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Abstract. I propose a social learning model that investigates how con�rmatory bias a�ects public

opinion when agents exchange information over a social network. For that, besides exchanging

opinions with friends, individuals observe a public sequence of potentially ambiguous signals and

they interpret it according to a rule that accounts for con�rmation bias. I �rst show that, regardless

the level of ambiguity and both in the case of a single individual or of a networked society, only two

types of opinions might be formed and both are biased. One opinion type, however, is necessarily

less biased (more e�cient) than the other depending on the state of the world. �e size of both

biases depends on the ambiguity level and the relative magnitude of the state and con�rmatory

biases. In this context, long-run learning is not a�ained even when individuals interpret ambiguity

impartially. Finally, since it is not trivial to ascertain analytically the probability of emergence of

the e�cient consensus when individuals are connected through a social network and have di�erent

priors, I use simulations to analyze its determinants. �ree main results derived from this exercise

are that, in expected terms, i) some network topologies are more conducive to consensus e�ciency,

ii) some degree of partisanship enhances consensus e�ciency even under con�rmatory bias and iii)

open-mindedness, i.e. when partisans agree to exchange opinions with other partisans with polar

opposite beliefs, might harm e�ciency in some cases.
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1. Introduction

Individuals form opinions over a myriad of economic, political and social issues based on

information they get from both media and trustworthy acquaintances such as friends, coworkers,

professors, family members, etc. �is process of information acquisition usually takes place when

the issue being discussed has no clear-cut right/wrong or true/false distinction or when the set of

information available is not easily or readily understood by individuals. In this case, consulting

friends opinions has its appeal since it is an easy way to gather information. For that, social

networks appear as a primary tool for many people to get informed and debate their world views.

In view of this, it is important to understand how beliefs depend on the way agents perceive and

process the information and on the social network structure. With this regard, I examine one

potential aspect of learning in social networks: how public opinion is a�ected by con�rmation

bias?

Con�rmation bias, as the term is typically employed in the psychology literature, connotes

the interpretation of evidence in ways that are in line with existing beliefs. In this sense, an

individual is said to su�er from con�rmatory bias if he tends to interpret ambiguous evidence as

con�rming his current belief. �is can be done in di�erent ways, like restricting a�ention to favored

hypothesis, disregarding evidence that could falsify the current world view or overweighting

positive con�rmatory instances, etc. In all cases, individuals restrict a�ention to a single hypothesis

and, for that, fail to give appropriate consideration to alternative hypotheses and this process

creates a friction in belief formation.

As per the social psychology literature, individuals show the tendency to interpret ambigu-

ous evidences as supporting their initial impressions. For instance, banks and companies may

misinterpret Central Banks’ stance toward high in�ation a�er ambiguous statements, professors

may misinterpret the quality of students a�er ambiguous performance, people may misinterpret

scientists a�er ambiguous announcements, etc. In this view, while relying on friends might help

individuals to aggregate the information in some cases, in others it might lead individuals to

expose themselves to other individuals that rely on their own world view to derive information

from ambiguous evidence. In these cases, e�cient aggregation of information is not guaranteed

and I investigate how social opinion is a�ected by that.

To analyze such phenomenon, I consider a society where agents are interested in learning

some underlying state � 2 � D Œ0; 1�. For example, this underlying state � might represent the

degree (from 0 to 1, say) in which the anthropic activity causes global warming. All agents have a

initial prior belief about it and observe a sequence of public signals, one at each date t . Signals

are either i) informative, ii) uninformative or iii) ambiguous. Signals in the class i) are simply
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binary variables that indicate 1 if right states are more likely and 0 if le� states are more likely.

�erefore, even though there is no noise in the signal, agents can only learn the state (the right

proportion of 1’s and 0’s) asymptotically. Signals in the class ii) are simply disregarded for not

being informative and, for that, prior beliefs are kept unchanged. Finally, signals in the class iii),

the ambiguous one, are open to interpretation. In this case, I allow agents to interpret them using

a fairly general randomization rule proposed by Fryer, Harms, and Jackson (2018) that accounts

for con�rmation bias. As per this rule, the interpretation of the ambiguous signal received at

time t is in�uenced, to a greater or lesser extent, by the likelihood of 0 and 1 at time t � 1 (more

details below). Ambiguity in this context has nothing to do with the noise of a signal in standard

information theory or with the classical notion of ambiguity aversion as de�ned by Ellsberg (1961).

Instead, is just a way of capturing the situations in which people feel compelled to give meaning

to ambiguous evidences about the issue or subject analyzed.

As in Jadbabaie, Molavi, Sandroni, and Tahbaz-Salehi (2012), information exchange between

agents result from multilateral communication. Before the beginning of each period, all agents

meet their social media friends and observe their opinions and precisions about the subject of

interest. At the beginning of every period t , the public signal is realized. �us, each agent �rst

interprets ambiguous signals (if the case) using the randomization rule, stores it and computes

his Bayesian posterior opinion and precision. A�er that, every agent sets his �nal opinions and

precisions to be a linear combination of the Bayesian posterior opinion and precision computed

with the interpreted signal and the opinions and precisions of neighbors met in the period before.

�e social connectivity among agents is �xed over time and strong connectivity is assumed, i.e.

all agents are exposed to all the other agents either through a directed or undirected path in the

social networks.

I show that, regardless the level of ambiguity and both in the case of a single individual or a

connected society, only two types of opinions can emerge and both are biased, one le�-biased

and the other right-biased. One opinion type, however, is more e�cient (less biased) than the

other depending on the magnitude of the state. Opinion e�ciency, in this case, is only guaranteed

under a “favorable” combination of “low” ambiguity and “su�ciently pronounced” state. If this

condition holds, I show that the e�cient consensus is a�ained with probability 1, otherwise,

e�cient consensus is reached with some probability. Moreover, long-run learning is not a�ained

even if individuals are impartial when interpreting ambiguous signals. �ose results contrast with

some results presented by Rabin and Schrag (1999) and Fryer et al. (2018), where long-run learning

takes place with a positive probability and impartiality helps learning the state. Furthermore,

the network e�ect presented here, together with signals realizations, reinforces the interpreting
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“tug-of-war” since individuals might have their own biases con�rmed (or mitigated) by other

agents.

Finally, since it is not trivial to derive analytically the probability of emergence of the most

e�cient (less biased) consensus, I use graphs simulations to show its determinants. I show that

the presence of partisan agents in societies who su�er from con�rmatory bias has a double e�ect

on the expected consensus e�ciency: i) it helps to countervail the misinterpretation of initial

signals when there degree of partisanship is low and for that it increases expected e�ciency;

and ii) exacerbates misinterpretation of signals when the degree of partisanship is high, reducing

expected consensus e�ciency. Moreover, I also show that open-mindedness of partisan agents,

i.e. when partisans agree to exchange opinions with partisans with polar opposite beliefs, might

reduce expected consensus e�ciency in some social topologies.

�is work, even though it does not generalize results for other conjugate families, seems

su�ciently general to capture some relevant real-world situations. �e public signals realized

every period and observed by all agents might represent the information reported by media outlets,

such as TV channels, Radio, Youtube, Twi�er, etc. �e level of ambiguity of the information content

reported by such outlets, measured by a parameter �, represents the fraction of instances where a

signal conveys two polar opposite meanings at the same time and agents feel impelled to interpret

them. In this regard, agents can be more or less biased when interpreting signals. �ey can be

biased and conform the interpretation with their prior to some extent, be impartial and choose

an interpretation uniformly at random (say 0 or 1’with the same probability
1
2

each) or even go

against their world-view. �e interpretation behavior of every agent is dictated by the parameters

of the signal interpretation function.

�e structure of this work is as follows. Section 2 provides a brief literature review. Section 3

describes a framework for updating beliefs when agents communicate over a social network and

evidences (signals) are potentially open to interpretation and present the main theoretical results.

Section 4 describes a simulation exercise when there is priors heterogeneity. Section 5 concludes.

�ere are four appendices. Appendices A and B contain the primitives of the Beta-Bernoulli

conjugate family employed in this work. Appendix C contains the proofs of auxiliary results,

whereas Appendix D presents the proofs main results.

2. Literature review and contribution

A great deal of empirical evidence on social psychology supports the idea that the con�rmation

bias is extensive and that it appears in many ways. Nickerson (1998) argues that most studies in the

�eld con�rm the human tendency of casting doubt on information that con�icts with preexisting
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beliefs and to be more likely to see ambiguous information to be con�rming of preexisting beliefs.

�is selectivity in the acquisition and use of evidence, however, takes place without intending to

treat evidence in a biased way or even being aware of doing so. Molden and Higgins (2004, 2008)

identify that both vagueness (when the evidence is weak) and ambiguity (when the evidence is

con�icting) in�uence the interpretation of an uncertain evidence, whereas Furnham and Ribchester

(1995) and Furnham and Marks (2013) �nd evidences that the way individuals perceive and process

information about ambiguous situations is related to their degree of ambiguity tolerance.
1

In this context, con�rmation bias can be seen as an information process that departs from

standard Bayesian updating because agents scrutinize ambiguous signals in line with their world

views. Some examples of decision-making models that account for Bayesian updating deviation

are Hellman and Cover (1970), Rabin and Schrag (1999), Wilson (2014) and Fryer et al. (2018).

