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Abstract

Solutions to many allocation problems crucially rely on the assumption that agents fully

know their preferences over objects to be allocated. I present a general crowdsourcing approach

for solving mechanism design problems in which important characteristics of objects are imper-

fectly observed by agents. The designer �rst solicits reports of object characteristics by agents

and assigns each object a characteristic using a quasi-maximum likelihood method. Second,

the designer runs an o�-the-shelf �full-information� mechanism using the assessed characteris-

tics. To ensure truth-telling incentives, agents are punished when their reports do not match

up with the �wisdom of the crowd.� Assuming mild conditions on the relative growth rates of

agents and objects, I show this approach yields the same allocation as in the full-information

case with probability exponentially converging to one in the number of agents, with aggregate

worst-case waste (punishment) converging exponentially to zero. Neither the aggregation nor

punishment schemes rely on details of the market. Therefore, my approach is the �rst to gen-

erate near-optimal outcomes with high probability in a variety of settings, including two-sided

matching markets. I give necessary and su�cient conditions for recovering desirable properties

when signal acquisition is endogenous and costly for agents.
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�For the many, who are not as individuals excellent men, nevertheless can, when they

have come together, be better than the few best people, not individually but collectively...

For being many, each of them can have some part of virtue and practical wisdom, and

when they come together, the multitude is just like a single human being, with many

feet, hands, and senses, and so too for their character traits and wisdom.�

-Aristotle, Politics III

1 Introduction

Optimal allocations are often de�ned according to the true state of the world. Economists frequently

argue that the best workers should be matched to the best �rms, that objects should be auctioned

o� to the buyers with the highest values, and that politicians should only vote to enact laws that are

bene�cial to society as a whole. However, in arguably most markets, agents do not arrive perfectly

informed with all relevant information. Imperfect information can mean that agents' preferences are

interdependent on the information of others. Most of the market design literature assumes away this

issue, and imagines agents that are perfectly informed. This assumption is not without bene�t; the

literature with interdependent preferences is full of negative results.1 Because of this, comparatively

little is known about designing markets in the presence of interdependent preferences caused by

imperfect information.

My goal in this paper is to provide a uni�ed crowdsourcing framework which reduces the problem

of designing large markets with interdependent preferences to that of well-known full-information

market design. This framework aggregates the information of agents and approximates desirable

outcomes without relying on the speci�cs of the market or ideal mechanism. Speaking to the

importance of these issues, examples of markets that are speci�cally designed to aggregate the

information of its constituents abound.2

This is certainly not the �rst attempt at aggregating the knowledge of many imperfectly informed

1Jehiel and Moldovanu (2001) analyze auctions and show that it is impossible to ensure both truthtelling and
e�ciency when agents receive multidimensional signals (i.e. observe multiple characteristics imperfectly). Jehiel et al.
(2006) show that only constant social choice functions can be implemented. More recently, Che et al. (2015) and
Fujinaka and Miyakawa (2015) �nd negative results in housing assignment settings when agents do not fully observe
all relevant characteristics of houses.
In two-sided matching markets stability�that the proposed allocation cannot be blocked by pairs of agents through

rematching with one another, or blocked by a single agent who rejects her partner for her outside option�is the most
common desired property. When agents on one side (workers, for example) each have unknown qualities which are
observed via signals by agents on the other side (�rms), Chakraborty et al. (2010) show that there is generally no
mechanism that yields a stable allocation. Liu et al. (2014) de�ne a weaker notion of stability, which may not even
guarantee Pareto e�ciency. Bikhchandani (2017) shows that when �rms cannot di�erentiate wages across workers, any
maximal matching is stable in the sense of Liu et al. (2014). Therefore a �stable� matching may either be impossible
to �nd or be too permissive.

2In massive open online courses (MOOCs) it is not feasible for instructors to grade open-ended assignments of
thousands of students. As a solution, multiple students are often assigned to grade the work of each of their peers
(Piech et al. (2013)). Individual banks may lack su�cient information to determine the optimal interest rate and the
London Interbank O�ered Rate (LIBOR) is calculated using the reported interest rates of many banks ((Coulter and
Shapiro, 2015)). In an e�ort to optimally allocate proposal funding, the Sensors and Sensing Systems program at
National Science Foundation introduced a scheme in 2013 for proposers to rank the merit of each other's proposals
(http://www.nsf.gov/pubs/2013/nsf13096/nsf13096.jsp?WT.mc_id=USNSF_25). The latter two of these markets
directly incentivize truthful reports by rewarding agents when their assessments match up with those of others, and
punishing the agents otherwise. As I discuss below, this is a key feature of the mechanism proposed in this paper.
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individuals. Batchelder and Romney (1988) propose a method of crowdsourcing �without an answer

key,� Linstone and Turo� (2002) introduce the iterative Delphi method (named after the famous

oracle in Greek mythology), and Prelec (2004)'s Bayesian Truth Serum encourages truthfulness by

rewarding reports that are �surprisingly common� given the reports of others. These methods are

general in that they seek only to aggregate information, and can be used in a variety of settings.

However, they do not consider incentives for truthtelling, or how the resolution of uncertainty can

a�ect market outcomes. Ensuring honesty in these mechanisms requires payments that may be large,

and therefore costly to administer.3

Others have speci�cially studied truthtelling incentives. In seminal papers, Cremer and McLean

(1985), (1988) propose mechanisms to incentivize truthfulness among agents with correlated infor-

mation by punishing inconsistent reports. However, the punishments they prescribe can be quite

large, possibly violating a limited liability condition or causing sizeable waste. A series of papers,

McLean and Postlewaite (2002), (2003), (2015), (2017), and Gerardi et al. (2008), shows that in-

dividuals can become informationally small as the market grows large, that is, each agent's signal

is not likely to drastically change the market assessment. In these settings, a market maker can use

small distortions to restore incentives and obtain desirable outcomes. These papers deal with inter-

dependence in Walrasian equilibrium, auctions, the Vickrey�Clarke�Groves mechanism, and expert

decision making, respectively.

This paper seeks to combine the generality of the �rst stand of literature while incentivizing

agents to be truthful, taking into account preferences over market outcomes as in the second strand of

literature discussed. I create a mechanism that achieves a truthtelling equilibrium that approximates

full-information optimal allocations as the market grows large. The mechanism is independent of the

particulars of markets, and can be applied to a wide variety of settings, including, but not limited

to, the markets studied in McLean and Postlewaite (2002), (2003), (2015), (2017), and Gerardi et al.

(2008).

My mechanism crowdsources the identi�cation of important characteristics, and punishes agents

when their reports di�er from the wisdom of the crowd. The identi�cation method I use is accurate

under mild conditions, and gives a closed-form representation of the punishment necessary to ensure

truthtelling. Under mild conditions, the total waste generated from the punishment always converges

to zero in the size of the market. This mechanism can be used even when the number of object

characteristics to be identi�ed grows in the size of the market, potentially at a much faster rate than

the number of agents. The �exibility of having many objects allows for the analysis of markets in

which heterogeneous objects are at play, such as matching markets. These points stand in contrast

to mechanisms in the existing literature that consider per capita waste, do not provide closed-form

descriptions, and keep constant the number of characteristics to be estimated.4

3Indeed, Prelec (2004) states that he does �not suggest that people are deceitful or unwilling to provide information
without explicit �nancial payo�s.� McKee (2014) attributes the idea that �nanial incentives to ensure truthtelling in
the Bayesian Truth Serum �would be expensive on a large-scale� to Philip Reny. For example, Rigol and Roth (2016)
administer the Bayesian Truth Serum to farmers in a �eld experiment an India. Without incentivization, subjects lie
in ways to favor friends and family. By making payments based on truthfulness scores, they show that subjects can
be incentivized to be honest. But this comes at high cost; the average subject receives a payment of roughly 14% of
the daily pro�ts of a typical business in the region. Weaver and Prelec (2013) also �nd that �nancial incentives are
necessary to ensure truthtelling.

4Hashimoto (2018) also considers approximation in large markets with multidimensional signals, but with a much
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Although the main results are formally stated as limit results, the rates of convergence are

exponential meaning that a �large market� need not be prohibitively large. Section 2 demonstrates

an application of this mechanism to a hypothetical market similar in size to the job market for junior

academic economists. The mechanism is both accurate, in that generating a desirable matching

happens with very high probability, and e�cient, in that punishments to agents are small.

To lay out the results of the paper, let us begin with a thought experiment involving two markets.

In both markets, a designer wishes to allocate objects with varying characteristics drawn from a

known distribution to a set of agents. All relevant knowledge, including the realization of all objects'

characteristics, is common in the �rst, full-information market. Suppose there is an associated

mechanism ϕ that yields a desirable allocation b∗ according to some properties designated by the

designer (for example, b∗ might be a Pareto e�cient or core allocation, etc.). The second market

di�ers from the �rst only in that certain characteristics of objects are unknown, and instead, each

market participant receives independent and identically distributed signals of these characteristics.

When and how is it possible to generate an allocation that approximates b∗ when preferences are

interdependent? If the agents collectively have enough information it is possible for a market maker

to achieve allocation b∗ with high probability by running mechanism ϕ and using the �wisdom of the

crowds� assessment of object characteristics as if they were known values, as in the �rst market.

The �rst question is: Under what conditions does the market collectively have su�cient in-

formation to correctly identify the characteristics of all objects with high probability? Using a

quasi-maximum likelihood approach that assigns each object a characteristic most consistent with

the received signals, I show that as the size of the market grows, agents' joint assessment of character-

istics for all objects converges in probability to the truth at an exponential rate when the number of

agents grows faster than the natural logarithm of the number of objects. This result does not follow

from the Law of Large Numbers, because although increasing the number of agents (and therefore

signals) implies that the probability of identifying the characteristic of a single object increases,

making the market larger (i.e. more agents) may also mean an increase in the number of objects,

therefore increasing opportunities for mistakes. Proposition 1 gives mild, and tight conditions under

which all objects are correctly identi�ed as the market grows.

The next question to consider is: Will strategic agents always truthfully reveal their information?

If not, do incentives to lie disappear in the limit? By way of examples, I show that agents may have

incentives to lie, no matter the size of the market. In fact, I show non-pathological cases in which

all agents have weakly dominant strategies to give constant reports of characteristics regardless of

their actual signals, meaning that no information is aggregated in equilibrium.5

I propose a three-stage croudsourcing mechanism ϕ̄. In the �rst stage ϕ̄1, agents report on their

signals of object characteristics. Based on the reports, the mechanism assigns a characteristic to

each object using the quasi-maximum liklihood method. Then, using these market estimates, the

market designer runs the second stage mechanism ϕ̄2, which is identical to the full-information

di�erent approach that does not allow for the dimension of the signals to grow, such as situations in which each object
has its own characteristic. Furthermore, problems such as �nding a stable, two-sided matching are not solvable via the
use of Hashimoto's budget sets. In an object allocation setting, Akbarpour and Nikzad (2017) approximate desirable
allocations using a randomization method.

