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Abstract

We study when equilibrium prices can aggregate information in a market
with a large population of privately informed buyers and sellers. Our main
result identifies a property of information—the betweenness property—that is
both necessary and sufficient for aggregation. The characterization provides
predictions about equilibrium prices in complex, multidimensional environments.

1 Introduction

When do prices aggregate information? This question is central to understanding a
market economy where information about unknown fundamentals is dispersed over a
large number of market participants, and prices are the primary channel by which
information is aggregated and transmitted in the economy.

In this paper, we study information aggregation in a competitive market with
common-value assets, and a large (non-atomic) population of privately informed
buyers and sellers. Trade occurs through an auction mechanism that closely resembles
the call market used to set daily opening prices on the New York Stock Exchange.
After observing signals, traders submit sealed bids and an auctioneer determines the
market-clearing price. With their bids, traders determine their chances of trading,
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but the the large population implies that individuals have negligible impact on prices
and total trading volume. Accordingly, our model formalizes the key price-taking
assumption of competitive equilibrium models, but with an explicit price formation
process based on strategic auction models.1

Our main result provides a characterization of the information environments where
there exists equilibrium prices that aggregate information in this market. On one hand,
our result shows that equilibrium prices can aggregate information even in complex
information environments where the previous auction literature makes no predictions
about the information efficiency of prices. On the other hand, our result establishes
limitations of market trading mechanisms by identifying when Bayes-Nash equilibrium
prices cannot implement a fully-revealing rational expectations equilibrium (REE).

To fix ideas our approach, we start by considering two simple examples.

Example 1. Consider a market for an asset X, which depends on two independent
inputs A and B. For instance, the value of asset X could reflect the real returns from
an investment in two different sectors, or the yields of a commodity in two different
locations. The value of the asset is the sum of the two inputs. Traders are ex-ante
identical, but receive specialized information (e.g, by industry or region). With equal
probability, a trader receives a signal that is perfectly informative about one input but
conveys no information about the other input. In a market with a large population
of traders, public signals reveal the value of the asset because half of the population
is perfectly informed about input A and the other half is perfectly informed about
input B. The question is whether, in a market with private information, prices can
aggregate the information dispersed over traders.

This market has a fully-revealing REE. But when traders condition directly on
fully-revealing prices, they can ignore their private signals. It is therefore unclear where
prices originate, or how they incorporate information (Hellwig, 1980; Milgrom, 1981).
The auction literature addresses this problem by providing a complete description
of the trading mechanism. However, this literature relies on strong information
assumptions. In particular, in order to establish an equilibrium in monotone bidding
strategies signals must satisfy the monotone likelihood-ratio property (MLRP), and

1We therefore follow Aumann (1964, p.39), who argues that “a mathematical model appropriate
to the intuitive notion of perfect competition must contain infinitely many participants” and Milgrom
(1981, p.923), who argues that “to address seriously such questions as how do prices come to reflect
information...one needs a theory of how prices are formed.”
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nothing is known about whether auction prices can aggregate information when the
MLRP is not satisfied. In the market for asset X signals do not satisfy the MLRP
and so the previous auction literature provides no prediction about the information
conveyed by equilibrium prices.

An auction with a large population of traders provides an alternative approach to
the aggregation problem. For instance, it is straightforward to show that equilibrium
prices can aggregate information in the market for assetX. To illustrate, suppose there
are four possible states {(1, 1), (1, 2), (2, 1), (2, 2)}, corresponding to the realization of
the two inputs, and so there are three possible values {2, 3, 4} for the asset. There are
four possible signals, {LA,HA,LB,HB}, where Lc indicates that input c ∈ {A,B}
has low realization 1, and Hc indicates that input c has the high realization 2. Half
of the traders are sellers endowed with one unit of the asset, and the other half are
buyers with unit demand. Now consider the following strategy. With a low signal, a
trader submits a bid of 2 with probability 2

3 and 3 with probability 1
3 ; with a high

signal, the trader submits a bid of 3 with probability 1
3 and 4 with probability 2

3 .
When all traders follow this strategy, we can appeal (informally for now) to the law of
large numbers to describe aggregate demand and supply. For each state, the aggregate
demand D(p) represents the mass of buyers who submit a bid of p or above, and
the aggregate supply S(p) represents the mass of sellers who submit an ask of p or
below. When the value is 2, all traders receive a low signal; two-thirds then submit
a bid of 2 and one-third submit a bid of 3 (Figure 1a). When the value is 3, half of
the traders receive a high signal and the other half receive a low signal; one-third
then submit a bid of 2, one-third submit a bid of 3, and one-third submit a bit of
4 (Figures 1b). When the value is 4, all traders receive high signals; one-third then
submit a bid of 3, and two-thirds submit a bid of 4 (Figure 1c). As Figure 1 illustrates,
the market-clearing price equals the value of asset X in every state. Moreover, since
individual traders cannot impact prices, there are no profitable deviations and the
strategy is an equilibrium. 2

Example 2. Are there also markets where prices cannot aggregate information?
Consider the market for an alternative asset Y that has value 4 when both inputs are
equal and value 2 otherwise. The information signals convey about states is the same
as for asset X but the payoff structure is different: inputs are substitutes for asset X
and complementary for asset Y .
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Figure 1: Aggregate demand and supply.

Bayes-Nash equilibrium prices cannot aggregate information in the market for asset
Y . To illustrate, consider any strategy-profile where aggregate supply and demand
cross at p = 4 when all traders receive a low signal, and also when all traders receive
a high signal. Suppose that, on aggregate, traders submit higher bids when they
receive a high signal for input A than when they receive a low signal for input A.2

In order for the price to equal 4 in both states where the value is 4, it must be the
case that (on aggregate) traders submit lower bids when they receive a high signal
for input B than when they receive a low signal for input B. Now consider the state
where the value of the asset is 2 and traders either receive a high signal on input A or
a low signal on input B (i.e., in the state (2, 1)). Since aggregate bids are highest
in this state, the price cannot be less than 4. As a result, there is no strategy where
the market-clearing price is equal to the value in every state. There are strategies
where the market-clearing price is different in every state, but these strategies present
traders with arbitrage opportunities. If traders predict a price that is strictly less
than the value in some state, buyers have an incentive to increase their bids locally to
increase their chances of trading, and sellers have an incentive to increase their asks
locally to decrease their chances of trading. Likewise, if the price is strictly greater
than the value, buyers have an incentive to decrease bids and sellers have an incentive
to decrease asks. Competitive forces therefore apply upward pressure on prices in
states where the asset is undervalued, and downward pressure on prices in states
where the asset is overvalued. As equilibrium prices cannot equal values, the only
escape is that equilibrium prices do not aggregate information. 2

2A symmetric argument applies when, on aggregate, traders submit higher bids when they receive
a low signal for input A than when they receive a low signal for input A.
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The example of asset X shows that, in a competitive market, the MLRP is not
necessary for information aggregation. In fact, information aggregation is possible
even in complex information environments where signals have no meaningful order
properties. On the other hand, the example of asset Y shows that some conditions
must be satisfied, otherwise a fully-revealing REE can not be implemented as an
equilibrium of our market. In environments with finite states and signals, our main
result shows that a property of information that we call the betweenness property is
both necessary and sufficient for information aggregation.

The betweenness property is a condition on information primitives. In our environ-
ment, nature chooses a state which determines (i) the common-value of a unit of asset,
and (ii) the conditional distribution over signals. A betweenness order is a ranking
on the simplex of conditional distributions with the defining characteristic that level
curves are linear.3 The betweenness property is satisfied if there is a betweenness
order such that higher value states generate higher ranked conditional distributions.

To illustrate, consider the conditional probability that a trader receives one of the
high signals in Examples 1 and 2. In state (1, 1), the probability of receiving either
signal HA or HB is 0; in state (2, 1), the probability for HA is 1

2 , and the probability
for HB is 0; in state (1, 2), the probability for HA is 0, and the probability for HB is
1
2 ; and in state (2, 2), the probability for either high signal is 1

2 . Figure 2a illustrates
this information structure.
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Figure 2: The betweenness property in Examples 1 and 2.

In Figure 2b, we replace states with the values of asset X. The dashed lines
indicate level curves of a betweenness order that is monotone in values. As the figure

3As such, betweenness orders are a generalization of expected utility where level curves are linear
and parallel. See Section 3.1.
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illustrates, the betweenness property is satisfied, and this is why equilibrium prices
can aggregate information. In Figure 2c, we replace states with the values of asset
Y . The dashed lines indicate that the convex hull of high value states intersects the
convex hull of low value states. In that case, there is no betweenness order that is
monotone in values, and equilibrium prices cannot aggregate information.

The intuition for our characterization result comes from three important insights
about large markets. First, if prices aggregate information they must equal values;
otherwise there are arbitrage opportunities (as in market Y ). Second, the law of
large numbers provides a powerful representation of aggregate bidding behavior (as
in the market X). In particular, cumulative bid distributions for both buyers and
sellers are separable in a component that depends only on strategic behavior and
a separate component that depends only on information primitives. Finally, the
strategic component of a bid distribution has a dual representation as a betweenness
order, and vice versa. For prices to equal values, the betweenness order must be
monotone in values, which is exactly what the betweenness property requires.

The betweenness property is much weaker than the MLRP. In particular, while
the MLRP is a restrictive condition in environments with a large number of states, we
show that the betweenness property is generic as long as the number of signals is as
large as the number of states. This illustrates the power of the market in environments
where signals are more numerous than states. On the other hand, in environments
with more states than signals, the betweenness property is also restrictive. While a
fully-revealing REE always exists in these markets, it generally cannot be implemented
in a Bayes-Nash equilibrium.This highlights limitations of the market when prices
must distinguish between many values with limited signals.

Our results are especially relevant in multidimensional environments where signals
generally do not satisfy strong order properties such as the MLRP. By focussing on
properties of the distribution over signals, rather than the signals themselves, our
results do not restrict the dimensionality of the states or signals. As an application,
we consider a class of environments where states have multiple inputs and signals
are specific to inputs (as in the markets for assets X and Y ). A signal then conveys
information for only one dimension of the asset’s value, and traders must rely on
prices to aggregate the fragmented information diffused in the marketplace. We show
that the MLRP is never satisfied in such environments. On the other hand, when the
value is separable in inputs (as it is for asset X but not Y ), the betweenness property
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is generic whenever there are at least as many signals as states for each input.
The paper is organized as follows. Section 2 discusses related literature. Section 3

defines the betweenness property and describes the market. Section 4 presents our
main result and a detailed proof sketch. We also show how the equilibrium in a large
market can be interpreted as the limit of approximate equilibria in finite markets, and
how our result can be adapted to a market with divisible assets. Section 5 presents
our genericity results and our multi-input example. Section 7 concludes. Formal
proofs are given in an appendix.

2 Related literature

Our work primarily contributes to a literature that uses common-value auctions to
study the information revealed by prices in competitive markets, and thereby provide
microfoundations for REE.4

In a seminal contribution, Wilson (1977) shows how equilibrium prices in a single-
unit auction can converge in probability to the value as the population of bidders
grows. Milgrom (1979) provides the first characterization of environments that permit
aggregation and Milgrom (1981) extends the analysis to general Vickrey auctions.
To overcome the winner’s curse—which intensifies when assets become increasingly
scarce—aggregation requires that the information of the winning bidder’s signal is
arbitrarily precise. This imposes a strong restriction on information. Pesendorfer and
Swinkels (1997) therefore consider auctions where both the number of traders n and
the number of assets g increases, which is a natural assumption for a competitive
market. When traders receive conditional i.i.d. signals that satisfy the MLRP, they
show that the classic strategy-profile in Milgrom and Weber (1982)—where traders
submit bids equal to the expected value conditional on being pivotal—is the unique
symmetric equilibrium. Moreover, the equilibrium price converges in probability to
the value if and only if g →∞ and (n− g)→∞. The double-largeness condition is
necessary and sufficient for a loser’s curse to offsets the winner’s curse. Kremer (2002)
simplifies and extends the analysis to characterize the asymptotic distribution of

4A parallel literature has studied information aggregation in common-value elections (Condorcet,
1785; Austen-Smith and Banks, 1996; Feddersen and Pesendorfer, 1997). The closest work in this
literature to ours is Barelli, Bhattacharaya, and Siga (2018), who analyze a multi-candidate election
with private information and, employing a similar geometric approach to ours, show when a voting
strategy can aggregate information.
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prices for various auction formats in a unified framework. To address limitations of a
market with exogenous supply, Reny and Perry (2006) consider a double-sided auction.
In an environment with affiliated common and private-values (which implies the
MLRP), they show that when the population is sufficiently large there is a monotone
equilibrium where prices are arbitrarily close to a fully-revealing REE.

This prior literature highlights two distinct questions about REE. (1) Market
power : In a finite market, each trader has some market power. If traders internalize
this market power, then they may strategically adjust bids so as not to reveal private
information, thereby distorting the information conveyed by equilibrium prices. Do
these distortions vanish as the market grows? (2) Price formation: Competitive
equilibrium models do not provide an explicit description of the trading-mechanism,
and therefore do not show how individual actions and information translate into prices.
Is there a fully specified price formation process where traders condition only on their
private signals and yet equilibrium prices are fully-revealing?

By focusing on a large market, our sufficiency result sidelines the question of
market power in order to focus on the question of price formation.5 The large
population implies that competition in our market manifests in the arbitrage behavior
of traders who can only impact their chances of buying and selling. This reflects the
important economic idea that, in a large anonymous market, traders believe they
cannot impact prices, and the competition for resources—rather than market power—
drives individual and aggregate behavior. In such a market, we show that Bayes-
Nash equilibrium prices can aggregate information even in complex, multidimensional
environments where signals have no meaningful total order (such as the MLRP).6

On the other hand, our necessity result is relevant for both questions of market
power and price formation. In particular, as we show in Section 4.2, the restrictions we
identify on the market trading mechanism apply also to approximate (and therefore
exact) equilibria in finite markets. Regardless whether or not market power distorts
how individual traders reveal information in a finite market, the trading mechanism
simply cannot aggregate information when the betweenness property is not satisfied.

5Our sufficiency result does not address the question of market power directly because we are
unable to show whether the equilibria we construct in a large market can be approximated by a
sequence of exact equilibria in finite auctions. In Section 4.2 we do show how the equilibria we
construct can be interpreted as the limit of a sequence of approximate equilibria in finite auctions.

6Serrano-Padial (2012) and Bodoh-Creed (2013) also study auctions with an infinite population
of traders but focus exclusively on environments where signals satisfy the MLRP.
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In particular we are able to identify the information environments where a REE
exists, but cannot be implemented as a Bayes-Nash equilibrium of an auction trading-
mechanism. The failure of information aggregation is very strong in the sense that,
when the betweenness property is not satisfied, there is no arbitrage-fee and invertible
mapping from information into prices, and so the market mechanism necessarily loses
information.7

There are also alternative approaches to provide microfoundations for REE. A
literature following Kyle (1985) studies markets with strategic traders who receive
private information, non-strategic noise traders who supply liquidity and prevent the
market from collapsing, and a market maker who determines the price. Trading is
dynamic and information revelation occurs over time. The information aggregation
process is therefore quite different from the auction approach because there is feedback
from prices. There are also significant differences in the trading mechanism. In Kyle
models, all orders are executed; in an auction, bids are conditional orders that are
executed only when the price is either above (for sellers) or below (for buyers) a
threshold. To solve for an equilibrium in Kyle models, strong information assumptions
are needed. The standard assumption is that random variables are jointly normal,
which implies the MRLP, and that signals are i.i.d conditional on the value.

In an important recent contribution, Lambert, Ostrovsky, and Panov (2018)
consider a single-period version of the Kyle model, maintaining joint-normality but
relaxing the i.i.d. conditions. Their model admits a unique linear equilibrium. In this
equilibrium, prices aggregate information asymptotically if and only if noise trade is
positively correlated with the value. There are significant differences with our work:
(i) our trading mechanism is very different, (ii) our model does not have noise traders,
(iii) our large population implies that individual traders have no price impact, and
(iv) our environment has finite states and signals, but we impose no distributional
assumption on the the joint-probability over states and signals.