In Rabin and Schrag (1999), for instance, signals believed to be less likely are misinterpreted

with an exogenous probability, whereas in Fryer et al. (2018), in its simplest version with binary

states, ambiguous signals are produced with certain probability and agents interpret those before

performing the Bayesian update. To interpret such signals individuals employ three methods that

simply di�er in the intensity with which agents conform their interpretation with their current

world-view.

In this regard, Rabin and Schrag (1999) and Fryer et al. (2018) are the closest references to this

work, both in spirit and results. In this work, however, I move away from the binary state space

case and allow states to be continuously distributed over the unit interval according to a Beta

distribution. Binary signals are drawn from a Bernoulli distribution, ambiguous signals appear

with some positive probability and I allow agents to use the interpretation strategies proposed

in Fryer et al. (2018). Two important implication of such modeling strategy are that an impartial

interpretation strategy (�ipping a fair coin to interpret ambiguous signals, for instance) is not

su�cient to overcome con�rmatory bias and that long-run learning is not a�ained even when

ambiguity level is “su�ciently” low. Moreover, I introduce a network structure among agents

and allow them to set their �nal beliefs to be a linear combination of the Bayesian posterior and

the opinions of their neighbors as in Jadbabaie et al. (2012). In this case, since there are network

externalities, is not immediately clear how opinions will evolve as interpretations are in�uenced by

both the realization of signals and the con�rmatory biases of friends. One important implication

of network externalities is that some network topologies induce less biased consensus when there

is heterogeneity of initial priors.

1
More recently the concept of tolerance of ambiguity has been conceived by part of scholars to re�ect the contemporary

de�nition of ambiguity proposed by Ellsberg (1961). For a good coverage of the classical literature on ambiguity

aversion, see Gilboa and Schmeidler (1989) and Gilboa and Schmeidler (1993), Epstein and Schneider (2007).



6 CONFIRMATION BIAS IN SOCIAL NETWORKS

�is work is also related to the literature of biased assimilation in networks. In a nutshell,

this literature focus on models of social learning in which agents have tendency to overweight

the opinion of friends with similar beliefs. Some examples are Hegselmann and Krause (2002),

Hegselmann and Krause (2005), Dandekar, Goel, and Lee (2013) and Mao, Bolouki, and Akyol

(2018). While bias assimilation has to do with the tendency to conform with the majority or leading

individuals, con�rmatory bias, as argued above, is some sort of failure in the Bayesian updating

process. From this perspective, modeling con�rmatory bias as either a biased assimilation or a

failure in the Bayesian update has di�erent consequences. On the one hand, bias assimilation

presumes that the connections between agents are broken (or temporarily interrupted) according

to how “far” opinions are and, therefore, it implies in non trivial changes in the topology of the

network. �us, a natural result found in this literature is that long run polarization takes place

when there is biased assimilation. �us, polarization is a natural product of the initial heterophily

of opinions in the system and the eventual permanent deletion of some links. On the other hand,

modeling con�rmatory bias as a Bayesian update failure, like this work, is inconsequential to the

network topology and under the strong connectivity assumption leads to a bias (misinformation)

that can be analytically studied.

Finally, there exists a great deal of works on social learning, both assuming bounded and

fully rationality. �e Bayesian social learning literature (fully rational agents) mainly focuses on

formulating stylized games with incomplete information and characterizing its equilibria. More

speci�cally, rather than considering complex and repeated interactions, most part of the works

focuses on environments where agents are myopic or interact only once. Some works of reference

are Banerjee (1992), Bala and Goyal (1998), Bala and Goyal (2001), Banerjee and Fudenberg (2004),

Acemoglu, Dahleh, Lobel, and Ozdaglar (2011).
2

On the other hand, the non-bayesian learning (bounded rational agents) literature focus on

studying generalizations or departures of the seminal DeGroot (1974) model. For instance, De-

Marzo, Vayanos, and Zwiebel (2003) show that the classical consensus result does not rely on the

social weighting matrix being a stationary matrix, Acemoglu, Ozdaglar, and ParandehGheibi (2010)

consider a random meeting (Poisson) model and characterize how the presence of forceful agents,

i.e. agents who in�uence others disproportionately and hardly revise their beliefs, interferes with

information aggregation, whereas Golub and Jackson (2010) show that convergence holds if (and

only if) the in�uence of the most in�uential agent vanishes as the society grows unboundedly.

Jadbabaie et al. (2012) is the �rst work to consider the possibility of constant arrival of informative

2
For an overview of recent research on belief and opinion dynamics in social networks, see Acemoglu and Ozdaglar

(2011).
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signals every period of time in networked environments. �e novelty in the paper is that the

update rule that sets the �nal belief to be a linear combination of the Bayesian posterior and

the opinions of her neighbors is an e�cient alternative to the complicated task of implementing

Bayesian update in networks. Lastly, Azzimonti and Fernandes (2018), similar to this work in

modeling strategy, investigate how the structure of social networks and the presence of fake news

a�ect the degree of polarization and misinformation. �e two major di�erences with respect to this

paper are that i) their model consider the presence of stubborn agents called Internet bots whose

sole purpose is to deceive other agents, whereas the main source of bias in my model derives from

con�rmatory bias; and ii) that the connectivity among all agents evolves stochastically, whereas

it is �xed in this paper. �ose two features together are the main drivers of misinformation and

polarization cycles in a dynamic system that does not reach convergence, whereas my model

focus on understanding how misinformation depends on both the structure of the network and

the way agents interpret ambiguous signals.

3. The model

Notation: All vectors are viewed as column vectors, unless stated otherwise. Given a vector

v 2 Rn
, I denote by vi its i-th entry. When vi � 0 for all entries, I write v � 0. Moreover, I

de�ne v> as the transpose of the vector x and for that, the inner (scalar) product of two vectors

x; y 2 Rn
is denoted by x>y. I denote by 1 the vector with all entries equal to 1. A matrix W is

said to have size m � n whenever W has exactly m rows and n columns. Moreover, whenever

m D n, W is called a square matrix of size n. �e identity matrix of size n is denoted by I. For

a matrix W , I write Wij to denote the entry in the i-th row and j -th column. �e notation W k
ij

is used to denote the entry in the i-th row and j -th column of the matrix W k
, i.e. the matrix

W raised to the power k. Finally, a vector v is said to be a stochastic vector when v � 0 andP
i vi D 1. A square matrix W is said to be a (row) stochastic matrix when each row of W is a

stochastic vector.

3.1. Network structure. �e connectivity among agents in a network is described by a directed

graph G D .N; g/, where N D f1; 2; : : : ; ng is the set of agents, �xed over time, and g is a real-

valued n � n adjacency (or incidence) matrix, also �xed over time. Each element gij in the directed-

graph represents the connection between agents i and j . More precisely, gij D 1 if individual i

is paying a�ention to (e.g. receiving information from) individual j , and 0 otherwise. Since the

graph is directed, it is possible that some agents pay a�ention to others who are not necessarily

reciprocating, i.e. gij ¤ gj i . �e out-neighborhood of any agent i represents the set of agents that

i is receiving information from (e.g. i ’s references), and is denoted by N out
i .g/ D fj W gij D 1g.
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Similarly, the in-neighborhood of any agent i , denoted by N in
i .g/, represents the set of agents

that are receiving information from i (i.e. i ’s followers), N in
i .g/ D fj W gj i D 1g. We de�ne a

directed path in G from agent i to agent j as a sequence of agents starting with i and ending

with j such that each agent is a neighbor of the next agent in the sequence. We say that a social

network is strongly connected if there exists a directed path from each agent to any other agent.

3.2. Initial beliefs and signals. Let � D Œ0; 1� to denote the set of possible states of the world.

For instance, one may �nd useful to interpret � as the degree to which the anthropic activity

might cause global warming, such that a state close to 0 means that human activity has no impact

on global warming, whereas a state close to 1 means that human activity is fully responsible for

the global warming. I assume that each agent i in this society starts with an initial belief about an

underlying state fi;0.�/ 2 ��, represented by a Beta probability distribution over the set � with

shape parameters ˛i;0; ˇi;0 > 0. Given prior beliefs, I denote by opinion of agent i at time t by yi;t

yi;t D EŒ� � D
˛i;t

˛i;t C ˇi;t
:3

Conditional on the state of the world � , every agent observes a sequence of public signals st ,

one at each date t 2 f1; 2; : : : g. Public signals lie in the set S D f1; 0; a;;g. As per the example of

global warming given above, a signal 1 is evidence that human activity is the main responsible for

global warming, a signal 0 is evidence on the contrary (no responsibility), the signal ; contains

no information and a signal a is ambiguous and open to idiosyncratic interpretation (section 3.3

explains how agents deal with those signals).

Signals are independent over time, conditional on the state. With probability ı 2 D D Œ0; 1�,

independent of the state, the no informational signal ; is observed and with probability .1 � ı/

some signal is observed. Conditional on observing a signal, the probability that the new signal

is ambiguous is � 2 M D .0; 1�. In this case, the signal conveys informational aspects that

could lead one to interpret as either 1 or 0. With the remaining probability 1 � � the information

provided by the signal is clear. In any state � 2 �, the probability that an unambiguous signal is 1

is � 2 .0; 1/ and 0 with probability 1 � � . �e signal structure is depicted in the Figure 1.