5These examples are similar in spirit to an example in McLean and Postlewaite (2003). They show that even when
agents become informationally small there still may be incentives to lie.
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optimal mechanism ϕ. Truth-telling is ensured in equilibrium through stage ϕ̄3 by subjecting agents

to a constant, monitary, marginal punishment for each incorrect assessment of the characteristic of

an object compared to the estimate by the crowd. I give a closed-form for the punishment that

leads to truth-telling in equilibrium so long as agents' utilites are bounded in any feasible allocation.

Importantly, this punishment does not depend on the original mechanism ϕ or other speci�cs of

the market. The proposed punishment scheme does not cause much waste; I show that the worst

case sum of punishments, which occurs if every agent incorrectly assesses the characteristics of every

object, converges exponentially to zero as the market grows. These penalties can be redistributed

back to agents, recycling the waste. As an alternative, I show that in markets in which agents

consume disjoint sets of objects and payo�s are bounded away from zero, it is possible to enact the

punishment without transfers; agents will be truthful if they are punished with small probabilities of

withholding their allocations ex-post. This allows the punishment approach to be viable in markets

in which using money is undesirable.

One potential di�culty that can arise using mechanism ϕ̄ is that su�ciently punishing agents to

remove incentives to game the mechanism can lead to situations in which agents lie solely to avoid

punishment. When signals are not strong enough to change an agent's prior belief, she will report

the prior belief regardless of the signal she receieves in order to minimize the probability of being

penalized. I show that the market designer can intentionally coarsen the set of allowed reports by

agents to remove incentives to lie, either to game the mechanism or to avoid punishment.6 Assuming

there exist at least two �su�ciently strong� signals, the identi�cation problem is generically no more

di�cult after the necessary coarsening of reports.

I also consider settings in which signal strength is endogenously selected by agents, and the cost

for picking stronger signals is non-decreasing. The market designer's objective is to identify the

characteristics of all objects in large markets, while imposing a total cost (including punishment

penalities and information acquisition cost) that goes to zero. This means agents must be incen-

tivized both to pick a su�ciently high signal strength and to make truthful reports. As the market

grows, the optimal plan from the designer's point of view involves every agent gathering a very

weak signal for the characteristics of each object. When the number of objects remains constant, I

�nd that the necessary and su�cient condition to ensure the desirable properties is identical to a

condition necessary to ensure costly information acquisition in certain voting and Condorcet Jury

models (Theorem 6 of Martinelli (2006)).7

The majority of the paper assumes that utility functions of all agents are common knowledge. I

relax this assumption and study what happens when agents' preferences are unknown functions of

6One real-world example of coarsening reports is by movie review aggregator Rotten Tomatoes, which gives very
�ne assessments of quality (to the nearest percent) while relying only on binary signals of quality (�fresh� or �rotten�)
from each reviewer.

7These voting models with endogenous information acquisition rely on voluntary information acquisition, and as
a result, not all agents will participate. The present framework makes no claim on the structure of utility functions,
and so agents may not have incentives to acquire information without punishment. One interpretation of my �ndings
is that in settings with arbitrary utility functions, all agents will gather small amounts of information (but enough to
collectively determine the �best candidate�) and participate in elections if there is some small cost of non-participation,
perhaps a social stigma. For an example of social norms a�ecting voting behavior, please see Funk (2005). Funk
explains that voter participation dropped in some parts of Switzerland following the implementation of a vote-by-mail
scheme. Her explanation is that although mail voting was less costly to voters, it also carried less social status.
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object characteristics and must be disclosed to the designer. I show that if the original mechanism

ϕ is strategy-proof under common knowledge of object characteristics, that is, truthfully revealing

preferences is a weakly dominant strategy, then mechanism ϕ̄ has a truthtelling equilibrium (of both

preferences and signals) if each object's characteristic is known by at least one (potentially di�erent)

agent. In such a situation where manufacturer Sally knows the characteristic of her own product,

while rival manufacturers only recieve noisy signals of the characteristic of Sally's good, the designer

can check the report by Sally with the balance of the joint assessment of all other manufacturers.

If Sally is su�ciently punished when her report does not match the assessment of the market, she

will always truthfully report her true characteristic in equilibrium. Even when the characteristics

of objects are not known to anyone, I show that if ϕ is an ordinal mechanism, one that does not

rely on the cardinal values of agents' preferences, then there exists a truthtelling equilibrium with

probability approaching one in the game induced by mechanism ϕ̄ as the market grows.

Finally, I allow the market designer to convince naive agents, who form a small but constant pro-

porition of agents in the market, to truthfully reveal their signals. I show that the market designer

can detect when groups of agents are jointly lying in order to change the assessment of an object.

By punishing all agents in this case, the market designer can remove incentives for coalitional lies,

strengthening the solution concept to that of strong Bayes-Nash equilibrium.

The rest of the paper proceeds as follows. Section 2 exposits the general approach of this pa-

per by detailing an application of the mechanism to a two-sided matching model. Section 3 lays

out the model and preliminary results. Section 4 describes the proposed mechanism and states the

main result. Section 5 presents additional results regarding costly information acquisition, unknown

utility functions, and coordinated lying. Section 6 discusses the robustness of the mechanism and

concludes. Proofs are relegated to the appendix.

2 Application: Matching with Interdependent Values

There are I �rms and N = f(I) workers. Each worker n is equally likely to be of either high or low

quality, that is, q(n) ∈ {H,L}. Each worker n can be matched to at most a single �rm and has strict,

transitive preferences over �rms and remaining unmatched, which I denote by �n . Similarly, �rm i

can be matched to at most a single worker, and has strict, transitive preference relation over workers

and remaining unmatched denoted by �i . �i potentially depends on the qualities of workers. For

reasons that will become clear, I will represent each �rm i's preferences �i via a cardinal utility

function vi
(
n, q(n)

)
. I normalize vi

(
n, q(n)

)
≥ 0 for all n and all q(n), and the utility that i receives

from remaining unmatched to νi ≥ 0. Initially, I assume that all of the above is known by a market

designer.

The designer wishes to create a one-to-one (ex-post) stable matching between workers and �rms.8

A matching is a one-to-one mapping µ : I ∪ N → I ∪ N satisfying µ(i) ∈ N ∪ {i}, µ(n) ∈ I ∪ {n}
8The de�nition of ex-post stability de�ned in the paragrah is stronger than the versions of stability in Chakraborty

et al. (2010) and Liu et al. (2014). Chakraborty et al. (2010) shows the impossibility of exactly ensuring a stable
allocation under their weaker notion of stability.
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and µ(n) = i if and only if µ(i) = n, where the outside option of �rm i is selected when µ(i) = i and

similarly for workers. A worker n is acceptable to �rm i if n �i i, and similarly, a �rm i is acceptable

to worker n if i �n n. A matching µ is (ex-post) stable if:

� (Individual Rationality) for all i ∈ I, µ(i) �i i or µ(i) = i and for all n ∈ N, µ(n) �n n or

µ(n) = n, and

� (No blocking pairs) there is no pair (i, n) ∈ I ×N such that n �i µ(i) and i �n µ(n).

Gale and Shapley (1962) propose the (�rm-proposing) deferred acceptance mechanism, which oper-

ates as follows:

Step 1: Each �rm proposes to its favorite acceptable worker, if such a worker exists. Each worker

receiving proposals temporarily holds her favorite, acceptable proposing �rm, and rejects all

others. If none of the proposing �rms are acceptable, then the worker rejects all �rms.

Step t: Each �rm who was rejected in step t− 1 applies to her next favorite acceptable worker, if

any such workers exist. Each worker receiving proposals in this period considers both these

�rms and any proposals she may have been temporarily holding from previous steps. From

this set of �rms, she temporarily holds her favorite, acceptable proposing �rm, and rejects all

others.

The algorithm terminates when either all �rms are being temporarily held by a di�erent worker, or

�rms who are not being held by any worker have already proposed to all acceptable workers. At

this point, the �nal matching is generated by assigning all workers to the �rms they are holding,

and leaving all others as unmatched. Gale and Shapley (1962) �nd that this algorithm always

terminates in a �nite number of steps, always leads to a stable matching, and moreover, that this

stable matching is weakly preferred by each �rm to any other stable matching. I will denote this

matching µF .

Now suppose that the designer knows all primitives other than the qualities of workers. Instead,

�rms independently observe a noisy signal of the quality of each worker: each �rm receives a signal

of h independently with probability θ > 1
2 and a signal of ` independently with probability 1 − θ

for a high quality worker. Similarly, each �rm receives a signal of h independently with probability

1− θ and a signal of ` independently with probability θ for a low quality worker.

Can the market designer create matching µF in this less informed setting? The �rst result of the

paper deals with situations in which the designer directly observes the signals of each �rm. First, I

specify a �crowdsourcing� identi�cation strategy that is an application to this setting of the general

iden�tication strategy laid out in Section 3. If the proportion of �rms that receive signal ` for a

given worker n is greater than 1
2 , the designer identi�es n as being low quality. Otherwise, the

designer identi�es n as being high quality. If the designer expects to correctly identify the qualities

of all workers with high probability, then she can run deferred acceptance using the crowdsourced

qualities as if they were the true qualities of the workers. Since the qualities are correctly iden�tied

with high probability, this will yield the same matching as µF also with high probability.

A necessary condition to correctly identifying all worker qualities is that the number of �rms

is large, so that there are many signals of each worker. But a standard Law of Large Numbers
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argument is insu�cient. The reason is that as I grows large, N = f(I) also potentially grows large.

Therefore, while the Law of Large Numbers tells us that the probability of correctly identifying a

single worker goes to 1, the number of workers for whom it is possible to make a mistake is also

growing. Therefore, the rate at which the the number of workers grows relative to the number of

�rms is crucial. The following �nding is a corollary of Proposition 1 in Section 3.

Finding 1 : Let N = f(I) < Iα for some α > 0 and all I > 0. Then as I → ∞ the probability of

correctly identifying the qualities of all N = f(I) workers exponentially converges to 1.

Can the market designer still generate matching µF even if she does not directly observe the

signals, and has to solicit reports from �rms? The following example shows that simply asking �rms

to report their signals creates a game in which each �rm has a dominant strategy to ignore its signal

and make a pre-speci�ed report regardless of market size.