There is also a literature that studies strategic foundations for REE in markets
where traders submit monotone supply and demand schedules (Kyle, 1989; Vives,

7In this regard, we also add to a literature on failures of information aggregation in markets. For
instance, costly information acquisition (Jackson, 2003), uncertainty about the number of bidders
(Harstad, Pekeč, and Tsetlin, 2008), costly bidder solicitation (Lauermann and Wolinsky, 2017),
state-dependent actions (Atakan and Ekmekci, 2014), or decentralized bilateral trading (Wolinsky,
1990), have all been shown to impede information aggregation even in environments where the MLRP
is satisfied. Our aggregation result is strong: the market mechanism loses necessary information for
aggregation.
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2011, 2014).8 Perhaps the closest paper in this literature to ours is Palfrey (1985),
who studies Cournot competition as the population of firms grows. He also considers
an environment with finite states and signals, but fixes an exogenous demand for
assets. He does not provide a complete characterization of the environments where
information aggregates, but shows that a necessary condition (which is also almost
sufficient) is that the matrix of conditional distributions has full-rank. In a market
where traders do not have price impact, we show that this condition is sufficient
for information aggregation because it implies a linear property, which implies the
betweenness property. However, the full-rank condition is not necessary for aggregation
because (i) the full-rank condition is sufficient but not necessary for the linear property,
and (ii) the linear property is sufficient but not necessary for the betweenness property.

3 Model

We study a double-sided auction with a large population of traders. The common
value of an asset depends on an unknown state, and traders receive private signals that
are i.i.d. conditional on the state. In this market, we are interested in the information
that equilibrium prices convey about values.

3.1 The environment

The environment has a finite set of states Ω={ω1, ...,ωM} and signals S={s1, ...., sK},
with a probability distribution P on Ω× S. In state ω, an asset has value v(ω) and
the conditional distribution over signals is Pω. To simplify exposition, we assume
that P has full support and states with different values generate different conditional
distributions over signals (i.e., v(ω) 6= v(ω′) implies Pω 6= Pω′). The key primitives
are the value function v : Ω→ R++ and information structure {Pω : ω ∈ Ω} .

The previous auction literature generally imposes an order on signals that is
strongly correlated with values, and uses this order to obtain an equilibrium in

8In particular, Vives (2014) also considers a market with an infinite population of traders. To
address the well-known Grossman-Stigliz critique, he shows that a fully revealing REE can be
implemented as a Bayes-Nash equilibrium when traders acquire costly information about both a
private and common value component of the asset. In his model, random variables are jointly
normal. As a result, signals satisfy the MLRP, and it is possible to construct a linear, monotone
equilibrium. In contrast, our objective is to understand the information conveyed by equilibrium
prices in environments where signals do not necessarily satisfy strong order properties.
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monotone bidding strategies. We depart from this approach by imposing no order on
the signals. However, as we show in the introduction, some property of information
is necessary for aggregation: values must be related in some way to the information
structure, so that competitive forces can guide aggregate behavior and ensure that
equilibrium prices aggregate information. Below, we define the required property.

We denote by � a continuous weak order on the set of distributions over signals
∆(S), with the asymmetric part� and the symmetric part∼.9 The following definition
recalls two prominent classes of continuous weak orders.

Definition 1. The continuous weak order � is (i) a linear order if, for all θ ∈ (0, 1)
and `, `′, `′′ ∈ ∆(S), ` � `′ implies θ`+ (1−θ)`′′ � θ`′ + (1−θ)`′′; (ii) a betweenness
order if ` � `′ implies ` � θ`+ (1−θ)`′ � `′, and ` ∼ `′ implies ` ∼ θ`+ (1−θ)`′ ∼ `′.

The defining characteristic of a linear order is that level curves can be represented
by parallel hyperplanes. Betweenness orders are a generalization where level curves
are also represented by hyperplanes but not necessarily by parallel ones (Figure 3).10

The following monotonicity properties formalize the intuitive idea that better states
generate better conditional distributions.

Definition 2. An environment satisfies the betweenness (resp., linear) property if
there is a betweenness (resp., linear) order � such that v(ω) > v(ω′) implies Pω � Pω′ .

The betweenness property is central for our information aggregation result; the
linear property is useful as a reference and also plays an important role in our genericity
analysis. As betweenness orders are more general, the linear property implies the
betweenness property and not vice versa (Figures 3 and 4). A betweenness order is
characterized by an infinite collection of level sets, which cover the simplex. Since we
focus on environments with finite states and signals, it is sufficient for us to consider
a finite number of these level sets. Crucial for the betweenness property is that (i) the
level sets are linear, (ii) the upper contour sets are nested in the unit simplex, and (ii)
the order over states is co-monotone with the order over conditional distributions.

9The binary relation � is a continuous weak order if it is (i) complete and transitive; (ii) ` � `′
for some `, `′ ∈ ∆(S); and (iii) ` � `′ � `′′ implies θ`+ (1− θ)`′′ ∼ `′ for some θ ∈ (0, 1). Such
orders are studied in the literature on decision-making under risk, where S is a finite set of prizes, `
is a lottery over prizes, and � is a preference relation.

10von Neumann and Morgenstern (1944) show that a preference relation over lotteries has an
expected utility representation if and only if it is a linear order. Linear orders are therefore central in
the theory of decision-making under risk. Betweenness orders are a generalization of expected utility
that can accommodate behavioral anomalies such as the Allais paradox (Chew, 1983; Dekel, 1986).
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Figure 3: Linear and betweenness properties.
A point labeled m represents the conditional distribution over signals in a state with
value m. The environment in Figure 3a satisfies the linear property: there is a linear
order where better states generate better conditional distributions. The environment
in Figure 3b does not satisfy the linear property, but does satisfy the betweenness
property.
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Figure 4: Failure of the betweenness property.
In Figure 4a, the convex hulls of {P1,P2} and {P3,P4} intersect and so a hyperplane
cannot separate {P1,P2} from {P3,P4}. In Figure 4b hyperplanes can separate high
from low states, but a hyperplane that separates P1 from {P2,P3,P4} and one that
separates P4 from {P1,P2,P3} must intersect inside the simplex.

3.2 The market

There is an infinite set of traders I endowed with a non-atomic probability distri-
bution.11 The auction format provides an explicit protocol for the price formation

11Our formal model of the large population follows Al-Najjar (2008), where I is countably infinite
and endowed with a finitely-additive probability measure λ on the power-set. This population model
overcomes significant challenges with measurability and the law of large numbers in continuum
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process, and the large population ensures that individual traders have negligible
impact on prices.

Nature chooses a state ω according to the marginal distribution on Ω. Traders
do not observe the state, but receive a private signal drawn independently from the
conditional distribution Pω. After receiving their signals, each trader submits a sealed
bid from a compact interval B ≡ [0, b̄], which contains v(Ω). The traders are divided
into a set of buyers with mass κ ∈ (0, 1) and a set of sellers with mass 1− κ. Each
seller owns a unit of an indivisible asset, and each buyer has unit demand. For a
buyer, a bid represents the maximum price at which they are willing to trade; for a
seller, it represents the minimum price at which they willing to trade.

Given a bid-profile a : I → B, where a(i) represents the bid for trader i, the
auctioneer determines a price and an allocation of assets.12 The price p(a) is the
lowest bid at which the mass of sellers willing to trade exceeds the mass of buyers,
and all trade occurs at this price. A buyer trades if her bid is strictly above the price
and does not trade if her bid is strictly below the price, and vice versa for sellers. To
clear the market, the auctioneer uniformly randomizes over bids equal to the price in
order to maximize total trading volume. The payoff for a buyer is v(ω)− p(a) if she
trades and 0 otherwise; for a seller it is p(a)− v(ω) if she trades and 0 otherwise.13

A strategy-profile σ : I × S → B is a mapping from types to Borel probability
distributions over bids, where σ(i, s) is the (mixed) bidding strategy for trader i when
they receive signal s. A strategy-profile σ and conditional distribution Pω generate a
unique probability measure P σω over bid-profiles in state ω.14 The expected payoff
for type (i, s) is Πi (σ|s) ≡

∑
ω Πi(σ|ω)Ps(ω), where Ps(ω) is the probability of

state ω conditional on signal s, Πi (σ|ω) ≡
∫
A πi(a|ω)dP σω is the expected payoff

conditional on state ω, and πi(a|ω) is trader i’s payoff in state ω for the bid-profile a.
A strategy-profile is a Bayes-Nash equilibrium (henceforth, equilibrium) if each type
maximizes their expected payoff given the strategy of other types.15

agent models (see, e.g., Judd 1985). We discuss the population model in detail in Appendix A.2.1.
For intuition, there is no loss in suspending problems related to measurability and the law of large
numbers, and thinking of the population as a continuum endowed with Lesbegue measure.

12The set of bid-profiles A = {a : I → B} is endowed with the σ-algebra A generated by cylinder
sets of the form {a : a(i) = b} for some i ∈ I and b ∈ B.

13A more detailed description of the auction format is given in Appendix A.2.2.
14Given the formal model of the large population in Appendix A.2.1, a unique countably-additive

measure P σω on (A,A) is guaranteed by the Hahn-Kolmogorov Extension Theorem.
15Our result also holds if equilibrium requires almost all types to best-respond.
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In principle, a state ω and strategy-profile σ generate a distribution over prices
derived from the distribution P σω over bid-profiles. However, in our market, the Strong
Law of Large Numbers (SLLN) implies that the price is almost surely constant.

Proposition 1. For every strategy-profile σ there exists a unique price-function
pσ : Ω→ B such that, in state ω, the price is equal to pσ(ω) almost surely.16

4 Main result

We are interested in strategy-profiles where prices convey the same information about
values as would be obtained from public signals. By the SLLN, the proportion of
traders who receive signal s in state ω is almost surely equal to Pω(s). Public signals
therefore reveal the value almost surely, and a strategy-profile conveys the same
information if there is a one-to-one mapping between values and prices.

Definition 3. Strategy-profile σ aggregates information if v(ω) 6= v(ω′) implies
pσ(ω) 6= pσ(ω′).

It is always possible to construct a strategy-profile that aggregates information.
However, we are interested in strategies where traders respond to incentives generated
by the competition for assets. While an individual trader has negligible impact on
the price and total trading volume, she can affect her allocation through her bids and
thereby influence her expected payoff. In an equilibrium, traders will therefore try
to exploit arbitrage opportunities based on their predictions about prices and values.
Accordingly, the aggregate supply and demand for assets depends on the incentives of
the traders, and equilibrium requires that these competitive forces are resolved. Our
main result characterizes when equilibrium prices convey the same information about
values as would obtain if signals were public.

Theorem 1. There is an equilibrium strategy-profile that aggregates information if
and only if the betweenness property is satisfied.

By connecting the aggregation problem directly with the information primitives,
the result distinguishes between two types of environments. When the betweenness

16Formally, this means that for every state ω there is a measurable subset A ⊂ A such that
P σω (A) = 1 and p(a) = pσ(ω) for all a ∈ A.
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property is satisfied, there are equilibrium prices that aggregate all private information
in the market. This highlights the potential of the market. Even if individual traders
are poorly informed about the value, competitive forces can coordinate individual
behavior so that prices are perfectly informative. On the other hand, when the
betweenness property is not satisfied, information aggregation necessarily fails. This
highlights the limitations of the market. Even if the population as a whole is perfectly
informed, the market cannot guide traders’ to reveal their collective information.

Remark 1 (Existence and uniqueness). The market always has a no-trade equilibrium
where prices are completely uninformative. To illustrate, consider the following
strategy-profile: regardless of their signals, all sellers ask for b̄ and all buyers bid 0.
In that case, the price is equal to 0 in every state. Buyers would like to trade at these
prices but there is no supply, and so they cannot increase their chances of trading
by submitting a higher bid. Sellers do not want to trade, and so have no incentive
to ask for a lower price. We have been unable to characterize the set of equilibria
in this market. Such a characterization would be desirable for at least to reasons:
(i) to establish whether the betweenness property is sufficient to ensure that prices
aggregate information in every equilibrium with strictly positive trade, and (ii) to
get a sense of the failures of information aggregation that occur in trade equilibria
when the betweenness property is not satisfied. Given the considerable difficulty
of constructing equilibria with strictly positive trade when prices do not aggregate
information, we leave this as an open question for further research.

Remark 2 (Risk preferences). The assumption that traders are risk neutral simpli-
fies exposition, but the result extends to a market where traders have heterogenous
risk preferences. Suppose that each trader i ∈ I has a strictly-increasing util-
ity function ui : R → R, where marginal utilities are uniformly bounded away
from 0. Given a bid-profile a : I → B, the payoff for buyer x in state ω is then
πx(a|ω) = wx(a|ω)ux (v(ω)− p(a)) + (1−wx(a|ω)) ux(0), where wx(a|ω) is the
probability that buyer x will trade in state ω given bid-profile a. Likewise, the payoff
for seller y in state ω is πy(a|ω) = wy(a|ω)uy (p(a)− v(ω)) + (1−wy(a|ω)) uy(0).
We can adjust the definition of equilibrium accordingly, and our main result applies as
stated. The reason is that, in an equilibrium where the price equals the value, there
is in fact no risk for individual traders, and so risk preferences are irrelevant. 2
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Remark 3 (Asymmetric signals). The sufficiency result is easily adapted to an envi-
ronment where traders are not ex-ante exchangeable. For example, suppose there is a
finite partition (T1, ...,TJ ) of the traders, where each group Tj contains a strictly pos-
itive mass of buyers and sellers. Signals are independent conditional on the state, but
the information structure is different for each group. Specifically, let each group Tj have
a set of signals Sj and denote their information structure by {P jω : ω ∈ Ω} ⊂ ∆(Sj).
It is straightforward to adjust our arguments to show that, if the environment for each
group satisfies the betweenness property, then there is an equilibrium that aggregates in-
formation.17 Moreover, by allowing the asset to have the same value in multiple states,
our framework can accommodate environments where signals are not independent con-
ditional on values. To illustrate, consider the market for asset X in the introduction.
Conditional on a state, the signals of any two traders i and j are independent. But note
that P (si=HA, sj=HB|v(ω)=3) =0 6= 1

4=P (si=HA|v(ω)=3)P (sj=HB|v(ω)=3) ,
and so signals are not independent conditional on the value, i.e., the dimension of
uncertainty that is payoff-relevant for traders. 2

4.1 Proof sketch

An important advantage of modeling the trading mechanism explicitly is that it allows
us to show where prices originate, and why the betweenness property is necessary
and sufficient to aggregate information. Our proof is constructive and consists of
three key steps. We provide a sketch of the argument and illustrate the equilibrium
construction with an example.

The first step in the argument identifies the restrictions that competition imposes
in our environment. If an equilibrium strategy-profile σ aggregates information,
then prices must equal values almost surely (i.e., pσ = v). To see why, consider a
strategy-profile σ that aggregates information and suppose there is a state ω such
that pσ(ω) < v(ω). Since the price is strictly less than the value, it would be good
for buyers to trade in state ω, and bad for sellers to trade. In general, there could
be another state ω′ where the price is strictly higher than the value, and it is bad
for buyers to trade and good for sellers. However, because σ aggregates information,

17Given our main result, the construction is simple. For each group, j = 1, ..., J , one can construct
a group-specific strategy-profile so that, in each state ω, supply for group j equals demand for group
j exactly when the price is equal to the value v(ω). Since supply equals demand at the value for
each group, a price equal to the value also ensures market-clearing for the whole population.
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pσ(ω′) 6= pσ(ω), and so a buyer who submits a bid equal to pσ(ω) can decrease their
bid marginally below pσ(ω), thereby guaranteeing that they trade in state ω (where
trading is good) without changing the likelihood that they trade in state ω′ (where
trading is bad). Likewise, a seller who submits a bid equal to pσ(ω) can increase their
bid marginally above pσ(ω), thereby guaranteeing that they do not trade in state ω
(where trading is bad) without changing the likelihood that they trade in state ω′

(where trading is good). As buyers and sellers respond to these opposing arbitrage
opportunities, competitive forces exert upward pressure on the price in state ω, and
downward pressure on the price in state ω′. These competitive pressures are only
resolved when prices are equal to values in every state.

