗∗

Pre-Recession

frt σ2
t q75,t − q25,t q90,t − q10,t Skewt Kurtt

yt 0.455∗∗∗ 0.612∗∗∗ −0.121 −0.092 −0.015 0.171∗

πt 0.387∗∗∗ 0.213∗∗ −0.416∗∗∗ −0.410∗∗∗ 0.177∗ 0.181∗∗

frt – 0.569∗∗∗ −0.120 −0.511∗∗∗ 0.356∗∗∗ −0.055

Post-Recession

frt σ2
t q75,t − q25,t q90,t − q10,t Skewt Kurtt

yt −0.399∗∗∗ 0.221∗∗ 0.137 0.428∗∗∗ −0.244∗∗ 0.291∗∗∗

πt 0.467∗∗∗ 0.077 −0.275∗∗∗ −0.303∗∗∗ −0.216∗∗ −0.530∗∗∗

frt – −0.475∗∗∗ −0.646∗∗∗ −0.854∗∗∗ 0.383∗∗∗ −0.292∗∗∗

Notes: frt denotes the frequency of adjustment; σ2
t stands for the volatility of the distribution of price

changes; qn,t measures the n−th quantile of the distribution of price changes; Skewt denotes the skewness

of the distribution of price changes and is measured as
q90,t+q10,t−2q50,t

q90,t−q10,t ; Kurtt denotes the kurtosis of the

distribution of price changes and is measured as
q90,t−q62.5,t+q37.5,t−q10,t

q75,t−q25,t ; yt is a business cycle indicator; πt
indicates aggregate CPI inflation. Aside of the inflation rate, all series are obtained by detrending their raw
counterparts by means of Rotemberg’s (1999) version of the HP filter, which sets the smoothing coefficient
so as to minimize the correlation between the cycle and the first difference of the trend estimate. ∗∗∗/∗∗/∗

indicates statistical significance at the 1/5/10% level, respectively.
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dispersion of price changes, it is important to stress that they also display somewhat different

cyclical behaviors. Looking at the entire sample, the frequency moves countercyclically, while

dispersion is procyclical. Analogous properties hold in the post-recession time span, while in

the previous decade both statistics behave procyclically. Also their pairwise correlation seems

to vary substantially across the two subsamples—going from being positive in the first decade,

to negative thereafter—though measuring dispersion through inter-quantile differences points

to an invariantly negative correlation.

Skewness displays a marked countercyclical behavior. Interestingly, its correlation with the

rate of inflation switches sign over the two subsamples. In this respect, Luo and Villar (2017a)

show how different models of price setting may account for different signs of the correlation

between inflation and the skewness of price changes. According to their insights, menu cost

models—which feature the price change distribution becoming less skewed as inflation rises—

could well rationalize our data in the second part of the sample. On the other hand, the Calvo

model—which features a positive correlation—could better account for the first subsample. In

the remainder of the analysis we will show how this type of characterization is also supported

by the behavior of the extensive margin of price adjustment—a hallmark of menu cost models—

which assumes a prominent role in the aftermath of the Great Recession.

To summarize, we observe a lot of time variation in the distribution of price changes. Most

notably, while dispersion has been procyclical throughout the entire sample, the frequency of

adjustment has gone from being procyclical before the Great Recession, to behaving counter-

cyclically during the last decade. As a result, the pairwise correlation between these statistics

has turned deeply negative in the post-recession sample. This picture stands in contrast with

the analysis on US microdata by Vavra (2014), who reports that the cross-sectional standard

deviation of price changes is strongly countercyclical and comoves positively with the frequency

of adjustment. To rationalize these facts, he employs a stylized menu cost model, showing how

shocks to the dispersion of price gaps may play a key role in accounting for positive comove-

ment between between the dispersion of price changes and the frequency of adjustment. In

the next section, we use the same framework to show how changes in the incentives firms face

when deciding to change prices can provide us with a rationale for the emergence of negative

comovement.

3 Analytical framework

To frame the analysis, we consider the menu cost model popularized by Barro (1972) and

Dixit (1991). As illustrated by Vavra (2014), the advantage of this framework is to provide

us with a simple analytical setting to keep track of the determinants of the frequency and the

dispersion of price changes, as well as the dispersion of price gaps, intended as the difference

between the actual price of a given good and its reset price (i.e., the price that would have

prevailed in the absence of price-setting frictions). For the sake of our analysis, we will use this

model as a prism through which interpreting distinctive time-varying phenomena behind price
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setting.

Firms face a dynamic control problem where x—the deviation of the current price from

the optimal price—is a state variable. A wedge between the state variable and zero entails

an out-of-equilibrium cost αx2, where α can be inversely related to market power. When not

adjusting, x follows a Brownian motion dx = φdW , where W is the increment to the Wiener

process. It is possible to change the value of x by applying an instantly effective control at

a lump-sum cost λ. From this environment, a simple Ss rule emerges, according to which

the optimal policy is ‘do not adjust’ when |x| < σ and ‘adjust to zero’ when |x| ≥ σ, where

σ = (6λφ2/α)
1/4

denotes the standard deviation of price changes. Moreover, fr = (α/6λ)1/4 φ

is the frequency of adjustment.21

To provide an overview of different determinants of the distribution of price gaps and

the associated distribution of price changes, Figure 3 considers three possible scenarios: i) a

positive shift in the cost of adjustment λ (or, equivalently, a negative shift in α) that affects

the inaction region, while leaving the distribution of price gaps unaffected; ii) a first-moment

shock that causes a shift in the distribution of price gaps, affecting all x’s in the same manner;

iii) an increase in the dispersion of the distribution of price gaps (i.e., a rise in φ). As for i), a

positive change in λ widens the inaction region, translating into a reduction in the frequency of

adjustment and an increase in the dispersion of price changes. As for ii), the immediate effect

of a shift in the distribution of price gaps is to push more firms out of the inaction region,

thus inducing an increase in the frequency of adjustment. Importantly, this result does not

depend on the specific sign of the shock, as all firms’ desired price changes will be affected

in the same way. Thus, all firms pushed out of the inaction region will denote price changes

of the same sign, implying a decrease in their dispersion. In fact, Vavra (2014) shows that,

while in environments with zero inflation small shocks to x do not produce any effect on the

frequency of adjustment and the dispersion of price changes, in the presence of positive trend

inflation the frequency (dispersion) increases (decreases). Finally, a rise in φ, as sketched in

the last column of the figure (iii), induces increased dispersion in the price gap distribution

and an expansion in the inaction region. As a result, both fr and σ increase.

Vavra (2014) points to second-moment shocks as potential drivers of the positive comove-

ment between the frequency of adjustment and the price-change dispersion in U.S. CPI data.

However, in the microdata under examination the comovement between these two statistics is

positive only in the first part of the sample, while turning negative in the following decade,

when the two series display divergent behaviors. In light of this, second-moment shocks might

provide a good account of what has happened only up to the Great Recession. Moreover, shocks

to x of either sign would determine relative movements in the dispersion of price changes and

the frequency of adjustment which do not square with the data, regardless of the time window

we consider.

When focusing on the post-recession experience, only an increase in the fixed cost of adjust-

ment and/or a drop in the cost of deviating from the optimal price may account for negative

21For analytical details and proofs, see Barro (1972) and Vavra (2014).
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Figure 3: Analytical Framework
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Note: The first column considers a positive shift in λ (or a negative shift in α) that affects the inaction
region, while leaving the distribution of price gaps unaffected. The second column considers the effects of
a first-moment shock that affects all x’s in the same direction. The last column depicts the effects of an
increase in φ. The upper panels report the ex-ante distribution of price gaps and the corresponding bands
delimiting the inaction region (dotted-blue lines), together with their ex-post counterparts (dashed-red lines).
The bottom panels report the corresponding distributions of price changes.-

comovement between the frequency of adjustment and the dispersion of price changes, condi-

tional on the resulting expansion of the inaction region dominating the effects of positive shifts

in the dispersion of price gaps. To dig deeper into this specific aspect of the data and its reper-

cussions for aggregate price stickiness, the next section introduces an accounting framework

that is particularly useful at quantifying the link between changes in the timing of individual

price adjustments, price flexibility and inflation dynamics.

4 The generalized Ss model

The generalized Ssmodel developed by Caballero and Engel (2007) has two clear advantages

that make it particularly indicated to discipline our data. First, it is consistent with lumpy and

infrequent price adjustments—which are typically seen as distinctive traits of price setting—

along with encompassing several pricing protocols.22 In this respect, Berger and Vavra (2017)

show that this empirical setting provides a good fit to the data generated by different structural

models (e.g., Golosov and Lucas, 2007 and Nakamura and Steinsson, 2010a). Second, as we

22To mention two extreme examples, the generalized Ss model can account for both price setting à la Calvo
(1983)—where firms are selected to adjust prices at random and price flexibility is fully determined by the
frequency of adjustment—as well as for schemes à la Caplin and Spulber (1987)—where adjusting firms change
prices by such large amounts that the aggregate price is fully flexible, regardless of the frequency of adjustment.
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allow for time variation in the determinants of price adjustment, we can estimate the model

over each cross section of price microdata, matching different price-setting statistics. More

details on the estimation are reported in Section 4.1. In the remainder of this section, instead,

we discuss the analytical details of the accounting framework.