Example 1 Following a common limited acceptability assumption in the matching literature, each

worker �nds only T �rms preferable to her ouside option, regardless of the number of �rms in

the market (Roth and Peranson (1999), Immorlica and Mahdian (2005), and Kojima and Pathak

(2009)). Each �rm prefers lower index workers (i.e. worker 1 is preferable to worker 2, all else

equal) but �nds only high quality workers preferable to its outside option. Due to the alignment

of �rm preferences, there is a unique ex-post stable matching which assigns the lowest index, high

quality worker her favorite �rm, the second lowest index, high quality worker her favorite of the

remaining �rms (or her outside option, if she prefers that), and so on, while leaving all low quality

workers unmatched.

In the reporting game described above, each �rm i has incentives to report that all workers who

prefer her outside option to i are high quality, as this increases the chances that a desirable worker

is freed up for �rm i because an �incompatible� worker �lled a vacancy at a di�erent �rm. The main

result of Crawford (1991) implies that any strategy that does not list these incompatible workers as

high quality is weakly dominated. But this means that there are at most T truthful reports of each

worker's quality, so the probability of correctly ascertaining worker qualities does not converge to 1

regardless of market size. Therefore, the probability of generating µF goes to 0 as I →∞.

The main result of this paper deals with how a market designer who has to ability to impose

punishments can ensure matching µF with high probability. Consider the following mechanism: The

designer solicits reports of signals, using them to identify the qualities of workers as discussed above.

In order to ensure truthtelling, the designed punishes �rms. In particular, the designer charges each

�rm a constant penalty each time the �rm's report for a particular worker is di�erent from the

crowdsourced quality for that worker. For example, if �rm i reports quality ` for worker n, but more

than half of all �rms report signal h for worker n, then �rm i is punished. Theorem 1 in Section 4

shows that when �rms' cardinal utility from workers is bounded above by some constant and their

overall utility is quasi-linear in money, then a small punishment is su�cient to ensure truthtelling.

Therefore, again, the designer can ensure µF with high probability.
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Finding 2 : Suppose N = f(I) < Iα for some α > 0, there exists D such that vi (·, ·) < D for all

i ∈ I, and for all i ∈ I, ui = vi (·, ·)−pi where pi is i′s penalty. Then there exists a penalty ρ(θ,D, I)

such that there exists a Bayes Nash equilibrium in which all �rms truthfully reveal their signals when

they are punished ρ(θ,D, I) when their report disagrees with the assessment of the market. Moreover,

as I →∞, N · I·ρ(θ,D, I)→ 0.

In words, this says that the constant marginal penalty required to ensure truthtelling becomes

so small in the limit as I grows large that an upper bound on the total punishment assigned (if each

�rm is punished for each report they make) converges to 0. This punishment can be redistributed,

for example, by designating one �rm as a non-reporter who instead receives all collected payments.

Alternatively, under additional assumptions, I discuss how this punishment can be enforced without

money, but by a (vanishing) probability of cancelling a �rm's matching and leaving it partnerless.

This result is stated in terms of a �large market,� but the mathematical basis for the punishment

scheme implies that these markets need not be prohibitively large to achieve desired results. Consider

back-of-the-envelope calculations regarding a market with N = 100 �rms, signal accuracy θ = .77,

and the maximum that a �rm can value a worker is D =$10 million. Using the methodology of this

paper, the chances of the collective information of the market incorrectly assessing the quality of a

worker is less than one in one million, and the punishment required to ensure truthtelling is roughly

$1 per incorrect assessment.

3 General Model

3.1 Preliminaries

Let there be I ∈ N agents and N ∈ N objects, such that the endowment of each agent is ei. Each

object n < N is one of Q ∈ N possible characteristics forming the set Q = {q1, ..., qQ}. Let the N th

object be money which is of a �xed, known characteristic. It is without loss of generality to assume

that each object's characteristic is a scalar.9 I will write q(n) to represent the characteristic of n < N.

Let B be the set of feasible allocations, where each b ∈ B is an I ×N matrix in which bi,n denotes

agent i's consumption of object n. The utility function of agent i ∈ I is common knowledge and

represented by ui(b, q(N)), where b ∈ B and q(N) is the vector of object characteristics. Assume for

simplicity that the utility of each agent is quasi-linear in money and that each agent's preferences are

unchanged by the monetary transfers of her peers, i.e. for all for all i, j ∈ I, ui(b, q(N)) = ui(b
′
, q(N))

if bj,n = b
′

j,n for all n < N and bi,N = b
′

i,N . As the results of this paper deal with asymptotics, I use

the superscript ”k” to denote the index of the market. Finally, assume that there is some D < ∞
that bounds the range of utilities any agent can receive in a feasible allocation, regardless of the

index of the market, that is,

D ≥ sup
k

[
sup

i∈Ik,b∈Bk,q(N)

[ui(b, q(N))]− inf
i∈Ik,b∈Bk,q(N)

[ui(b, q(N))]

]
.

9To see this, suppose that instead there are two characteristics for each object, each of which can be either high
or low. That is, let Q = {(L,L), (L,H), (H,H), (H,L)} . Let (L,L) = q1, (L,H) = q2 and so on.
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Combining these preliminaries, de�ne a market M̄ =
{
I,N, q(N), B, {ei}i∈I , {ui}i∈I , D

}
.

3.2 Signals

Now suppose that market M is identical to market M̄ except that q(N) is unknown and instead

observed via noisy signals. Note that I allow N∩I 6= ∅,meaning that certain �objects� whose charac-

teristics are unknown can themselves be agents. Each i ∈ I observes a private signal of characteristics
for each object. Denote this signal q̂i,n ∼ F

(
·|q(n)

)
, where q̂i,n ∈ Q and F

(
·|q(n)

)
is a non-degenerate

distribution for all q(n) with full support over Q. Further assume that F
(
·|q(n)

)
6= F

(
·|q(n′ )

)
if

q(n) 6= q(n′) so that objects of di�erent characteristics generate di�erent signal distributions.

3.3 Information aggregation

Consider a setting in which mechanism ϕ gives a desireable allocation in a full-information market

M̄. In this section, I study two main questions. The �rst: Under what conditions does �the wisdom

of the crowd� have enough information to correctly identify all unknown characteristics in market

M (with high probability)? The second: Is there a mechanism ϕ̄ that has an equilibrium whose

outcome is close to the allocation derived by ϕ, i.e. ϕ
(
M̄
)
≈ ϕ̄ (M)?

For each n ∈ N de�ne a probability space (Q,B, p) over possible characteristics. To identify

characteristics, a market designer can run a quasi-maximum likelihood estimation by comparing an

empirical distribution of signals for a worker to the theoretical distributions expected from objects of

di�erent characteristics. Formally, let X1, X2, ..., XI be a sample of i.i.d. observations of a random

variable distributed according to distribution F and let F̂I(x) = 1
I

I∑̀
=1

1{X`≤x} be the empirical

distribution of the sample

Consider the joint assessment of agents of a single object n ∈ N. For any distinct characteristics

qo and qp de�ne

εqo,qp =

max
q̂
|F (q̂|qo)− F (q̂|qp)|

2

and let

ε = min
qo 6=qp

[εqo,qp ] (1)

meaning that there is at least 2ε distance between the signal distributions of any two objects with

di�erent characteristics at some point. Say that the characteristic of n ∈ N is ε− identi�ed as qm if∣∣∣F̂I (q̂)− F (q̂|qm)
∣∣∣ ≤ ε for all q̂.

In other words, we say that an object is identi�ed as having characteristic qm if the distance between

the empirical distribution of signals for said object and the conditional distribution of a qm object

9



is no larger than ε according to the supremum norm,. By construction, for ε satisfying Equation

(1), an object generically cannot be identi�ed as having two di�erent characteristics. Say that the

characteristic of object n is ε−correctly identi�ed if
∣∣∣F̂I (q̂)− F

(
q̂|q(n)

)∣∣∣ ≤ ε for all q̂.
To represent this graphically, consider the following illustration with two possible characteritics

for each objects. ε is de�ned as above such that an empirical distribution cannot fall within ε distance

pointwise of both conditional signal distributions.

Figure 1: Identifying Object Characteristics

0

1

q1 q2

.3

.7

ε = .7−.3
2 = .2

q̂

F (q̂|q(n) = q1)

F (q̂|q(n) = q2)

1

Notes: Let Q = {q1, q2}. ε is chosen so that the maximum distance between F (q̂|q1) and F (q̂|q2) is exactly
ε. Objects whose empirical signal distributions fall in the ε band around F (q̂|q1) (the green, solid region)
are identi�ed as q1. Objects whose empirical signal distributions fall in the ε band around F (q̂|q2) (the blue,
checkered region) are identi�ed as q2.

What are the conditions under which a market designer with access to the signals of all agents can

ε−correctly identify the characteristics of every object with high probability?Clearly, the number of

signals on each object must be large, but a standard Law of Large Numbers argument is insu�cient

in this setting. The reason is that as the market grows large, the probability of correctly identifying

the characteristic of a single object goes to 1 (LLN) but the number of objects being assessed may

also increase, so there are also more opportunities to make mistakes. Therefore, the rate at which the

number of objects grows compared to the number of agents is crucial. To formalize the comparison

between the growth rates of di�erent sequences, I provide the following de�nition.

Definition 1 :

� fk ∈ Ω
(
gk
)
if there exists δ > 0 and there exists K such that for all k > K, fk ≥ δ · gk,

� fk ∈ o
(
gk
)
if for all δ > 0 there exists K such that for all k > K, fk ≤ δ · gk,

10



� fk ∼ gk if for all δ > 0 there exists K such that for all k > K,
∣∣∣ fkgk − 1

∣∣∣ < δ.

Intuitively, fk ∈ Ω
(
gk
)
when fk is not asymptotically dominated by gk, fk ∈ o

(
gk
)
when gk

asymptotically dominates fk, and fk ∼ gk when fk and gk grow at the same rate asymptotically.

As this paper is concerned with asymptotics involving large numbers of agents and objects, when I

use this notation, I also implicitly assume that fk →∞ and gk →∞ as k →∞.

The following result states that a market designer can correctly identify the characteristics of

all objects with high probability if the number of agents of each type grows faster than the natural

logarithm of the number of objects, and that this bound is tight when there are more than three

possible characteristics.

Proposition 1 : In a sequence of marketsM1,M2, ...

1. the probability of ε−correctly identifying every object for ε satisfying Equation (1) converges to

one if Ik ∈ Ω
(
log
(
Nk
))
,

2. when Nk ∈ o
((
Ik
)α)

for some α > 0 the rate of convergence is exponential, and

3. the probability of ε−incorrectly identifying a non-vanishing proportion of objects converges to

one if Ik /∈ Ω
(
log
(
Nk
))

and |Q| > 3.

One observation is that the market is made large by increasing both the number of agents and

objects, not by �cloning� the market (as seen, for example, in McLean and Postlewaite (2002, 2003)).