3
See Appendix A for the primitives of the Beta distribution. For tractability, the opinion is intended to be a real

number that summarizes “well” the whole belief. For that, one can understand the opinion of an agent as the Bayesian

estimator of � that minimizes some sort of mean squared error or absolute error. Since the mean, mode and median

of the beta distribution are asymptotically equivalent, as shown in Appendix B, the functional form is believed to be

irrelevant for the results.
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𝜇1 − 𝜇

1 − δ δ

𝜃 1 − 𝜃

𝑠𝑡 = ∅
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𝑠𝑡 = 𝑎

Figure 1. Signal structure

3.3. Interpretation of ambiguous signals. Although ambiguous signals are as uninformative

about the state as the signal ; and, therefore, should also be disregarded from a pure Bayesian

point of view, agents are constrained to make interpretations of ambiguous signals. �is constraint

captures the idea that, in some instances, people react to ambiguous pieces of information. �ey

fail to perceive the unformativeness of such signal and end up using their prior world view to

derive information from such signals.

Furthermore, one may also think that people might interpret ambiguous information in di�erent

ways. A potential one is to use their prior assessment of the subject to categorize the ambiguous

signal, i.e. the interpretation of an ambiguous signal st D a as 0 or 1 could depend on how the

agent perceives the state, i.e. if � D 0 is more likely than � D 1 (likelihood ratio greater than

one), then the agent could be prone to store st D a as 0 and vice-versa. Conversely, the agent

could interpret st D a as 0 or 1 depending on the mode of his belief, i.e. if the mode is greater

(less) than 0.5, then agent stores the ambiguous signal as 1 (as 0). In this sense, the interpretation

depends on the intensity of the con�rmatory bias intensity.
4

For the interpretation of ambiguous signals, I use a randomization rule proposed in Fryer et al.

(2018), adapted here for some technical idiosyncrasies, which says that with probability 
i;t 2 Œ0; 1�

the agent i conforms with his posterior at time t and with probability 1 � 
i;t goes against it. In

other words, with probability

 i;t D 
i;t 1fyi;t�1 � 0:5g C .1 � 
i;t/1fyi;t�1 < 0:5g (1)

4
In this paper, I move away from the decision-theoretic aspects of such problem and assume this randomization rule

as given.
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agent i interprets the ambiguous signals as 1 and with the remaining probability .1 �  i;t/

interprets the ambiguous signals as 0 at time t .5

�erefore, the parameter 
i;t represents the intensity of the con�rmatory bias experienced by

any individual i at any time t and its distribution over time can be very general. I only assume 
i;t

to be independent of opinion yi;t for any i 2 N , history of opinions of all individuals and all other

parameters in this model. From this randomization rule, there are three de�nitions of interest.

De�nition 1. An individual i 2 N

(1) has con�rmatory tendency if 1
2
< 
i;t � 1 for all t ,

(2) is biased if 
i;t D 1 for all t .

(3) is impartial if N
i D Et Œ
i;t � D 1
2
. Two distinctions apply:

� always impartial if impartial and 
i;t D 1
2
for all t ,

� moderately impartial if impartial and 
i;k ¤ 1
2
for some k.

�at said, the signal interpretation functions, s
.0/
i;t and s

.1/
i;t , for each individual at any point in

time can be generally de�ned as

s
.0/
i;t D 1fst D 0g C 1fst D ag1fut >  i;tg (2)

s
.1/
i;t D 1fst D 1g C 1fst D ag1fut �  i;tg; (3)

where  i;t is as de�ned in Equation (1), st is the publicly observed signal and ut is the realization

of a continuous U Œ0; 1� random variable at time t simply used to break the tie. �e draws futg

are independent across time and also independent of all other random variables in this model.

In words, the signal interpretation functions are basically transforming the observed signals

fstg
1
tD1 into binary interpretations. When the realized public signal is st D 1 (st D 0), all agents

undoubtedly interpret it as 1 (as 0) and set s
.0/
i;t D 0 and s

.1/
i;t D 1 (set s

.0/
i;t D 1 and s

.1/
i;t D 0).

However, when the realized public signal is ambiguous, i.e. st D a, agents use their their prior

information (summarized by yi;t�1) to categorize the signal as either 0 or 1, as per Equation (1).

For a more detailed description of the signals likelihood function, see Appendix A.

3.4. Belief evolution. We assume that agents update their beliefs based on public signals st 2

f1; 0; a;;g and on the in�uence of friends in their social clique. Before the beginning of each

5
From Appendix B, notice that since mean and mode of the Beta distribution are very close for di�erent compositions

of parameters .˛; ˇ/ and are also asymptotically equivalent, Equation (1) uses yi;t�1 (mean and note mode) to interpret

public signals. I believe this is neutral to all results even though I have not checked it.
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period, agent i meets individuals in his neighborhood N out
i .g/. �ese neighbors share their

world-views, summarized by j̨;t and ǰ;t for all j 2 N out
i .gt/.

6

At the beginning of period t , a signal pro�le is realized and the signal si;t is privately observed

by agent i . A�er observing the public signal st , agent i computes his posterior in a standard

Bayesian fashion. Following Jadbabaie et al. (2012), I assume that the �nal parameters ˛ and ˇ

will be a convex combination between the parameters ˛ and ˇ of his Bayesian posterior and the

weighted average of the his neighbors parameters.
7

In mathematical terms, the update rule is as follows

˛i;tC1 D b
h
˛i;t C s

.1/
i;tC1

i
C .1 � b/

X
j

Ogij j̨;t (4)

ˇi;tC1 D b
h
ˇi C s

.0/
i;tC1

i
C .1 � b/

X
j

Ogij ǰ;t : (5)

Notice that when b D 1, agents fully rely on the signals and behave like a standard Bayesian

agent. As b approaches zero, agents are more in�uenced by the network, as more weight is given to

his neighbors’ opinions. Moreover, let ˛t D .˛1;t ; ˛2;t ; : : : ; ˛n;t/
>

and ˇt D .ˇ1;t ; ˇ2;t ; : : : ; ˇn;t/
>

denote the column vectors of length n of agents beliefs parameters at time t , I be an identity matrix

of dimension n and B D diag.b; b; : : : ; b/ be the diagonal Bayesian (or self-reliance) matrix. We

can rewrite equation (4) as

˛tC1 D B.˛t C s
.1/
tC1/C .I � B/ Og˛t

D .B C .I � B/ Og/ ˛t C Bs
.1/
tC1

D W˛t C Bs
.1/
tC1; (6)

and equation (5) as

ˇtC1 D Wˇt C Bs
.0/
tC1; (7)

6
Moreover, it is assumed they do that in such a way that the �nal posterior remains in the same conjugate family

as the prior. i.e. since the initial prior is represented by a Beta distribution, I will assume the posterior will always

be a Beta distribution. �is is done by assuming that agents share the real-valued parameters rather than sharing

the whole belief (distribution). �is assumption is neutral to all results and asymptotically equivalent to the case in

which agents update their beliefs as a linear combination of Beta distributions. �e bene�t of doing it is that the both

algebra and intuition get clearer. Moreover, in the spirit of the bounded rational assumption, it is arguable that agents

�nd easier to handle the mental computation involved in this process when dealing with real numbers than with the

whole distribution.

7
One may also think of agents sharing opinions (mean) and precisions (variance) with each other rather than

sharing distribution parameters. �ose are equivalent modeling strategies, we only need to use the relationships

y D ˛
˛Cˇ

and �2 D ˛ˇ

.˛Cˇ/2.˛CˇC1/
to fully determine ˛ and ˇ. Algebraic manipulation yields ˛ D �y.�

2Cy2�y/

�2

and ˇ D .�2Cy2�y/.y�1/

�2 .
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where, W D B C .I � B/ Og is a homogeneous row-stochastic matrix. Notice that since the graph

G induced by the Adjacency matrix g is assumed to be strongly connected, the graph induced by

W is trivially strongly connected as well.

4. Theoretical results

Before illustrating the network e�ects over the public opinion when agents are exposed to

ambiguity, I �rst focus on explaining what is expected to happen in the case of a single individual.

For that, one might imagine that this is a special case of the environment introduced in the

previous section when the parameter b D 1. In this regard, the following result shows that only

two types of opinions might emerge when agents interpret ambiguity under con�rmatory bias.

Proposition 1 (Polarization). If individual i randomizes interpretation of ambiguous signals accord-

ing to Equation (1), fully relies on signals and disregards people’s opinions (no network e�ect), then

his opinion converges to either .1 � �/� C � N
i (right-biased) or .1 � �/� C �.1 � N
i/ (le�-biased)

almost surely, where N
i D Et Œ
i;t �. �e result holds for any initial belief.