Assume that, due to price rigidities, the log of firm i’s actual price may deviate from the

log of the target or reset price, which is denoted by p∗it. Thus, we define the price gap as

xit ≡ pit−1 − p∗it, implying that a positive (negative) price gap is associated with a falling

(increasing) price when the adjustment is actually made. In a simple Ss model as the one

detailed in the previous section, a price is adjusted when the associated price gap is large

enough, and pit = p∗it after the adjustment has taken place. Assuming lit periods since the

last price change, the adjustment reflects the cumulated shocks: ∆pit =
∑lit

j=0 ∆p∗it−j, with

∆p∗it = µt + υit, where µt is a shock to nominal demand and υit is an idiosyncratic shock.

As discussed by Caballero and Engel (2007), the basic Ss setting of the previous section

can be generalized by assuming iid idiosyncratic shocks to the adjustment costs. Thus, by

integrating over their possible realizations, we obtain an adjustment hazard Λt (x). This is

defined as the (time t) probability of adjusting—prior to knowing the current adjustment

cost draw—by a firm that would adjust by x in the absence of adjustment costs (i.e., as if

the adjustment cost draw was equal to zero). Caballero and Engel (1993a) prove that the

probability of adjusting is non-decreasing in the absolute size of a firm’s price gap (i.e., the

so-called ‘increasing hazard property’). Denoting with ft (x) the cross-sectional distribution of

price gaps immediately before an adjustment takes place at time t, aggregate inflation can be

recovered as

πt = −
∫
xΛt (x) ft (x) dx. (1)

Notice that the Calvo pricing protocol implies the same hazard across x’s (i.e., Λt (x) = Λt >

0, ∀x).

4.1 Taking the model to the data

To take the model to the data we need to specify generic functional forms for the distribution

of price gaps and the hazard function. Specifically, we postulate that the distribution of price

gaps at time t, ft (x), can be accounted for by the Asymmetric Power Distribution (APD

henceforth; see Komunjer, 2007). The probability density function of an APD random variable

is defined as

ft (x) =


δ(%t,νt)

1/νt

ψtΓ(1+1/νt)
exp

[
− δ(%t,νt)

%
νt
t

∣∣∣x−θtψt

∣∣∣νt] if x ≤ θt
δ(%t,νt)

1/νt

ψtΓ(1+1/νt)
exp

[
− δ(%t,νt)

(1−%t)νt

∣∣∣x−θtψt

∣∣∣νt] if x > θt
, (2)

with δ (%t, νt) =
2%
νt
t (1−%t)νt

%
νt
t +(1−%t)νt

. The parameters θt and ψt > 0 capture the location and the scale of

the distribution, whereas 0 < %t < 1 accounts for its degree of asymmetry. Last, the parameter

νt > 0 measures the degree of tail decay: for ∞ > νt ≥ 2 the distribution is characterized by

short tails, whereas it features fat tails when 2 > νt > 0. This functional form nests a number

of standard specifications, such as the Normal (νt = 2), the Laplace (νt = 1) and the Uniform
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(νt → ∞). Most importantly, it can capture intermediate cases between the Normal and the

Laplace distribution, which is consistent with the steady-state distribution of price changes

according to Alvarez et al. (2016).

We then assume that the hazard function can be characterized by an asymmetric quadratic

function:

Λt (x) = min
{
at + btx

2
1{x>0} + ctx

2
1{x<0}, 1

}
, (3)

where 1{z} is an indicator function taking value 1 when condition z is verified, and zero oth-

erwise. This parsimonious specification nests the Calvo pricing protocol for bt = ct = 0, while

potentially allowing for asymmetric costs of adjustment.23

Given the parametric specifications of ft (x) and Λt (x), we estimate seven parameters for

each cross section of micro price data, so as to match the following moments of the distribution

of price changes: mean, median, standard deviation, interquartile range, difference between the

90th and 10th quantile of the distribution, as well as (quantile-based) skewness and kurtosis.24

We also match the frequency and the average size of prices movements, after distinguishing

between positive and negative price changes. Last, we match the observed rate of inflation.

The estimates are obtained by simulated minimum distance, using the identity matrix to

weight different moments.25 Appendix F reports a number of exercises that highlight how our

indirect inference approach is able to identify the shape of the price gap distribution and the

hazard function. To this end, we simulate price-change data from the model, under different

parameterizations, and then contrast the true price gap distribution and the hazard function

to their estimated counterparts. Overall, discrepancy is minimal.26

4.2 Making sense of changing comovement between the frequency

and dispersion of price changes

The first two panels of Figure 4 report the estimated scale parameter of ft (x) and the

inaction region associated with two hazard probabilities (namely, 5% and 7%). Both statistics

are time-varying, and increase markedly in the second decade of the sample. According to our

comparative statics analysis in Section 3, a prolonged decline in the frequency of adjustment,

coupled with a surge in its dispersion, may be rationalized by an expansion in the inaction

23We have checked that the results are robust to plausible variations to this specification. Specifically, using
a mixture of two Normal distributions for the price gap and/or the asymmetric inverted normal function for
the hazard function delivers results that are qualitatively similar to those reported in the next section.

24We match quantilic moments, as the 3rd and 4th moments of the cross-sectional distribution are quite
sensitive to outliers. Figure E.1 graphs the dynamics of both ft (x) and Λt (x), while Figures E.2 and E.3
report the estimated parameters. Finally, Figure E.4 reports the fit of selected data moments, and shows that
the empirical model is able summarize the main stylized facts in the data.

25Altonji and Segal (1996) highlight that matching the unweighted distance between moments often performs
better in small samples, as compared with using optimal weights. The moments of the simulated distribution
are estimated by drawing 100, 000 price quotes. We use the Genetic Algorithm to minimize the quadratic
distance between data moments and simulated moments, so as avoid ending up in local minima (see, e.g.,
Dorsey and Mayer, 1995).

26In a similar context, Berger and Vavra (2017) report additional exercises in support of the indirect inference
approach.
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Figure 4: Dispersion of Price Gaps and the Inaction Region
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Note: The three panels of the figure report the estimated scale parameter of f(x), the inaction region (for
two different hazard rates), and the corresponding share of prices within the inaction region, respectively.
The shaded vertical band indicates the duration of the Great Recession.

region—as triggered by an increase in the fixed cost of adjustment and/or a drop in the cost

of deviating from the optimal price, for instance—that overcomes the effects of a positive shift

in the dispersion of price gaps.27 To verify this is indeed the case, the last panel of Figure 4

reports the share of prices in the inaction region, defined as the proportion of prices whose

Λt (x) is lower than a given hazard rate.

Notably, by the end of the sample about five times as many firms are inactive, as compared

with the pre-2010 time window. This stands as indirect evidence that the expansion in the

inaction region, as captured by the downward shift in the hazard function, dominates the

increase in the dispersion of ft (x). Note also that greater inactivity appears more evident in

correspondence with positive price gaps, as compared with the negative ones, thus implying

an increased degree of downward price stickiness.

On a more general note, changes in the shape of the distribution of price gaps, coupled with

the expansion of the inaction region, imply that non-predetermined price adjustments—which

are more likely to occur for large price gaps—have played an increasingly important role in the

recent past. The next section digs into this, through the lens of the accounting framework of

Caballero and Engel (2007).

5 On the importance of state dependence in price ad-

justment

The estimation of the generalized Ss model highlights the importance of tracking changes

in the distribution of price gaps and the hazard function. To dig deeper into the connection

between individual price adjustment and the response of aggregate inflation to nominal demand,

Caballero and Engel (2007) show that, within their accounting framework, one can derive a

measure of aggregate price flexibility that captures the impact response of realized inflation to

27Appendix D frames this situation within the menu cost model of Section 3.
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Figure 5: Price Flexibility and Different Margins of Price Adjustment
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vertical band indicates the duration of the Great Recession.

a one-off aggregate nominal shock:

Ft = lim
µt→0

∂πt
∂µt

=

∫
Λt (x) ft (x) dx︸ ︷︷ ︸
Intensive Margin

+

∫
xΛ′t (x) ft (x) dx︸ ︷︷ ︸
Extensive Margin

. (4)

Since this flexibility index is simply derived from the accounting identity (1), its validity as a

measure of aggregate flexibility does not require that we take a stand on a specific model of

price setting.28

The flexibility index can be naturally decomposed into an intensive and an extensive mar-

gin component. On one hand, the intensive margin (Int) measures the average frequency of

adjustment, and accounts for the part of inflation that reflects price adjustments that would

have happened even in the absence of the nominal shock. On the other hand, the extensive

margin (Ext) accounts for the additional inflation contribution of firms whose decision to ad-

just is either triggered or canceled by the nominal shock. Therefore, it comprises both firms

that would have kept their price constant and instead change it, as well as firms that would

have adjusted their price but choose not to do it. In this respect, it is useful to recall that,

being characterized by a constant hazard function, Calvo price setting implicitly assumes that

the extensive margin is null.

Figure 5 reports the estimated index of price flexibility and its decomposition into the in-

tensive and the extensive margin of price adjustment. Price flexibility displays sizable variation

28In this respect, Alvarez et al. (2016) show that the steady-state ratio of kurtosis to the frequency of
adjustment is a sufficient statistic of monetary non-neutrality, in a wide variety of frameworks. However, as
highlighted by Berger and Vavra (2017), while their characterization provides us with a measure of cumulative
output response, it does not apply to settings that allow for large shocks to the price gap distribution. Despite
these fundamental differences, when comparing the two measures obtained from our data, they display a strong
negative correlation, as one would expect on theoretical grounds.