In many contexts, simply duplicating agents to make the market large is undesireable, as �large�

markets have both many agents and many objects, and duplicating the preferences of agents in

a small market will not lead to rich preferences over all objects. On such example is a two-sided

matching market.

3.4 Incentives to manipulate mechanisms

The preceeding section established that identi�cation of the characteristics of all objects is relatively

easy under truthtelling as the market grows in size, but do agents always have incentives to tell

the truth? If not, do any incentives to lie disappear in the limit? By way of examples, I show that

agents may have incentives to lie no matter the size of the market; agents may have simple, dominant

strategies to lie, leading to very di�erent outcomes than under truthtelling. These examples are of

a two-sided matching market (in which the desired solution concept is stability, see Example 1

in Section 2), a market for selling goods (in which the desired solution concept is a competitve

equilibrium, see Example 3 in the appendix), and a voting market (see Example 4 in the appendix).

Example 1 demonstrates a situation in which each agent has a dominant strategy to report that

nearly objects are of high quality while in Example 3, each agent has a dominant strategy to report

that nearly all objects are of low quality. In Example 4, agents are polarized and vote according

to party lines. In these examples, it is not feasible to simply ignore the assessments of those who

have desires to manipulate because the remaining set of individuals (in the �rst example, this set is

empty) do not have su�cient information to assess the characteristics of all objects.
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3.5 How to elicit truthful signals by creating small amounts of waste

The main goal of this paper is to take a full information market M̄, an ideal mechanism ϕ and

a resulting allocation b∗ and show how to recover allocation very close to b∗ in market M where

characteristics are imperfectly observed instead of common knowledge. Examples 1, 3, and 4 demon-

strate that even in situations in which the market has su�cient information to correctly identify the

characteristics of all objects, a revelation game in which agents are asked to reveal their signals does

not necessarily have a truthtelling equilibrium. Agents may have very simple dominant strategies

that result in drastically di�erent outcomes in equilibrium than under truthtelling. To get around

this problem, I study a mechanism that has a Bayes-Nash equilibrium in which all agents truthfully

reveal signals which approximately achieves the desired allocation b∗. The mechanism uses market

reports to assign each object a characteristic, as in Section 3.3. To ensure truthtelling incentives, an

agent is charged a constant marginal punishment each time her report for an object's characteristic

di�ers from that of the market assessment.

3.5.1 Limits of punishment

I defer the question of how to implement such punishment, and �rst study the following: If the

punishment scheme is su�ciently stringent so that every agent's equilibrium payo� is maximized by

minimizing punishment, when are the reports of the market able to (with high probability) correctly

identify the characteristics of all objects? Clearly, any su�cient condition will be no weaker than

that in Proposition 1. Nevertheless, the following example demonstrates that the condition can be

strictly stronger.

Example 2 : There are Nk objects and Ik agents, where Ik = Nk. Suppose there are two possible

characteristics q1and q2. Each object has an ex-ante 9
10 chance of being q1. Let the probability that

each agent's signal of an object's characteristic is correct be 3
4 . Notice that as I

k →∞ the probability

that each object's characteristic is correctly identi�ed under truth-telling goes to 1 (Proposition 1).

As an extreme case, suppose that each agent i's utility ui = −ti where ti is the penalty i must pay.

In other words, agents do not care about the allocation they receive, they only care about avoiding

punishment as much as possible. Notice that p(q(n) = q2|q̂ = q2) =
p(q̂=q2|q(n)=q2)·p(q(n)=q2)

p(q̂=q2) =
1
4 < p(q(n) = q2|q̂ = q1) which means that from i's point of view, regardless of the signal received,

any object is more likely to have characteristic q1. Assuming all other agents are truthfully reporting

signals, all objects will be correctly identi�ed with high probability. Then any agent i has an incentive

to report q1 for all objects regardless of her own signal.10

The problem with truthful reporting in Example 2 is that agents have incentives to misreport

signals solely to avoid punishment. Clearly this can be a problem when agents always wish to

report one characteristic for all objects (when others are telling the truth), however, this section

10In order for an agent to report q2 for an object n when it sees signal q̂ = q2 it
must be the case that p(n is identi�ed as q2|q̂ = q2) ≥ 1

2
. But p(n is identi�ed as q2|q̂ = q2) =

p(n is identi�ed as q2|q(n) = q2, q̂ = q2) · p(q(n) = q2) + p(n is identi�ed as q2|q(n) = q1, q̂ = q2) · p(q(n) = q1)

≤ 1 · 1
10

+ p(n is identi�ed as q2|q(n) = q1, q̂ = q2) · 9
10
. Therefore, in order for an agent to be willing to truth-

fully report q̂ = q2 it must be the case that at least 4
9
of q1 objects are misidenti�ed.
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will show that when there are multiple hubs, signals which are reported in equilbrium, and under

slight genericity conditions, this does not impose a restriction on the ability of a designer to elicit

responses which correctly assay the characteristics of all objects with high probability.

Let

r(q) = argmax
q′

p(q′|q̂ = q)

represent an agent's best guess as to the characteristic of an object upon receiving signal q. De�ne

a directed multigraph G = (Q,E) where E = {(q, r(q)}|q ∈ Q} is the set of directed edges in which

each signal q �points to� r(q). Note that it is possible to have q = r(q) implying a loop. Call a node

q a hub if it has indegree of at least 1. Let H be the set of all hubs. Call those nodes pointing to a

hub siphons and for any hub q let s(q) = {q′|(q′, q) ∈ E and q ∈ H} be its siphons. A node can be

both a hub and a siphon, and due to the possibility of loops, it can be the case that q ∈ s(q).
Punishment has competing e�ects. On one hand, agents may want to misreport signals in

order to game the mechanism. On the other, they may want to lie about signals in order to avoid

punishment (i.e. report a hub instead of a siphon). For the rest of the paper, I will consider direct

mechanisms that never give agents any incentive to lie to avoid punishment. A direct mechanism is

Bayesian-Nash-Incentive-Compatible (BNIC) if there exists a Bayesian Nash equilibrium in which

agents truthfully report their signals. To remove incentives to lie, the market designer interprets a

report that is a siphon to mean that the agent has in fact reported the hub containing said siphon.

For example, in Figure 2, the only hubs are q2 and q4 and since q1,q2, q4 and q3 are the siphons of

q2and q4 respectively, the designer treats any report of q1, q2 or q4 as q2 and treats a report of q3 as

q4.

When the number of hubs is equal to the number of possible characteristics, there are no additional

complications to identi�cation, as s−1(q) is well de�ned. But what happens when there are non-

trivial hubs and siphons, i.e. r−1(q) is not uniquely de�ned? For a hub q, it is now not clear if a

report of q indicates that the agent received signal q or if it recieved a signal of one of q's siphons.

Because of this, partition Q into sets containing a hub and its siphons for use in characteristic

identi�cation, that is Q = {H̄h(q)}|H|h=1 where H̄
h(q) = {qh∪s(qh)|qh ∈ H}. Let F̄ be a partition of Q

such that for distinct q, q′, q′ ∈ F̄(q) if and only if p
(
q̂ ∈ H̄h(q)|q′

)
= p

(
q̂ ∈ H̄h(q)|q

)
for all H̄h(q).

F̄ is a partiton of Q such that members of the same partition have the same empirical distribution

over H̄h(q), which takes into account that the designer does not destinguish between the siphons

of each hub. Essentially, the designer is attempting to distinguish Q di�erent characteristics with

possibly fewer than Q distinct signal reports.

Another di�erence to take into account is that the ε bound used in identifying object character-

istics will generally need to be adjusted to take into account that only a subset of characteristics

will be reported by agents in equilibrium. Consider any two characteristics qo and qp such that

F̄(qo) 6= F̄(qp). De�ne

εqo,qp =

max
q̂

∣∣F (q̂ ∈ H̄h|qo
)
− F

(
q̂ ∈ H̄h|qp

)∣∣
2
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Figure 2: Hubs and Siphons

(a)

q1 q2

q3 q4

(b)

q1, q2, q4

q3

Notes: Panel (a) denotes hubs and siphons for a particular signal structure. The only hubs are q2 and q4,
with siphons q1, q2, q4 and q3, respectively. Panel (b) denotes the coarsening of the signal structure that the
mechanism undertakes to remove incentives to misreport. For identi�cation purposes, the mechanism treats
any report of q1, q2 or q4 as q2 and treats a report of q3 as q4.

and let

ε = min
qo,qp

εqo,qp . (2)

ε again is formulated such that there is at least 2ε distance between the expected reported signal

distributions for objects of di�erent characteristics. For ε de�ned in Equation 2, I say that object n

is ε− identi�ed as having characteristic qp if
∣∣∣F̂I (q̂ ∈ H̄h

)
− F

(
q̂ ∈ H̄h|qp

)∣∣∣ ≤ ε for all q̂ ∈ H̄h.

Assuming agents truthfully report their signals, there are at least two hubs, and the identi�cation

conditions of Proposition 1 are satis�ed, a designer can modify her identi�cation strategy by using

ε as denoted in Equation 2 to identify the characteristics of all objects with high probability. For

example, suppose there are three possible characteristics of objects, q1, q2, q3 and {q1, q2} = s(q2)

and q3 = s(q3). For identi�cation purposes, the designer translates any report of q2 or q1 into

q2 . However, the Bayesian posterior assessment will inciate one of the options is more likely if

p(q̂ ∈ {q1, q2}|q1) 6= p(q̂ ∈ {q1, q2}|q2) 6= p(q̂ ∈ {q1, q2}|q3). In other words, if the probability of an

agent seeing seeing signal q3 is di�erent for all objects then the report q̂ = q2 is still valuable evidence.

If the number of agents (signals) increases, the designer will be able to pinpoint the characteristic

of every object using the same techniques as in Proposition 1.

Corollary 1 : If the conditions of Proposition 1 are satis�ed for a sequence of marketsM1,M2, ...

the probability of ε−correctly identifying every object under the coarsened signal structure for ε

satisfying Equation 2 converges to one when agents truthfully report their signals.
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4 Main Result

The previous section dealt with the identi�cation power of a direct mechanism that incentivizes

truthtelling. This section shows that it is possible to ensure truthtelling incentives by punishing

each agent every time one of her reports is �incorrect,� and that the total payments made by any

agent converges to zero in every realization of the market. In fact, even if every agent has to pay

the maximum payment the mechanism can perscribe, the total payment still converges to zero. The

punishment used resembles a Bayesian estimator with a 0/1 loss function; the designer solicits signals

that maximize the posterior probability of being correct (hubs) and imposes a constant punishment

whenever an agent is incorrect, regardless of the magnitude of the error.