The second step in our argument uses the SLLN to characterize aggregate bid-
ding behavior. For a strategy-profile σ let σB and σS denote, respectively, the
restriction to buyers and sellers. We use the SLLN to show that the aggregate bid-
ding behavior of sellers can be characterized by a vector of cumulative distribution
functions F σS ≡

(
F σSs1 , ...,F σSsK

)
, where F σSsk (b) represents the normalized share of

sellers who submit an ask price less than b when they receive signal sk. The total
mass of sellers who submit an ask price less than b depends on the strategy-profile
(chosen by traders) and the distribution over signals (chosen by nature). In par-
ticular, the mass of ask prices less than b in state ω is (almost surely) equal to
(1− κ)F σSω (b) ≡ (1− κ)F σS (b) · Pω. Similarly, the mass of buyers who submit a bid
strictly greater than b is described by κ(1− F σBω (b)) ≡ κ(1− F σB (b)) · Pω. Accord-
ingly, aggregate supply and demand first cross in state ω at the lowest price where
κ(1− F σBω (p)) ≤ (1− κ)F σSω (p); that is, κ ≤ κF σBω (p) + (1− κ)F σSω (p) ≡ F σω (p).
Hence, the market-clearing price is given by the κ-quantile of a cumulative distribution
functions F σω that is separable in terms of a component F σ ≡ κF σB + (1− κ)F σS ,
which depends only on strategic behavior, and another component Pω, which depends
only on information primitives.

The final step in the argument establishes a duality between bidding strategies
and betweenness orders: the quantiles of any bidding strategy can be approximated
by a betweenness order, and vice versa. This step of the argument is geometric. Let
σi : S → B be bidding strategy for trader i, and F σi ≡

(
F σis1 , ...,F σisK

)
denote the

trader’s bidding strategy in cumulative form. Given a bid b, we can interpret the
vector F σi(b) as the norm of a hyperplane in RK . By varying the bid, we obtain a
collection of hyperplanes that provides a geometric characterization of the bidding
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strategy. Moreover, we show that (i) any quantile of the cumulative bidding strategy
can be represented as the intersection of these hyperplanes with the unit simplex,
and (ii) when we look at the intersection of these hyperplanes with the simplex ∆(S)
they have essentially the same properties as the level curves of a betweenness order.
When we apply this duality to the aggregate bidding strategy F σ obtained in step 1,
it follows that a strategy-profile induces a price-function that is monotone in values if
and only if it is represented by a betweenness order that is also monotone in values.

These three steps allow us to show the following. If there is an equilibrium strategy-
profile that aggregates information, equilibrium prices must equal values (by step 1);
the hyperplanes that represent the aggregate bidding strategy are therefore monotone
in values (by step 2); and so there is a betweenness order that is also monotone
in values (by step 3). This establishes that the betweenness property is necessary
for information aggregation. On the other hand, when the betweenness property is
satisfied, we can use the level curves of the betweenness order to construct a symmetric
strategy profile σ so that pσ = v. Clearly, this strategy-profile aggregates information.
Moreover, since individual traders have negligible market power, the expected payoff
for each trader is zero for any deviation, and so all types are best-responding. As
such, σ is also an equilibrium.

To illustrate the equilibrium construction, consider an environment with three
states Ω = {ω1,ω2,ω3}, three signals S = {sL, sM , sH}, and a value function where
v(ωm) = m for each state. In Figure 5a, the vectors α′l and α′m are norms of two
hyperplanes, H(α′l, c′l) and H(α′m, c′m), that represent level curves of a betweenness
order �.18 Because higher values generate better conditional distributions, the
betweenness property is satisfied.

To construct the equilibrium strategy-profile, we first need to manipulate the hy-
perplanes H(α′l, c′l) and H(α′m, c′m) in way that does not change their intersection with
the unit simplex. By the manipulations, the new hyperplanes H(αl, cl) and H(αm, cm)
still represent the same betweenness order. However, the manipulation ensures that
the new constants satisfy cl = cm = κ, and the norms satisfy αl,αm ∈ [−1, 0]3 and
αl >> αm. It is difficult to provide intuition for this step of the construction, and we
refer the reader to the formal arguments developed in Lemmas 1 and 2 in Appendix
A.1. However, to indicate how we manipulate hyperplanes without changing the

18We denote by H(α, c) ≡ {z ∈ RK : z ·α = c} a hyperplane in RK , defined by the norm α ∈ RK

and constant c ∈ R, with strict upper and lower half-spaces H̊+(α, c) and H̊−(α, c), respectively.
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Figure 5: Duality of bidding strategies and betweenness orders.
In Figure 5a, vectors αl and αm are norms of hyperplanes that represent level curves
of a betweenness order �. As higher values generate better conditional distributions,
the betweenness property is satisfied. In Figure 5b, the vectors F σ̄(1) and F σ̄(2) are
norms of hyperplanes that represent the aggregate bidding strategy. As higher values
generate higher κ-quantiles, the strategy-profile aggregates information.

underlying weak order, it is useful to consider the simpler case of a linear order � rep-
resented by a collection of parallel hyperplanes {H(α,α · `) : ` ∈ ∆(S)} for α ∈ RK .
There is an alternative way to represent the linear order � on the simplex in terms
of non-parallel hyperplanes in RK . For instance, for each distribution `, define the
hyperplane H(α− α · `, 0). Then `′ ∈ H+(α− α · `, 0) if and only if α · `′ − α · ` ≥ 0,
i.e., `′ � `. Thus the collection of hyperplanes {H(α− α · `, 0) : ` ∈ ∆(S)} also
represents the same linear order, but these hyperplanes are not parallel, they have
the same constants, and the norms are strictly ordered.

We use the new hyperplanesH(αl,κ) andH(αm,κ) to construct a bidding strategy
σi : S → B for trader i, where, for each signal, the trader randomizes over the finite
set of values {1, 2, 3}. As a result, σi is fully described by a 2× 3 matrix,

 F σi(1)
F σi(2)

 ≡
 F σisL(1) F σisM (1) F σisH (1)
F σisL(2) F σisM (2) F σisH (2)

 .

In particular, because −αl(s),−αm(s) ∈ [0, 1] and −αl(s) < −αm(s), we can choose
σi so that F σi(1) = −αl and F σi(2) = −αm. Hence, we construct the bidding
strategy from the underlying betweenness order given by the betweenness property.

Finally, we can show that the symmetric strategy-profile σ, where every trader
follows σi, ensures that, almost surely, the price is equal to the value in every state.
This follows because the SLLN implies that aggregate bidding strategy F σ derived

19



in step 1 of the proof sketch is (almost surely) equal to the cumulative distribution
function F σi derived from the betweenness order. As a result:

(a) As P1 ∈ H̊+(−αl,κ), it follows that F θ(1) · P1 > κ. In state ω1, the mass of
bids less or equal to 1 is strictly greater than κ, and so the price can be no higher
than 1. On the other hand, no trader bids strictly lower than 1, and so the price can
be no lower than 1. Therefore, pσ(ω1) = 1 (Figure 6a).

(b) As P2 ∈ H̊−(−αl,κ), it follows that F θ(1) · P2 < κ. In state ω2, the mass of
bids less than or equal to 1 is therefore strictly less than κ, and so the price must be
strictly greater than 1. On the other hand, P2 ∈ H̊+(−αm,κ), and so F θ(2) · P2 < κ.
As a result, the mass of bids less than or equal to 2 is (almost surely) greater than κ,
and so price can be no higher than 2. Because no trader submits a bid in the interval
(1, 2), it follows that pσ(ω2) = 2 (Figure 6b).

(c) As P3 ∈ H̊−(−αm, 1− g), it follows that F θ(2) ·P3 < κ. In state ω3, the mass
of bids less than or equal to 2 is strictly less than κ, and so the price must be strictly
greater than 2. On the other hand, no trader submits a bid greater than 3, and so
the price can be no higher than 3. Because no trader submits a bid in the interval
(2, 3), it follows that pσ(ω3) = 3 (Figure 6c).

1 2 3 bids

1

κ

Fσ1

(a) CDF in state 1
1 2 3 bids

1

κ

Fσ2

(b) CDF in state 2
1 2 3 bids

1

κ

Fσ3

(c) CDF in state 3

Figure 6: Cumulative bid distributions.

4.2 Finite approximation

To illustrate how an equilibrium in the large market can be approximated by finite
markets, consider an increasing sequence of finite populations indexed by n = 1, ...,∞.
Every population is divided into buyers and sellers with constant proportion of buyers
κ ∈ (0, 1). Nature chooses state ω and, in each population, traders draw independent
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signals from the conditional distribution Pω. Given signals, traders submit bids and
the auctioneer determines a market-clearing price.19

We denote by {σn}∞n=1 a sequence of strategy-profiles, where σn is a strategy for the
n-th population. A strategy σn and distribution over signals Pω generate a distribution
over bid-profiles P σnω in state ω, and a corresponding random price denoted p(σn,ω).
A sequence of strategy-profiles aggregates information asymptotically if the random
prices eventually provide arbitrarily precise information about the value.

Definition 4. {σn}∞n=1 aggregates information asymptotically if there is a price-
function pσ∞ : Ω→ B such that (i) v(ω) 6= v(ω′) implies pσ∞(ω) 6= pσ∞(ω′), and (ii)
in state ω, the sequence of prices {p(σn,ω)}∞n=1 converges in probability to pσ∞(ω).20

We are again interested in strategy-profiles where traders respond to arbitrage
opportunities. For a strategy-profile σn, let Πi(σn|s) denote the expected payoff of
a type (i, s) ∈ In × S, and Π∗i (σn|s) denote the expected payoff if type (i, s) were
to play a best-response. Then σn is an ε-equilibrium if Πi(σn|s) ≥ Π∗i (σn|s)− ε
for all types. A 0-equilibrium is a standard Bayes-Nash equilibrium; ε-equilibrium
allows for bounded profitable deviations. A sequence of strategy-profiles approximates
equilibrium if the bound vanishes.

Definition 5. A sequence of strategy-profiles {σn}∞n=1 approximates equilibrium if
there is a sequence {εn}∞n=1 → 0 such that, for all n, σn is a εn-equilibrium.

For a sequence of symmetric strategy profiles, the following proposition shows
that the betweenness property is necessary and sufficient to aggregate information
asymptotically.21

Proposition 2. There is a sequence of symmetric strategy-profiles that approximates
equilibrium and aggregates information asymptotically if and only if the betweenness
property is satisfied.

Proposition 2 reflects essential same economic intuitions as our aggregation result
for the large market. (1) For a sufficiently large population, the law of large numbers
disciplines aggregate bidding behavior, so that prices are stable. (2) When prices

19A detailed description of the auction format is given in Appendix A.3.1.
20Formally, for ε>0 there is nε so that P σnω (p(σn,ω)∈ [pσ∞(ω)−ε, pσ∞(ω)+ε])≥1−ε when n≥nε.
21Our approximation result extends to finite asymmetries. Arbitrary asymmetries raise technical

difficulties with our application of central limit arguments.
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convey precise information, competition ensure that prices must be close to values to
prevent traders from pursuing arbitrage opportunities. (3) There is a direct connection
between bidding strategies and betweenness orders, which is central to understanding
when aggregate bidding strategies correctly order values. It is the combination of
these three insights that establishes the role of the betweenness property.

4.3 Walrasian market

While we illustrate our main result in the context of a double-sided auction with unit
supply and demand, our findings apply to a broad class of market environments. In
this section, we consider a Walrasian market where assets are divisible and, instead of
bids, traders compete in monotone supply and demand schedules.

Suppose a buyer is endowed with a unit of wealth and can submit a non-increasing
demand schedule, which represents the quantity of asset she is willing to buy at each
price. A seller is endowed with a unit of asset and can submit a non-decreasing supply
schedule, which represents the quantity of assets she is willing to sell at each price.
Individual demand and supply schedules can be interpreted as buy and sell limit
orders, and the profile of schedules can be interpreted as an order book. Given the
order book, a clearing-house sets the minimum price p at which aggregate supply
exceeds aggregate demand, and all trade occurs at this price. Buy limit orders strictly
above the price and sell limit orders strictly below the price are executed, and the
clearing house uniformly randomizes over limit orders equal to the price to clear the
market. In state ω, the payoff for a buyer who purchases q units at price p is then
q(v(ω)− p); the payoff for a seller is q(p− v(ω)).

The strategy of a trader is a mapping from signals to monotone schedules. As
in the large double-sided auction, the SLLN implies that, for every strategy-profile
σ, there is a unique price function pσ : Ω→ R so that the price in state ω is equal
to pσ(ω) almost surely. In a Bayes-Nash equilibrium, traders observe their private
signals, predict prices and values, and try to exploit arbitrage opportunities.

Proposition 3. The Walrasian market has an equilibrium strategy-profile that aggre-
gates information if and only if the betweenness property is satisfied.

The equilibrium construction is analogous to the double-sided auction because
the strategy of a trader in the Walrasian market is isomorphic to the decumulative
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strategy in an auction. The main difference is in the interpretation of the equilibrium
arguments. In the double-sided auction, competitive forces generate incentives for
buyers to shift probability mass towards higher bids when the auction price is below
the value, to increase their chances of trading, and vice versa for sellers. In the market
with divisible assets, buyers instead shift quantities towards higher bids when the
price is below the value, to increase the quantity they trade, and vice versa for sellers.
Analogous forces occur when the price is above the value.

5 Genericity

In this section, we provide a way to quantify how likely it is that an environment
will satisfy the betweenness property. To simplify exposition, we assume that the
value-function v is injective. The information structure for M states and K signals
can be represented by a real matrix of dimension K ×M , where column m represents
the distribution over signals conditional on state ωm. As a result, we can quantify
information structures with the Lebesgue measure on R(K−1)M .22

Proposition 4. The betweenness property has full measure if and only if K ≥M .

Together with our aggregation result, Proposition 4 establishes when information
aggregation is a generic equilibrium property in a large market. As long as the
cardinality of signals is larger than the cardinality of states, the betweenness property
is generic and there is an equilibrium strategy-profile that aggregates information.
On the other hand, in environments where the number of states is strictly greater
than the number of signals, there is always a strictly positive measure of information
structures where the betweenness property fails, and equilibrium prices cannot aggre-
gate information. Moreover, from the proof it follows that the measure of information
structures where the betweenness property is satisfied vanishes if the number of signals
is held constant and the number of values increases.

To provide intuition for Proposition 4, suppose K = M . Let PΩ = (Pω1 , ...,PωK )
be the K ×K matrix that represents an information structure with K signals and K
states. It is well-known that the set of invertible K ×K matrices has full measure. For
an invertible matrix, the system of equations α · PΩ = β has a solution for β ∈ RK .

22In Appendix A.4, we show that the set of all information structures, and the subsets satisfying
the betweenness property and the MLRP, respectively, are Lebesgue measurable.
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Now choose β such that β(m) > β(m′) whenever v(ωm) > v(ωm′); then β defines an
expected utility function α ∈ RK satisfying the linear property, which implies the
betweenness property. A similar argument can be applied when K > M by completing
rectangular matrices appropriately. On the other hand, when K < M , there is a
strictly positive measure of information structures where a high value state is in the
convex hull of lower value states, which is inconsistent with the betweenness property.

By way of contrast, we can show that the MLRP—which is imposed by the
prior literature on information aggregation in auctions—is generally not satisfied in
environments with many states, regardless of the number of signals. The following is
a formal definition of the MLRP in our environment.

Definition 6. An environment satisfies the MLRP if there is a weak order D on
signals such that v(ω) > v(ω′) implies Pω(s)

Pω(s′) ≥
Pω′ (s)
Pω′ (s′) whenever s D s′.

It is straightforward to show that the MLRP implies the betweenness property.23

However, the MRLP imposes much stronger conditions on the environment, as the
following proposition shows.

Proposition 5. The MLRP has measure bounded above by 2
M ! .

Proposition 5 implies that as the number of states grows the measure of information
structures satisfying the MLRP quickly converges to 0, regardless of the number of
signals. As a result, there are many environments where the MLRP fails and yet
equilibrium prices can aggregate information in our market.

6 Multi-input environments

The MLRP is especially restrictive when the value of an asset depends on multiple
unrelated sources of uncertainty, and there is therefore no meaningful total order on the
set of signals. By replacing orders on signals with orders on distributions over signals,
our approach to model information imposes no restrictions on the dimensionality of
states and/or signals. In particular, since the orders over the signals is not relevant for
the betweenness property, our main result shows that equilibrium prices can aggregate

23By the MLRP, v(ω) > v(ω′) implies that Pω first-order stochastically dominates Pω′ . By the
well known characterization of first-order stochastic dominance, in terms of expected utility, it follows
that the MLRP implies the linear property, which in turn implies the betweenness property.
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information in environments where the value of the asset depends on multiple sources
of uncertainty, and traders have access to specialized information. As an illustration,
we consider a class of environments where a state has multiple inputs, but each signal
is informative about only one input.