18



over time, and more so in the last part of the sample, rising substantially during the Great

Recession, and declining thereafter. This is consistent with our analysis of the distribution of

price gaps. In fact, after the Great Recession both the intensive and the extensive margin of

price adjustment contract, though the fall in the former is much more abrupt, in line with the

sustained drop in the frequency of adjustment. As for the extensive margin, the expansion in

the inaction region implies that fewer firms are pushed near the adjustment boundaries. It

should be stressed that, over most of the decline, the extensive margin tends to contribute

more to price flexibility, as compared with the intensive one, even after they both revert in

2016. Otherwise, the relative importance of the frequency of adjustment has generally been

higher prior to 2012, with few and short-lived exceptions.

To see why we observe such a switch in the relative contribution of the two margins, it is

useful to recall Caballero and Engel (2007) and their transformation of (4):

Ft =

∫
Λt (x) ft (x) [1 + ηt (x)] dx (5)

where ηt (x) = xΛ
′
t (x) /Λt (x) is the elasticity of the hazard function with respect to the price

gap. A downward shift in the hazard function magnifies ηt (x) and, as a result, the importance

of the extensive margin relative to the intensive one. This is exactly what happens in the

period under examination, as it can be appreciated by inspecting the estimated constant of the

hazard function (see Figure E.3 in Appendix E). Alternatively, the same point can be made

by approximating the flexibility index as Ft ∼= Intt + 2 [Intt − Λt (0)]:29 from this expression it

is clear how a downward shift in at—which is equivalent to lowering Λt (0)—translates into an

increase in the importance of the extensive margin relative to the intensive one, ceteris paribus.

From a cyclical perspective, variations in price flexibility do not seem to occur at random:

in fact, Ft goes from being markedly procyclical in the first part of the sample, to inverting its

cyclicality during the last decade (see Table K.1 in Appendix K). As for the correlation with the

rate of inflation, this is generally positive, and more so in the post-recession sample, while it is

not statistically different from zero in the previous decade. On a more general note, it is worth

emphasizing how changes in the correlation structure over the two subsamples are consistent

with a shift from an environment where the intensive margin dominates the extensive one, to

one where the extensive margin assumes a prominent role and inflation volatility is particularly

marked (see Figure 5).

Having established that the extensive margin of price adjustment may be quantitatively

important to price flexibility, we turn to examining its role for inflation dynamics. Figure 6

reports both the rate of inflation and its counterfactual obtained by setting the period hazard

function to a constant equal to the intensive margin. As pointed out by Gagnon et al. (2013),

this is equivalent to calibrating the Calvo model to match the intensive margin by assum-

ing that the probability of price adjustment, while exogenous to the firm, can vary with the

state of the economy (i.e., πCalvot = −frCalvot

∫
xft (x) dx, where frCalvot =

∫
Λt (x) ft (x) dx).

29For a formal proof, please refer to Caballero and Engel (2007).
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Figure 6: A Calvo Counterfactual
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Notes: The rate of inflation is obtained from our sample of ONS price quotes (blue-solid line),
while its counterfactual (red-dashed line) is obtained by setting the period hazard function to a
constant equal to the intensive margin. The shaded vertical band indicates the duration of the
Great Recession.

The presence of an increasing hazard function tends to exacerbate the impact of large shocks

(Caballero and Engel, 1991). In fact, the extensive margin proves to be rather important in

periods of particularly volatile inflation, when the difference between the latter and its ‘Calvo

counterfactual’ is sizable.

5.1 On the impact of large first-moment shocks: a VAT event study

Examining the relative contribution of price adjustment along the extensive margin is of

key importance to contrast time-dependent models that are widely employed in quantitative

macroeconomic frameworks, with state-dependent models. In this respect Gagnon et al. (2013)

suggest that, if the timing of all price changes was predetermined, following a nominal shock

we should observe a shift in the gap distribution, with the shape of the distribution being

preserved (see, e.g., the middle panel of Figure 3). Thus, one can measure the importance of

adjustment along the extensive margin by comparing the observed distribution of price changes

to a counterfactual distribution that obtains in the absence of the shock. Any evidence that

the two distributions differ by more than a shift can be attributed to the extensive margin.

To this end, we can usefully exploit episodes of major repricing activity triggered by changes

in the VAT. These are typically useful for two reasons. First, they are relatively simple to

study, because their timing and size are directly observable. Second, changes in the VAT are

particularly suitable to understand whether price setting works in line with the predictions

of menu cost models (Karadi and Reiff, 2014): as in the UK posted prices include the VAT,

price-setting units need to post new prices—and, thus, bear a menu cost—if they choose
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to incorporate the tax change into their prices. Furthermore, large first-moment shock are

particularly well-suited to disentangle movements in the price gap distribution from those in

the adjustment hazard. Otherwise, as shown in Section 3, both ft (x) and Λt (x) would vary—

albeit to different extents—in the face of second-moment shocks (see also Appendix G).

The recent UK history has been characterized by three episodes of changes in the VAT:

a reduction, from 17.5% to 15%, on December 1, 2008, followed by two hikes: one, up to

17.5%, on January 1, 2010, and one, further up to 20%, on January 4, 2011. To examine

the contribution of VAT changes to the overall degree of price flexibility, Figure 7 reports the

distribution of price gaps and that of price changes, together with the corresponding hazard

function. Moreover, we report their counterfactuals, obtained by averaging the same function,

for the same month of the year, in the previous six years.30

Looking at the inflation rate in the month corresponding to a VAT change, we note that

shifts in the distribution of price changes are such that many firms seize the opportunity

to adjust prices by more than the VAT change, thus implying that inflationary/deflationary

pressures from other sources have been released in the process. In support of the view that

episodes of massive repricing cannot be seen as mere translations of the distribution of price

gaps, we appreciate both a major upward shift and a steepening of the hazard function across

all the three episodes of VAT change: in fact, these are associated with a large rise in the

frequency of adjustment. Nonetheless, Table 3 shows that the intensive margin is much higher

in correspondence with a VAT hike, as compared with a negative VAT change. In this respect,

our evidence is consistent with Karadi and Reiff (2014).

To dig deeper into the role of state-dependent pricing, Table 3 also reports some statistics

in coincidence with the three VAT changes, as well as two counterfactual scenarios.31 In the

no Λ(x) change scenario, we keep the hazard function as that computed in the counterfactual

exercise of Figure 7, but let the price gap distribution vary as a result of the VAT change.

Thus, we abstract from any amplification that could be induced by state-dependent pricing

through upward shifts of the hazard function. The no VAT change scenario, instead, considers

a situation in which neither the price gap distribution nor the hazard function are affected by

the VAT change.32

From the comparison between inflation in the occurrence of a VAT change and its coun-

terfactuals, two observations are worth emphasizing. First, state-dependent pricing accounts

for most of the change in the rate of inflation in the presence of a VAT change. Otherwise,

inflation would have been not very different from its counterfactual in the no VAT change sce-

nario. This is particularly evident when the VAT is raised. Second, movements in the hazard

function, as compared with those in the distribution of price gaps, have most of the impact

on adjustments along the extensive margin. This implies that price-setting units’ incentives

30January 2010 has not been included when computing the counterfactual distribution for January 2011,
so as to avoid that the second VAT change affects the counterfactual distribution corresponding to the last
episode.

31More details on the computation of two alternative scenarios are provided in Appendix H.
32This amounts to keeping both the price gap distribution and the hazard function to their counterfactuals

in Figure 7.
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Figure 7: Event Study: VAT Changes
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(a) VAT Decrease: Dec. 2008
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(b) VAT Increase: Jan. 2010
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(c) VAT Increase: Jan. 2011

Notes: Each line of the figure reports the distribution of price changes, the distribution of price gaps, and the
hazard function in the month corresponding to a VAT change. The distribution of price changes is computed
by grouping observations into bins of 2% (excluding zeros), and weighting them by their relative importance
in the CPI. In all cases, the counterfactuals are computed by averaging the same function, for the same
month of the year in the previous 6 years. Three recent episodes of changes in the VAT are considered: a
reduction, from 17.5% to 15%, on December 1, 2008, followed by two hikes, one up to 17.5% on January 1,
2010, and further up to 20% on January 4, 2011.

to adjust prices—as embodied by their adjustment costs structure—may display substantial

variation in the face of large first-moment shocks, even if the latter are largely foreseeable, as

in the case of VAT changes. In this respect, the price-setting behavior we portray bears close

resemblance to price adjustment as described by Hobijn et al. (2006) in the occurrence of the

Euro changeover. As in this case, the VAT-adjustment decision could result from the interplay

between a churning effect—whereby price-setting units concentrate otherwise staggered price

increases around the VAT change—and a horizon effect, which depends on the fact that prices

adjusted before the VAT change do not reflect the marginal cost increases expected to occur
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Table 3: VAT Changes: Actual and Counterfactual Statistics

VAT 1

π F Int Ext Int+ Int− Ext+ Ext−

Actual -5.941 0.346 0.235 0.111 0.211 0.023 0.105 0.006

No Λ(x) change -1.604 0.101 0.060 0.041 0.055 0.005 0.040 0.001

No VAT change 1.863 0.200 0.096 0.104 0.038 0.058 0.048 0.056

VAT 2

π F Int Ext Int+ Int− Ext+ Ext−

Actual 11.631 0.471 0.322 0.149 0.019 0.304 0.003 0.146

No Λ(x) change 4.580 0.181 0.135 0.045 0.008 0.127 0.001 0.045

No VAT change 4.111 0.218 0.148 0.070 0.043 0.105 0.016 0.054

VAT 3

π F Int Ext Int+ Int− Ext+ Ext−

Actual 14.487 0.573 0.428 0.145 0.019 0.409 0.002 0.143

No Λ(x) change 4.708 0.190 0.136 0.053 0.006 0.130 0.001 0.053

No VAT change 4.258 0.239 0.154 0.086 0.041 0.113 0.020 0.066

Notes: The table reports the inflation rate, the inflation rate that would have been observed had there not
been any extensive margin, the flexibility index, the intensive and extensive margins of price adjustment
(as well as their counterparts computed for positive and negative price gaps), all in the month of a VAT
change. Three recent episodes of changes in the VAT are considered: a reduction from 17.5% to 15% on
December 1, 2008 (indicated by VAT 1), followed by two hikes, on up to 17.5% on January 1, 2010 and
then up to 20% on January 4, 2011 (indicated by VAT 2 and VAT 3, respectively). The the extensive
margin associated with positive and negative price gaps are computed by decomposing the extensive margin

as Extt=
∫ 0−

−∞ xΛ′t (x) ft (x) dx +
∫∞

0
xΛ′t (x) ft (x) dx, where Ext−t (Ext+t ) is the first (second) term on the

right side of the equality. For every VAT change episode, we contrast the actual numbers with two alternative
scenarios. In the no Λ (x) change scenario, the VAT change only impacts on the distribution of price gaps,
while the hazard function is kept at the counterfactual (see Figure 8). The no VAT change scenario, instead,
considers an alternative case in which neither the hazard function nor the price gap distribution change.

afterwards.