One additional concern with equilibrium reporting are measuring the incentives of agents to

truthfully report their signals. To begin, let βm,m′ = p(q(n) = qm|q̂ = qm′ ), and let mmax(m
′
) =

max
m,m′

βm,m′ . Let

β = min
m′

[
mmax(m

′
)− max

m6=mmax(m′ )
βm,m′

]
. (3)

β can be though of as the opportunity cost for telling the truth, that is, it is an upper bound on

how likely an agent will be to correctly identify an object by lying.

I now de�ne mechanism ϕ̄ as follows:

Step 1: Each agent i submits a report q̃i,n for each n.

Step 2: Let ε satisfy Equation (2) and say that q̄(n) = qm if n is ε−identi�ed as having

characteristic qm by assessment of agents. If n cannot be uniquely identi�ed in this way,

mark this object as �unidenti�able� and assign it a characteristic at random.

Step 3: Run mechanism ϕ using the characteristics q̄(N) from Step 2.

Step 4: For each agent i let µi represent the number of objects for whom i's report

q̃i,n 6= q̄(n). If an object is unidenti�able, augment µi by one, that is, count it as a

disagreement.

Step 5: Charge each agent i a penalty of µi ·D · 2e−2Ikδ2

β−(β+1)2e−2Ikδ2
where δ = ε− 1

Ik
.11

Recall that the goal for ϕ̄ is important to create truthtelling incentives for all agents while minimizing

waste. One criterion for evaluating the waste of this mechanism is to bound the worst case total

sum of punishments, that is, what is the total waste when every agent has to pay the maximum

penalty?

Theorem 1 : In a sequence of markets M1,M2, ... with Nk ∈ o
(
e2I

kδ2

Ik

)
for all θ` ∈ S, as k →

∞ mechanism ϕ̄ is BNIC and the sum of penalties paid by all agents converges to zero in every

realization.

Note that the growth rate assumption is slightly more restrictive here than in Proposition 1, as

there is an Ik in the denominator of this expression. The implication is that truthtelling and small

11In order to secure a su�cient punishment in every situation, the bound taken is quite loose. As a result, the
denominator of the prescribed punishment may be negative or zero for small numbers of agents. ϕ̄ can be modi�ed
to be constant in such situations and charge zero punishment for each agent.
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punishments can be guaranteed in most cases, though not always, as when a designer with access

to all signals can approximate an optimal matching.

Also, note that it is possible to designate one agent as a residual claimant. The market designer

does not solicit reports from her, and transfers all collected punishments to this agent. By doing so,

there is no waste as all punishments are just transfered to another agent.

I now discuss how to transform the monetary punishment in Theorem 1 into a non-monetary

punishment that achieves similar incentive and non-wastefullness properties. The method for doing

this is to create a mechanism, ϕ̄NM that is identical to ϕ̄ except that instead of punishing agents by

charging a penalty it withholds agent i's consumption bundle probabilistically as a function of µi.

In order to ensure that this method of punishment is successful, I assume two regularity conditions.

First, a market is consumption disjoint if it is possible to separate the consumption bundles of agents

and each agent cares only about what she consumes herself. Second, a sequence of markets and a

mechanism satisfy strict individual rationality when agents, for any signals of characteristics they

receive, will always achieve greater expected utility under any feasible allocation than they would

by consuming nothing, and that this di�erence is bounded away from zero.

Definition 2 : M is consumption disjoint if ∀q(N), ∀i ∈ I, ∀I
′ ⊂ I \ {i}, ∀b ∈ B with bi 6= ∅i:

∃b′ ∈ B such that bi = b
′

i and bj = ∅ ∀j ∈ I ′ , and ui(b, q(N)) = ui(b
′, q(N)).

Matching models frequently exhibit this property, as each agent cares only about her own partner.

On the other hand, markets for the provision of public goods are not consumption disjoint.

Definition 3 : Let ∅i be agent i's outside option. A sequence of markets M1,M2, ... and mecha-

nism ϕ exhibit strict individual rationality if ∃ψ > 0 such that inf
k
E
[
ui(ϕ(Mk), q(NK))− ui(∅i, q(NK))|q̂i,(NK)

]
≥

ψ.

With these regularity conditions, I de�ne mechanism ϕ̄NM by replacing Step 5. in mechanism ϕ̄

with:

Step 5': With probability 1
ψµi ·D · 2e−2Ikδ2

β−(β+1)2e−2Ikδ2
replace bi with ∅i .

Mechanism ϕ̄NM (under the assumed regularity conditions) punishes agents by cancelling agents'

allocations with small probability ex-post.

Corollary 2 : If a sequence of markets M1,M2, ... and mechanism ϕ are consumption disjoint,

exhibit strict individual rationality, and Nk ∈ o
(
e2I

kδ2

Ik

)
then as k →∞ mechanism ϕ̄NM is BNIC

and the number of agents whose allocations are cancelled converges in probability to 0.

5 Additional Results

5.1 Costly signal acquisition

Thus far, the analysis has assumed that agents exogenously receive signals. More realistically, agents

will have to invest time or e�ort to recieve signals of object characteristics. As the analysis in this
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paper hinges on many agents revealing signals of many objects, a major concern is that identifying

the characteristics of all objects will be prohibitively costly. In this section I explore this by allowing

agents to endogenously pick their signal strength, with more informative signals being more costly.

In order to evaluate T objects with identi�cation strength ε ∈ [0, a] where a < 1, I assume an

agent must pay T · c(ε), where c(0) = 0 and c(·) is strictly increasing and the dth derivative c(d)(0)

exists for all d. To identify the characteristics of all objects with asymptotically 0 cost it must be the

case that T k · c(εk)→ 0. However, when Ik and Nk grow at similar rates, it must be that T k →∞
as otherwise it would be impossible to have an arbitrarily large number of signals for each object,

a necessary condition to correctly identify the characteristics of all objects. Therefore, it must also

be the case that c(εk)→ 0 su�ciently quickly.

An important part of equilibrium analysis relies on relating ε, which measures the identi�cation

power of the market designer, and β, which measures incentives of agents to truthfully report signals.

In previous sections both of these were constants and were washed away in the limit as the market

size grew. It is easy to see that weakening the signal by reducing ε can reduce β as agents are

more likely to believe their priors. When this is the case, the relative speed at which both εk and βk

converge to zero matters. Furthermore, as εk skrinks identi�cation may become impossible as the set

of hubs may shrink to a singleton. To put some structure on the problem and simplify the analysis I

will assume that there are two possible object characteristics, each of which is equally likely ex-ante,

and that for any ε > 0 signals are modal. It is possible to extend the analysis and proof structure to

allow for more possible object characteristics under additional symmetry assumptions that bound

the ratio of εk to βk for large k.

As I show, when identi�cation is possible with asymptotically zero cost, it is achieved by having

all agents report (weak) signals of all objects.12 I give conditions under which a sequence of signals

strengths and punishments (for incorrect reports compared to the wisdom of the crowds, as before),{{
εki , p

k
i

}
i=1,...,IK

}
k=1,2,...

, exists such that all agents follow the plan in equilibrium, truthfully

report all signals, all characteristics are asymptotically identi�ed, and total waste goes to 0.

Theorem 2 : Let Nk ∼
(
Ik
)α

for some α ≥ 0, and suppose Q = {q1, q2}, each of which is

equally likely ex-ante, and that for any ε > 0, p(q̂i,n = q(n)) >
1
2 . Then there exists a sequence{{

εki , p
k
i

}
i=1,...,IK

}
k=1,2,...

such that as k →∞ all agents report signals on all objects and

1. if the designer can pick εki for all agents and ensure truthful reporting, all objects are correctly

identi�ed with zero total cost if and only if c(d)(0) = 0 for all d ≤ 2α+ 2,

2. If the designer can pick εki for all agents and ensure truthful reporting, all objects are correctly

identi�ed with zero per capita cost if and only if c(d)(0) = 0 for all d ≤ 2α,

3. the reporting game speci�ed by the mechanism is BNIC, and in the truthtelling equilibrium all

objects are correctly identi�ed, total cost is zero, and all agents pick the speci�ed εki if and only

if c(d)(0) = 0 for all d ≤ 2α+ 3, and

12Bohren and Kravitz (2016) study a principal who crowdsources the identi�cation of unveri�able information to
multiple agents. They similarly �nd that incentive constraints can be relaxed if agents are called upon to assess many
objects.
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4. the reporting game speci�ed by the mechanism is BNIC, and in the truthtelling equilibrium all

objects are correctly identi�ed, per capita cost is zero, and all agents pick the speci�edεki if and

only if c(d)(0) = 0 for all d ≤ 2α+ 1.

Considering α ≥ 0 is su�cient to describe all interesting relative growth rates. α = 0 means

that the number of objects in the market is constant in the number of agents, and one can trace out

everything slower than polynomial growth with small α as the conditions given in Theorem 2 are

the same for α = 0 and α su�ciently close to zero. Also, any growth rate faster than polynomial

growth, i.e.
(
Ik
)α ∈ o(Nk) for all α > 0, such as exponential growth, implies that a necessary

condition to identify all objects at asymptotically zero cost is that c(γ) = 0 for some γ > 0, which

means some information is free.

Consider speci�cally the case in which Nk is constant (α = 0). Theorem 6 of Martinelli (2006)

gives the same condition, c(0) = c
′
(0) = c

′′
(0) = c

′′′
(0) = 0, for a Condorcet Jury model with

voluntary information acquisition and a particular family of agent preferences to make the �correct

decision� at asymptotically zero aggregate cost. In such a jury model, not all agents participate.

One interpretation of the results of Theorem 2 is that with arbitrary utility functions, all agents will

gather small amounts of information (but enough to collectively determine the �correct decision�)

and participate in the vote if there is some social cost of non-participation.

Another interpretation of this theorem is the cost a principal has to pay experts to gather

and report costly signals. Experts have to be compensated for their e�ort in gathering signals,

and also have to be incentivized to tell the truth (in order to ensure that the o�ered contract is

individually rational to experts, pk can be a reward for agreeing with the market consensus instead

of a punishment for disagreeing). Gerardi and Yariv (2007) consider this problem, although they

assume that there is only one object with an unknown quality, and the principal hires at most two

experts from a large pool. The case in which e�ort and signals are public corresponds to the market

designer result of Theorem 2. Theorem 2 can be used to study conditions under which it is optimal

for a principal to contract out the information gathering to many agents. One interesting �nding of

this theorem is that fewer restrictions are necessary on the cost function to satisfy agents' incentive

constraints, both in terms of picking the correct signal strength and truthfully reporting signals,

than to move from zero per capita waste to zero total waste.

5.2 Unknown Utility Functions

One assumption carried throughout the paper is that the utility functions of all agents are known.