�e �rst thing to notice is that both le� and right biased opinions may be formed with some

positive probability and that both are biased since any limiting opinion is a weighted average that

places weight � on the con�rmatory bias and weight 1�� in the true state � . �us, if the fraction

of ambiguous signals realized is zero, i.e. � D 0, then agents would learn the state asymptotically

and no bias is observed. In this regard, it is clear that con�rmatory bias is the main source of

misinformation. Moreover, individuals may exhibit polarized opinions even if individuals with

di�erent con�rmatory bias observe a common stream of evidence. In this case, the degree of

polarization naturally depends on the relative bias and the initial priors. Some agents would

naturally have a right bias and others a le� bias and the intensity of the resulting polarization

depends on the mass of these groups.

Moreover, depending on the sizes of � and �, we can guarantee which type of opinion will

emerge. For that, it is convenient to partition the space � �M D Œ0; 1�2 (unit square) into three

regions: region L characterized by both state � and ambiguity � “su�ciently” low, region R

characterized by the combination of “su�ciently” high state � and “su�ciently” low ambiguity �

whereas region W is the complement of the union of L and R. If the pair .�; �/ falls in to the

region L, then we can say that with probability 1 just the le�-biased opinion emerges. Conversely,

if the pair falls in to the region R, then with probability 1 the right-biased opinion is formed

with probability 1. If the pair falls in to the area W , then we can not tell which opinion type will
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be formed as both might emerge with some positive probability. �is remark is generalized as

follows.

Proposition 2 (Opinion types likelihood). For any individual with con�rmatory tendency, right-

biased opinion emerges with probability 1 when the frequency of ambiguity is su�ciently low and

the state is su�ciently high (i.e. .�; �/ 2 R), whereas le�-biased opinion emerges with probability

1 when both the state and the frequency of ambiguity are su�ciently low (i.e. .�; �/ 2 L). In all

other cases (i.e. .�; �/ 2W), opinion type is a Bernoulli random variable which takes the value 1

(right-biased) with probability p and the value 0 (le�-biased) with probability (1 � p). �e result

holds regardless his initial beliefs and the observed sequence of signals.

�e proof relies on �guring which combinations of � and � are su�cient to let both types of

opinion to fall in the same side of the 0-1 spectrum and which combinations lead opinions to

diverge in location (one above 0.5 and the other below 0.5). In mathematical terms, we have that

those partitions are

R D

�
.�; �/j

1

2
< � � 1 and 0 � � <

� � 0:5

N
i C � � 1

�
;

L D

�
.�; �/j0 � � <

1

2
and 0 � � <

� � 0:5

� � N
i

�
;

W D Œ0; 1�2 n fR [ Lg:

�e intuition of Proposition 2 is depicted in Figure 2 for three cases of con�rmatory bias. In

case 1, when the agent is roughly impartial, case 2 when the agent has and intermediary level of

con�rmatory bias and case 3 when agent is biased.

(a) case 1: N
i D 0:505 (b) case 2: N
i D 0:75 (c) case 3: N
i D 1

Figure 2. Parameter space and emergence of di�erent types of consensus
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�e lightly shaded areas on the right represent the set of parameters � (vertical axis) and �

(horizontal axis) that ensures the emergence of right-biased opinion, whereas the darkly shaded

areas represent the set of parameters that ensure the emergence of le�-biased opinion. In both

areas, for a given level of con�rmatory bias, the le� (right) biased opinion emerge with probability

1 if there is a favorable combination of low frequency of ambiguous signals and a low state, i.e.

below 0.5 (high state, above 0.5). �e white area, on the other hand, represents the combinations

of � and � such that the opinion type becomes a random variable, i.e. both types might emerge

with positive probability. In order to �nish conveying the intuition of the results presented so far

and to introduce the next result, �rst consider the following example.

Example 1. Suppose that a biased individual ( N
i D 1) faces a “low” frequency of ambiguity, say

� D 0:20 (i.e. 20% of the non-empty signals are ambiguous) and consider three possible states � : low,

middle and high, e.g. �L D 0:1, �M D 0:5 and �R D 0:9, respectively. In this case, Propositions 1

and 2 show that under state

�L; the

8<:right-biased opinion .1 � 0:2/ � 0:1C 0:2 � 1 D 0:28 is formed with prob. 0,

le�-biased opinion .1 � 0:2/ � 0:1C 0:2 � .1 � 1/ D 0:08 is formed with prob. 1,

under state

�M ; the

8<:right-biased opinion .1 � 0:2/ � 0:5C 0:2 � 1 D 0:60 is formed with prob. p 2 .0; 1/,

le�-biased opinion .1 � 0:2/ � 0:5C 0:2 � .1 � 1/ D 0:40 is formed with prob. 1 � p,

and under state

�H ; the

8<:right-biased opinion .1 � 0:2/ � 0:9C 0:2 � 1 D 0:92 is formed with prob. 1,

le�-biased opinion .1 � 0:2/ � 0:9C 0:2 � .1 � 1/ D 0:72 is formed with prob. 0.

Based on the results shown so far and on the numerical example above, one can see clearly

that for an individual with con�rmatory tendency, one opinion type is less biased than the other

depending on the magnitude of the state � . Moreover, in regionsL andR the opinion type formed,

even though biased, is the most e�cient with probability 1. �is generalizes as follows.

Corollary 1 (E�ciency). For any individual with con�rmatory tendency and for any ambiguity

level, the right-biased (le�-biased) opinion is less biased than the le�-biased (right-biased) opinion if

� > 1
2

�
� < 1

2

�
. Conversely, both right and le� biased opinions are equally biased when � D 1

2
.

�e intuition is that these two opinions are not symmetric around � as shown in the Example 1

above. �is happens because the bias of each one depends on the relative size of � and N
i . Since

we are restricting a�ention to the case in which individual has con�rmatory tendency, i.e. N
i >
1
2

,
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it is the case that individuals make less mistakes when they are in the correct side of the spectrum.

For that to happen, the ambiguity has to be low enough to not mislead individuals and the state

has to be high (or low) enough to nudge individuals opinions to the correct side.

Besides that, it is not trivial to ascertain analytically the functional form of the probability of

emergence of right-biased opinion when � > 1
2

and the probability of emergence of le�-biased

opinion when � < 1
2
. It is possible to see that all parameters related to the priors (˛0; ˇ0), to the

signal structure (ı; �; � ) and to the con�rmatory bias intensity (
 ) in�uence it but it is not clear

how to generalize the result. I return to this discussion on Section (5) when I discuss the welfare

consequences of di�erent network topologies.

Another particular case of interest is the one in which the agent is impartial. In this case, it can

be shown that bias is not overcome.

Corollary 2 (Bias from impartiality). If an individual is impartial, then his limiting opinion is

.1 � �/ � C � 1
2
almost surely, regardless his initial prior and the sequence of observed signals.

�e reason why impartiality does not overcome bias is because it forces individuals to set a

disproportionate probability mass in the center of the spectrum .0; 1/. �us, impartiality make

agents excessively centrists instead making them neutral towards the possible states. One can show

that this phenomenon is a direct consequence of the Beta-Bernoulli conjugate family employed

here that would not take place in the case of a binary state space � D f0; 1g.

Moreover, under impartiality, for any mass of ambiguity � > 0, if the true state is located in

the le� side of the 0-1 spectrum (� < 1
2
), then consensus has a positive bias and lies in

�
�; 1

2

�
.

Conversely, if � > 1
2

, then consensus has a negative bias and lies in

�
1
2
; �
�
. �e only instance when

the individual learn the state is when � D 1
2
, an almost anywhere event. �e results presented so

far both extend the intuition and contrast with Propositions 4 and 5 (i) in Rabin and Schrag (1999)

and with Propositions 2 and 3 in Fryer et al. (2018). It extends the intuition to the case in which

the state is continuously distributed over the interval 0-1, and contrasts because impartiality no

longer can help an individual to overcome bias, as per the result above. Moreover, it also contrasts

with previous results as long-run learning is an event with probability zero as it happens almost

anywhere in the full parameter space. �e next result elaborates this argument.

Corollary 3 (No long-run learning). For any individual with con�rmatory tendency, long-run

learning is an event with probability 0, regardless his initial prior and the sequence of observed

signals.

�e intuition of Corollary (3), together with Proposition 1, is that con�rmatory bias invariably

nudges opinions and lead to bias. Under interpretation of ambiguity, an individual can learn
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the state only in some very particular situations that almost never happen. Finally, at the other

extreme, one could ask under what conditions an individual would reach an extreme opinion, i.e.

either opinion 0 (extreme le�) or opinion 1 (extreme right). �e next result shows that those cases

can only be sustained under two extreme conditions: i) the fraction of ambiguous signals to be

maximal (� D 1) and, ii) individual to be biased ( N
i D 1).

Proposition 3 (Extreme opinions). An individual i has extreme opinion (0 or 1) only if he is biased

and the mass of ambiguity is maximal (� D 1). �e result holds for any state � and regardless his

initial beliefs and the observed sequence of signals.

As argued before in the case of long-run learning, this is also considered to be an event that

happens almost anywhere in the parameter space. With all the intuition of what happens in

the single agent case, one may ask what happens if besides learning from signals, agents also

learn from their friends. �is case, at �rst, seems to impose an extra challenge because the

interpretation of ambiguity not only depends on the initial realization of signals, but also depends

on the in�uence of friends that potentially interpret ambiguity in di�erent ways. �e “tug-of-

war” played between le� and right biases has one driver more, the network externalities. Before

discussing the implications of a network structure, I de�ne the concept of consensus and state an

instrumental Lemma.