When comparing the two margins of adjustment, the intensive one is typically much larger

than its counterparts in the alternative scenarios—indicating that upward shifts in Λt (0) are

the most prominent feature in the occurrence of a VAT change—while movements along the

extensive margin appear less dramatic. However, such a conclusion is not warranted after

conditioning both margins to positive and negative price changes. In this case, substantial

variation also takes place along the extensive margin coherent with the sign of the underlying

price change. For instance, in the occurrence of the VAT drop, Ext+ is more than twice as

big as its counterfactuals. The same order of magnitude can be appreciated when making the

same comparison for the two VAT hikes (in this case, we need to focus on Ext−). Movements

in the extensive margin are a reflection of the interplay between the hazard function and the

distribution of price gaps. In this respect, Figure 7 shows that all three episodes are associated

with a close-to-symmetric increase in the steepness of the hazard function, as well as with a

shift in the distribution of price gaps in the direction opposite to the VAT change. On one
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hand, this necessarily implies that the extensive margin associated with price gaps coherent

with the sign of the adjustment is large. On the other hand, the extensive margin associated

with price gaps of the opposite sign is very low, in light of the hazard function being weighed

by a very small probability mass, after a shift in the distribution of price gaps has occurred.

6 Price flexibility and inflation dynamics

The estimation of Caballero and Engel’s model of lumpy price adjustment shows that the

pass-through of nominal shocks to inflation is highly variable. We also report that—while not

hinging on a specific margin of adjustment—flexibility is higher in connection with positive price

changes. These properties bear major implications for evaluating the transmission of shocks

to nominal demand. Using the estimated Ss model, we are able to examine the response of

inflation to an aggregate nominal shock in two different periods, characterized by relatively

high and low price flexibility, respectively.33 As expected, Figure 8 shows that inflation is

more responsive and less persistent in a period of relatively high price flexibility. In light of

this simple exercise, one would expect price flexibility to contain valuable information for the

analysis of inflation dynamics. This section aims at substantiating this claim.

We seek to examine how inflation behaves in periods of relatively high and low flexibility,

and to contrast its inherent non-linear dynamics to its behavior in a linear setting. To this

end, we employ a regime-switching autoregressive moving average model, where the transition

across regimes is a smooth function of the degree of price flexibility. The STARMA(p,q) model

is a generalization of the smooth transition autoregression model proposed by Granger and

Terasvirta (1993).34 Estimating a traditional ARMA(p,q) for each regime separately entails a

certain disadvantage in that we may end up with relatively few observations in a given regime,

which typically renders the estimates unstable and imprecise. By contrast, we can effectively

rely upon more information by exploiting variation in the probability of being in a particular

regime, so that estimation and inference for each regime are based on a larger set of observations

(Auerbach and Gorodnichenko, 2012).35

We assume that inflation can be described by the following model:

πt = G
(
F̃t−1, γ

)(
φH0 +

p∑
j=1

φHi πt−j + εHt +

q∑
i=1

θHi ε
H
t−i

)

+
[
1−G

(
F̃t−1, γ

)](
φL0 +

p∑
j=1

φLi πt−j + εLt +

q∑
i=1

θLi ε
L
t−i

)
, (6)

33As we only identify the price gap distribution at each point in time, we are not able to disentangle the
contribution of the aggregate shock from that of idiosyncratic shocks. Therefore, for purely illustrative purposes,
we choose an autoregressive specification for the first-moment shock. More details are available in Appendix I.

34In this respect, the STARMA(p,q) model also generalizes the threshold ARMA(p,q) model (DeGooijer,
2017).

35Estimating the properties of a given regime by relying on the dynamics of inflation in a different regime
would bias our results towards not finding any evidence of non-linearity. In light of this, the asymmetries we
will be reporting in the remainder of this section acquire even more statistical relevance.
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Figure 8: Impulse Responses from the Ss Model
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Note: The graphs display the average inflation response to a 1% aggregate nominal shock, µt, in

two periods of relatively low and high price flexibility. The shock is assumed to die out with a

persistence component of 0.5 and is depicted by the thin black line (with a negative sign). The

left panel (low price flexibility) plots the average inflation response in 2010, while the right panel

(high price flexibility) plots the average inflation response in 2015. In each of the two panels the

vertical line delineates the half-life of the shock.

with εit ∼ N (0, σ2
i ) for i = {L,H} . Moreover, we set G

(
F̃ , γ

)
= (1 + e−γF̃)−1, where F̃

denotes the normalized flexibility index and γ is the speed of transition across regimes.36 We

allow for different degrees of inflation persistence across the two regimes, as captured by the

regime-specific autoregressive and moving average coefficients, as well as for different volatilities

of the innovations in either regime. The likelihood of the model can be easily computed by

recasting the system in state space (see, e.g., Harvey, 1990). We use Monte Carlo Markov-

chain methods developed in Chernozhukov and Hong (2003) for estimation and inference. The

parameter estimates, as well as their standard errors, are directly computed from the generated

chains.37

As we focus on the post-1996 sample, we estimate the model by imposing that, in both

regimes, the long-run inflation forecast is 2%, consistent with the mandate of the Bank of

England. Whereas one can potentially estimate the speed of transition between regimes, the

identification of γ relies on nonlinear moments. Moreover, in short samples the estimates may

be sensitive to a handful of observations. Therefore, we decide to calibrate γ so that roughly

25% of the observations are classified to be in the high-flexibility (low-flexibility) regime, where

this is defined by G
(
F̃t−1; γ

)
> 0.8 (G

(
F̃t−1; γ

)
< 0.2).38 Thus, based on the Akaike criterion,

we choose p = 1 and q = 7.39

36We employ a backward-looking MA(12) of the flexibility index to get rid of seasonality in the data.
Moreover, we lag the index by one month, in order to avoid potential endogeneity with respect to CPI inflation.

37See Appendix J for further details.
38Figure K.1 in Appendix K reports the dynamics of G

(
F̃t−1; γ

)
. Clearly, this specification identifies the

2009-2012 period as being characterized by a high-flexibility regime, whereas the 2002-2005 and 2015-2016
periods are marked by low price flexibility. The qualitative results are robust to variations in γ.

39Note that the modified AIC information criterion indicates a STARMA(1,3). Figures K.2 and K.3 in
Appendix K report the results for this alternative setting. Our key insights are not affected by the exact
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Figure 9: Price Flexibility and Inflation Persistence
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Note: This figure reports the responses of inflation to a 1% shock in the STARMA(1,7) model.
The left (right) panel graphs the response in the low (high) price flexibility regime. In both cases
we also report the the response from a (linear) ARMA(1,7) model. 68% confidence intervals are
built based on the Markov Chain Monte Carlo (MCMC) method developed in Chernozhukov and
Hong (2003). In each of the two charts the vertical line delineates the half-life of the shock.

Figure 9 reports the impulse-response functions to a 1% shock to inflation in each of the two

regimes, and compares them to the response from an equivalent linear model. Inflation is much

more persistent in periods characterized by a relatively low price flexibility, with the half-life of

the shock being almost twice as large, as compared with periods of high flexibility. In fact, the

estimated inflation volatility is 1.44 in the high-flexibility regime and 0.91 in the low-flexibility

regime. These results are broadly supportive of the basic insights of the Ss model illustrated

in the previous sections, and highlight the importance of keeping track of the degree of price

flexibility.

Notably, the impulse-response function from the linear model is consistent with the behav-

ior of inflation in the low-flexibility regime. A direct implication of this is that neglecting that

shocks are propagated at different speeds—depending on the overall degree of price flexibility—

would entail an overestimation of their inflationary impact during windows of relatively high

price flexibility. This should be particularly evident at medium-term forecast horizons, i.e.

when the difference between the responses from the linear and the nonlinear model is somewhat

larger. This begs the following question: do the Bank of England and/or market participants

take price flexibility into account when computing their inflation expectations? In the remain-

der of this section we turn our attention to addressing this issue. In this respect, our premise

delivers a key testable implication: if state dependence in price flexibility is accounted for

by the forecaster, the resulting inflation forecast errors should be orthogonal to the flexibility

regime.

In every quarter, the Inflation Report of the Bank of England publishes (year-on-year)

specification of the STARMA(p,q) model.
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Monetary Policy Committee’s inflation forecasts, along with market participants’ forecasts.