Although this may be true in some circumstances, many markets feature agents with heterogeneous

and unknown preferences. The analysis above gives conditions under which a designer can, with

high probability, ascertain the unknown characteristics of all objects, nevertheless, the posterior

belief of each object's characteristic may di�er, as mechanism ϕ̄ rounds the posterior assessment

of the characteristic of each object to the nearest discrete characteristic level. Even if a market

designer creates a mechanism that gives incentives for truthtelling when characteristics are known,

these incentives will generally not carry through when characteristics are merely known with high

probability.
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I investigate the recovery of incentives to truthfully reveal preferences in two contexts. First,

suppose that the characteristic of every object is known by an agent. For example, a producer may

know the characteristic of her own product whereas her peers only observe signals of its characteristic,

or a worker may know her own characteristic whereas interviewing �rms observe a signal of her

characteristic.

Definition 4 : ϕ is strategy-proof if the revelation game induced by ϕ has an equilibrium in weakly

dominant strategy for each agent i to truthfully report her utility function.

When one agent has perfect knowledge of an object, a designer can create a �check and bal-

ance��she can run mechanism ϕ̄ with additional steps.

Step 2.1: Solicit reports of ui from each agent i.

Step 2.2: Solicit agent n
′
(who knows the characteristic of item n) to report on the

characteristic of item n, s̄n. If q̄(n) = s̄n then continue as before. Otherwise, charge

agent n
′
a penality of

(
1 + 2e−2Ikδ2

)
·D and de�ne q̄(n) ≡ s̄n.

Call the mechanism with these two steps added ϕ̄CB By adding these extra steps, in a truth-telling

equilibrium, agent n
′
with full knowledge of q(n) will have an incentive to report s̄n truthfully.

Proposition 2 : Suppose for each object n there is an agent n
′
who knows qn. If a sequence of

markets M1,M2, ... satis�es Nk ∈ o
(
e2I

kδ2

Ik

)
then as k → ∞ for any strategy-proof mechanism

ϕ, the game induced by ϕ̄CB has a Bayes Nash equilibrium in undominated strategies in which all

agents truthfully report signals and utility functions and expected total payments converge to 0.

The preceeding mechanism ϕ̄CB uses a check-and-balance system to incentivize all parties to

truthfully report the characteristics of each object and their own utility functions. The premise

of this mechanism makes the assumption that at least one person knows the characteristic of each

object with probability 1. I show that a similar claim holds when no agent knows the characteristic

of a particular object in an ordinal mechanism.

Definition 5 : Let M and L be two markets which di�er only in the utility functions of agents,

{ui}i∈I and
{
u
′

i

}
i∈I

, respectively. ϕ is an ordinal mechanism if ϕ(M) = ϕ(L) whenever ui(b,Nq) ≥
ui(b̃, Ñq) if and only if u

′

i(b,Nq) ≥ u
′

i(b̃, Ñq) for all i, b, b̃, Nq, Ñq.

Ordinal mechanisms operate independently of the cardinal values of preferences. Examples of

such mechanisms abound in the matching literature, including Deferred Acceptance, Top Trading

Cycles and Serial Dictatoriship mechanisms.

Definition 6 : Utility functions {ui}i∈I are bounded-repsonsive if ui(b,Nq) =
∑
n∈N

bi,n · v(xi,n, nq)

for all feasible bi where xi,n
i.i.d.∼ Fi, Fi has full support,dFi is uniformly bounded above by g > 0 for

all i, and vi is continuous in its �rst argument.

This is a generalization of a concept known as responsive preferences found in the matching

literature (Roth (1985)).

I now de�ne mechanism ϕ̄O as ϕ̄ with the following additional step.
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Step 2.1: Solicit reports of ui from each agent i.

Proposition 3 : Suppose that ϕ is ordinal and strategy-proof and utility functions {ui}i∈Ik are

bounded-repsonsive. Then in a sequence of marketsM1,M2, ... with
(
Nk
)2 ∈ o( e2Ikδ2

Ik

)
as k →∞

the game induced by ϕ̄O has a Bayes Nash equilibrium in undominated strategies in which all agents

truthfully report signals and additionally, utility functions with probability approaching 1 and total

payments converge to 0.

Notice that the growth rate condition is more restrictive (the condition is on
(
Nk
)2

not Nk)

and the growth rate condition is necessary for the truthful reporting of utility functions, whereas in

Proposition 2 the growth rate condition was only applied to the claim about the sum of punishments.

The reason is that mechanism ϕ̄O induces truthtelling when the private cardinal values for all objects

are su�ciently far apart, which, under the independence assumption, is harder to maintain as the

number of objects increases.

5.3 Coordinated lying

The analysis thus far has been concerned with designing a mechanism such that no agent has any

incentives to unilaterally lie. Nevertheless, mechanism ϕ̄ may be succeptible to coordinated lies by

a group of agents. For example, there can even exist an equilibrium in which all agents report the

�opposite� of their signals. This section shows that it is possible for a modi�cation of mechanism

ϕ̄ to remove incentives for coordinated lying. Expositionally, I present this as a strategic market

designer playing a strategy to block coalitions of agents from misreporting signals.

In particular, suppose that the designer has the option to suggest to each agent i to correctly

reveal her signals, i.e. Si ∈ {0, 1}. If Si = 1 then with independent probability η < 1 agent i will

truthfully reveal all of her signals, and if Si = 0 then agent i will remain strategic. In other words,

each agent has an η probability of being a naive type and trusting the recommendation of the market

designer. The designer can therefore, with high probability, guarantee a nearly known proportion

of truthful reports as the market grows large, but she does not know which agents are following her

suggestion, which are strategically lying, and which are strategically being truthful.

Nevertheless, by creating aggregate uncertainty about the proportion of agents who are non-

strategic, tightening the ε bounds used for identi�cation and increasing the punishment when objects

fail to be identi�ed, the designer can ensure that no coalitions will form to jointly misreport signals.

Taking the designer as a player whose strategy space consists of a sequence S1, ..., SI , the designer

can create aggregate uncertainty in the proportion of non-strategic players by mixing between Sis in

a correlated manner. In particular, suppose the designer mixes between three alternatives with equal

probability: Si = 1 for all i, Si = 0 for all i and Si = 1 independently with probability ρ for each i.
13 Upon seeing Si = 1 (Si = 0) agent i will attribute a Bayes posterior of 1

1+ρ

(
1

2−ρ

)
of the designer

having chosen strategy Si = 1 for all i (Si = 0 for all i). Meanwhile, if the designer (somewhat

carefully) chooses a sequence of εk → 0 then any coalitional lie will, with high probability, leave the

13Note that the analysis of this section is unchanged if, instead of treating the market designer as a player, the
parameter determining the probability of an agent being naive is drawn uniformly from {0, ρ · η, η}.
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object in question unidenti�ed for at least one of the actions chosen by the designer.14 Therefore,

by ammending mechanism ϕ̄ to punish all agents large amounts in the unlikely case (in equilibrium)

that an object is unidenti�ed, no coalition will have an incentive to lie.

Proposition 4 : In a sequence of markets M1,M2, ... with
(
Nk
)2 ∈ o( e2Ikδ2

Ik

)
and η > 0 proba-

bility of each agent being naive, as k →∞ there exists a BNIC mechanism that identi�es all object

characteristics, total expected payments converge to 0 in the truthtelling equilibrium, and no coalition

of agents bene�ts from jointly lying.

6 Robustness and Conclusion

This paper studies how crowdsourcing can aggregate information in markets in order to ensure near-

optimal outcomes. In settings of interdependent preferences, the wisdom of the crowds is su�cient

to identify the characteristics of all objects with high probability as the market grows, even when

the number of objects to estimate grows signi�cantly faster than the number of agents. However,

agents may not have incentives to report these signals truthfully as they may wish to game the

system. By introducing small penalties for reports that do not align with the collective opinion of

other agents, either by imposing a monetary transfer or cancelling an agent's allocation ex-post, a

mechanism designer can remove the incentive of agents to game the system. I show that the sum of

punishments across all agents necessary to restore good incentives converges to zero. Therefore, a

market designer can use crowdsourced information to approximate optimal allocations.

The results of this paper are applicable to many economically interesting markets such as la-

bor market matching, competitive equilibrium, and peer assessment. The mechanism I propose is

independent on the speci�cs of the market in question. The rates of convergence discussed in the

formal results are exponential, meaning that a �large market� need not be prohibitively large. As

discussed in Section 2, reasonably-sized markets have su�ciently many agents that the techniques of

this paper will ensure proper incentives and approximate desirable allocations with minimal waste.

One observation is that the generality of the setting of this paper leads to quite liberal bounds

on identi�cation and punishment, but this also imples that results are relatively �detail-free� and

robust to lack of full information on distributions on the part of agents in the model (Wilson (1987)).

The mechanism presented depends on two values to reprsent the strength of agents' signals, ε and

β. But these values can be represented as bounds as opposed to exact values. For example, suppose

the only knowledge a designer has is that p
(
q(n) = q`|q̂i,n = q`

)
≥ Ω > 1

2 for all i and `, that is

the probability each agent places on the event that the quality of an item is equal to the signal

she observes is bounded away from 1
2 . Then the designer can utilitze the mechanism in this paper

by setting β = 2Ω and ε = Ω, and all of the properties of the mechanism will hold.15 A recent

mechanism proposed by McLean and Postlewaite (2018) that is speci�cially designed to be robust

to various information settings (indeed, it is referred to by the authors as �a very robust auction

mechanism) makes a nearly-identical assumption on distributions. To my knowledge, no mechanism

14Recall that an object is unidenti�ed if the empirical distribution of signals regarding its characteristic is not within
distance ε of the theoretical distribution for any characteristic with respect to the supnorm.

15 This observation is the basis for the back-of-the-envelope calculations presented in Section 2.
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in the literature that incentivizes truthtelling with vanishingly small waste can operate on fewer

details than the mechanism in this paper, and that in McLean and Postlewaite (2018).

In a way, this paper also gives a theoretical justi�cation for the pervasive assumption of full-

information in the market design literature�allocations derived withthis assumption can be approx-

imated without it. Since the full-information assumption buys signi�cant tractibility, it is a logical

assumption to make. Even in some more complicated settings, such as when signals are costly to

observe or agents have private information about their preferences, the results of this paper show

that the driving force of the wisdom of the crowds is powerful enough to approximate optimal allo-

cations. Of course, this may not hold in certain markets in which signals are (perfectly) correlated

across agents or when it is prohibitively costly for agents to receive non-trivial signals for many

objects. The study of such markets presents new challenges and is left for further study.
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Appendix

A Failure of Information Aggregation: Examples

Example 3 : There are Ik and Nk of an object with Ik > Nk for all k. Each object is di�erentiated

only by quality, with each seller i equally likely to create a high quality object xi or a low quality

object yi, so that seller i′s endowment ei ∈ {(1, 0), (0, 1)} each with equal probability.