De�nition 2. Society reaches a consensus almost surely for any initial beliefs if there is a y such

that for a small � > 0

P
�

lim

t!1
jyi;t � yj < �

�
D 1

for any i 2 N .

�e auxiliary result below illustrates, in terms of ergodicity of a Markov chain, the social

in�uence of agents derived from the reliance weight matrix W presented in equations (6) and (7).

�e proof of such statement can be found in Appendix C.

Lemma 1. �e t -th power of matrix W , W t , converges to a unique row-stochastic matrix with unit

rank (all rows the same) as t tends to in�nity, i.e.

lim

t!1
W t
D W1 D 1�> D ˘;

where the invariant distribution � is the normalized le� eigenvector of the matrix W associated to

the unit eigenvalue, i.e. �>W D �> and
P
i �i D 1.
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�erefore, I show next that under the assumption of strong connectivity, consensus is reached

in this dynamic system and it has the same functional form of the individual limiting opinion

derived in Proposition 1.

A �rst case of interest is the limiting case in which individuals exclusively pay a�ention to

friends. �is case can be constructed in two di�erent (but equivalent) ways: i) se�ing b D 0, for

any ı or ii) se�ing ı D 1, for any b. �e �rst one represents the situation where agents disregard

signals completely and are pure conformists, whereas the second represents the case where no

signals enter in the network and agents (forcefully) pay exclusive a�ention to friends. In both

cases, consensus reached is the same and di�erently than the classical DeGroot case, limiting

opinion is not properly a weighted average of the initial opinions, even though is still very close

to it. �e discrepancy has to do with the fact that agents are exchanging opinions and precisions

(parameters ˛ and ˇ of each individual prior). this is stated as follows.

Proposition 4 (Pure DeGroot: Consensus). If the social network G D .N; g/ is strongly connected,
individuals randomize interpretation of ambiguous signals according to Equation (1), and the Bayesian

parameter is set at b D 0, for any ı (or equivalently ı D 1, for any b), then society reaches consensus

y D
P

j ˘ij j̨;0P
j ˘ij . j̨;0C ǰ;0/

, for any i 2 N .

�e intuition of this result is that if signals 1; 0 and a are not observed very o�en (ı close to one)

by connected agents, then this will force their priors to converge to a common one. �e longer it

takes this society to observe some non-empty signal, the more agents interact and the more likely

they will �nd a common ground. �e implications of this result are highlighted in the Section 5

when I explore the e�ects of priors heterogeneity on the probability of a�aining consensus

e�ciency. Next, I introduce the result when there are network externalities and non-empty signals

are observed with positive probability (ı < 1).

Proposition 5 (Network e�ect). With network externalities, the sequences fyi;tg1tD1 generated by

the update rule converge almost surely to either right-biased consensus .1 � �/� C � QN
 or le�-biased

consensus .1 � �/� C �.1 � QN
/, for all i 2 N and where ˘ is the invariant distribution matrix,
QN
 D

P
j ˘ij N
j and N
j D Et

�

j;t
�
.

Again, the result basically shows that consensus again takes the form of a weighted average

between the true state � and the social con�rmatory bias QN
 , where the mass of ambiguity � is

the weight of the later. If � D 0, then there is no consensus bias and agent would aggregate

information e�ciently. Moreover, the consensus (of any type) does not depend on the parameter

ı, i.e. the consensus does not depend on the frequency with which the network receives signals.
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�us, neither a system that remains “quiet” for a long time (high ı) nor a system that receives

information all the time (low ı) can in�uence consensus. Additionally, the parameter b does impact

the vector of social in�uence (i.e. the invariant distribution � of the matrix W (see Lemma (1))

and therefore does impact consensus. As b ! 0, the social in�uence is basically dictated by the

normalized adjacency matrix Og and is somehow directly proportional to the degree centrality of

the agents. As b ! 1, agents tend to almost disregard in full friends’ opinions and the social

weight of each individual converges to
1
n

.

Moreover, the results above show that the consensus type in this dynamic system is also a tail

event, i.e. right-biased consensus will either almost surely emerge as the stable equilibrium or

almost surely not emerge. If it does not emerge as an equilibrium of this system, then it is surely

the case that the le�-biased consensus has emerged as the equilibrium (and vice-versa). As an

illustration of this result, Figures (3c) and (3d) show the typical opinion sample path of any agent

in the line and wheel networks, respectively, and the convergence to di�erent consensus types

(horizontal lines) in di�erent simulations.

1 2 3

(a) Line network

1

2

3

(b) wheel network

(c) Typical opinion path in line network and type 1

and type 2 theoretical consensus

(d) Typical opinion path in wheel network and type

1 and type 2 theoretical consensus

Figure 3. Simulation with parameters T D 10; 000, n D 3, ı D � D � D b D 0:5,

˛i;0 D ˇi;0 D 1 for all i 2 N (so yi;0 D 0:5 for any i ) and 
t D .
1;t ; 
2;t ; 
3;t/ D

.0:8; 1; 0:2/ for all t 2 T:
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Given the importance of the probability of emergence of the e�cient consensus in terms of

social e�ciency, the next section is devoted to numerically characterizes it. �e exercise is not

trivial and for that I will rely on simulations of the learning process described in Section (3) for

selected classical network topologies and for di�erent sets of parameters of interest.

5. Random graph simulation: determining consensus type

Ascertaining p analytically depends on many circumstances. One particular example is when

the initial priors at time t D 0 di�er. �ey can either be skewed to the right or to the le� (partisans)

and in di�erent proportions (degree of partisanship). �us, under this circumstance, the society

is prone to interpret ambiguous signals as 0 or 1 not only according to the initial realization of

the signals, but also according to the initial partisanship. Besides, the heterogeneity of priors has

the consequence of creating centrality heterogeneity, i.e. partisan individuals might be located

at more or less central nodes. �is is a challenging instance because partisans might in�uence

other agents disproportionately and this can amplify the underlying interpreting dispute in the

network. Another example is that agents might di�er in the intensity of con�rmatory bias they

su�er, i.e. agents with polar opposite bias (say, 
i;0 D 0 and 
j;0 D 1, for some i; j 2 N ) might be

directly connected or not and this might play a role on how much this heterogeneity a�ects the

interpreting con�ict. �is issue gets particularly hard if one allows di�erent partisan individuals

to su�er from di�erent con�rmatory bias. A �nal example is the association of partisanship

unbalance with the frequency with which the society receives signals (i.e. low/high ı). In this

case, the less o�en signals enter in the network (large ı), the more society behaves as purely

DeGrootian agents and consequently the initial heterogeneity of priors might lose importance.

�is happens because even though partisans start with very di�erent beliefs, agents communicate

very o�en and might converge to a common prior even before some ambiguous signal enters the

network.

�ose are just some examples to illustrate the challenging nature of computing p analytically.

�at said, I proceed with the analysis of p in two general cases: i) when agents are biased but

have common centrist prior and ii) biased agents with heterogeneous priors. Next I explain the

strategy employed to control the inherent multi-dimensionality of this exercise.

5.1. Common prior. �e common prior case can be represented by the situation in which priors

parameters have the same con�guration, i.e. ˛i;0 D N̨ 2 RC and ˇi;0 D Ň 2 RC for all i 2 N .

In particular, when N̨ D Ň D 1, all agents hold a uniform common prior over the unit interval.

For any other value, say N̨ D Ň D k > 1, agents hold a symmetric “bell-shaped” common prior

over the unit interval, centered at 0:5. Moreover, as k !1, the bell-shaped priors collapse to the
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point
1
2

, i.e. the precision of the prior diverges and all opinions are yi;0 D
1
2

. �ose cases represent

the situation in which agents start as “centrists” and the subsequent asymmetry of interpretation

stems from the signals realizations.
8

On the other hand, when ˛i;0 D N̨ and ˇi;0 D Ň for all

i 2 N and N̨ > Ň
�
Ň > N̨

�
, the society holds a rightist (le�ist) common prior, i.e. yi;0 D yR >

1
2

(yi;0 D yL <
1
2
) and as

N̨

Ň
!1 (! 0), the bell-shaped priors collapse to the point 1 (0), i.e. the

precision of the prior diverges and all opinions become extreme.

5.2. Heterogeneous priors. �e heterogeneous prior case refers to the situation in which there

are three types of agents in the society at time t D 0: centrists (C0) and two partisans, le�ists (L0)
and rightists (R0). To make a distinction between those agents, �rst let’s consider two param-

eters that intend to measure the degree of partisanship of such agents �l ; �r 2 N . With that, I

de�ne such groups as follows: centrists, C0 D fi 2 N j˛i;0 D 1 and ˇi;0 D 1g, le�-partisan, L0 D
fi 2 N j˛i;0 D 1 and ˇi;0 D 1C �lg and right-partisan,R0 D fi 2 N j˛i;0 D 1C �r and ˇi;0 D 1g.