Both types of forecasts refer to the Bank of England’s inflation target, which has switched

from RPIX inflation to CPI inflation in December 2003. Thus, we construct quarterly forecast

errors as the difference between realized inflation and the appropriate (mean) forecast at a given

horizon.40 These are then regressed on a nonlinear function of the flexibility regime indicator,

G
(
F̃t−1; γ

)
: specifically, we use a quadratic spline function with a knot at 0.5. This function

is a rather flexible tool, as it allows us to capture a number of potential shapes characterizing

the relationship between the flexibility regime and the forecast errors.

Table 4 provides a summary of the results from our regression exercise. The first four

columns report the slope coefficients and the associated p-values at relatively low and high

levels of flexibility (i.e., G = 0.2 vs. G = 0.8). We recover an inclined L-shaped relationship

between the forecast errors and price flexibility, which confirms that inflation tends to be

overpredicted when prices are relatively flexible. The last two columns of the table also report

the p-value associated with the null that no relationship between the forecast error and the

flexibility regime exists, as well as the R-squared (adjusted for the number of regressors), so

as to get an idea of the strength of the relationship. The results are consistent with the idea

that information about the degree of price flexibility is not fully exploited by the Central

Bank or by market participants. In line with Figure 9, we find that the relationship tends

to be stronger at medium-term horizons, while weakening at both short-term and long-term

horizons. Specifically, around a four-quarter horizon, price flexibility accounts for roughly 22%

of the variability in the absolute forecast error. The relationship is not statistically significant in

periods of relatively low flexibility, whereas it is typically positive and statistically significant

when flexibility is relatively high, with the slope displaying larger values at medium-term

forecast horizons. The results are roughly the same, no matter which source of forecasts we

consider.

The pronounced time variation in price flexibility after the Great Recession helps us to

get a better understanding of the concurrent dynamics of the inflation rate. Inflation peaks

twice between 2008 and 2011, while reaching its sample minimum in 2016, partially reflecting

sharp movements in the value of the GBP and commodity prices.41 The Bank of England has

generally underestimated the speed and impact of shocks to inflation in the 2008-2011 period.

In light of our evidence, this points to a potential failure in appreciating that price flexibility

was itself at the historical peak, possibly as a reflection of the three VAT adjustments taking

place over a rather short time window. Conversely, the low-flexibility regime can explain the

protracted period of low inflation towards the end of the sample, during which the Bank of

England has displayed greater predictive accuracy. This regime of low price flexibility has then

reversed in the summer of 2016, in coincidence with the sharp movements of the GBP in the

40Table K.4 in Appendix K returns similar evidence when we use absolute and squared forecast errors. The
results are also virtually unchanged if we use median in place of mean forecasts.

41Two main facts are worth noticing with respect to the UK experience in the post-recession sample: i)
inflation has been outside the 1%-3% interval for a total of 22 out of 40 quarters, while this has only occurred
for 11 quarters in the previous decade; ii) over the same period, inflation has also shot above and below the
target, reaching both its maximum (+4.8%) and minimum (-0.1%) in the overall sample.

27



Table 4: Inflation Forecast Errors and Price Flexibility

(a) BoE MPC RPIX/CPI Forecast Errors

Horizon Slope at G = 0.2 Slope at G = 0.8 F−stat R̃2

1 -0.195 [0.695] 0.797 [0.172] 0.168 2.61

2 -0.920 [0.261] 2.059 [0.031] 0.004 12.88

3 -1.341 [0.241] 2.927 [0.041] 0.000 18.33

4 -0.925 [0.563] 3.919 [0.025] 0.000 21.98

5 -0.493 [0.796] 4.067 [0.016] 0.000 22.86

6 -0.249 [0.901] 3.596 [0.033] 0.000 21.59

7 -0.275 [0.895] 3.555 [0.016] 0.000 19.96

8 -0.903 [0.621] 3.543 [0.003] 0.001 16.33

(b) Market Participants’ Forecast Errors

Horizon Slope at G = 0.2 Slope at G = 0.8 F−stat R̃2

1 0.317 [0.706] 0.636 [0.305] 0.468 -0.60

2 -1.117 [0.213] 2.097 [0.030] 0.003 13.50

3 -1.567 [0.224] 2.950 [0.041] 0.000 18.69

4 -1.045 [0.569] 3.860 [0.028] 0.000 21.03

5 -0.504 [0.815] 3.866 [0.022] 0.000 21.36

6 -0.085 [0.970] 3.161 [0.055] 0.000 19.45

7 -0.005 [0.998] 2.808 [0.045] 0.002 15.74

8 -0.665 [0.745] 2.431 [0.030] 0.022 9.27

Notes: The table reports the results of a quadratic spline regression of the forecast errors et+h|t (for different
forecast horizons, h, measured in quarters) on a quarterly average of an indicator of the normalized price

flexibility index, Gt−1 = G(F̃t−1; γ) = (1 + e−γF̃t−1)−1, where F̃ denotes the normalized flexibility index.
The regression takes the form: et+h|t = a0 + a1Gt−1 + a2G

2
t−1 + a31{Gt−1>0.5}G

2
t−1, where 1{Gt−1>0.5} is

an indicator function taking value 1 when Gt−1 > 0.5 and zero otherwise. The upper panel refers to the
Bank of England MPC’s RPIX/CPI forecast errors, while the bottom panel considers market participants’
forecast errors. In each panel, the first two pairs of columns report the slope of the relationship evaluated
at different levels of the indicator, together the p-value associated with the null hypothesis that the slope is
equal to 0 (this is calculated using Newey-West standard errors). The penultimate column (F-stat) reports
the p-value of the null hypothesis that all the coefficients associated to the flexibility regime are equal to 0
(i.e., H0 : a1 = a2 = a3 = 0). The last column reports the adjusted R-squared, denoted by R̃2.

aftermath of the Brexit referendum.

7 Concluding remarks

We document some distinctive patterns in the evolution of the distribution of micro price

changes in the UK, and discuss their implications for the transmission of nominal stimulus to

output and inflation. By estimating the generalized Ss model of Caballero and Engel (2007),

we are able to report that price flexibility displays pronounced time variation, especially during

the last decade. Despite the marked non-linearity in the price response to inflationary shocks—

which is crucially dictated by the degree of price flexibility—neither the Bank of England nor

professional forecasters appear to account for this type of state dependence when forecasting

CPI inflation. In fact, both of them tend to overestimate the impact of inflationary shocks in
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periods of relatively high price flexibility, especially at medium-term forecast horizons. In light

of this, we point to price flexibility as a state variable that both practitioners and policy makers

should carefully account for in their forecasting routine. In this respect, we also suggest that

time variation in price flexibility should be considered as a key dimension of monetary-policy

making.

A final note on the implications of our results for modeling price setting: by imposing a

Calvo price-setting protocol to match the frequency of adjustment one could understate time

variation in price flexibility, which is heavily influenced by the extensive margin of price setting,

especially during periods of high volatility in inflation dynamics. In this respect, our work does

not just emphasize the importance of time variation in higher moments of the distribution of

price changes and their connection with price flexibility, but also assigns a prominent role to

state-dependent price setting for the study of inflation dynamics, which is what Central Banks

and practitioners are ultimately concerned with.
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A On the representativeness of the data

This section provides additional details on the construction of the dataset used in the empirical
analysis. The ONS data have a good coverage of all COICOP sectors, with the exception of Housing,
Water, Electricity, Gas And Other Fuels (COICOP 4), Communication (COICOP 8) and Education
(COICOP 10), whose coverage are less than 15%, 4%, and 3%, respectively. Given the extremely low
coverage, we exclude COICOP 4 and 10. We keep COICOP 8, as the available price quotes are clustered
in a small subset of items, such as Flower Delivery, Telephone for home use and Phone Accessories.1

The left panel of Figure A.1 contrasts the weights assigned to each of the COICOP sectors to those
employed to build the CPI (re-normalized to exclude COICOP 4 and 10). Overall, we observe that using
the available price quotes results into relatively larger weights for COICOP 1 and 11, whereas sectors
7 and 9 are underweighed. The right panel of Figure A.1 reports the official CPI inflation together
with the inflation series retrieved from all the available price quotes (labeled COICOP) and the inflation
obtained once all filters described in Section 2 are applied (labeled Regular). Unfiltered data track quite
closely the official numbers, whereas the regular series displays a robust correlation with the official data
(roughly 0.7), and shows a positive bias. The latter mainly emerges from the exclusion of sales from the
sample.

Figure A.1: Representativeness
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Notes: The left panel contrasts the weights assigned to each of the COICOP sectors to those
assigned to build the CPI (re-normalized to exclude COICOP 4 and 10). The right panel reports
the official CPI inflation, together with the inflation series retrieved from all the available price
quotes (labeled COICOP) and the inflation obtained once all filters described in Section 2 are
applied (labeled Regular). The COICOP codes are (1) Food And Non-Alcoholic Beverages, (2)
Alcoholic Beverages, Tobacco And Narcotics, Clothing And Footwear (3), Furnishings, Household
Equipment And Routine Household Maintenance (5), Health (6), Transport (7), Communication
(8), Recreation And Culture (9), Hotels, Cafes And Restaurants (11), Miscellaneous Goods And
Services (12).