Each buyer wishes to buy at most one object, and only wishes to buy a high quality object, at the

lowest possible price. Formally, the utility of each buyer n is

un(x, y, t) =

 Ik∑
j=1

xnj − ynj

 · 1{
Ik∑
j=1

xnj +ynj ≤1

} − Ik∑
j=1

tnj

where tnj is the payment the buyer makes to seller j. Sellers value only money, and each seller wishes

to sell her product for the highest price,

ui(x, y, t) =

Nk∑
m=1

tmi .

24



Suppose qualities are common knowledge and there are Hk objects of high quality. In a Walrasian

Equilibrium, if Hk > Nk then all high quality objects are free and all buyers receive exactly one object,

if Hk = Nk then all high quality objects are priced at some t∗ ∈ [0, 1] and each buyer buys exactly

one object, if Hk < Nk then the price of each object is 1 and all sellers of high quality objects sell

their object. In all cases, the low quality objects are free and unclaimed.

Now suppose that qualities are unknown. Each seller receives a signal of the quality of each

object, while buyers cannot di�erentiate between objects of di�erent qualities. A market designer

solicits reports of qualities and computes a Walrasian Equilibrium based on these reports. Note that

the conditions of Proposition 1 are satis�ed as Ik → ∞, and so the qualities of all objects will be

ascertained asymptotically if the signals reported are truthful. Let H̄k denote the market assessment

for the number of high quality objects based on the reports.

Now consider the incentives for seller i. I claim that seller i has a weakly dominant strategy to

report that all other sellers have low quality objects and that she has a high quality object. Since i's

probability of selling her object and the price at which she sells it are non-increasing in H̄k, she does

no worse (and possibly strictly better) by reporting that all objects are low quality. Since all sellers

have the same incentives, all objects will be judged to be of low quality.

Example 4 : There are I laws of either high or low quality. A non-partisan and unbiased president

wishes to enact high quality laws. She relies on the advice of the senate to determine which policies

she should sign into law (she can veto bills passed by the senate, or enact failed legislation through

executive orders). Each senator is partially informed, receiving a signal p > 1
2 of the quality of

each law. However, senators are partisan, with senators from the majority party wishing to enact

even-numbered laws of either quality, and not enacting odd-numbered laws of either policy. Minority

party senators have opposite preferences.

Therefore, each senator has a weakly dominant strategy to vote for a law if and only if it conforms

with her party platform. By following the recommendation of the senate, the president will enact⌊
n
2

⌋
laws. Note that if the prior probability of each law being high quality is greater than 1

2 and the

president's utility from enacting a high quality law minus the utility from enacting a low quality law

is greater than 0, then she would be better o� ignoring the senate and enacting every law.

B Proofs

Proof of Proposition 1:

Proof of Part 1.:

The mathematical basis for the proof is based on the following result.

Lemma 1 [Dvoretzky, Kiefer, Wolfowitz (1956) and Massart (1990)]:

For any λ > 0, p

(√
Ik sup

x
|F̂Ik(x)− F (x)| > λ

)
≤ 2e−2λ2

.
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Rearranging the DKW inequality, then

p

(
sup
q̂

∣∣∣F̂Ik (q̂|q(n)

)
− F

(
q̂|q(n)

)∣∣∣ > λ√
Ik

)
≤ 2e−2λ2

.

Let λ = ε
√
Ik. Then the DKW inequality further implies that

p

(
sup
q̂

∣∣∣F̂Ik (q̂|q(n)

)
− F

(
q̂|q(n)

)∣∣∣ > ε

)
≤ 2e−2Ikε2

so the probability of agents incorrectly identifying the characteristic of n is declining exponentially

in the number of agents. However, we are interested in the probability that the characteristics of

all objects are correctly identi�ed. The probability of incorrectly identifying even a single n ∈ Nk

is bounded above by

Nk · 2e−2Ikε2 ≡ χk (4)

Then χk → 0 if and only if 2ε2Ik − logNk → ∞, which occurs if and only if ∀γ > 0 ∃K : ∀k >
K Ik ≥ 1

2ε2 logNk + γ. This establishes the �if� direction.

Proof of Part 3.:

To establish the converse, consider the following result:

Lemma 2 [Mousavi (2010)]: Let X1, ...XIk be independent, Bernoulli random variables with success

probability ρ ≤ 1
4 . For any t > 0, p

[
Ik∑
j=1

Xj − Ikρ > t

]
≥ 1

4e
=2t2

Ikρ .

Dividing through the �rst term of the above inequality, we see that

p

 1

Ik

Ik∑
j=1

Xj − ρ >
t

Ik

≥1

4
e
=2t2

Ikρ

Taking t = εIk, we can rewrite this as

p

 1

Ik

Ik∑
j=1

Xj − ρ > ε

≥1

4
e
=2ε2Ik

ρ

As |Q| > 3 there must be some qo for any object having characteristic q(n) such that ρ = p
(
q̂ = qo|q(n)

)
≤

1
4 , i.e. the probability of getting signal qo given the object's characteristic is q(n). Then

1
Ik

Ik∑
j=1

Xj is

the empirical distribution of getting signal qo, and the above inequality gives a lower bound on the

probability of the empirical distribution being farther than ε from the expected distribution at qo.

As ε−identi�cation requires the empirical distribution is no farther than ε over the full support of Q,
1
4e

=2ε2Ik

ρ is a lower bound on the probability of incorrectly identifying the object characteristic. Note
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that both this value and the expoential term used in the �if� direction of the proof are both on the

order of e−I
k

. Therefore, reworking Equation (4) with the lower bound gives the same requirement

on the relative growth rates of Nkand Ik, up to a constant factor.

Proof of Part 2.:

Follows from Equation (4).

�

Proof of Corollary 1:

Assume the hypothesis of Proposition 1. For any n suppose agents can distinguish between two

characteristics, that is, there exists qoand qp such that F (qo) 6= F (qp). Now consider partion F̄ .
Recall thatF̄(qo) = F̄(qp) only if p

(
q̂ ∈ H̄h(q)|qo

)
= p

(
q̂ ∈ H̄h(q)|qp

)
for all H̄h(q). Since there are

at least two hubs and signals have full support, this occurs only when∑
q̂∈H̄h(q)

p (q̂|, qo) =
∑

q̂∈H̄h(q)

p (q̂|qp) for all q ∈ Q. (5)

Since by assumption H̄h(q) 6= H̄h(q′) for some q, q′ ∈ Q, F̄(qo) = F̄(qp) for a non-generic set of

distributions (i.e. the set of distributions for which (5) does not hold is open and dense). The

remainder of the proof follows from reapplying the logic of the proof of Proposition 1.

�

Proof of Theorem 1:

I �rst prove that the proposed punishment yields a truthtelling equilibrium, and second show that

the total punishment converges to zero.

1. Suppose that an agent i of recieves signal qm′ from object n. From Proposition 1 (and Corollary

1) the probability that i can change market assessment of n is bounded above by 2e−2Ikδ2 .

By assumption, the most i can gain from changing the market assessment (before taking the

punishment into account) is D utils. I now give (upper and lower, respectively) bounds on

the probability that i will have to pay a penalty, when the penalty is assessed when i's report

di�ers from the market assessment for n. An upper bound on having the pay the punishment

from telling the truth is

1−mmax(m
′
)
(

1− 2e−2Ikδ2
)

(6)

where (6) represents the case that i's signal is correct and the market assessment is also correct.

On the other hand, a lower bound on having to pay the punishment by lying is(
1− max

m 6=mmax(m′ )
βm,m′

)(
1− 2e−2Ikδ2

)
(7)
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where (7) represents the case that i reports the second most likely characteristic given her

signal, is incorrect, and the market correctly identi�es the characteristic of n. Combining

(6) and (7) together with the largest possible bene�t of changing the market assessment,

punishment pk is su�cient if

−
(

1−mmax(m
′
)
(

1− 2e−2Ikδ2
))

pk ≥ 2De−2Ikδ2−
(

1− max
m 6=mmax(m′ )

βm,m′

)(
1− 2e−2Ikδ2

)
pk

(8)

Solving for the smallest pk that satis�es (8) for any qm′ yields

pk = D · 2e−2Ikδ2

β − (β + 1)2e−2Ikδ2
(9)

Noting that an agent could potentially gain D utils by changing the market assessment for

even a single object yields the desired result.

2. To show that the sum of punishments converges to zero, note that the worst case total pun-

ishment is

Ik ·Nk ·D · 2e−2Ikδ2

β − (β + 1)2e−2Ikδ2
(10)

which corresponds to the case in which every agent incorrectly identi�es the characteristics of

every object (or, alternatively, that every object is misidenti�ed). However, with the ongoing

assumption that Nk ∈ o
(
e2I

kδ2

Ik

)
it becomes clear that (10) converges to zero as k →∞.

�

Proof of Theorem 2:

In what follows, I will use writeεk = min
i∈Ik

εki (and βk = min
i∈Ik

βki ), the smallest ε (β) chosen in market

k. Note that the market designer can simply �add noise� to each agent's reports to lower the signal

strength equal to εk to preserve the identi�cation methods discussed in this paper. As I will show

below, this is mostly a notational point, as the di�erence in the chosen εki between agents converges

to zero very quickly.

I now prove a lemma that is useful in relating β and ε.

Lemma 3 : As εk → 0, β
k

εk
→ 4.

Under the assumption of two object types, equal priors and signal modality, it is easy to see that

28



βk =

p(q(n) = q1|q̂i,n = q1)− p(q(n) = q2|q̂i,n = q1) =

p(q̂i,n = q1|q(n) = q1)− p(q̂i,n = q2|q(n) = q1)

p(q̂i,n = q1)
→

p(q̂i,n = q1|q(n) = q1)− p(q̂i,n = q2|q(n) = q1)
1
2

where the second equality comes from Bayes rule and the convergence comes from the assumption

of signal modality and εk → 0. Furthermore,

εk =
p(q̂i,n = q1|q(n) = q1)− p(q̂i,n = q2|q(n) = q1)

2

Combining these two equations gives the desired result.

�

Returning to the proof of the theorem, I show that the desired properties yield constraints on

c(·), βk, εk and pk and the intersection of these constraints is non-empty if and only if the respective

derivative condition is satis�ed. Throughout I use that
(
Ik
)α ∼ Nk. Note that the assumption

that all agents are instructed to acquire information on all objects is without loss of generality, as

replacing Ik with Jk < Ik does not easy any of the constraints in the limit.