Notice that the de�nition implies that initial opinions and precisions yi;0 D ˛i;0.˛i;0 C ˇi;0/
�1

and ��2i;0 D .˛i;0ˇi;0/
�1 .˛i;0 C ˇi;0/

2 .˛i;0 C ˇi;0 C 1/, respectively.

yi;0 D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

1

2C �l
; if i 2 L0

1

2
; if i 2 C0

1C �r

2C �r
; if i 2 R0

and

��2i;0 D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

6C 5�l C �
2
l

1C �l
; if i 2 L0

12; if i 2 C0

6C 5�r C �
2
r

1C �r
; if i 2 R0

8
To be more precise, interpretation neutrality does not exist as there is a non-neutral tie-break rule described by

Equation (1). �us, if the very �rst signal happens to be ambiguous, then it will be interpreted as 1 by all agents, as

per the tie-break rule. �is is without loss of generality for the results presented in this work. �e tie-break rule

could have been de�ned in a way that the initial interpretation would bene�t the le�-interpretation and intuition

and conclusions would remain the same. Finally, if the tie-break rule is neutral towards the initial interpretation,

that would require a more intricate update rule that would force agents to keep the prior unchanged when opinions

are 0.5 whenever they face an ambiguous signal. In such situation, agents would have to draw another signal until

some non-ambiguous realization takes place. I conjecture that results would not change in this case as well, since

the neutral tie-break, even though does not bene�t any state, could also trap individuals into a wrong state and the

nature of the problem would remain the same. �e modeling e�ort, however, could change signi�cantly.
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Notice that lim�!1 yi;0 is 0,
1
2

and 1, whereas lim�!1 �
�2
i;0 isC1, 12 andC1 for le�-partisan,

centrists and right-partisan, respectively.

5.3. Simulation. In order to compute the empirical frequency with which the e�cient consensus

emerges as an equilibrium in the system ( Op) when the pair .�; �/ 2 W I simulate the learning

process described on Section (3) many times for a su�ciently long period in all selected classical

networks shown in Figure 4. �e number of simulations is described by S 2 N and the agents

maximal interaction time is t 2 N .

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4. Selected network topologies

For each simulation I allow some parameters to vary (see details below) so I can capture changes

in Op due to changes in such parameters. However, the choice of the parameters is the same for all

networks in each simulation so I can properly isolate e�ects on Op due to parameters discrepancies.

Moreover, for a small � > 0 and given the chosen parameters in each simulation S , the simulated

frequency of e�cient consensus in a network G is computed as

OpG D
1

S

X
S

1

� ˇ̌̌
lim

t!1
y
S;G
i;t �

�
.1 � �S/�S C �S QN
S

�ˇ̌̌
< � and �S >

1

2
, or

ˇ̌̌
lim

t!1
y
S;G
i;t �

�
.1 � �S/�S C �S.1 � QN
S/

�ˇ̌̌
< � and �S <

1

2

�
: (8)

�e description of each exercise follows below.

5.3.1. Exercise 1: common (centrist) prior vs. heterogeneous (balanced) priors. �e purpose of this

exercise is to understand how heterogeneous priors a�ect the probability of emergence of the

e�cient consensus. For that, I keep the number of partisans in its minimum, one le� and one

right-partisan so the proportion is balanced, and place them uniformly at random in the available

nodes in each simulation. In terms of degree of partisanship, when �l D �r D � D 0 agents have

a common centrist prior (uniform distribution over the unit interval) and there are no partisan

agents, whereas when �l D �r D � > 0 represents the case of heterogeneous priors in which the

degree of partisanship of both partisans is positive and equally balanced.

Moreover, in order to avoid an extra layer of heterogeneity I allow all agents to be biased

QN
 D 
i;t D 1 for all i; t . Finally, for every simulation, I �x some selected parameters and draw
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uniformly at random other parameters from the following sets in a way that each network in each

simulations has the same parameters. �e description is summarized below and the summary

statistics of the simulations can be found in Appendix E. �e simulated probability of emergence

of the e�cient consensus Op are reported in the Table 1. .

� Fixed parameters (for all simulations)

– Learning: QN
 D 
i;t D 1 for all i and t and b D 0:5.

– Duration: t D 700.

– Initial conditions: .˛i;0; ˇi;0/ = .1; 1/ for all i 2 N , jL0j D jR0j D 1.

� Variable parameters (for each simulation S )

– Information:

ıS 2 � D f0:05; 0:20; 0:35; : : : ; 0:95g,

�S 2 � n f0:5g and

�S 2 QM is such that .�S ; �S/ 2W , j�j D j QM j and sup QM D sup� D 0:95.

– Initial conditions:
�l D �r D �S such that �S 2 T D f0; 1; 10; 30g.

Based on the simulation statistics derived from the Exercise 1 simulations, I present some

results of interest. First, as per the data from simulations with common centrist prior (� D 0, no

partisanship), we can see that topology seems to be innocuous to the probability Op. �is evidence

is stated as the following result.

Result 1 (Topology neutrality). If all agents are biased and centrists, then network topology has no

impact on consensus e�ciency.

�e intuition of this result relies on the fact that since signals are public and all agents share the

same bias intensity N
i D 1, there is no interpretation diversity regardless signals realization. If

agents start observing signal 1, then all agents will become more rightists and network externalities

can not countervail this e�ect anyhow. �e same argument applies to all other signals, including

the ambiguous one. �erefore, this is identical to the case of a single individual learning from

signals. Moreover, based on the data from simulations with common prior (� D 0, no partisanship)

and low priors heterogeneity (� D 1, low partisanship), there seems to have a non-negative e�ect

of partisanship on consensus e�ciency.

Result 2 (E�ciency of low partisanship). In expected terms, a biased society with low partisanship

(� D 1) is at least as able to reach the e�cient consensus as the same biased society with no partisanship

at all (� D 0).
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Size Network
Topology Type Label Op

.�D0/

Op
.�D1/

Op
.�D10/

Op
.�D30/

n D 1 single agent (SA) 0.688 - - -

n D 2 line (complete) (A) 0.688 0.716 0.698 0.678

n D 3
line (B) 0.688 0.707 0.608 0.590

wheel (complete) (C) 0.688 0.730 0.726 0.717

line (D) 0.688 0.766 0.680 0.648

star (E) 0.696 0.709 0.630 0.602

n D 4 wheel (F) 0.688 0.766 0.787 0.794

complete (G) 0.695 0.725 0.719 0.718

paw (H) 0.694 0.733 0.633 0.559

S 11,539 4,604 4,680 4,554

Table 1. Simulated frequency of the emergence of e�cient consensus Op.

Partisanship acts in a way that countervails the e�ect of initial ambiguous signals. Under no

in�uence of partisans, centrists interpretations are solely dependent on observed signals, therefore

the realization of the initial signals are crucial to determine what bias opinions will have and, for

that, it is determinant to consensus e�ciency. On the other hand, when some partisan agents

are present, priors parameters ˛’s and ˇ’s are shi�ed up, by right and le�-partisans respectively,

which makes opinions more robust to the initial signals realizations. However, it seems that there

is some sort of “optimal” level of partisanship since high partisanship, for most topologies, has a

non-monotonic e�ect over the probability of emergence of the e�cient consensus. �is result is

generalized as follows.

Result 3 (Ine�ciency of high partisanship). In expected terms, a biased society with low partisanship

(� D 1) is at least as able to reach the e�cient consensus as the same biased society with high

partisanship (� D 30). One exception is the wheel network with four agents (network (F)) in which

e�ciency seems to increase monotonically with partisanship.
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�e intuition is that if there is disproportionately partisanship, then partisan individuals can

create an unbalance similar to the one created by the realization of the �rst signals. More explicitly,

one can imagine that a partisan agent with high degree of partisanship will almost never interpret

ambiguous evidences in a way that disagrees with his beliefs and a similar e�ect applies to his

neighbors. However, partisan agents might be more or less connected and even connected to each

other. �e later situation is de�ned as open-mindedness and its e�ect is particularly important to

consensus e�ciency. �e de�nition of open-mindedness stated below is very similar in nature to

the one of heterophily already established in the social and economic networks literature and both

re�ect the tendency that di�erent individuals have to connect with each other.

De�nition 3 (Open/Narrow-mindedness). For any given network induced by some adjacency matrix

g, a partisan agent i 2 N is said to be open-minded if, for some other partisan agent j 2 N with

opposite belief, we have that j 2 N out
i .g/. Conversely, i is narrow-minded if j … N out

i .g/.

Naturally, in networks A, C and G partisan agents are invariably open-minded because those

networks are complete, i.e. all individuals are connected with every other individual in the

network, regardless their types. In this sense, it makes sense to analyze the e�ect of open/narrow-

mindedness in networks B, D, E, F and H since it is not always that those agents are connected.

�e simulated probability Op in those cases are reported in Table � and the next result is stated

immediately.

Network Partisans Op
.�D0/

Op
.�D1/

Op
.�D10/

Op
.�D30/

pooled 0.688 0.707 0.608 0.59

open-minded 0.692 0.703 0.555 0.523

narrow-minded 0.681 0.715 0.714 0.722

pooled 0.688 0.766 0.680 0.648

open-minded 0.687 0.762 0.662 0.641

narrow-minded 0.689 0.770 0.699 0.656

pooled 0.696 0.709 0.630 0.602

open-minded 0.694 0.700 0.545 0.494

narrow-minded 0.697 0.719 0.713 0.717

pooled 0.688 0.766 0.787 0.794

open-minded 0.682 0.779 0.827 0.833

narrow-minded 0.701 0.739 0.706 0.714

pooled 0.694 0.733 0.633 0.559

open-minded 0.694 0.736 0.629 0.575

narrow-minded 0.693 0.728 0.641 0.529

Result 4 (Open-minded partisans). In expected terms, for biased individuals connected through
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� networks F and H, open-mindedness of partisan agents induces consensus e�ciency,

� networks B and E, narrow-mindedness of partisan agents induces consensus e�ciency,

� network D, open-mindedness of partisan agents is neutral in terms of inducing consensus

e�ciency.