1Due to the small number of price quotes in this sector, the results would be little affected by its exclusion
from the analysis.
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B On the role of aggregation and composition effects

Figure B.1: Aggregate vs Disaggregated Moments
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Notes: The figure compares various moments of the distribution of price changes with their coun-
terparts obtained by averaging the corresponding moments of the price quotes obtained for each
of the 25 COICOP group categories. The shaded vertical band indicates the duration of the Great
Recession.
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C A monthly coincident indicator of economic activity

We use monthly information on a number of macroeconomic indicators of economic activity to in-
fer the underlying movements of GDP at the monthly frequency. Following Mariano and Murasawa
(2003), we approximate the (normalized) quarterly growth of real GDP, ∆yqt , as a moving average of an
unobserved month-on-month GDP growth rate, ∆y∗t :

∆yqt =
1

3
∆y∗t +

2

3
∆y∗t−1 + ∆y∗t−2 +

2

3
∆y∗t−3 +

1

3
∆y∗t−4.

We then assume that ∆y∗t can be decomposed into an aggregate component, αt, which is common across
a number of other macroeconomic indicators, and an idiosyncratic component, εt:

∆y∗t = αt + εt.

We assume that the idiosyncratic component follows an autoregressive process of order one:

εt = ψεt−1 + ηt.

The other macroeconomic indicators are available at a monthly frequency. We specify (the standardized
value of) each of them as the sum of two mutually orthogonal components, a common and an idiosyncratic
one. The former is captured by the current and lagged values of the aggregate common factor (see, e.g.,
D’Agostino et al., 2016). Specifically, denoting with ∆xit the generic i-th macroeconomic indicator, we
have that

∆xit =
l∑

j=1

λijαt−j + eit,

where eit follows an autoregressive process of order one:

eit = ρieit−1 + υit,

where the innovations to the idiosyncratic process are iid and uncorrelated across the indicators (i.e.,
E (υitυjt) = 0, ∀i 6= j, and E (υitηt) = 0, ∀i).

We let the aggregate factor follow an autoregressive process of order two:

αt = φ1αt−1 + φ2αt−2 + ut.

In our specific application, we set l = 3 and all autoregressive processes are restricted to be stationary.
The model can be cast in state space. Therefore, the likelihood can be easily computed through the
Kalman filter and the factor is retrieved by using the Kalman smoother (see Harvey, 1990).

Together with the GDP data, we use following short term (monthly) macroeconomic indicators: (1)
the index of manufacturing, (2) the index of services, (3) retail sales (excl. Auto Fuel), (4) Employment
and (5) unemployment (claimants count). We use data starting on January 1990: we rely on a sample
that is longer than the one employed in our analysis, so as to include two recessionary episodes. The
dataset is unbalanced, as some of the indicators are not available form the starting date (and GDP is
observed only once in the quarter). This is not an issue, as the Kalman filter can easily deal with an
arbitrary pattern of missing observations in the sample.

Table C.1 reports the fit of the aggregate components for the quarter-on-quarter growth rates of each
of the variables being employed. Clearly, the single-factor specification is able to capture a large fraction
of the variation in the set of indicators considered here. Figure C.1 reports quarter-on-quarter variations
in the aggregate factor (αqt = 1

3αt + 2
3αt−1 +αt−2 + 2

3αt−3 + 1
3αt−4), together with the GDP growth. The

level of the business cycle indicator is then computed by cumulating the common factor over time, and
assuming that trend growth equals the mean of GDP growth over the sample (this is denoted by µ):

zt =
t∑

τ=1

(µ̂+ α̂τ ) ,
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where α̂τ is retrieved by using the Kalman smoother. The business cycle indicator is then computed by
applying a simple filter to zt. For the baseline results in the paper we use the Rotemberg (1999) version
of the HP filter, which chooses the smoothing coefficient of the HP filter to minimize the correlation
between the cycle and the first difference of the trend estimate.

Table C.1: Coincident Indicator - Model Fit

R2(%)
GDP 87.9

Index of Manufacturing 39.6

Index of Services 82.4

Retail Sales 14.7

Employment 23.3

Unemployment 22.4

Notes: The table reports the fit of the coincident business cycle indicator on the quarter-on-quarter
growth rate of the underlying variables.

Figure C.1: Monthly GDP and Detrended Coincident Indicator
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Note: The left panel shows the fit of the (monthly) coincident indicator on the (annualized) quarter-on-
quarter growth of real GDP. The right panel reports the detrended GDP using the Rotemberg (1999)
version of the HP filter, which sets the smoothing coefficient to minimize the correlation between the cycle
and the first difference of the trend estimate. The vertical green lines denote the end and the beginning of
the subsamples used to exclude the Great Recession from the analysis.
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D The combined effect of second-moment shocks and changes

the incentives to adjust prices

Figure D.1 considers a situation in which both φ and λ increase.2 The rise in the dispersion of
price changes determines an expansion in the inaction region, thus increasing the density outside the
adjustment bands and, in turn, the frequency of adjustment. This effect is counteracted by the rise in λ,
which widens the inaction region further and restricts the density outside the adjustment bands beyond
the initial situation. If the expansion in the inaction region is large enough to overcome the increase in
dispersion, we observe opposite movements in the cross-sectional dispersion of prices and the frequency
of adjustment. This is in line with what we observe in the post-recession period.

Figure D.1: A combined increase in φ and λ
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(b) Price Change Distribution

Note: We consider a positive shift in λ that affects the inaction region (while leaving the distribution of
price gaps unaffected), combined with an increase in the dispersion of the distribution of price gaps, φ.
The left panel reports the transformations occurring to the distribution of price gaps and the corresponding
bands delimiting the inaction region: the dotted (blue) line refers to the ex-ante situation, the dashed (red)
line denotes the effects of the volatility shift, while the dashed-dotted (magenta) line refers to the effects
produced by the joint increase in φ and λ. The right panel reports the distributions of price changes, both
in the ex-ante situation and in the case of a combined increase in φ and λ.

2Once again, a drop in α would lead to qualitatively similar results.
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E Model estimates

Figure E.1: Estimated Price Gap Distributions and Hazard Functions
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Note: The red lines denote the three VAT changes in the sample. The shaded vertical band
indicates the duration of the Great Recession.
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Figure E.2: Parameters of the Price Gap Distribution
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Note: The red lines denote the three VAT changes in the sample. The shaded vertical band
indicates the duration of the Great Recession.

Figure E.3: Parameters of the Hazard Function
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Figure E.4: Fit of the Ss Model (Selected Moments)
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Notes: The figure compares the estimated moments from the Ss model in Section 4 (x-axis) to the
moments estimated from the raw data (y-axis). Each chart also reports the linear fit (green/broken)
line.



F Model identification

In this appendix we check whether the SMM estimation strategy we employ for the estimation of
the generalized Ss model is able to separately identify the shape of the price gap distribution and the
hazard function. To this end, we simulate samples of 100,000 price changes from the model, and then
fit the model on each of these synthetic samples by SMM, matching the same moments we use in the
baseline estimation (see Section 4.1). Figure F.1 contrasts the true price gap distribution (upper panel)
and hazard function (lower panel) to the estimated counterparts. We look at three possible different
parameterizations of the model, and report the ‘fan charts’ of the estimated functions. The specific
parameterizations are merely meant to serve for illustrative purposes: we would obtain very similar
evidence by imposing alternative specifications. Finally, for each set of calibrations, we simulate and
estimate the model over 200 different samples.

The charts highlight that the model is able to separately identify the shape of the price gap and
hazard function in all the settings we consider. The discrepancy between the true parametrization and
the estimate is minimal, and the resulting match of the flexibility index and its decomposition is very
close to the true one.

Figure F.1: Model Simulations and Empirical Fit
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Note: The red line corresponds to the ‘true’ DGP, while the blue shades correspond to the [5,10,20,90,95]-
th quantile of the estimated price gap distribution (upper panel) and hazard function (lower panel). The
following parameterizations are considered: Panel (a): θ = −0.02, ψ = 0.07, % = 0.42, ν = 1.9, a = 0.06, b =
20, c = 30; Panel (b): θ = −0.02, ψ = 0.07, % = 0.42, ν = 2.2, a = 0.08, b = 15, c = 8; Panel (c): θ =
−0.02, ψ = 0.07, % = 0.58, ν = 2.2, a = 0.08, b = 0.15, c = 0.15.
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G Time variation in the adjustment hazard

In this appendix we are set to understand the importance of time variation in the hazard function.
We are motivated by the fact that a number of earlier studies have considered empirical specifications of
the Caballero and Engel (2007) framework with a fixed hazard function (see, e.g., Caballero and Engel,
2006, and Luo and Villar, 2017b and references therein). The hazard function typically moves in the
face of second-moment shocks, as well as in reaction to changes in the cost firms face when deciding to
change their prices. Both channels are abstracted away with a fixed adjustment hazard. In the exercise
we devise in this appendix we fix the parameters of Λt to their sample average, and derive the resulting
counterfactuals for price flexibility and inflation.3

Figure G.1 depicts the counterfactual flexibility index and the rate of inflation against their actual
counterparts, respectively. Neglecting time variation in the adjustment hazard would generally lead to
higher estimates of price flexibility: in this case, most of the adjustment would be triggered by second-
moment shocks, as implied by the fact that the counterfactual index of price flexibility is highly correlated
with the estimated scale parameter of the price gap distribution (see Figure G.2). This is pretty much in
line with the analysis of Vavra (2014), who shows how greater price flexibility may emerge from greater
volatility.