Definition 7. An environment (Ω,S,P , v) is a multi-input environment if
(1) there are C inputs such that Ω = Ω1 × ...×ΩC and S = S1 ∪ ...∪ SC ;
(2) for ω ∈ Ω, s ∈ S, and c ∈ {1, ...,C}: (i) P (s|ω, sc∈Sc) = P (s|ωc),

(ii) P (sc∈Sc|ω) = P (sc ∈ Sc), and (iii) P (ω) = ∏C
c=1 P (ωc);

(3) v(ω) = ψ(φ1(ω1) + ...+ φC(ωC)) for strictly increasing ψ : R++ → R++, and
injective functions φc : Ωc → R++ for c = 1, ...,C.

Multi-input environments are a special case of the environments we have considered
thus far. By condition (1), the states are multidimensional with one dimension for
each input, and every input has a set of signals. By condition (2i), a signal on input c
depends only on the realization of the c-th input of a state. By condition (2ii), the
likelihood that a signal is drawn for one of the inputs is independent of the state.
By condition (2iii), the realization of states for each of the inputs are independent.
Finally, condition (3) imposes a separability condition on the value function, which
includes cases where v(ω) =

∑C
c=1 φc(ωc) or v(ω) =

∏C
c=1 φc(ωc) for any injective

functions {φc}Cc=1. A multi-input environment therefore provides a stylized model of
a market where the value of the asset depends on multiple sources of uncertainty, but
each trader receives noisy information about only one source of uncertainty. We say
that a multi-input environment is non-trivial if |Ωc| > 1 for at least two inputs; that
is, the value depends on at least two distinct sources of uncertainty. In non-trivial
multi-input environments, there is no natural order on signals and the information
structure therefore cannot satisfy strong order properties such as the MLRP.

Proposition 6. A non-trivial multi-input environment does not satisfy the MLRP.

To illustrate, suppose there are two inputs, Ω1 = {0, 1} and Ω2 = {0, 2}, and the
value is given by the sum of inputs: v(ω) = ω1 + ω2. There are two signals per input,
S1 = {L1,H1} and S2 = {L2,H2}, and the signal in each dimension c is perfectly
informative about ωc. In particular, for each input c, Hc conveys better news than Lc.
As a result, the MLRP is satisfied for each input. However, a trader receives a signal
for only one of the inputs, and so the MLRP is not satisfied (Figure 7). By contrast,
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Figure 7: Two inputs, four states and four signals.
The dashed line from the origin represents the likelihood-ratio between signals H1 and
H2 for ω = (1, 2). Since the likelihood-ratio is infinite for ω = (0, 2), and 0 for
ω = (1, 0), the likelihood-ratio is not monotone in values.

the betweenness property can be satisfied generically in a multi-input environment.
To show this, we do not apply the Proposition 4 directly because it quantifies the
betweenness property in relation to the set of all information structures. Instead,
we consider only multi-input environments with a fixed number of inputs C, and
fixed cardinalities for the states |Ωc| = Mc and signals |Sc| = Kc per input. We
therefore measure the betweenness property in relation to a smaller set of information
structures.

The key feature of this multi-input environment is that each signal conveys
information about only one input, and information is therefore highly fragmented. In
general, this cannot be good for the prospects of information aggregation, and yet a
simple condition ensures that the betweenness property is generic.

Proposition 7. The betweenness property is generic if and only if Kc ≥Mc for all c.

Together with our main result, Proposition 7 establishes when information aggre-
gation is a generic equilibrium property in multi-input environments. With C inputs
there are ∏Cc=1Mc states, but only

∑C
c=1Kc signals. As a result, there are generally

far more values than signals. While the information that individual signals can convey
about values is very limited, there is also additional structure on the value function
(the separability condition). As a result, less information is needed to reveal the value,
and Proposition 7 shows that the second effect dominates. Multi-input environments
therefore provide a stark illustration of our main result: while the MLRP is never
satisfied in these environments, there are natural conditions under which equilibrium
prices in a large market aggregate information almost surely.
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To illustrate why the separability condition is required, we can adapt Example
2 from the introduction. Asset Y attains a high value when the two inputs match
(v(lA, lB) = v(hA,hB) = 4), and a low value when they mis-match (v(lA,hB) =

v(hA, lB) = 3). The inputs are independent, and with equal probability a trader
receives a signal that is informative about one of the inputs. The example therefore
satisfies properties (1) and (2) of Definition 7 (Figure 8a).

HB

HA1

1

4 3

43

(a) Asset Y

HB

HA1

1

4 2

53

(b) Asset Z

Figure 8: Robust failure of information aggregation without the separability condition.

Although there are as many signals as states, Proposition 4 does not apply to
asset Y because of the restriction that each signal is informative about only one input.
While there are as many signals as states for each input, Proposition 7 also does not
apply because the value function is not separable. Indeed, as we argue in Example
2, equilibrium prices cannot aggregate information in the market for asset Y . There
are, however, some features of asset Y that appear fragile. In particular, while signals
are informative about the state, individual signals provide no information about the
value. For instance, P (v(ω) = 4|si = HA) = P (v(ω) = 2) = 1

2 . If the individual
signals provide no information about values, it may be unsurprising that equilibrium
prices cannot aggregate information. However, this special feature of asset Y is not
the reason that information aggregation fails. To illustrate, we perturb the example.

Example 3. Figure 8b illustrates the information structure for an alternative asset
Z. Properties (1) and (2) of Definition 7 hold, but signals are not perfectly correlated
with inputs. Moreover, by adjusting the value function, individual signals are now
informative about values. For instance, conditional on HA, it is more likely that Z has
value 5 than value 4. However, the value function is not separable because the value
of Z is still strictly higher in states where the inputs match than in states where they
mismatch. By Theorem 1 it is straightforward to see that equilibrium prices cannot
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aggregate information: since the convex hull of lower value states (lA,hB) and (hA, lB)
intersects the convex hull of higher value states (lA, lB) and (hA,hB), the environment
does not satisfy the betweenness property. Moreover, there is clearly an open ball
around the conditional distribution for each state such that—as long as properties (1)
and (2) of Definition 7 are maintained—the convex hull of lower value states will still
intersect the convex hull of higher value states, and equilibrium prices therefore cannot
aggregate information. When the value function is not separable—property (3) in
Definition 7—it is therefore possible to have robust failures of information aggregation
even when there are as many signals as states for each input. 2

7 Conclusion

In this paper, we address a fundamental question of market exchange: when do prices
aggregate information? By studying a double-sided auction with an infinite population
of traders, our approach to this question combines insights from both strategic auction
and competitive equilibrium models.

Our main result identifies a simple condition on information primitives that is both
necessary and sufficient for equilibrium prices to aggregate all private information
dispersed over market participants. Intuitively, some conditions on information
primitives are necessary for the market to coordinate aggregate behavior. However,
information aggregation does not require a strong order property on signals directly, but
instead requires an order property on distributions over signals: for some betweenness
order, higher value states must generate higher ranked conditional distributions. We
call this the betweenness property.

While no individual trader observes the conditional distribution, the betweenness
property is sufficient for competitive market forces to guide individual and aggregate
behavior so that prices are perfectly revealing. On the other hand, when the be-
tweenness property is not satisfied, we show that information aggregation necessarily
fails. This highlights the limitations of the market, especially in environments with
many states and relatively few signals. In such environments, even if collectively
the population is perfectly informed, the market cannot coordinate behavior so that
equilibrium prices reveal their collective information.
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A Appendix

The appendix is organized as follows. Section A.1 provides important preliminary
results about hyperplanes. Section A.2 provides a formal description of our large
market. Section A.3 proves the main result, as well as the finite approximation.
Section A.4 establishes our genericity results, including the multi-input environment.

A.1 Preliminaries

For vector α ∈ RK , let α(i) denote the i-th component of α; 0 ≡ (0, ..., 0) is the
origin; e ≡ (1, ..., 1) is the vector of 1’s; and ei is the unit vector with ei(j) = 1[j = i],
where 1[.] is the indicator function.

For vector α ∈ RK/{0} and scalar c ∈ R, H(α, c) ≡ {` : α · ` = c} is the
hyperplane in RK defined by norm α and constant c; H+(α, c) is the corresponding
upper half-space; H̊+(α, c) is the strict upper half-space; H−(α, c) is the lower half-
space; and H̊−(α, c) is the strict lower half-space. When c = 0, we omit c from the
notation (e.g., H(α) ≡ H(α, 0)). For a set A ⊂ RK , co(A) denotes the convex hull
of A, and A∆ ≡ A∩∆K is the intersection of A with the unit-simplex in RK , denoted
∆K ≡ {z ∈ RK

+ : e · z = 1}.

A.1.1 Intersection of hyperplanes and the unit-simplex

We first provide two general results regarding the intersection of hyperplanes in RK

and the unit-simplex ∆K . Lemma 2, in particular, is central to our main result.

Lemma 1. For vector α ∈ RK/{0}, and scalars c ∈ R and ĉ 6= 0, we have the
following: (i) H∆(ĉα, ĉc) = H∆(α, c), and (ii) H∆(ĉe + α, ĉ+ c) = H∆(α, c).

Proof. The proof of part (i) is trivial. Part (ii) follows from the following chain
of equalities: H∆(ĉe + α, ĉ + c) = {` : (ĉe + α) · ` = ĉ + c, ` · e = 1, ` ≥ 0} =

{` : ĉe · `+ α · ` = ĉ+ c, ` · e = 1, ` ≥ 0} = {` : ĉ+ α · ` = ĉ+ c, ` · e = 1, z ≥ 0} =
{` : α · ` = c, ` · e = 1, ` ≥ 0} = H∆(α, c).

Lemma 2. Let α,α′ ∈ RK/{0} be such that H∆
+(α

′) 6= ∆K . There exists λ > 0 such
that λα′ ≥ α if and only if H∆

+(α) ⊂ H∆
+(α

′).

Proof. We first show that H∆
+(α) ⊂ H∆

+(α
′) guarantees existence of λ > 0 such

that λα′ ≥ α. We argue the contrapositive: suppose there is no λ > 0 such that
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λα′ ≥ α. Then we want to show that there is some ` ∈ ∆K with ` · α ≥ 0 > ` · α′. By
assumption, α′ /∈ Z ≡ {z̃ ∈ RK : λz̃ ≥ α, for some λ > 0}. Since Z is closed and
convex, by the Separating Hyperplane Theorem, there is some z ∈ RK/{0} such that
z · α′ < 0 ≤ z · z̃ for all z̃ ∈ Z. Furthermore, z ≥ 0. If not, then z · ei < 0 for some
i, and we can argue to the following contradiction: if z̃ ∈ Z, then z′ = z̃ + tei ∈ Z
for t > 0; but z · (z̃ + tei) can be made arbitrarily small by increasing t, thereby
contradicting that z · z′ ≥ 0. Since z > 0, we can normalize z so that z · e = 1, i.e.,
z ∈ ∆K . As α ∈ Z, z · α ≥ 0 (because z̃ · α ≥ 0 for all z̃ ∈ Z), and so z ∈ H+(α).
But z · α′ < 0, and so z /∈ H+(α′). Hence, H∆

+(α) is not a subset of H∆
+(α

′).
For the converse, suppose λα′ ≥ α for some λ > 0. It suffices to show that

λα′ · z ≥ 0 whenever z ∈ H∆
+(α) (since this implies that α′ · z ≥ 0). To see this, note

that λα′ · z = α · z+ (λα′−α) · z. The first term is non-negative because z ∈ H+(α).
The second term is non-negative because (λα′ − α) ≥ 0 by assumption, and z ≥ 0.
As a result, z ∈ H∆

+(α) implies z ∈ H+(α′).

A.1.2 Nesting and the betweenness property

A level curve of an order � on ∆K is an equivalence class of ∼. For a betweenness
order, a level curve can be represented by a hyperplane: it is the intersection of a
hyperplane in RK with the unit-simplex ∆K . We now provide a characterization of the
betweenness property in terms of a finite collection of (strictly) nested hyperplanes.

Definition 8. A collection of hyperplanes {H(αr) : r = 1, ...,R} is nested if, for
all r = 2, ...,R, either (i) H∆

+(αr) ⊂ H∆
+(αr−1) , or (ii) H∆

+(αr) ⊃ H∆
+(αr−1).

The collection of hyperplanes is strictly nested if, for all r = 2, ...,R, either (i)
H∆

+(αr) ⊂ H̊∆
+(αr−1), or (ii) H̊∆

+(αr) ⊃ H∆
+(αr−1).

Let Ω1, ...., ΩR+1 be a partition of Ω such that, for ω ∈ Ωr and ω′ ∈ Ωr′ , we have
v(ω) > v(ω′) if and only if r > r′. For each r = 1, ...,R+ 1, let P[r] ≡ {Pω : ω ∈ Ωr}.

Definition 9. An environment satisfies the nested hyperplane separation property
(NHSP) if there is a nested collection of hyperplanes {H(αr) : r = 1, ...,R} such
that v(ω) > v(ω′) implies Pω ∈ H̊−(αr) and Pω′ ∈ H+(αr) for some r = 1, ...,R.
It satisfies the strict NHSP if there is a strictly nested collection of hyperplanes
{H(αr) : r = 1, ...,R} such that v(ω) > v(ω′) implies Pω ∈ H̊−(αr) and Pω′ ∈ H̊+(αr)

for some r = 1, ...,R.
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Clearly, the strict NHSP implies the NHSP. The next lemma shows the converse.

Lemma 3. If the NHSP is satisfied, then the strict NHSP is satisfied.

Proof. Suppose P satisfies the NHSP and let {H(αr) : r = 1, ...,R} be the corre-
sponding collection of nested hyperplanes. By the NHSP, co

(
P[R+1]

)
∩H∆

+(αR) = ∅.
Therefore, by the Separating Hyperplane Theorem, there exists α̂R ∈ RK/{0} such
that P[R+1] ⊂ H̊∆

−(α̂R), and H∆
+(αR) ⊂ H̊∆

+(α̂R).
By the NHSP, co

(
P[R] ∪H∆

−(α̂R)
)
∩H∆

+(αR−1) = ∅. Therefore, by the Separating
Hyperplane Theorem, there exists α̂R−1 ∈ RK/{0} such that co

(
P[R] ∪H∆

−(α̂R)
)

⊂ H̊∆
−(α̂R−1), and H∆

+(αR−1) ⊂ H̊∆
+(α̂R−1). Continuing this procedure generates a

strictly nested collection of hyperplanes {H(α̂r) : r = 1, ...,R} such that the strict
NHSP is satisfied.

Lemma 4. The betweenness property is satisfied iff the (strict) NHSP is satisfied.

Proof. (1) We first show that the betweenness property implies the strict NHSP. By
the betweenness property, there exists a betweenness order � such that v(ω) > v(ω′)

implies Pω � Pω′ . That means there exists a level curve of �, described by
H∆(α̂1, c1) for some α̂1 ∈ RK/{0} and c1 ∈ R, such that P[1] ⊂ H̊∆

+(α̂1, c1) and⋃R+1
r=2 P[r] ⊂ H̊∆

−(α̂1, c1). Since the separation is strict, c1 can be chosen so that
α1 ≡ α̂1 − c1e 6= 0. By Lemma 1, H∆(α1) = H∆(α̂1, c1), and so P[1] ⊂ H̊∆

+(α1)

and ⋃R+1
r=2 P[r] ⊂ H̊∆

−(α1). Likewise, there exists a level curve of �, H∆(α̂2, c2),
such that P[1] ∪ P[2] ⊂ H̊∆

+(α̂2, c2) and ⋃R+1
r=3 P[r] ⊂ H̊∆

−(α̂2, c2). Again, since the
separation is strict, c2 can be chosen so that α2 ≡ α̂2 − c2e 6= 0. By Lemma 1,
H∆(α2) = H∆(α̂2, c2), and so P[1] ∪ P[2] ⊂ H̊∆

+(α2) and ⋃R+1
r=3 P[r] ⊂ H̊∆

−(α2). Re-
peating for r = 3, ...,R yields a collection of hyperplanes {H(αr) : r = 1, ...,R} as
required by the strict NHSP; the hyperplanes are strictly nested because they represent
distinct level curves of �.