Proof of Point 3 :

First, the restriction that all characteristics are correctly identi�ed requires that

Ik − 1

2 (εk)
2 logNk →∞. (11)

Second, the restriction that the total cost paid in information aggregation goes to zero requires

that

NkIk
(
pk + c(εk)

)
→ 0. (12)

While the alternative that per capita costs go to zero requires that

Nk
(
pk + c(εk)

)
→ 0 (13)

Third, the restriction that all agents truthfully report signals is implied by the condition of

Theorem 1, that is,

pk ≥ 2e−2Ik(δk)
2

2εk − (2εk + 1)2e−2Ik(δk)2
·D (14)

Finally, all agents must have an incentive to pick the prescribed εk (βk). This requires that the
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indicated βk minimizes

[
[1− p(q̂i,n = q̄n|β)] · pk − p[i's reports change q̄n|β] · Z + c(β)

]
·Nk (15)

Where the �rst term denotes the probability of being punished by getting the wrong signal, the

second term denotes the probability of changing the market assessment of an object by one's own

signal times the bene�t of doing so (Z ≤ D) and the third term denotes the cost of the chosen signal

strength. By the proof of Theorem 1 that the �rst term in (15) is bounded above by

1− p(q̂i,n = q̄n|β) ≤ 1− β`,`
(

1− 2e−2Ikδ2
)
≤ 1− β

(
1− 2e−2Ikδ2

)
(16)

and the second term is bounded by D
(

1− 2e−2Ikδ2
)
.

I plug equation (16) in to equation (15) to continue the analysis. It will later become clear that

using this upper bound is su�cient to show the result, i.e. the exponential terms disappear quickly

in the limit. Therefore, the modi�ed objective funciton is

V =
[[

1− β
(

1− 2e−2Ikδ2
)]
· pk + c(β)

]
·Nk (17)

Taking FOC of (17) and noting that that it must equal zero evaluated at β = βk it must be the

case that

∂V
∂β
|β=βk =

(
1− 2e−2Ikδ2

)
· pk − c′(βk) = 0 (18)

Rearranging,

pk =
c
′
(βk)

1− 2e−2Ikδ2
(19)

Taking a Taylor expansion of (19) yields

pk =
ad̄−1 ·

(
βk
)d̄−1

+ hd̄−1(βk) · βk
1− 2e−2Ikδ2

(20)

where d̄ is the �rst non-zero derivative of c(·) at 0, and h is a residual term.

Therefore, a proposed plan
{
εk, pk

}
k=1,2,...

must asymptotically satisfy (11), (12), (14) and (20).

⇒�if� (11) is implied by

εk >

(
logNk

2Ik

) 1
2−γ1

(21)

for any 0 < γ1 < 1
2 . Let ε

k =
(

1
Ik

) 1
2−γ1 for some positive γ1 su�ciently close to 0. From

Taylor's theorem it is clear that in any plan
{
εk, pk

}
k=1,2,...

achieving the desired properties

pk → ad̄−1 ·
(
βk
)d̄−1

(22)
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By Lemma (3) we know that for large k

pk → 4d̄−1ad̄−1

(
1

Ik

)( 1
2−γ1)(d̄−1)

(23)

Also note that this implies that (12) is satis�ed when ( 1
2 −γ1)(d̄− 1) ≥ α+ 1, (where a similar

Taylor expansion argument implies that c(εk) < pk for su�ciently large k). Rearranging yields

d ≤ 2α+ 3. All that remains is to show that (14) is satis�ed, i.e. for su�ciently large k

4d̄−1ad̄−1

(
1

Ik

)( 1
2−γ1)(d̄−1)

≥ 2e
−2Ik

(
( 1

Ik
)

1
2
−γ1− 1

Ik

)2

2
(

1
Ik

) 1
2−γ1 −

(
2
(

1
Ik

) 1
2−γ1 + 1

)
2e
−2Ik

(
( 1

Ik
)

1
2
−γ1− 1

Ik

)2 ·D (24)

But note that 2
(

1
2 − γ1

)
< 1 so the right hand side of (24) converges to zero exponentially

in Ik while the left hand side converges at a much slower rate. Therefore, (14) is satis�ed for

su�ciently large k.

⇐�only if�

Note that (11) implies that εk >
(

2 logNk

Ik

) 1
2

for su�ciently large k. But even for εk =(
2 logNk

Ik

) 1
2

(23) implies that pk ≥ ad̄−1

(
2 logNk

Ik

)2

since d ≤ 2α+3. But then
(
Ik
)α+1 (

pk
)
→

∞ violating (12).

Note that reworking the proof using equation (13) instead of (12) yields the complementary per

capita cost result.

�

Proof of Point 1 : The market designer need not consider the incentives of agents to lie, and so

the designer must pick a sequence
{
εk, pk

}
k=1,2,...

to satisfy (11) and (12). Therefore, it is clear that

setting pk = 0 relaxes the constraints. Using a similar Taylor expansion argument as in the Proof

of 3. for su�ciently large k

c(εk) ≈ ad̄(εk)d̄ (25)

Therefore, in order to satisfy (12) and (21) it must be the case that 1
2 · d̄ > α+1 which is satis�ed

for any d̄ ≥ 2α+ 2. Similarly to the previous part, it is easy to see that if d̄ < 2α+ 2 it is impossible

to satisfy both (11) and (12), establishing the reverse direction of the claim.

Note that reworking the proof using (13) instead of (12) yields the complementary per capita

cost result.

�
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Proof of Proposition 2:

Recalling that agent n's maximum possible utility is D, she must be charged at least D or else she

could (in some mechanisms, perhaps) lie and obtain a payo� of D. However, she must also account

for the possibility that assesment q̄(n) is incorrect and since there is always some small chance of

this, she may lie.16 By increasing the punishment by 2De−2Ikδ2 agent n no longer wishes to lie

in any situation, as the equilibrium probability that q̄(n) 6= q(n) is bounded above by 2e−2Ikδ2 and

the highest bene�t to agent n is D. Therefore, in equilbrium, every object is correctly identi�ed

with probability 1. Since ϕ is strategy-proof, agents will report utilities and signals truthfully in

mechanism ϕ̄CB . The claim regarding total expected punishment follows from Theorem 1 and the

fact that in the limit no objects are incorrectly identi�ed in equilibrium.

�

Proof of Proposition 3:

Agents still have incentives to report signals truthfully. By bounded-responsive preferences, each

agent i need only report v(xi.n, nq) for all n ∈ Nk and q` ∈ Q. In a strategy-proof ordinal mechanism

ϕ, i need only report her ordinal rankings of xi.n. When q(N) is not known, by continuity of v in its

�rst argument agent i has no desire to misreport her relative preferences for n and n′ if |xi,n−xi,n′ |
is su�ciently large. To de�ne �su�ciently large,� begin by denoting γ(δ, Ik) = 2e−2Ikδ2 , where γ

represents the probability that q̄(n) 6= q(n). Then the expected utility of an agent i from misreporting

preferences is bounded above by D · γ(δ, Ik). On the other hand, by continuity of v the utility

di�erence between xi,n and xi,n′ is λ · |xi,n − xi,n′ | for some λ > 0. Therefore, i has no incentive to

misreport her preferences if

∀n, n′ λ · |xi,n − xi,n′ | < D · γ(δ, Ik).

Let where x∗be the value of x for which dF attains its maximum.Then the probability that i has

an incentive to misreport is

p

(
min
n,n′
|xi,n − xi,n′ | <

D

λ
· γ(δ, Ik)

)
≤(

Nk

2

)
p

(
min
n,n′
|xi,n − xi,n′ | <

D

λ
· γ(δ, Ik)

)
≤(

Nk
)2

2
p

(
min
n,n′
|xi,n − xi,n′ | <

D

λ
· γ(δ, Ik)

)
≤(

Nk
)2

2
p

(
|x∗ − xi,n| <

D

λ
· γ(δ, Ik)

)
≤(

Nk
)2 · g · D

λ
· γ(δ, Ik)

16Consider, for example, a situation in which n's utility is 0 in the allocation if she reports s̄n = q(n) and D if she
reports s̄n = q` for some q`. Then since there is some chace that q̄(n) = q` she prefers to report s̄n = q`.
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The last inequality comes from the fact that dF is bounded above by g by assumption, and the

probability of xi,n being within D
λ · γ(δ, Ik) of x∗ is bounded above by 2 · g · Dλ · γ(δ, Ik). Then the

probability that any agent has an incentive to misreport preferences is bounded above by

Ik
((
Nk
)2 · g · D

λ
· γ(δ, Ik)

)
.

The premise that
(
Nk
)2 ∈ o( e2Ikδ2

Ik

)
completes the truthtelling claim. Noting that the assumed

growth rate of Nk is slower here than in Theorem 1 ensures that when
(
Nk
)2 ∈ o( e2Ikδ2

Ik

)
total

waste converges to 0.

�

Proof of Proposition 4:

The particular scheme I consider is one in which the designer mixes equally between Si = 1 for all

i, Si = 0 for all i and Si = 1 independently with probability ρ for each i. For simplicity, I denote

these S1, S0, and Sρ respectively. Let εk = ε
(

1
Ik

)t
for some t < 1.17 As k → ∞ clearly εk → 0.

This implies than the probability of εk−incorrectly identifying object n's characteristic under S1, S0,

and Sρ in any coordinated lie goes to zero generically. This follows from the fact that as k → ∞
the measure of space in which objects are εk−identi�ed goes to 0. The following remark states this

formally.

Remark 1 : For any η > 0, εk = ε
(

1
Ik

)t
and any coalition of agents Îk the probability of

εk−incorrectly identifying an agent in S1, S0, and Sρ by a coordinated misreport of signals by agents

in Îk goes to zero for almost every 1 > ρ > 0.

Given this, the probability that an agent i places on S1 (S0) upon receiving Si = 1 (Si = 0) is 1
1+ρ(

1
2−ρ

)
by Bayes' rule. Therefore, choosing a punishment p′(ρ) = (D + ι)·max

{
1− 1

1+ρ , 1− 1
2−ρ

}
=

(D + ι) · max
{

ρ
1+ρ ,

1−ρ
1+ρ

}
for some ι > 0 to be applied to all agents in the case that an object is

unidenti�ed implies that no coalition of agents wishes to misreport signals in mechanism ϕ̄ for

su�ciently large k. Note that for any ι > 0, p
′
(ρ) is minimized by setting ρ = 1

2 , that is, when the

designer makes di�erent suggestions to di�erent agents, she does so with equal probability.

The claim regarding total expected punishment follows from Theorem 1 and the fact that in the

limit no objects are unidenti�ed in equilibrium.

�

17I take t strictly less than 1 so that δ is well-de�ned in the de�nition of mechanism ϕ̄.
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