When examining the counterfactual rate of inflation, a notable fact is that changes in the hazard
function appear to counteract changes in the price gap distribution, as implied by inflation being sub-
stantially more volatile in the absence of time variation in the hazard function.4 In this respect, it is
important to recall that the hazard function moves both as a result of changes in the volatility of price
gaps—whose movements also affect the price gap distribution—as well as a result of changes in the
adjustment cost structure (recall the analysis of Section 3). When imposing an adjustment hazard with
constant parameters, both effects are switched off, so that only the price gap distribution varies, as the
result of first- or second-moment shocks. This is indirectly confirmed by the behavior of the actual and

Figure G.1: Counterfactuals with a Fixed Hazard Function
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Note: The counterfactuals are computed by setting the parameters of the adjustment hazard to
the time average of their estimates. The shaded vertical band indicates the duration of the Great
Recession.

3The counterfactual rate of inflation is produced by imposing a restriction to the adjustment hazard in each
period, based on our estimates. For this reason, we only focus on period-by-period adjustments in the counterfactual
scenarios, as modifying the hazard function in a given period should imply a different estimate of the price gap
distribution in the next periods. We necessarily abstract from this dynamic implication, while focusing on the
period wedge between the actual and the counterfactual inflation rate.

4This behavior is consistent with a regime of relatively large price flexibility, as it is effectively the case in this
counterfactual scenario (see Section 6).
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the counterfactual rates of inflation in the 2011-2015 time window: during this time span, the two series
tend to display only minor differences, as implied by the fact that changes in the dispersion of the price
gap distribution are dominated by the expansion in the inaction region.

Figure G.2: Counterfactual Flexibility and the Scale of the Price Gap Distribu-
tion
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Notes: Counterfactual flexibility index against the estimated scale of the price gap distribution.

H Alternative scenarios in the occurrence of a VAT change

Recall that inflation in the occurrence of a VAT change is computed as

πVAT change
t = −

∫
xΛVAT change

t (x) fVAT change
t (x) dx,

implying that the observed inflation results from both changes in the distribution of price gaps, as well
as from shifts in the hazard function. Based on this benchmark, one can envisage two relevant scenarios:

• No Λ (x) change: What rate of inflation would have been observed, had the VAT change only been
associated with a change in the price gap distribution, while keeping the incentives of changing
prices fixed? To address this question, we compute the following counterfactual rate of inflation

π
No Λ (x) change
t = −

∫
xΛNo VAT change

t (x) fVAT change
t (x) dx

• No VAT change: What inflation would have been observed in absence of changes in the price gap
distribution and the hazard function? This can be retrieved as

πNo VAT change
t = −

∫
xΛNo VAT change

t (x) fNo VAT change
t (x) dx

The No VAT change counterfactual is computed by averaging the same function, for the same month
of the year in the 6 years before the VAT change.

Comparing πNo VAT change
t with the actual rate of inflation highlights the overall effects of the VAT,

whereas the comparison between π
No Λ (x) change
t and observed inflation quantifies the relevance of the

state dependence in price setting (i.e., the fact that incentives to change prices are themselves a function
of the underlying environment).
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I Details on the computation of the impulse response func-

tion from the Ss model

This appendix gives a brief account of how we compute the impulse response functions from the
generalized Ss model presented in Section 4. We start by specifying a process for the exogenous (first-
moment) shock.5 Specifically, we assume that:

µt = ρµt−1 + ηt.

Thus, we fix ρ = 0.5 and select a shock η0 = −1%. In light of this, should prices be fully flexible, we
would observe a 1% increase of inflation that dies out relatively quickly.

The impulse responses are then calculated as:

IRFj = (πt+j |µt+j = µ̂t+j)− (πt+j |µt+j = 0)

= −
∫
zjΛt (z) ft (z) dz +

∫
xjΛt (x) ft (x) dx,

where zj = xj + µ̂t+j . Note that, by definition, the cumulative impact of the shock equals the sum of
the µt’s.

J Estimation of the STARMA (p,q) model

Recall the smooth transition ARMA model, STARMA(p,q), in Section 6:

πt = G
(
F̃t−1; γ

)φH0 +

p∑
j=1

φHi πt−j + εHt +

q∑
i=1

θHi ε
H
t−i


+
[
1−G

(
F̃t−1; γ

)]φL0 +

p∑
j=1

φLi πt−j + εLt +

q∑
i=1

θLi ε
L
t−i

 . (J.1)

This can be easily casted in state space. Therefore the likelihood can be calculated recursively using the
Kalman filter (see Harvey, 1990). Since the model is highly non-linear in the parameters, it is possible
to have several local optima and one must try different starting values of the parameters. Furthermore,
given the non-linearity of the problem, it may be difficult to construct confidence intervals for parameter
estimates, as well as impulse responses. To address these issues, we use a Markov Chain Monte Carlo
(MCMC) method developed in Chernozhukov and Hong (2003; henceforth CH). This method delivers
not only a global optimum but also distributions of parameter estimates.

Denote with θ the vector of parameters. We employ the Hastings-Metropolis algorithm to implement
CH’s estimation method. Specifically, our procedure to construct chains of length N can be summarized
as follows:

• Step 1 : Draw ϑ(n+1), a candidate vector of parameter values for the chain’s n + 1 state, as
ϑ(n+1) = θ(n) +un where un is a vector of iid shocks taken from a student-t distribution with zero
mean, ν = 5 degrees of freedom and variance Ω.

• Step 2 : Take the n+ 1 state of the chain as

θ(n+1) =

 ϑ(n+1) with probability min

{
1,

L(ϑ(n+1))
L(θ(n))

}
θ(n) otherwise

5Since we assume that the shock has the same impact on all price quotes, the shock acts as a location shifter
of the price gap distribution.
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where L (θ) denotes the value of the likelihood of the model evaluated at the parameters values θ.

Specifically, we use an adaptive step for the value of Ω, i.e. this is recalibrated using the accepted
draws in the initial part of the chain and then adjusted on the fly to generate 25− 35% acceptance rates
of candidate draws, as proposed in Gelman et al. (2004). We use a total of 50,000 draws, and drop the
first 25,000 draws (i.e., the ‘burn-in’ period). We then pick the 1-every-5 accepted draws to mitigate
the possible autocorrelations in the draws. We run a series of diagnostics to check the properties of
the resulting distributions from the generated chains. We find that the simulated chains converge to
stationary distributions and that simulated parameter values are consistent with good identification of
parameters.

CH show that θ= 1
N

∑N
i=1 θ

(i) is a consistent estimate of θ under standard regularity assumptions of
maximum likelihood estimators. CH also prove that the covariance matrix of the estimate of θ is given
by the variance of the estimates in the generated chain. Furthermore, we can use the generated chain of
parameter values θ(i) to construct confidence intervals for the impulse responses.

K Additional figures and tables

Table K.1: Flexibility in Price Adjustment: Correlation with Real Activity and
Inflation

Full Sample

Ft Intt Extt Intt
+ Intt

− Extt
+ Extt

−

yt −0.233∗∗∗ −0.352∗∗∗ −0.060 −0.532∗∗∗ −0.190∗∗∗ −0.210∗∗∗ 0.044
πt 0.380∗∗∗ 0.398∗∗∗ 0.281∗∗∗ 0.005 0.565∗∗∗ −0.061 0.467∗∗∗

Pre-Recession

Ft Intt Extt Intt
+ Intt

− Extt
+ Extt

−

yt 0.456∗∗∗ 0.368∗∗∗ 0.412∗∗∗ 0.223∗∗ 0.395∗∗∗ 0.403∗∗∗ 0.331∗∗∗

πt −0.012 0.269∗∗∗ −0.279∗∗∗ 0.062 0.345∗∗∗ −0.311∗∗∗ −0.221∗∗

Post-Recession

Ft Intt Extt Intt
+ Intt

− Extt
+ Extt

−

yt −0.527∗∗∗ −0.428∗∗∗ −0.559∗∗∗ −0.363∗∗∗ −0.416∗∗∗ −0.289∗∗∗ −0.632∗∗∗

πt 0.678∗∗∗ 0.718∗∗∗ 0.512∗∗∗ 0.372∗∗∗ 0.787∗∗∗ 0.084 0.721∗∗∗

Notes: The table reports pairwise correlations of output and inflation with the flexibility index, as well
as the intensive margin and the extensive margin of price adjustment (together with their counterparts
corresponding to positive and negative price gaps). Aside of the inflation rate, all series are obtained by
detrending their raw counterparts by means of Rotemberg (1999) version of the HP filter, which sets the
smoothing coefficient to minimize the correlation between the cycle and the first difference of the trend
estimate. ∗∗∗/∗∗/∗ indicates statistical significance at the 1/5/10% level, respectively.
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Table K.2: Flexibility in Price Adjustment: Correlation with Real Activity and
Inflation (Quadratic Trends)

Full Sample

Ft Intt Extt Intt
+ Intt

− Extt
+ Extt

−

yt −0.492∗∗∗ −0.502∗∗∗ −0.398∗∗∗ −0.615∗∗∗ −0.396∗∗∗ −0.462∗∗∗ −0.297∗∗∗

πt 0.584∗∗∗ 0.620∗∗∗ 0.443∗∗∗ 0.293∗∗∗ 0.725∗∗∗ 0.124∗ 0.578∗∗∗

Pre-Recession

Ft Intt Extt Intt
+ Intt

− Extt
+ Extt

−

yt 0.093 0.202∗∗ −0.035 −0.041 0.296∗∗∗ −0.166∗ 0.043
πt 0.495∗∗∗ 0.705∗∗∗ 0.181∗∗ 0.393∗∗∗ 0.772∗∗∗ −0.033 0.272∗∗∗

Post-Recession

Ft Intt Extt Intt
+ Intt

− Extt
+ Extt

−

yt −0.800∗∗∗ −0.787∗∗∗ −0.713∗∗∗ −0.648∗∗∗ −0.799∗∗∗ −0.453∗∗∗ −0.791∗∗∗

πt 0.769∗∗∗ 0.788∗∗∗ 0.645∗∗∗ 0.562∗∗∗ 0.832∗∗∗ 0.304∗∗∗ 0.775∗∗∗

Notes: The table reports pairwise correlations of output and inflation with the flexibility index, as well
as the intensive margin and the extensive margin of price adjustment (together with their counterparts
corresponding to positive and negative price gaps). Aside of the inflation rate, all series are detrended with
a linear and a quadratic trend. ∗∗∗/∗∗/∗ indicates statistical significance at the 1/5/10% level, respectively.