(2) We now show that the strict NHSP implies the betweenness property. From
the strict NHSP, let {H(αr) : r = 1, ...,R} be the collection of strictly nested
hyperplanes. Then {H(−αr) : r = 1, ...,R} is also a strictly nested collection of
hyperplanes. Moreover, v(ω) > v(ω′) implies Pω ∈ H̊+(−αr) and Pω′ ∈ H̊−(−αr)
for some r = 1, ...,R. We augment this strictly nested collection of hyperplanes
with hyperplanes H(−α0) and H(−αR+1) such that the simplex is contained in the
strict upper half-space of H(−α0) and in the strict lower half-space of H(αR+1).
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For every distribution ` ∈ ∆(S), there exists a unique r` ∈ {0, ...,R+ 1} such that
` ∈ H+(−αr`) ∩ H̊−(−αr`+1). Hence, there exists a unique θ` ∈ [0, 1] such that
` ∈ H(θ`αr` + (1− θ`)αr`+1). We now define the binary relation � on ∆(S) by ` � `′

iff r` + θ` ≥ r`′ + θ`′ . It is straightforward to verify that � is a betweenness order,
and the betweenness property is satisfied with respect to this order.

A.2 The large market

In this section, we provide a formal description of the large auction, and establish
implications of the strong law of large numbers. We then prove results in Section 3.

For a cumulative distribution function G : B → [0, 1], let ~G(b) ≡ limb′↑bG(b
′).

When G(b) is the probability of a bid less than or equal to b, ~G(b) is the probability
of a bid strictly less than b. The cumulative distribution function G is non-decreasing
and right-continuous, and ~G is non-decreasing and left-continuous.

A.2.1 Proper large population

Following Aumann (1964), competitive market models often consider a continuum
of agents endowed with a non-atomic probability measure (e.g., Lebesgue measure
on [0, 1]). There are, however, some well-known limitations of the continuum-agent
framework (see, e.g., Judd 1985; Al-Najjar 2008). First, there is a measurability
problem when agents and/or nature randomize independently, which poses a challenge
in strategic settings (where agents randomize) and environments with incomplete
information (where nature randomizes). Second, standard laws of large numbers
do not extend to a continuum of random variables, which poses a challenge when
describing aggregate outcomes such as prices.

As we are interested in prices for a strategic setting with incomplete information,
we use the alternative population model in Al-Najjar (2008). In this model, a large
population consists of a tuple (I, I,λ), where I ⊂ [0, 1] is a countable set of agents, I

is the power-set, and λ is a finitely-additive probability measure with λ(i) = 0 for
all i ∈ I. As in a continuum-agent framework, λ(i) = 0 means agent i has negligible
impact on aggregate outcomes. However, because I is the power-set, there are no
measurability restrictions. Moreover, when the large population is a suitable limit of
finite populations, a SLLN applies and provides a simple characterization of aggregate
behavior. We present the formal definition below and refer to Al-Najjar (2008) for a
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detailed discussion (including proof of existence).24

Consider a sequence {In}∞n=1 of finite subsets of [0, 1], where each In can be
interpreted as a finite set of traders. The sequence {In}∞n=1 is proper if In ( In+1 for
all n, and limn→∞

|In|
|In+1| = 0 (i.e., the population grows, and at an increasing rate).

The following definition describes a large population that can be viewed as the limit
of a proper sequence of finite populations.

Definition 10. The large population (I, I,λ) is proper if there is a proper sequence
of finite populations {In}∞n=1 such that I =

⋃∞
n=1 In and, for any finite collection

{I ′r ∈ I : r = 1, ...,R}, there exists a subsequence {Ih}∞h=1 of {In}∞n=1 such that
λ (I ′r) = limh→∞

|I ′
r∩Ih|
|Ih| for all r.

A.2.2 The auction format

Let (I, I,λ) be a proper large population. The set of traders I is divided into a set
of buyers X with mass κ ∈ (0, 1) and a set of sellers Y with mass 1− κ. Each seller
y ∈ Y owns a unit supply of the asset, and a bid represents the minimum price at
which y willing to sell. Each buyer x ∈ X has unit demand for the asset, and a bid
represents the maximum price at which x is willing to buy.

For bid-profile a : I → B, the (normalized) cumulative bid distributions of the
buyers and sellers are denoted as follows:25

Xa(b) ≡
1
κ

∫
i∈X

1[a(i) ≤ b]λ(di) and Ya(b) ≡
1

1− κ

∫
i∈Y

1[a(i) ≤ b]λ(di).

Given cumulative distribution functions Xa and Ya, ~Xa(b) and ~Ya(b) are, respectively,
the normalized mass of buyers and sellers submitting a bid strictly less than b, and
Fa(b) ≡ κXa(b) + (1− κ)Ya(b) is a cumulative distribution function obtained by
weighting the cumulative distribution of buyers and sellers with their respective

24Al Najjar (2008) provides a detailed analysis and discussion of the connection between asymptotic
equilibria in finite games, equilibria in a large population game, and equilibria in a continuum-agent
game. There is an error in the result relating asymptotic equilibria in finite games with the equilibria
in a large population game (see Tolvanen and Soultanis, 2012). This error is inconsequential for our
analysis because our approximation result, provided in the supplementary appendix, is based on
entirely different arguments.

25For a bounded function f : R→ R, the integral with respect to a finitely-additive measure λ is
defined as for countably additive measures, by constructing integrals for simple functions and then
taking a limit of a sequence of simple functions {fn}∞n=1 converging to f (see, e.g., Al-Najjar 2008,
Section 2.3.1).
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population shares. For γ ∈ [0, 1], let Qa(γ) ≡ inf{b ∈ B : γ ≤ Fa(b)} denote the
γ-quantile of the weighted cumulative distribution.

Given a bid-profile a, the auctioneer determines a price and an allocation of assets.
The price p(a) is the lowest bid that ensures the mass of sellers willing to sell at the
price exceeds the mass of buyers who are willing to buy:

p(a)≡ inf {b ∈ B : κ (1−Xa(b)) ≤ (1− κ)Ya(b)}= inf {b ∈ B : κ ≤ Fa(b)}≡Qa(κ).

For cumulative distribution functions Xa and Ya, right-continuity implies that the infi-
mum is attained, and (i) κ(1−Xa(p(a))) ≤ (1−κ)Ya(p(a)) and (ii) κ(1− ~Xa(p(a)))

≥ (1− κ)~Ya(p(a)). We impose a condition later that ensures right-continuity.
All trade occurs at the price p(a). A buyer trades if her bid is strictly above the

price, and does not trade if her bid is strictly below the price. A seller trades if her
bid is strictly below the price, and does not trades if her bid is strictly above the
price. To clear the market, the auctioneer uniformly randomizes over bids equal to the
price. This allocation-rule defines the likelihood w(i, a) that i trades. In particular,
for bid-profile a with cumulative distribution functions Xa (for buyers) and Ya (for
sellers), and a price p(a) = p, the likelihood that buyer x ∈ X trades is

w(x, a) =


0 if a(x) < p or Ya(p) = 0
(1−κ)Ya(p)−κ(1−Xa(p))

κ(Xa(p)− ~Xa(p))
if a(x) = p, κ(1− ~Xa(p)) > (1− κ)Ya(p) > 0

1 otherwise

,

the likelihood that seller y ∈ Y trades is

w(y, a) =


0 if a(y) > p or (1− ~Xa(p)) = 0
κ(1− ~Xa(p))−(1−κ)~Ya(p)

(1−κ)(Ya(p)−~Ya(p))
if a(y) = p, (1− κ)Ya(p) > κ(1− ~Xa(p)) > 0

1 otherwise

,

where all randomizations are independent. The price-rule p : A → B and allocation-
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rule w : I ×A → [0, 1] ensure that, almost surely, the market clears.26 The volume
ta ≡ min{κ(1− ~Xa(p(a))), (1− κ)Y (p(a))} is the mass of assets that are traded at
price p(a).

In state ω, the payoff for buyer x is πx(a|ω) ≡ w(x, a)(v(ω)− p(a)) and the payoff
for seller y is πy(a|ω) ≡ w(y, a)(p(a)− v(ω)).

A.2.3 Bidding strategies

For strategy-profile σ : I × S → (B), let Gσ(i,s) denote the cumulative distribution
function for the strategy of type (i, s), and denote by Gσi ≡

(
Gσ(i,s1), ....,Gσ(i,sK )

)
the vector-valued function that describes trader i’s cumulative distribution for each
signal. Then Gσi is a complete description of trader i’s strategy. In state ω, trader i’s
cumulative distribution over bids depends on their strategy Gσi and the distribution
over signals Pω, and is defined by Gσiω (b) ≡ Gσi(b) · Pω.

The mean cumulative distribution over bids for types (i, s) ∈ X × S (i.e., buy-
ers who receive signal s) is defined by Xσ

s (b) ≡ 1
κ

∫
X G

σ(i,s)(b)λ(di). Denote by
Xσ ≡

(
Xσ
s1 , ...,Xσ

sK

)
be the corresponding vector-valued function that gives the mean

cumulative distribution of buyers for each signal. In state ω, the mean cumula-
tive distribution of buyers is defined by Xσ

ω(b) ≡ 1
κ

∫
X G

σi
ω (b)λ(di). By Bayes rule,

Xσ
ω = Xσ · Pω because

Xσ
ω(b) ≡

1
κ

∫
X
Gσiωi(b) λ(di) ≡

1
κ

∫
X
[Gσi(b) · Pω] λ(di)

=
1
κ

∫
X

 K∑
k=1

Gσ(i,sk)(b)Pω(sk)

λ(di) = K∑
k=1

Pω(sk)
[1
κ

∫
X
Gσ(i,sk)(b)λ(di)

]

≡
K∑
k=1

Pω(sk)X
σ
sk
(b) = Xσ(b) · Pω.

26To see that the market clears, consider the cases where κ(1− ~Xa(p(a))) > (1− κ)Ya(p(a)) > 0:∫
i∈X

w(i, a)λ(di)=
∫ (

01[a(i)<p(a)]+(1−κ)Ya(p)−κ(1−Xa(p))

κ(Xa(p)− ~Xa(p))
1[a(i)=p(a)]+11[a(i)>p(a)]

)
dλ

= κ
(
Xa(p(a))− ~Xa(p))

) (1− κ)Ya(p)− κ(1−Xa(p))

κ(Xa(p)− ~Xa(p))
+ κ(1−Xa(p(a))

= (1− κ)Ya(p(a)) =
∫
i∈Y

11[a(i) ≤ p(a))]λ(di) =
∫
i∈Y

w(i, a)λ(di).
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Analogously, Y σs , Y σ, and Y σω denote, respectively, the mean cumulative distribution
for sellers with signal s, the vector-valued mean cumulative distribution for sellers for
each signal, and the mean cumulative distribution for sellers in state ω.

The weighted mean cumulative distribution for traders who receive the signal s
is defined by F σs (b) ≡ κXσ

s (b) + (1− κ)Y σs (b), with the corresponding vector-valued
function F σ ≡

(
F σs1 , ...,F σsK

)
. The weighted mean cumulative distribution over bids in

state ω is defined by F σω ≡ κXσ
ω + (1− κ)Y σω , and so F σω = F σ · Pω.27 For γ ∈ (0, 1),

we denote by Qσω(γ) the γ-quantile of the cumulative distribution F σω , defined by
Qσω(γ) ≡ inf{b ∈ B : γ ≤ F σω (b)}. We focus on strategy-profiles where F σω is a
cumulative distribution function and ~F σω (b) is the mean likelihood of submitting a bid
strictly less than b. This ensures that the infimum in Qσω(γ) is attained and, by the
following lemma, the realized distributions over bids by buyers and sellers are almost
surely cumulative distribution functions.

Lemma 5. Consider a strategy profile σ and a countable collection of bids {bj}∞j=1.
For every state ω, there exists a measurable subset of bid-profiles A ∈ A such that
P σω (A) = 1 and, for all a ∈ A and j ≥ 1, Xa(bj) = Xσ

ω(bj), ~Xa(bj) = ~Xσ
ω(bj),

Ya(bj) = Y σω (bj), ~Ya(bj) = ~Y σω (bj), and Fa(bj) = F σω (bj).

Proof. The key step in the proof of Lemma 5 follows directly the argument in the
proof of Theorem 1 in Al-Najjar (2008). As the proof requires additional concepts that
are not used elsewhere in our arguments, we provide formal details in a supplementary
appendix.

A.2.4 Proof of Proposition 1

Proof. Fix a strategy-profile σ, state ω and γ ∈ (0, 1). The result follows by establish-
ing that there is a measurable subset of bid-profiles Aω ⊂ A such that P σω (Aω) = 1
and, for all a ∈ Aω, Qa(γ) = Qσω(γ). We then define pσ(ω′) = Qσω(κ) for state ω′.

For ε > 0, let A+
ε = {a ∈ A : Qa(γ) > Qσω(γ) + ε}, and let b+ε = Qσω(γ) + ε

2 .
For every a ∈ A+

ε , Qa(γ) > b+ε , and therefore Fa(b+ε ) < γ. On the other hand,
Qσω(γ) < b+ε , and therefore F σω (b+ε ) ≥ γ. Hence, Fa(b+ε ) 6= F σω (b

+
ε ). By Lemma 5,

there is a set Ã+
ε such that P σω

(
Ã+
ε

)
= 1 and Fa(b+ε ) = F σω (b

+
ε ). Hence, Ã+

ε ∩A+
ε = ∅,

and so Qa(γ) ≤ Qσω(γ) + ε for all a ∈ Ã+
ε .

27This follows from F σω (b) ≡ κXσ
ω (b) + (1 − κ)Y σω (b) = κ (Xσ(b) · Pω) + (1 − κ) (Y σ(b) · Pω)

= (κXσ(b) + (1− κ)Y σ(b)) · Pω ≡ F σ(b) · Pω.
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Now let A−ε = {a ∈ A : Qa(γ) < Qσω(γ)− ε}, and let b−ε = Qσω(γ)− ε
2 . For every

a ∈ A−ε , Qa(γ) < b−ε , and therefore Fa(b−ε ) ≥ γ. On the other hand, Qσω(γ) > b−ε , and
therefore F σω (b−ε ) < γ. Again, by Lemma 5, there is a set Ã−ε such that P σω

(
Ã−ε

)
= 1,

Ã−ε ∩A−ε = ∅, and so Qa(γ) ≥ Qσω(γ) + ε for all a ∈ Ã−ε .
Let Ãε = Ã+

ε ∩ Ã−ε . Then Ãε is the intersection of two measure 1 sets and so
P σω

(
Ãε
)
= 1. Moreover, Qa(γ) ∈ [Qσω(γ)− ε,Qσω(γ) + ε] for all a ∈ Ãε.

Now fix a sequence {εj}∞j=1 such that εj ↓ 0. By the preceding argument, there
exists a sequence

{
Ãεj

}∞
j=1

measurable such that, for every j ≥ 1, P σω
(
Ãεj

)
= 1, and

Qa(1− g) ∈ [Qσω(γ)− εj ,Qσω(γ) + εj ] for all a ∈ Ãεj . Let Aω =
⋂∞
j=1 Ãej . Then, Aω

is the intersection of a countable collection of measure 1 sets, and so P σω (Aω) = 1
(because P σω is countably additive). Moreover, because ⋂∞j=1 [Qσω(γ)− εj ,Qσω(γ) + εj ]

= {Qσω(γ)}, we have Qa(γ) = Qσω(γ) for all a ∈ Aω.