Moreover, for the case of complete networks we have that population size seems to have no

in�uence whatsoever on e�ciency, for any .

Result 5 (Complete networks). For biased individuals connected through a su�ciently large complete

network (n � 3), the size of the network is neutral to the expected consensus e�ciency, regardless the

degree of partisanship.

A �nal case of interest is the one in which agents are connected through a line.

Result 6 (Line networks). In expected terms, biased individuals connected through any su�ciently

long line network (n � 3), high partisanship (� D 30) reduces the chance of reaching the e�cient

consensus. Moreover, for any given level of partisanship � > 0, a shorter line (lower n) reduces the

chance of reaching the e�cient consensus.

6. Conclusions

Con�rmatory bias is one of the most notorious cognitive biases documented and it appears in

many ways. Since it is a systematic deviation from rationality in judgment, it is expected to have a

signi�cant in�uence in the process of belief formation. In this sense, since social networks appear

as a primary tool for many people to get informed and debate their world views, one could expect

con�rmatory bias to have some in�uence on the public opinion formation. To date, however, there

has been li�le understanding of how such phenomenon in�uences public opinion. To shed some

light on this topic, I consider a social learning model in which a fraction of signals, external to the

social network, is ambiguous and open idiosyncratic interpretation. �e interpretation, however,

is a�ected by individuals’ con�rmatory biases. Moreover, I also allow agents to be in�uenced

by friends in their social clique and to set their beliefs to be a linear combination of the (biased)

Bayesian posterior and the (also biased) friends’ posteriors.

It follows directly from my model that biased individuals connected through a social network

can only reach two types of consensus and both are biased, one to the le� and the other to the right.

One consensus type, however, is more e�cient (less biased) than the other depending on the state.

Moreover, I show that long-run learning is not a�ained even if individuals are impartial when

interpreting ambiguous signals. �ose results contrast with Rabin and Schrag (1999) and Fryer
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et al. (2018) in which long-run learning takes place with a positive probability and impartiality

helps learning the state. Furthermore, the network e�ect presented here, together with signals

realizations, reinforces the interpreting “tug-of-war” since individuals might have their own biases

con�rmed (or mitigated) by other agents.

Finally, since it is not trivial to derive analytically the probability of emergence of the most

e�cient (less biased) consensus, I use graphs simulations to show its determinants. I show that

the presence of partisan agents in societies who su�er from con�rmatory bias has a double e�ect

on the expected consensus e�ciency: i) it helps to countervail the misinterpretation of initial

signals when there degree of partisanship is low and for that it increases expected e�ciency;

and ii) exacerbates misinterpretation of signals when the degree of partisanship is high, reducing

expected consensus e�ciency. Moreover, I also show that open-mindedness of partisan agents,

i.e. when partisans agree to exchange opinions with partisans with polar opposite beliefs, might

reduce expected consensus e�ciency in some social topologies. �ese results suggest that policies

designed to mitigate partisanship and con�rmatory bias e�ects in social networks have to consider

also the positive network externalities induced by them.
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Appendix A. Beta-Bernoulli model and likelihood function of interpreted signals

At any time t , the belief of agent i is represented by the Beta probability distribution with

parameters ˛i;t and ˇi;t

fi;t .�/ D

8̂<̂
:
� .˛i;t C ˇi;t/

� .˛i;t/ � .ˇi;t/
�˛i;t�1.1 � �/ˇi;t�1

, for 0 < � < 1

0 , otherwise,

(9)

where � .�/ is a Gamma function and the ratio of Gamma functions in the expression above is a

normalization constant that ensures that the total probability integrates to 1. In this sense,

fi;t .�/ / �
˛i;t�1.1 � �/ˇi;t�1:

�e idiosyncratic likelihood induced by the agent i ’s interpretation of the public signal stC1 is

`i.stC1j�/ D �
s

.1/

i;tC1.1 � �/s
.0/

i;tC1

and, therefore, the standard Bayesian posterior is computed as

fi;tC1.� jstC1/ D
`i.stC1j�/ fi;t .�/Z

�

`i.stC1j�/ fi;t .�/ d�

:

Since the denominator of the expression above is just a normalizing constant, the posterior

distribution is said to be proportional to the product of the prior distribution and the likelihood

function as

fi;tC1.� jstC1/ / `i.stC1j�/ fi;t .�/

/ �˛i;tCs
.1/

i;tC1
�1 .1 � �/ˇi;tCs

.0/

i;tC1
�1 :

�erefore, the posterior distribution is

fi;tC1 .�/ D

8̂<̂
:
� .˛i;tC1 C ˇi;tC1/

� .˛i;tC1/ � .ˇi;tC1/
�˛i;tC1�1.1 � �/ˇi;tC1�1

, for 0 < � < 1

0 , otherwise;

where ˛i;tC1 D ˛i;t C s
.1/
i;tC1 and ˇi;tC1 D ˇi;t C s

.0/
i;tC1.

Appendix B. Beta Distribution: Mode, Mean, Median

Mode. �e mode of a random variable beta-distributed is the value that appears most o�en. It is

the value � at which its probability density function takes its maximum value. As per Equation

(9), the mode �modi;t , for any i at any point in time t , is the arg max� fi;t.�/. Computed as
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dfi;t

d�
D

� .˛i;t C ˇi;t/

� .˛i;t/ � .ˇi;t/

h
.˛i;t � 1/�

˛i;t�2.1 � �/ˇi;t�1 � �˛i;t�1.ˇi;t � 1/.1 � �/
ˇi;t�2

i
D 0:

Implying that

.˛i;t � 1/�
˛i;t�2.1 � �/ˇi;t�1 � �˛i;t�1.ˇi;t � 1/.1 � �/

ˇi;t�2 D 0;

and therefore

�modi;t D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

˛i;t � 1

˛i;t C ˇi;t � 2
, for ˛i;t ; ˇi;t > 1

0 , for ˛i;t D 1; ˇi;t > 1

1 , for ˛i;t > 1; ˇi;t D 1

any value in .0; 1/ , for ˛i;t ; ˇi;t D 1

(10)

Mean. �e mean of a random variable Beta-distributed, denoted by �meani;t for any i and t , is

computed as follows

�meani;t D

Z 1

0

�
� .˛i;t C ˇi;t/

� .˛i;t/ � .ˇi;t/
�˛i;t�1.1 � �/ˇi;t�1d�

D
� .˛i;t C ˇi;t/

� .˛i;t/ � .ˇi;t/

Z 1

0

� .˛i;tC1/�1.1 � �/ˇi;t�1d�

D
� .˛i;t C ˇi;t/

� .˛i;t/ � .ˇi;t/

� .˛i;t C 1/ � .ˇi;t/

� .˛i;t C ˇi;t C 1/

D
� .˛i;t C ˇi;t/

� .˛i;t/ � .ˇi;t/

˛i;t� .˛i;t/ � .ˇi;t/

.˛i;t C ˇi;t/� .˛i;t C ˇi;t/
D

˛i;t

˛i;t C ˇi;t
: (11)

Median. �ere is no general closed formula for the median of the beta distribution for arbitrary

values of the parameter ˛i;t and ˇi;t . �e median, denoted by �medi;t , is the function that satis�es

� .˛i;t C ˇi;t/

� .˛i;t/ � .ˇi;t/

Z �med
i;t

0

�˛i;t�1.1 � �/ˇi;t�1 D
1

2
:

An accurate approximation of the value of the median of the beta distribution, for both˛i;t ; ˇi;t �

1, is given by

�medi;t D
˛i;t �

1
3

˛i;t C ˇi;t �
2
3

:9 (12)

�erefore, if 1 < ˛i;t < ˇi;t , then �modi;t < �medi;t < �meani;t . If 1 < ˇi;t < ˛i;t , then the order

of the inequalities is reversed. Finally, it is trivial to see that those three statistical measures are

asymptotically equal as ˛i;t ; ˇi;t !1.