Table K.3: Correlations of Pricing Moments with Macroeconomic Variables
(Quadratic Trends)

Full Sample

frt σ2
t q75,t − q25,t q90,t − q10,t Skewt Kurtt

yt −0.486∗∗∗ 0.452∗∗∗ 0.143∗∗ 0.330∗∗∗ −0.318∗∗∗ −0.015
πt 0.497∗∗∗ −0.182∗∗∗ 0.055 −0.265∗∗∗ −0.065 −0.381∗∗∗

frt – −0.098 −0.186∗∗∗ −0.575∗∗∗ 0.267∗∗∗ 0.004

Pre-Recession

frt σ2
t q75,t − q25,t q90,t − q10,t Skewt Kurtt

yt 0.381∗∗∗ 0.576∗∗∗ −0.492∗∗∗ −0.368∗∗∗ −0.141 0.406∗∗∗

πt 0.393∗∗∗ 0.206∗∗ −0.420∗∗∗ −0.539∗∗∗ 0.111 0.169∗

frt – 0.402∗∗∗ 0.067 −0.484∗∗∗ 0.122 −0.168∗

Post-Recession

frt σ2
t q75,t − q25,t q90,t − q10,t Skewt Kurtt

yt −0.733∗∗∗ 0.652∗∗∗ 0.197∗ 0.578∗∗∗ −0.172 0.634∗∗∗

πt 0.918∗∗∗ −0.449∗∗∗ −0.141 −0.372∗∗∗ −0.220∗∗ −0.704∗∗∗

frt – −0.587∗∗∗ -0.272∗∗ −0.511∗∗∗ −0.074 −0.619∗∗∗

Notes: frt denotes the frequency of adjustment; σ2
t stands for the volatility of the distribution of

price changes; qn,t measures the n−th quantile of the distribution of price changes; Skewt denotes

the skewness of the distribution of price changes and is measured as
q90,t+q10,t−2q50,t

q90,t−q10,t ; Kurtt denotes

the kurtosis of the distribution of price changes and is measured as
q90,t−q62.5,t+q37.5,t−q10,t

q75,t−q25,t ; yt is a

business cycle indicator; πt indicates aggregate CPI inflation. Aside of the inflation rate, all series
are detrended with a linear and a quadratic trend. ∗∗∗/∗∗/∗ indicates statistical significance at the
1/5/10% level, respectively.
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Table K.4: Forecast Errors and Price Flexibility: Robustness (Absolute and
Squared Forecast Errors)

(a) BoE MPC RPIX/CPI (Absolute) Forecast Errors (b) BoE MPC RPIX/CPI (Squared) Forecast Errors

Horizon Slope at G = 0.3 Slope at G = 0.9 F-stat R̃2 Horizon Slope at G = 0.3 Slope at G = 0.9 F-stat R̃2

1 0.093 [0.628] 0.840 [0.092] 0.229 1.69 1 0.078 [0.679] 0.606 [0.183] 0.507 -0.87
2 -0.330 [0.279] 2.319 [0.011] 0.045 6.41 2 -0.317 [0.490] 3.242 [0.008] 0.124 3.55
3 -0.484 [0.145] 4.117 [0.010] 0.003 13.82 3 -0.588 [0.303] 8.723 [0.011] 0.003 13.16
4 -0.344 [0.437] 6.161 [0.003] 0.000 26.45 4 -0.485 [0.584] 15.984 [0.014] 0.000 26.28
5 -0.144 [0.811] 5.945 [0.011] 0.000 20.10 5 -0.010 [0.994] 17.957 [0.022] 0.000 23.22
6 0.309 [0.603] 4.858 [0.032] 0.003 13.70 6 0.800 [0.554] 15.398 [0.050] 0.001 16.92
7 0.634 [0.236] 4.402 [0.021] 0.006 12.32 7 1.551 [0.225] 12.104 [0.078] 0.006 12.18
8 0.691 [0.182] 3.029 [0.055] 0.063 5.93 8 2.123 [0.143] 7.055 [0.244] 0.094 4.71

(c) Market Participants’ (Absolute) Forecast Errors (d) Market Participants’ (Squared) Forecast Errors

Horizon Slope at G = 0.3 Slope at G = 0.9 F-stat R̃2 Horizon Slope at G = 0.3 Slope at G = 0.9 F-stat R̃2

1 0.265 [0.361] 0.826 [0.122] 0.278 1.11 1 0.713 [0.291] 0.426 [0.497] 0.363 0.25
2 -0.383 [0.264] 2.448 [0.010] 0.053 6.12 2 -0.396 [0.464] 3.491 [0.007] 0.123 3.65
3 -0.561 [0.150] 4.293 [0.008] 0.004 13.10 3 -0.763 [0.287] 9.235 [0.008] 0.007 11.63
4 -0.382 [0.418] 6.398 [0.002] 0.000 25.60 4 -0.608 [0.517] 16.589 [0.010] 0.000 24.46
5 -0.103 [0.862] 6.042 [0.009] 0.000 18.74 5 -0.063 [0.960] 18.043 [0.016] 0.000 20.81
6 0.453 [0.412] 4.516 [0.049] 0.013 10.48 6 0.923 [0.465] 14.287 [0.045] 0.005 13.17
7 0.903 [0.052] 3.631 [0.052] 0.019 9.47 7 1.789 [0.129] 9.562 [0.099] 0.043 7.16
8 0.883 [0.099] 1.935 [0.221] 0.211 2.19 8 2.315 [0.091] 3.916 [0.431] 0.390 0.02

Notes: The table reports the results of a quadratic spline regression of the absolute (LHS) and squared
(RHS) forecast errors (for different forecast horizons, h, measured in quarters) on a quarterly average of an

indicator of the normalized price flexibility index, Gt−1 = G(F̃t−1; γ) = (1+e−γF̃t−1)−1, where F̃ denotes the
normalized flexibility index. The regression takes the form: zt = a0 +a1Gt−1 +a2G

2
t−1 +a31{Gt−1>0.5}G

2
t−1,

where 1{Gt−1>0.5} is an indicator function taking value 1 when Gt−1 > 0.5 and zero otherwise, zt = |et+h|t|
(tables (a) and (c)) and zt = e2

t+h|t (tables (b) and (d)). The upper panels refer to the Bank of England

MPC’s RPIX/CPI forecast errors, while the bottom panels consider market participants’ forecast errors. In
each panel, the first two pairs of columns report the slope of the relationship evaluated at different levels of
the indicator, together the p-value associated with the null hypothesis that the slope is equal to 0 (this is
calculated using Newey-West standard errors). Since the fitted function tends to reach a minimum at about
G = 0.6, for most forecast horizons, we report the slope of the function at values of the indicator equal to
0.3 and 0.9 (so as to consider an equal distance from the minimum point). The penultimate column (F-stat)
reports the p-value of the null hypothesis that all the coefficients associated to the flexibility regime are equal
to 0 (i.e., H0 : a1 = a2 = a3 = 0). The last column reports the adjusted R-squared, denoted by R̃2.



Figure K.1: Probability of a High-flexibility Regime
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Note: The figure reports the probability of ending up in a high-flexibility regime, obtained in ac-
cordance with the STARMA(1,7) model presented in Section 6. The shaded vertical band indicates
the duration of the Great Recession.
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Figure K.2: Price Flexibility and Inflation Persistence
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Note: Figure K.2 reports the responses of inflation to a 1% shock in the STARMA(1,3) model.
The left (right) panel graphs the response in the low (high) price flexibility regime. In both cases
we also report the the response from a (linear) ARMA(1,3) model. 68% confidence intervals are
built based on the Markov Chain Monte Carlo (MCMC) method developed in Chernozhukov and
Hong (2003). In each of the two charts the vertical line delineates the half-life of the shock.

Figure K.3: Price Flexibility and Inflation Volatility
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(a) STARMA(1,7)
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Notes: Each panel reports the distribution of the estimated inflation volatility in the two regimes. The
left panel refers to the STARMA(1,7), while the right panel refers to the STARMA(1,3).

18


	Introduction
	Microdata on consumer prices
	Variable definition
	Data facts

	Analytical framework
	The generalized Ss model
	Taking the model to the data
	Making sense of changing comovement between the frequency and dispersion of price changes

	On the importance of state dependence in price adjustment
	On the impact of large first-moment shocks: a VAT event study

	Price flexibility and inflation dynamics
	Concluding remarks
	On the representativeness of the data
	On the role of aggregation and composition effects
	A monthly coincident indicator of economic activity
	The combined effect of second-moment shocks and changes the incentives to adjust prices
	Model estimates
	Model identification
	Time variation in the adjustment hazard
	Alternative scenarios in the occurrence of a VAT change
	Details on the computation of the impulse response function from the Ss model
	Estimation of the STARMA (p,q) model
	Additional figures and tables