A.2.5 Expected payoffs and trading volume

As a corollary of Lemma 5 and Proposition 1, we can characterize expected payoffs and
the volume of trade for any strategy-profile. Consider a strategy-profile σ : I ×S → B,
signal s ∈ S, state ω ∈ Ω, and price p ∈ B. For a buyer x ∈ X , define

W (x,σ|s,ω, p)≡



0 if Y σω (p)=0

1−~Gσ(x,s)(p) if (1−κ)Y σω (p)≥κ(1− ~Xσ
ω (p)),Y σω (p)>0

1−Gσ(x,s)(p) + (Gσ(x,s)(p)−~Gσ(x,s)(p)) (1−κ)Y
σ
ω (p)−κ(1−Xσω (p))

κ(Xσω (p)− ~Xσω (p))

if κ(1− ~Xσ
ω (p))>(1−κ)Y σω (p)>0

and for a seller y ∈ Y , define

W (y,σ|s,ω, p)≡



0 if ~Xσ
ω (p)=1

Gσ(x,s)(p) if κ(1− ~Xσ
ω (p))≥(1−κ)Y σω (p), ~Xσ

ω (p)<1
~Gσ(x,s)(p) + (Gσ(x,s)(p)−~Gσ(x,s)(p))κ(1−

~Xσω (p))−(1−κ)~Y σω (p)

κ(Y σω (p)−~Y σω (p))

if (1−κ)Y σω (p)>κ(1− ~Xσ
ω (p))>0

and let tσ(ω) ≡ min{κ(1− ~Xσ
ω(pσ(ω))), (1− κ)Y σω (pσ(ω))}.

Corollary 1. For a strategy-profile σ, (i) the expected payoff of type (i, s) is

Πi(σ|s) =


∑
ω∈Ω W (i,σ|s,ω,Qσω(κ))

(
v(x)−Qσω(κ)

)
Ps(ω) if i ∈ X∑

ω∈Ω W (i,σ|s,ω,Qσω(κ))
(
Qσω(κ)− v(ω)

)
Ps(ω) if i ∈ Y

,
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and (ii) there is Aω ∈ A such that P σω (Aω) = 1 and, for all a ∈ Aω, ta = tσ(ω).

Proof. By Lemma 5 and Proposition 1, for every state ω, there is a subset of
bid-profiles Aω ∈ A such that P σω (Aω) = 1 and, for all a ∈ Aω, p(a) = Qσω(κ),
Xa(p(a)) = Xσ

ω(Qσω(κ)), ~Xa(p(a)) = ~Xσ
ω(Qσω(κ)), Ya(p(a) = Y σω (Qσω(κ)), ~Ya(p(a))

= ~Y σω (Qσω(κ)), and we also have that Fa(p(a)) = F σω (Qσω(κ)). Hence, ta = tσ(ω) for
all a ∈ Aω, which establishes part (ii). Moreover, for a buyer x ∈ X ,

Πx(σ|s) ≡
∑
ω

Πx(σ|ω)Ps(ω) ≡
∑
ω

(∫
A
w(i, a)

(
v(ω)− p(a)

)
P σω (da)

)
Ps(ω)

=
∑
ω

(∫
Aω
w(x, a)

(
v(ω)− p(a)

)
P σω (da)

)
Ps(ω)

=
∑
ω

(
W (x,σ|s,ω,Qσω(κ))(v(ω)−Qσω(κ))

)
Ps(ω);

where the first and second equalities are by definition; the third equality follows
because P σω (Aω) = 1 for every ω; and the last equality follows because, for every
state ω and every a ∈ Aω, we can replace empirical moments with their theoretical
counterparts. The analogous argument applies for a seller.

As a corollary of Lemma 5 and Proposition 1, we can also show that, for any
strategy-profile, if there is no trade in any state, then there is no trade in every state
and prices are uninformative.

Corollary 2. If tσ(ω) = 0, then tσ(ω′) = 0 and pσ(ω) = pσ(ω′).

Proof. Let p ≡ pσ(ω), p′ ≡ pσ(ω′), t ≡ tσ(ω) = 0, and t′ ≡ tσ(ω′). We first show
that p = p′ by deriving a contradiction when either p′ < p or p′ > p.

(1) Suppose p′ < p. If Y σω (p) = 0, our full support assumption implies Y σ(p) = 0,
and so Y σ(p′) = 0, which implies Y σω′(p′) = 0. Since (1− κ)Y σω′(p′) ≥ κ(1−Xσ

ω′(p′)),
it follows that Xσ(p′) = e, and so (1 − Xσ

ω(p
′)) = 0. Hence, κ(1 − Xσ

ω(p
′))

≤ (1− κ)Y σω (p′) and so Qσω(κ) ≤ p′, which contradicts p = pσ(ω). If Y σω (p) > 0,
then t = 0 implies 1− ~Xσ

ω(p) = 0.
Since (1− κ)~Y σω (p) ≤ κ(1− ~Xσ

ω(p)), it follows that ~Y σω (p) = 0, and therefore
Y σω (p

′) = 0. But since p′ = Qσω′(p′), this implies 1−Xσ
ω′(p′) = 0, which implies

Xσ(p) = e, and so κ(1−Xσ
ω(p
′)) = 0. Hence, κ(1−Xσ

ω(p
′)) ≤ (1− κ)Y σω (p′), and

so Qσω(κ) ≤ p′, which contradicts p = pσ(ω) > p′.
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(2) Suppose p′ > p. If 1 − ~Xσ
ω(p) = 0, our full support assumption implies

Xσ(p) = e, and so Xσ
ω′(p) = 1. Hence, (1− κ)Y σω′(p) ≥ κ(1−Xσ

ω′(p)), and so
Qσω′(κ) ≤ p, which contradicts p′ = pσ(ω′). If 1− ~Xσ

ω(p) > 0, then t = 0 implies
Y σω (p) = 0. Since (1− κ)Y σω (p) ≥ κ(1−Xσ

ω(p)), it follows that Xσ
ω(p) = 1, and

so Xσ(p) = e. As a result, 1−Xσ
ω′(p) = 0, and so κ(1−Xσ

ω′(p)) ≤ (1− κ)Y σω′(p).
Hence, Qσω′(κ) ≤ p, which contradicts p′ = pσ(ω′) > p.

Finally, since t = 0, either (i) Y σω (p) = 0 or (ii) 1− ~Xσ
ω(p) = 0. In case (i),

Y σ(p) = 0, and so Y σω′(p) = 0. Since p = p′, it follows that (1− κ)Y σω′(p′) = 0, and
so t′ = 0. In case (ii), ~Xσ = e, and so ~Xσ

ω′(p) = 1. Since p = p′, κ(1− ~Xσ
ω′(p′)) = 0,

and so t′ = 0.

A.3 Proof of Theorem 1

Proof. The proof consists of three steps. The first step shows that a strategy-profile σ
is an equilibrium that aggregates information if and only if pσ = v. The second step
shows that, if the betweenness property is satisfied, there is a symmetric strategy-
profile σ where pσ = v. The last step shows that, if there is a strategy-profile σ where
pσ = v, then the betweenness property is satisfied.

Step 1: Let σ be a strategy-profile such that pσ = v. Clearly, σ aggregates
information. Now fix some trader i ∈ I and bid b ∈ B, and let σib be the strategy-
profile where σi(j, .) = σ(j, .) for all j ∈ I/{i} and σib(i, s) = δb. Then pσib

= v

because λ(i) = 0. Moreover, Πi(σ|s) = Πi(σib|s) = 0 for all s. As a result, type (i, s)
is playing a best response and, as the same holds for all types, σ is an equilibrium.

To establish the converse, we proceed by contradiction. Suppose σ is an equilibrium
strategy that aggregates information and there is some state ω with v ≡ v(ω) 6= pσ(ω)

≡ p. Let Ω′ = {ω′ : v(ω′) = v} and ε = 1
2 min{|v− p|, min{|p− pσ(ω′′)| : ω′′ /∈ Ω′}},

i.e., ε is half the distance between the price induced in state ω and the price induced
in any state with a value not equal v. Since σ aggregates information and v 6= p, it
follows that ε > 0. We first show that it is not possible for p < v, by considering three
collectively exhaustive cases.

(1) Suppose κ(1− ~Xσ
ω(p)) > (1−κ)Y σω (p). Fix a buyer i and define an alternative

39



strategy-profile σi by the following cumulative distribution function for each type:

Gσ
i(j,s)(b) =


~Gσ(j,s)(p) if j = i, b ∈ [p, p+ ε)

Gσ(j,s)(b) otherwise
.

By Corollaries 1 and 2, for signal s,

Πi(σ
i|s)−Πi(σ|s)

≥
(
Gσ(i,s)(p)−~Gσ(i,s)(p)

)(
1−(1−κ)Y

σ
ω (p)−κ(1−Xσ

ω(p))

κ(Xσ
ω(p)− ~Xσ

ω(p))

)
(v−p)Ps(ω).

This follows because (i) the probability that (i, s) submits a bid strictly greater than
p is 1− ~Gσ(i,s)(p) in σi, and 1−Gσ(i,s)(p) in σ; and (ii) the probability that (i, s)
submits a bid equal to p is 0 in σi, and Gσ(i,s)(p)− ~Gσ(i,s)(p) in σ. Since σ aggregates
information, by Corollary 2, Y σω (p) = Y σ

i

ω (p) > 0. Hence, by Corollary 1,

Πi(σ
i|s)−Πi(σ|s)

=
∑
ω′∈Ω′

(
Gσ(i,s)(p)−~Gσ(i,s)(p)

)1−(1−κ)Y
σ
ω′(p)−κ(1−Xσ

ω′(p))

κ(Xσ
ω′(p)− ~Xσ

ω′(p))

 (v−p)Ps(ω′)

≥
(
Gσ(i,s)(p)−~Gσ(i,s)(p)

)(
1−(1−κ)Y

σ
ω (p)−κ(1−Xσ

ω(p))

κ(Xσ
ω(p)− ~Xσ

ω(p))

)
(v−p)Ps(ω).

(A similar argument applies in other parts of the proof, and we therefore omit details
for brevity). Since this payoff-difference is non-negative and (by full support of P )
there is a strictly positive mass of buyers receiving signal s, and so it must be the
case that

∫
i∈X

(
Gσ(i,s)(p)−~Gσ(i,s)(p)

)(
1− (1−κ)Y σω (p)−κ(1−Xσ

ω(p))

κ(Xσ
ω(p)− ~Xσ

ω(p))

)
λ(di)

=
(
κXσ

s (p)− ~Xσ
s (p)

)(
1− (1−κ)Y σω (p)−κ(1−Xσ

ω(p))

κ(Xσ
ω(p)− ~Xσ

ω(p))

)
= 0,

otherwise a strictly positive mass of buyer types has a strictly profitable deviation (and
σ is not an equilibrium). Since the above equality holds for all s, it also holds in expec-
tation over s in state ω. Hence,

(
κXσ

ω(p)− ~Xσ
ω(p)

)(
1− (1−κ)Y σω (p)−κ(1−Xσ

ω (p))

κ(Xσ
ω (p)− ~Xσ

ω (p))

)
= 0,

which contradicts the supposition that κ(1− ~Xσ
ω(p)) > (1−κ)Y σω (p) ≥ κ(1−Xσ

ω(p)).
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(2) Suppose κ(1 − ~Xσ
ω(p)) < (1 − κ)Y σω (p). Fix a seller i and define the al-

ternative strategy-profile σi as in case (1). By Corollaries 1 and 2, for signal s,
Πi(σi|s)−Πi(σ|s) ≥

(
Gσ(i,s)(p)−~Gσ(i,s)(p)

) (
κ(1− ~Xσ

ω (p))−(1−κ)~Y σω (p)

κ(Y σω (p)−~Y σω (p))

)
(v−p)Ps(ω).

Since this payoff-difference is non-negative and there is a strictly positive mass
of sellers receiving signal s, it must be the case

∫
i∈Y

(
Gσ(i,s)(p)−~Gσ(i,s)(p)

)κ(1− ~Xσ
ω(p))−(1−κ)~Y σω (p)

(1− κ)(Y σω (p)−~Y σω (p))

λ(di)
= (1− κ)

(
Y σs (p)−~Y σs (p)

)κ(1− ~Xσ
ω(p))−(1−κ)~Y σω (p)

(1− κ)(Y σω (p)−~Y σω (p))

 = 0

otherwise there is a strictly positive mass of seller types with a strictly profitable devia-
tion (and σ is not an equilibrium). Since the above equality holds for all s, it also holds
in expectation over s in state ω. Hence, (1−κ)

(
Y σω (p)−~Y σω (p)

)(
κ(1− ~Xσ

ω (p))−(1−κ)~Y σω (p)

(1−κ)(Y σω (p)−~Y σω (p))

)
= κ(1− ~Xσ

ω(p))−(1−κ)~Y σω (p) = 0. By Corollary 2, ~Y σω (p) > 0 and so p > 0. Now
let ε′ = 1

2 min{ε, p} > 0, and define another strategy-profile σ̂i by the cumulative
distribution functions

Gσ̂
i(j,s)(b) =


~Gσ(j,s)(p− ε′) if j = i, b ∈ [p− ε′, p+ ε′)

Gσ(j,s)(b) otherwise
.

By Corollary 1, Πi(σ̂i|s)−Πi(σ|s) ≥
(
Gσ(i,s)(p− ε′)−~Gσ(i,s)(p)

)
(p−v)Ps(ω) for sig-

nal s. Since this payoff-difference is non-negative and there is a strictly positive mass of
sellers receiving signal s, it must be the case that

∫
i∈Y

(
Gσ(i,s)(p− ε′)−~Gσ(i,s)(p)

)
λ(di)

= (1− κ)
(
Y σs (p− ε′)−~Y σs (p)

)
= 0, otherwise there is a strictly positive mass of seller

types with a strictly profitable deviation (and σ is not an equilibrium). Since the
above equality holds for all s, it also holds in expectation over s in state ω. Hence,
Y σω (p− ε′) = ~Y σω (p).

Now suppose trader i is a buyer rather than a seller. Then, for s, Πi(σi|s)−Πi(σ|s)
≥
(
Gσ(i,s)(p)−~Gσ(i,s)(p− ε′)

)
(v−p)Ps(ω).

Since this payoff-difference is non-negative and there is a strictly positive mass of
buyers receiving signal s, we have

∫
i∈X

(
Gσ(i,s)(p)−~Gσ(i,s)(p− ε′)

)
λ(di)

= κ
(
Xσ
s (p)− ~Xσ

s (p− ε′)
)
= 0, otherwise there is a strictly positive mass of buyer

types with a strictly profitable deviation (and σ is not an equilibrium). Since the
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above equality holds for all s, it also holds in expectation over s in state ω. Hence,
Xσ
ω(p) = ~Xσ

ω(p− ε′). As a result, we have

(1− κ)Y (p− ε′) = (1− κ)~Y σω (p) = κ(1− ~Xσ
ω(p))

≥ κ(1−Xσ
ω(p)) = κ(1− ~Xσ(p− ε′)) ≥ κ(1−Xσ(p− ε′)).

But then Qσω(κ) ≤ p− ε′, and since ε′ > 0, this contradicts p = pσ(ω).
(3) Suppose κ(1− ~Xσ

ω(p)) = (1− κ)Y σω (p). Since (1− ~Xσ
ω(0)) = 1 it follows

that p > 0; otherwise we would have Y σω (p) = 1 which, by full support of P , implies
Y σs (0) = 1 for all s, and therefore Y σω′′(0) = 1 for all ω′′ so that pσ = 0 (contradicting
that σ aggregates information). Moreover, κ(1− ~Xσ

ω(p)) = (1− κ)Y σω (p) implies
that κ(1− ~Xσ

ω(p)) = κ(1−Xσ
ω(p))(1− κ) = (1− κ)Y σω (p) = (1− κ)~Y σω (p). Define

ε′ and σ̂i as in case (2). If i is a seller, then by Corollaries 1 and 2, for signal
s, Πi(σ̂i|s)−Πi(σ|s) ≥

(
Gσ(i,s)(p− ε′)−~Gσ(i,s)(p)

)
(p−v)Ps(ω). Following the same

argument as in case (2), this implies Y σω (p− ε′) = ~Y σω (p). If i is buyer, then by Corollar-
ies 1 and 2, for signal s, Πi(σi|s)−Πi(σ|s) ≥

(
Gσ(i,s)(p)−~Gσ(i,s)(p− ε′)

)
(v−p)Ps(ω).

Following the same argument as in case (2), this implies Xσ
ω(p) = ~Xσ

ω(p− ε′). As a
result,

(1− κ)Y (p− ε′) = (1− κ)~Y σω (p) = κ(1− ~Xσ
ω(p))

= κ(1−Xσ
ω(p)) = κ(1− ~Xσ(p− ε′)) = κ(1−Xσ(p− ε′)).

But then Qσω(κ) ≤ p− ε′, and since ε′ > 0 this contradicts p = pσ(ω). By cases
(1)-(3) it follows that there no states in which the price induced by σ is strictly less
than the value.

Now suppose that p > v. We again consider cases. For buyer i, define strategy-
profile σ̃i by

Gσ̃
i(j,s(b) =

1 if j = i

Gσ(j,s)(b) otherwise
.

(1’) Suppose (1− κ)Y σω (p) ≥ κ(1− ~Xσ
ω(p)). Since there are no states where price

is strictly lower than value, Corollary 1 implies, for signal s, Πi(σ̃i|s)−Πi(σ|s)
≥ −

(
1− ~Gσ(i,s)(p)

)
(v−p)Ps(ω). Since this payoff-difference is non-negative and

there is a strictly positive mass of buyers receiving signal s, it must be the case that
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∫
i∈X

(
1−Gσ(i,s)(p)

)
λ(di) = κ

(
1− ~Xσ

s (p)
)
= 0, otherwise there is a strictly positive

mass of buyer types with a strictly profitable deviation (and σ is not an equilibrium).
Since the above equality holds for all s, it also holds in expectation over s in state ω.
Hence, 1− ~Xσ

ω(p) = 0. Hence, there is no trade in state ω, contradicting Corollary 2.
(2’) Suppose (1− κ)Y σω (p) < κ(1− ~Xσ

ω(p)). Since there are no states where the
price is strictly lower than the value, it follows by Corollary 1 that, for signal s,
Πi(σ̃i|s)−Πi(σ|s) is greater than
(
−
(
1−~Gσ(i,s)(p)

)
−
(
Gσ(i,s)(p)−~Gσ(i,s)(p)

)(1−κ)Y σω (p)−κ(1−Xσ
ω(p))

κ(Xσ
ω(p)− ~Xσ

ω(p))

)
(v−p)Ps(ω)

Since this payoff-difference is non-negative and there is a strictly positive mass of
buyers receiving signal s, it must be the case that

∫ ((
1−~Gσ(i,s)(p)

)
+
(
Gσ(i,s)(p)−~Gσ(i,s)(p)

)(1−κ)Y σω (p)−κ(1−Xσ
ω(p))

κ(Xσ
ω(p)− ~Xσ

ω(p))

)
λ(di)=0,

otherwise there is a strictly positive mass of buyer types with a strictly profitable
deviation (and σ is not an equilibrium). Since the above equality holds for all s, it also
holds in expectation over s in state ω. Hence, κ(Xσ

ω(p)− ~Xσ
ω(p)) + (1−κ)Y σω (p) = 0.

But the first term is strictly positive by supposition, and the second term is strictly
positive by Corollary 2, yielding the desired contradiction.

For the remaining steps we use the characterization of the betweenness property
in terms of the (strict) NHSP (Definition 9 and Lemma 4). As in the definition of
the NHSP, let Ω1, ...., ΩR+1 be a partition of Ω such that, for ω ∈ Ωr and ω′ ∈ Ωr′ ,
we have v(ω) > v(ω′) if and only if r > r′. Then, for each r = 1, ...,R+ 1, there
exists a value vr such that vr = v(ω) for all ω ∈ Ωr. Let v0 ≡ 0 and note that
v0 < v1 < .... < vR+1.

Step 2: We first show that when P satisfies the strict NHSP, we can construct
a symmetric equilibrium strategy-profile that aggregates information. By the strict
NHSP, there exist non-zero vectors α̂1, ..., α̂R ∈ RK such that that (i) the collection
of hyperplanes {H(α̂r) : 1, ...,R} is nested, and (ii) for r = 1, ...,R, v(ω) ≤ vr implies
Pω ∈ H̊+(αr) and v(ω′) > vr implies Pω′ ∈ H̊−(αr). Because the hyperplanes
are nested, Lemma 2 implies that, without loss of generality, we can assume that
α̂r < α̂r+1 for r = 1, ...,R− 1. Moreover, since κ ∈ (0, 1), we can choose ε > 0 such

43



that 0 < εα̂r + (κ) < e for all r = 1, ...,R. Now define a new collection of vectors
α0, ...,αR+1 ∈ RK as follows: α0 ≡ 0, αR+1 ≡ e, and, for r = 1, ...,R, αr ≡ εα̂r+(κ).
By Lemma 1, H∆(αr, 1− g) = H∆(α̂r) for all r = 1, ...,R.

We use the vectors α0, ...,αR+1 to construct a symmetric strategy-profile. Because
the strategy-profile is symmetric, it is sufficient to describe the strategy σi ≡ σ(i, .)
of one trader i ∈ I (buyer and sellers). The strategy is simple: for each signal s,
σi(s) has support {v1, ..., vR}. We use the notation σi(vr|sk) to denote the prob-
ability that trader i submits bid vr when she receives signal sk. In particular, for
each r = 1, ...,R+ 1 and k = 1, ...,K, let σi(vr|sk) ≡ αr(k)− αr−1(k). Fixing a
k = 1, ...,K, αr > αr−1 implies that σi(vr|sk) > 0 for all r, and ∑R

r=1 σ(vr|sk) =

αR+1(k) by construction. As a result, σi(.|sk) ∈ (B). We denote the corresponding
strategy-profile by σ. Note that, for all r and k, Gσ(i,sk)(vr) = αr(k) for every i,
and so F σsk(vr) = αr(k). This implies that F σ(vr) = αr. Since σ is a symmetric
strategy-profile, F σ is a cumulative distribution function.

We now show that v(ω) = pσ(ω) ≡ Qσω(κ) for all ω. First consider ω ∈ Ω1. Then
v(ω) = v1 and so Pω ∈ H̊+(α1,κ). This means that κ < α1 · Pω = F σ(v1) · Pω =

F σω (v1). Since F σω (b) = 0 for all b < v1, it follows that Qσω(κ) = v1.
Next consider ω ∈ ΩR+1. Then v(ω) = vR+1 and so Pω ∈ H̊−(αR,κ). This

means that κ > αR · Pω = F σ(vR) · Pω = F σω (vR). Since F σω (b) = F σω (vR) for all
b ∈ [vR, vR+1) and F σω (vR+1) = 1, it follows that Qσω(κ) = vR+1.

Finally, consider ω ∈ Ωr for r = 2, ...,R. Then v(ω) = vr and Pω ∈ H̊+(αr,κ)
∩H̊−(αr−1,κ). This means that F σω (vr) = F σ(vr) · Pω = αr · Pω > κ > αr−1 · Pω
= F σ(vr−1) ·Pω = F σω (vr−1). Since F σω (b) = F σω (vr−1) for all b ∈ [vr−1, vr), it follows
that Qσω(κ) = vr. Hence, pσ = v and so, by Step 1, σ is an equilibrium strategy
profile that aggregates information.

Step 3: Suppose the strategy-profile σ is an equilibrium that aggregates infor-
mation. By Step 1, it follows that v(ω) = pσ(ω) = Qσω(κ) for all ω. For r = 1, ...,R,
define αr ≡ F σ(vr) − κ. To show that the NHSP is satisfied, we show that the
collection of hyperplanes {H(αr) : r = 1, ..., Ω} is nested, and v(ω) = vr < v(ω′)

implies Pω ∈ H+(αr) and Pω′ ∈ H̊−(αr).
By definition of the quantile, pσ = v implies that, for every state ω, κ ≤ F σ(b) ·Pω

for b ≥ v(ω) and κ > F σ(b) · Pω for b < v(ω). Since F σs is monotone non-
decreasing, vr > vr′ implies F σs (vr) ≥ F σs (vr′) for all s. Since, for ω ∈ Ωr,
F σ(vr) · Pω > F σ(vr′) · Pω, it follows that F σ(vr) > F σ(vr′). Hence, α1 < .... < αR,
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and so by Lemma 2, the collection of hyperplanes {H(αr) : r = 1, ..., Ω} is nested.
Now suppose v(ω) = vr < v(ω′) for some r = 1, ...,R. Since F σω (vr) ≥ κ, it follows
that αr · Pω ≥ 0, and so Pω ∈ H+(αr). On the other hand, since F σω′(vr) < κ, it
follows that αr · Pω′ < 0, and so Pω′ ∈ H̊−(αr). This establishes the desired sepa-
ration property. Therefore, P satisfies the NHSP and so, by Lemmas 3 and 4, the
betweenness property is satisfied.

A.3.1 Finite auctions

Consider a finite population In = Xn ∪Yn, where Xn are buyers, Yn are sellers, and
the proportion of buyers is κ ∈ (0, 1). We denote a bid-profile by an : In → B. Let
X̃an(b) ≡

∑
x∈Xn 1[a(x) ≤ b] denote the number of buyers submitting a bid less than

or equal to b; Ỹan(b) ≡
∑
y∈Yn 1[a(y) ≤ b] denote the number of sellers submitting a

bid less than equal to b; and F̃an(b) = X̃an(b) + Ỹan(b) denote the total number of
bids less than or equal to b. The price p(an) ≡ inf{b ∈ B : |Xn|− X̃an(b) ≤ Ỹan} is the
lowest bid such that number of sellers willing to trade (weakly) exceeds the number of
buyers submitting a bid strictly greater than the price. Every buyer with a bid strictly
greater than the price, and every seller with a bid strictly less than the price, trades
at the price p(an). The auctioneer randomizes uniformly over bids equal to the price
to maximize volume under the constraint that the market must clear. This defines an
allocation-rule w(i, an) analogous to the large market. Let Xan(b) ≡

X̃an (b)
κ|In| denote the

normalized cumulative distribution of bids by the buyers; Yan(b) ≡
Ỹan (b)

(1−κ)|In| denote
the normalized cumulative distribution of the sellers; and denote the cumulative
distribution of the population by Fan(b) ≡ κXan(b) + (1− κ)Yan(b) =

F̃an (b)
|In| . Then

p(an) = inf{b ∈ B : κ ≤ Fan(b)}, and the infimum is attained.
Before providing the proof of theorem 2, we establish some properties of the limiting

distribution of prices. A symmetric sequence of strategy-profiles {σn}∞n=1 can be
described by a function θ : S → B such that, for every n, θ(s) = σn(j, s) for all j ∈ In.
Let Xθ

s denote the cumulative distribution over bids for a buyer with signal s, Y θs the
cumulative distribution for a seller with signal s, and F θs = κXθ

s + (1− κ)Y θs . Then
Xθ, Y θ, and F θ are the corresponding vectors functions. For a state ω, Xθ

ω ≡ Xθ ·Pω,
Y θω ≡ Y θ · Pω, and F θω ≡ F θ · Pω. Given a symmetric sequence of strategy-profiles
{σn}∞n=1, described by θ, a trader i ∈ I1 and θi : S → B, we denote by {σθin }∞n=1
the sequence of strategy profiles where, for every n, σθin (j, s) = θ(s) for j 6= i and

45



σθin (i, s) = θi(s). Hence, σθin is the strategy-profile where other traders continue to
follow the symmetric strategy θ and i deviates to the strategy θi.

The following lemma characterizes the limiting distribution of prices for a sym-
metric sequence of strategy-profiles using the de Moivre-Laplace central limit theorem
(see, e.g., Shiryaev (1984) pp. 62-63). It also shows that the limiting distribution
does not depend on the strategy-profile followed by an individual trader; that is,
price-impact vanishes.

Lemma 6. Let {σn}∞n=1 be a symmetric sequence of strategy-profiles described by
θ : S → B. Fix a trader i ∈ I1, a deviation θi for trader i, a state ω ∈ Ω, and a bid
b ∈ B. (i) If F θω(b) ≤ κ, then limn→∞ P

σ
θi
n

ω (p(σn,ω) > b) ∈
{

1
2 , 1

}
, and equal to 1 if

and only if F θω(b) < κ. (ii) If ~F σiω (b) ≥ κ, then limn→∞ P
σ
θi
n

ω (p(σn,ω) ≤ b) ∈
{

1
2 , 1

}
,

and equal to 1 if and only if ~F σnω (b) > κ.

Proof. We show the argument for part (i), the argument for part (ii) is symmetric.
For part (i), if F σω (b) = 0, then for n sufficiently large such that 1

|In| < κ, we have

P σ
θi
n

ω

(
κ ≤ F̃an(b)

)
= 0 even when θi(s) = δ0 for all s; hence P σnω (p(σn,ω) > b) = 1.

We can therefore focus on the case where 0 < F θω(b) ≤ κ. Moreover, it is without loss
of generality to assume that θi(s) = δb̃ for some b̃ ∈ B: if convergence is established
for all bids b̃, it holds for any distribution over bids.

Let f be a generic realization of the random variable F̃an(b). For a bid-profile an,
the price is strictly greater than b if and only if F̃an(b) ≤ κ|In| − 1. Therefore,

P σnω (p(σn,ω) > b) =


∑κ|In|−2
f=0 (|In|−1

f )F θω(b)
f (1− F θω(b))|In|−1−f if b̃ ≤ b∑κ|In|−1

f=0 (|In|−1
f )F θω(b)

f (1− F θω(b))|In|−1−f if b̃ > b
.

By the de Moivre-Laplace central limit theorem, for n sufficiently large,

κ|In|−2∑
f=0

(
|In| − 1

f

)
F θω(b)

f (1− F θω(b))|In|−1−f ≈ Θ

 κ|In| − 2− (|In| − 1)F θω(b)√
(|In| − 1)F θω(b)(1− F θω(b))

 ,

where Θ is the cumulative distribution function of the standard normal distribution.
Likewise,

κ|In|−1∑
f=0

(
|In| − 1

f

)
F θω(b)

f (1− F θω(b))|In|−1−f ≈ Θ

 κ|In| − 1− (|In| − 1)F θω(b)√
(|In| − 1)F θω(b)(1− F θω(b))

 .
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As a result, limn→∞ P
σn
ω (p(σn,ω)>b) =1

2 if F θω(b)=κ, and limn→∞ P
σn
ω (p(σn,ω)>b)

= 1 if F θω(b) < κ.

As a corollary of Lemma 6, we characterize when the prices converge to values.

Corollary 3. Let {σn}∞n=1 be a symmetric sequence of strategy-profiles described by
θ : S → B. Fix a trader i ∈ I1, a deviation θi for trader i, and a state ω ∈ Ω.
The sequence of prices {p(σn,ω)}∞n=1 converges in probability to v(ω) if and only if
F θω(v(ω)− δ) < κ < F θω(v(ω) + δ) for every δ > 0.

Proof. (1) Suppose that F θω(v(ω)− δ) < κ < F θω(v(ω) + δ) for every δ > 0. Fix some
ε > 0: we want to show that limn→∞ P

σ
θi
n

ω

(
p(σθin ,ω) ∈ [v(ω)− ε, v(ω) + ε]

)
= 1.

Because F θω is monotone non-decreasing, it has a countable number of points of
discontinuity. We can therefore choose ε′ ∈ (0, ε] such that F θω is continuous
at v(ω) + ε′ and v(ω) − ε′. As F θω(v(ω) − ε′) < κ, it follows by Lemma 6 that
limn→∞ P

σ
θi
n

ω

(
p(σθin ,ω) > v(ω)− ε′

)
= 1. Moreover, because κ > F θω(v(ω) + ε′)

= ~F θω(v(ω)+ ε′), it also follows by Lemma 6 that limn→∞ P
σ
θi
n

ω

(
p(σθin ,ω) ≤ v(ω) + ε′

)
= 1. Hence, it follows that limn→∞ P

σ
θi
n

ω

(
p(σθin ,ω) ∈ [v(ω)−ε, v(ω)+ε]

)
= 1.

(2) For the converse, suppose that F θω(v(ω) + δ) ≤ κ for some δ > 0. Then by
Lemma 6, we have limn→∞ P

σni
ω (pσin (ω) > v(ω) + δ) ≥ 1

2 , and so the price does not
converge in probability to v(ω). On the other hand, if F θω(v(ω)− δ) ≥ κ for some
δ > 0, then by Lemma 6, limn→∞ P

σni
ω (pσin (ω) ≤ v(ω)− δ) ≥ 1

2 , and so the price does
not converge to v(ω).

A.3.2 Proof of Proposition 2

Proof. The first step of the proof is to show that a symmetric sequence of strategy-
profiles aggregates information asymptotically and approximates equilibrium if and
only if the price converges in probability to the value in every state. The sufficiency
part follows immediately from Lemma 6, because prices converge for any deviation by
trader i; thus, expected payoffs converge to zero for any deviation. The necessity part
of the argument is similar to the argument for the large market. The argument for
the finite approximation is actually more straightforward as we only need to show
that a single trader has a profitable deviation bounded away from zero when prices
do not converge in probability to values. We therefore omit this part of the proof.
The following two steps then complete the argument.
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(1) Suppose P satisfies the betweenness property. Consider the symmetric strategy-
profile σ : I ×S → ∆(B) constructed in the proof of Theorem 1. This strategy-profile
can be described by a function θ : S → B such that σ(i, s) = θ(s) for all i ∈ I,
and F θ = F σ. The strategy θ therefore has the property that, for every state ω,
F θω(v(ω)− δ) < κ < F θω(v(ω) + δ) for every δ > 0. Let {σn}∞n=1 be the symmetric
sequence of strategy-profiles described by θ. By Corollary 3, the sequence of prices
converges in probability to the value in every state. Hence, {σn}∞n=1 aggregates
information asymptotically and therefore approximates equilibrium.

(2) For the converse, suppose that the symmetric sequence of strategy-profiles
{σn}∞n=1, described by θ : S → B, aggregates information asymptotically and ap-
proximates equilibrium. Since prices must converge in probability to the value in
every state, by Corollary 3, for every state ω, F θω(v(ω)− δ) < κ < F θω(v(ω) + δ) for
every δ > 0. Since F θω is right-continuous, it follows that κ ≤ F θω(v(ω)). Moreover, if
v(ω′) < v(ω), then F θω(v(ω′)) < κ ≤ F θω(v(ω)). Let Ω1, ...., ΩR+1 be the partition of
Ω from the proof of Theorem 1. For every r = 1, ...,R, let αr ≡ F θ(vr)− κ. Then the
same argument as in the proof of Theorem 1 shows that the collection of hyperplanes
{H(αr) : r = 1, ...,R} has the desired nesting and separation properties for the NHSP.
Hence, by Lemma 4, P satisfies the betweenness property.

A.3.3 Proof of Proposition 3

Proof. Consider the Walrasian market described in Section 4.3. With some abuse of
notation, we denote a strategy-profile in this market by σ. We assume that assets
and wealth are measured in the same units, each buyer has a unit of wealth and
each seller owns a unit of the asset. When trader x is a buyer, σ(x, s) : B → [0, 1]
is a non-increasing demand schedule, where σ(x, s)[p] denotes the quantity of the
asset that the buyer demands at price p. It is without loss of generality to restrict
σ(x, s)[0] = 1 and σ(x, s)[b̄] = 0 for all s because, in equilibrium, buyers always
demand one unit at a price of 0 and demand 0 units at a price above the greatest
possible value. When trader y is a buyer, σ(y, s) : B → [0, 1] is a non-decreasing
supply schedule, where σ(y, s)[p] denotes the quantity of the asset that the sellers
supplies at price p. It is without loss of generality to restrict σ(y, s)[0] = 0 and
σ(y, s)[b̄] = 1 for all s.

Again abusing notation, letXσ
s (b) ≡ 1

κ

∫
X σ(i, b)λ(di) andXσ ≡

(
Xσ
s1 , ...,Xσ

sK

)
be
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the corresponding vector-valued function that gives the normalized aggregate demand
of buyers for each signal. As in the double-sided auction, in state ω, the aggregate
demand is given by Xσ

ω = Xσ ·Pω. Analogously, Y σs , Y σ, and Y σω denote, respectively,
the normalized aggregate supply for sellers with signal s, the vector-valued aggregate
supply for sellers for each signal, and the aggregate supply in state ω. When we
impose the mild technical assumption that Xσ

ω and Y σω are right-continuous, they have
all the properties of the mean cumulative bidding distributions in the double-sided
auction, and so the arguments from Theorem 1 can be adapted essentially verbatim
to establish that the betweenness property is necessary and sufficient for equilibrium
prices to aggregate information.

A.4 Genericity analysis

Let P(K,M) denote the set of all the information structures {Pω : ω ∈ Ω}
(or {Pω} for short) such that Pω has full support for every ω. An information
structure {Pω} ∈ P(K,M) can be identified with a real K ×M matrix, where
column m represents the distribution over signals conditional on state ωm. Let
PBP (K,M) ⊂ P(K,M) be the subset of information structures that satisfies the
betweenness property and PMLRP (K,M) ⊂ P(K,M) be the set of information struc-
tures that satisfy the MLRP. Let µKM denote the Lebesgue measure on R(K−1)M .
When K and M are clear from the context, we omit the subscript.

The sets P and PBP are open in R(K−1)M and therefore Lebesgue measurable.
The boundary of PMLRP (the set difference between the closure of PMLRP and
PMLRP ) is a Lebesgue null-set, and so PMLRP is measurable. Using Fubini Theorem,
it is straightforward to show that µ(P) = 1. This describes how we quantify the
betweenness property and MLRP relative to all information structures.

For the multi-input environments, let P
(
{Kc,Mc}Cc=1

)
⊂ P

(∑C
c=1Kc,

∏C
c=1Mc

)
denote the set of multi-input information structures with C inputs, satisfying con-
ditions (1) and (2) in Definition 7. By condition (2), inputs are independent. A
multi-input information structure {Pω} ∈ P

(
{Kc,Mc}Cc=1

)
is therefore fully de-

scribed by a γ = (γ1, ..., γC) ∈ ∆C and a collection
{
{Pωc}Cc=1

}
, where, for ev-

ery input c = 1, ...,C, γc = P (s ∈ Sc) is the probability of receiving a signal
on input c and Pωc ∈ ∆(Sc) is the conditional distribution on signals for input c
conditional on the c-th dimension of the state. To measure sets of multi-input envi-
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ronments, we fix the number of inputs C, the number of states and signals per input
{Kc,Mc}Cc=1, and the likelihood of receiving a signal for each input γ, and denote by
P
(
{Kc,Mc}Cc=1, γ

)
the corresponding subset of multi-input information structures.

For a subset P ′ ⊂ P
(
{Kc,Mc}Cc=1, γ

)
, we take every information structure {Pω} ∈ P ′

and associate its vector ({Pω1 : ω1 ∈ Ω1}, ..., {PωC : ωc ∈ Ωc}). In this way, P ′ de-
fines a vector of subsets of information structures for each input (P ′1, ...,P ′C). We
then measure P ′ by µγ{KcMc}Cc=1

(P ′) = ∑C
c=1 γc µKcMc(P ′c). Note that

µγ{KcMc}Cc=1
(P ′)

(
P
(
{Kc,Mc}Cc=1, γ

))
=

C∑
c=1

γc µKcMc (P(KcMc)) =
C∑
c=1

γc = 1,

i.e., the set of all multi-input environments with C inputs, a fixed number of states
and signals per input {Kc,Mc}Cc=1, and a fixed marginal γ over the signals for inputs,
has measure 1. Let PBP

(
{Kc,Mc}Cc=1, γ

)
⊂ P

(
{Kc,Mc}Cc=1, γ

)
denote the subset

of multi-input information structures, with fixed γ, which satisfy the betweenness
property. As this set is open, it is measurable with respect to µγ{KcMc}Cc=1

.

A.4.1 Proof of Proposition 4

Proof. (1) We first show that K ≥ M implies that µKM (PBP (K,M)) = 1. It is
well-known that µKM

(
{(z1, ..., zM ) : z1, ..., zM ∈ RK are linearly independent}

)
= 1.

Now fix Pω1 , ...,PωM ∈ ∆(S) linearly independent vectors, and choose a vector β ∈ RK ,
with βi < βj if ωi < ωj . Define zi(j) ≡ Pωi(j) for all j ≤M , and zi(j) be arbitrary
for j = M + 1, ...,K such that Z = (z1, ..., zK) is invertible. Define αβ = βZ−1.
By construction, βm = αβ · Pωm , and thus, U(Pω) = αb · Pω is consistent with the
EU property (defined by αb), and therefore the betweenness property as well. Then,
µKM (PBP (K,M)) = 1.

(2) We now show that M > K implies µKM (PBP (K,M)) < 1. To do so, we show
that, whenM > K, there is a strictly positive mass of information structures where the
conditional distribution for a higher value is in the convex hull of the conditional distri-
butions for lower values. This convex containment is inconsistent with the betweenness
property. Hence, when M > K, there is a strictly positive mass of information struc-
tures that do not satisfy the betweenness property. It is understood in the following
that µ = µKM . Fix θ ≤ 1

K . For j = 1, ...,K, let Aj = {z ∈ ∆K : z(j) ≥ 1− θ},
and AK+1 = {z ∈ ∆K : z(j) ≥ θ for all i}. If zj ∈ Aj for j = 1, ...,K, then
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AK+1 ∈ co(⋃Kj=1 zj). When θ = 1, µ(AK+1) = 0 < µ(Aj). When θ = 0,
µ(Aj) = 0 < µ(AK+1). Then, there exists θ̄ such that µ(Aj) = µ(AK+1). Draw
an arbitrary information structure {Pω : ω ∈ Ω} and let E be the event that, for
each j = 1, ...,K + 1, there exists ω such that Pω ∈ Aj . A direct application of the
multinomial formula implies that

P (E) =
M−K∑
y1=1

M−(K−1)−y1∑
y2=1

...
M−

∑K
k=1 yk∑

yK+1=1

(
M

y1....yK+1

)
f

K+1∑
k=1

yk, θ̄
 ,

where ( M
y1....yK+1

) ≡ M !
y1!...yK+1!(M−

∑K+1
k=1 yk)!

is the multinomial coefficient and f (ȳ, θ̄) ≡

θ̄ȳ(1− (K + 1)θ̄)M−ȳ. Clearly, P (E) > 0. There is a finite number of ways to assign
Pω’s to Aj ’s, and all of them with the same (positive) measure. In particular, this
implies that there exists an event E′ with P (E′) > 0, where for v(ω1) < ... < v(ωK+1),
we have Pωi ∈ Ai for all i < K, PωK ∈ AK+1, PωK+1 ∈ AK , and P (E′) > 0. In the
event E′, PωK ∈ co(⋃i6=K Pωi), so the betweenness property is not satisfied.

A.4.2 Proof of Proposition 5

Proof. For any (M ,K) with K ≥ 2,

µKM

({
{Pω} :

Pω(s)

Pω(s′)
=
Pω′(s)

Pω′(s)
for some Pw,Pω′ , s, s′

})
= 0,

because the equality restriction defines a lower dimensional set. Now fix s, s′ ∈ S and
define an equivalence∼ as follows: P ∼ P ′ =⇒ Pω(s)

Pω(s′) >
Pω′ (s)
Pω′ (s′) ⇐⇒

P ′
ω(s)

P ′
ω(s′) >

P ′
ω′ (s)

P ′
ω′ (s

′)

for all ω,ω′. An equivalence class for a distribution P on Ω × S is denoted by
[P ] = {P ′ : P ∼ P ′}. There are M distinct states in Ω and therefore, there are M !
distinct equivalence classes, one for each possible strict ordering on the likelihood-ratios
Pω(s)
Pω(s′) . Then, µK×M ([P ]) = 1

M ! for all P . There are only two equivalence classes that

are consistent with the MLRP, namely: [P ] = {P ′ : P ′
ω(s)

P ′
ω(s′) >

P ′
ω′ (s)

P ′
ω′ (s

′) ∀v(ω) > v(ω′)},

and [P̂ ] = {P ′ : P ′
ω(s)

P ′
ω(s′) <

P ′
ω′ (s)

P ′
ω′ (s

′) ∀v(ω) > v(ω′)}. Then, the measure of information

structures that satisfies MLRP, µKM
(
PMLRP (K,M)

)
≤ µKM ([P ]∪ [P̂ ]) = 2

M ! .
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A.4.3 Proof of Proposition 6

Proof. Suppose (Ω,S,P , v) is a multi-input environment, and let c and d be non-
trivial inputs. Then, there exists ω,ω′,ω′′, and ω̂c, ω̃c, ω̂d, ω̃d such that v(ω) > v(ω′),
and v(ω) > v(ω′′), where ωc = ω′′c = ω̂c, ωd = ω′d = ω̂d, ω′c = ω̃c, ω′′d = ω̃d, and
ωi = ω′i = ω′′i for all i 6= c, d. We need to consider three cases.

(1) Suppose there are sc ∈ Sc, sd ∈ Sd such that Pω(sc) > Pω′(sc) and Pω(sd)

> Pω′′(sd). By condition (2i), Pω(sd) = Pω′(sd), and Pω(sc) = Pω′′(sc). Then,
Pω′′ (sc)
Pω′′ (sd)

> Pω(sc)
Pω(sd)

>
Pω′ (sc)
Pω′ (sd)

. Since v(ω) > v(ω′), and v(ω) > v(ω′′), the MLRP fails.
(2) Suppose there is no sc ∈ Sc such such that Pω(sc) > Pω′(sc). Then it must

be the case that Pω(sc) = Pω′(sc) for all sc ∈ Sc By condition (2i) in Definition 7,
Pω(s)
Pω(s′) =

Pω′ (s)
Pω′ (s′) , for all s, s′ ∈ S. Since v(ω) > v(ω′) the MLRP fails.

(3) Finally, the case where there is no sd ∈ Sd such that Pω(sd) > Pω′′(sd) is
analogous to case (2), establishing the result.

A.4.4 Proof of Proposition 7

Proof. Consider the set of multi-input environments P
(
{Kc,Mc}Cc=1, γ

)
with C in-

puts, {Kc,Mc}Cc=1 signals and states per input, and a fixed γ such that P (s ∈ Sc) = γc

for every input c and every joint distribution on Ω × S. Fix a value function
v : Ω → R++ satisfying condition (3) in Definition 7 for some strictly increasing
ψ : R++ → R++ and collection of injective functions {φc : Ω→ R++}Cc=1.

By analogous reasoning as in the proof of Theorem 4, for c = 1, ..,C, Mc ≤ Kc if
and only if µKcMc

({(
Pω1

c
, ...,P

ωMcc

)
linearly independent

})
= 1. For c = 1, ...,C, fix

Pω1
c
, ...,P

ωMcc
∈ ∆(Sc) linearly independent vectors. Define (i) zic(j) ≡ Pωic(sj) and, if

Mc < Kc, let zic(j) be arbitrary for j = Mc+ 1, ...,Kc such that Z = (z1
c , ..., zKcc ) is in-

vertible; (ii) bc = (b1c , ..., bKCc ) ∈ RKC with bic = φc(ωic)/γc; (iii) αc = bcZ
−1; and (iv)

α = (α′1, ...,α′C)′, where ′ is the transpose operator. Then, for all ω = (ω1, ...,ωC) ∈ Ω,
α ·Pω =

∑C
c=1 αcPωcγc =

∑C
c=1 φc(ωc) = ψ(v(ω)). Since ψ(.) is strictly increasing in

v(.), U(Pω) = α · Pω is consistent with an EU order (defined by α). As a result, the
EU property is satisfied, which implies the betweenness property.

For the converse, suppose there is a characteristic c′ such that Mc′ > Kc′ . By
relabelling characteristics as needed, it is without loss of generality to assume that
c′ is the first characteristic. Let P1 ≡ {Pω1 : ω1 ∈ Ω1} be the set of all information
structures restricted to the first characteristic. For each of the remaining charac-
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teristics c = 2, ...,C, fix some arbitrary information structure Pωc . By part (2) of
the proof of Theorem 4, there is a subset P ′1 ⊂ P1 with µγ{K1M1} (P

′
1) > 0 such

the conditional distribution for a higher value of the first characteristic is in the
convex hull of the conditional distributions for lower values of the first characteristic.
Fix some state for each of the remaining characteristic ω̄−1 = (ω̄2, ..., ω̄C), and let
P̄ ≡

{
(Pω1 ,Pω̄2 , ...,Pω̄C ) : Pω1 ∈ P ′[1]

}
. By the separability condition of the value

function (property (3) of Definition 7), for each information structure Pω ∈ P̄ the
conditional distribution for a higher value of the asset is in the convex hull of the
conditional distributions for lower values of the asset. This means that the betweenness
property is not satisfied. Moreover, by independence of the characteristics (property
(2) of Definition 7), µγ{KcMc}Cc=1

(P̄) = γc′µγ{K1M1} (P
′
1) > 0.
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