9
With relative error of less than 4%, rapidly decreasing to zero as both shape parameters increase.
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Appendix C. Auxiliary Lemmas

Proof of Lemma 1. In order to see how W t
behaves as t grows large, I rewrite W using its

diagonal decomposition. In particular, let v be the squared matrix of le�-hand eigenvectors

of W and D D .d1; d2; : : : ; dn/
>

the eigenvector of size n associated to the unity eigenvalue

�1 D 1. Without loss of generality, we assume the following normalization 111>D D 1. �erefore,

W D v�1�v, where � D diag.�1; �2; : : : ; �n/ is the squared matrix with eigenvalues on its

diagonal, ranked in terms of absolute values, i.e. j�1j � j�2j � � � � � j�nj. More generally, for any

time t we write

W t
D v�1�tv:

Since v�1 has ones in all entries of its �rst column, it follows that

W t
ij D dj C

X
r

�trv
�1
ir vrj ;

for each r , where �r is the r-th largest eigenvalue of W . �erefore, limt!1W
t
ij D D111

>
, i.e. each

row ofW t
for all t � Nt converge toD, which coincides with the stationary distribution. Moreover,

if the eigenvalues are ordered the way we have assumed, then kW t �D111>k D o.j�2j
t/, i.e. the

convergence rate will be dictated by the second largest eigenvalue, as the others converge to zero

more quickly as t grows. �

Lemma 2. �e opinion of every agent i in any point in time t , yi;t , can be wri�en as

yi;t D

Pn
jD1W

t
ij j̨;0 C bK.i; t/Pn

jD1W
t
ij

�
j̨;0 C ǰ;0

�
C bL.i; t/

;

where K.i; t/ D
t�1X
kD0

nX
jD1

W k
ij s

.1/

j;t�k
and L.i; t/ D

t�1X
kD0

nX
jD1

W k
ij

�
s
.0/

j;t�k
C s

.1/

j;t�k

�
.

Proof. �e update process of both parameters described by the equations (6) and (7) can be solved

iteratively for any period t as

˛t D W
t˛0 C

t�1X
kD0

W kBs
.1/

t�k
(13)

ˇt D W
tˇ0 C

t�1X
kD0

W kBs
.0/

t�k
: (14)
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In agebraic formulation, we have that each entry of the vector in equation (13) can be wri�en as

˛i;t D

nX
jD1

W t
ij j̨;0 C

t�1X
kD0

nX
jD1

W k
ij bs

.1/

j;t�k

D

nX
jD1

W t
ij j̨;0 C b

t�1X
kD0

nX
jD1

W k
ij s

.1/

j;t�k

D

nX
jD1

W t
ij j̨;0 C b

t�1X
kD0

nX
jD1

W k
ij s

.1/

j;t�k

D

nX
jD1

W t
ij j̨;0 C b K.i; t/: (15)

Similarly for the expression ˛i;t C ˇi;t using both equations (13) and (14) as follows

˛i;t C ˇi;t D

nX
jD1

W t
ij

�
j̨;0 C ǰ;0

�
C b

t�1X
kD0

nX
jD1

W k
ij

�
s
.0/

j;t�k
C s

.1/

j;t�k

�
D

nX
jD1

W t
ij

�
j̨;0 C ǰ;0

�
C b L.i; t/: (16)

�erefore, from the de�nition of opinion we have that yi;t D
˛i;t

˛i;tCˇi;t
and the statement is

proven. �

Lemma 3. Let k 2 Œ0; 1�, X1; X2; : : : ; Xt be a sequence of i.n.i.d. random variables such that

P .Xt � x/ D p and u1; u2; : : : ; ut be i.i.d. U Œ0; 1� random variables. Moreover, assume that the

pair .Xt , ut/ is independent, for any t . In this case, the expressions E Œ1fut � 1fXt � xgkg� and

E Œ1fut � E Œ1fXt � xg� kg� are equal.

Proof. �e �rst expression can be wri�en as

E Œ1fut � 1fXt � xgkg� D .1 � p/E Œ1fut � 0g�C pE Œ1fut � kg� D pFu.k/ D pk:

�e second expression simpli�es to

E Œ1fut � E Œ1fXt � xg� kg� D E Œ1fut � .1 � p/0C pkg� D E Œ1fut � pkg� D pk:

�
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Appendix D. Proofs of main propositions and corollaries

Proof of Proposition 1.

lim

t!1
yi;t D lim

t!1

˛i;0 C
Pt
kD1 s

.1/

i;k

˛i;0 C
Pt
kD1 s

.1/

i;k
C ˇi;0 C

Pt
kD1 s

.0/

i;k

D lim

t!1

˛i;0 C
Pt
kD1 .1fsk D 1g C 1fsk D ag1fuk �  i;kg/

˛i;0 C ˇi;0 C
Pt
kD1 .1fsk D 1g C 1fsk D 0g C 1fsk D ag/

D lim

t!1

˛i;0

t
C

1
t

Pt
kD1 .1fsk D 1g C 1fsk D ag1fuk �  i;kg/

˛i;0Cˇi;0

t
C

1
t

Pt
kD1 .1fsk D 1g C 1fsk D 0g C 1fsk D ag/

D
Et Œ1fst D 1g�C Et Œ1fst D ag� limt!1

1
t

Pt
kD1 .1fuk �  i;kg/

Et Œ.1fst D 1g�C Et Œ1fst D 0g�C Et Œ1fst D ag�/

D
.1 � ı/.1 � �/� C .1 � ı/� limt!1

1
t

Pt
kD1 .1fuk �  i;kg/

.1 � ı/

D .1 � �/� C � lim

t!1

1

t

tX
kD1

.1fuk � 
i;k 1fyi;k�1 � 0:5g C .1 � 
i;k/1fyi;k�1 < 0:5gg/

D .1 � �/� C �Et Œ1fut � Et Œ
i;t 1fyi;t�1 � 0:5g C .1 � 
i;t/1fyi;t�1 < 0:5gg��

D .1 � �/� C �Et Œ1fut � Et Œ1fyi;t�1 � 0:5g�Et Œ2
i;t � 1�C 1 � Et Œ
i;t �g�

�e expression above might take two distinct forms because both rational learning and the

repeated average process are Martingales. �us, convergence is expected to be a�ained and

random variable Et Œ1fyi;t�1 � 0:5g� D P .yi;1 � 0:5/ takes either value 1 with some positive

probability p 2 .0; 1/ or 0 with probability 1 � p. For simplicity, say the realization 1 of such R.V.

is called A and B otherwise. �erefore,

lim

t!1
yi;t D

8<:.1 � �/� C �Et Œ1fut � Et Œ2
i;t � 1�C 1 � Et Œ
i;t �g� ; if A

.1 � �/� C �Et Œ1fut � 1 � Et Œ
i;t �g� ; if B

D

8<:.1 � �/� C �Et Œ1fut � N
ig� ; if A

.1 � �/� C �Et Œ1fut � 1 � N
ig� ; if B

D

8<:.1 � �/� C �Fu . N
i/ ; if A

.1 � �/� C �Fu .1 � N
i/ ; if B

D

8<:.1 � �/� C � N
i ; if A

.1 � �/� C � .1 � N
i/ ; if B
(17)
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�
Proof of Proposition 2. �e claim is supported by the solution of two system of inequalities S1

(for right-biased opinion) and S2 (for le�-biased opinion) below.

S1 D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

.1 � �/� C � N
i >
1
2

.1 � �/� C �.1 � N
i/ >
1
2

0 < � � 1

0 � � � 1

1
2
< N
i � 1

S2 D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

.1 � �/� C � N
i <
1
2

.1 � �/� C �.1 � N
i/ <
1
2

0 < � � 1

0 � � � 1

1
2
< N
i � 1

�e solution of those systems, together with the equation (17) in Proof of proposition 1 ensure

the uniqueness of opinion types in the parameter spaces de�ned in the statement. �

Proof of Corollary 1. From Proposition 1, we can write both right-biased and le�-biased opinions

as � C �. N
i � �/ and � C �.1 � N
i � �/, respectively, where the second term in each expression

represents their respective biases. From those expressions, we can see that both sign and magnitude

of those biases naturally depend on the relative size of � and N
i . For both biases to be positive,

we need � < minf N
i ; 1 � N
ig D 1 � N
i , since N
i >
1
2
. For both biases to be negative, we need

� > maxf N
i ; 1 � N
ig D N
i , since N
i >
1
2
. For the right-bias to be positive and the le�-bias to be

negative, we need 1 � N
i < � < N
i to hold. �e case in which the right bias is negative while

the right-bias is positive never holds, since we assume N
i >
1
2
. �erefore, we have the following

summary.

(1) if � < 1 � N
i , then both biases are strictly positive

(2) if 1 � N
i < � < N
i , then right-bias is strictly positive and le�-bias is strictly negative

(3) if � > N
i , then both biases are strictly negative.

In the case (1) listed above, we say that the right-bias is less than the le� bias whenever

�. N
i � �/ < �.1 � N
i � �/, meaning that N
i <
1
2
. However, this contradicts the assumption that

individual is con�rmatory and we can conclude that whenever � < 1� N
i , the le�-biased opinion

is less biased than the right-biased one. In the case (3), we say that the right-bias is less than

the le� bias whenever �.� � N
i/ < �. N
i C � � 1/, meaning that the statement is true if N
i >
1
2
.

�erefore, if � > N
i , the right-biased opinion is less biased than the le�-biased one. Finally, in the

case (2), we say that the right-bias is less than the le� bias whenever �. N
i � �/ < �. N
i C � � 1/,

meaning that it can only be true when � > 1
2

. �ese three arguments together prove the statement

and we conclude that the right-bias is less than the le� bias whenever � > 1
2

(and vice-versa).
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Finally, when � D 1
2
, the biases are equal since j N
i �

1
2
j D j

1
2
� N
i j for any N
i . �

Proof of Corollary 2. When an individual j is always impartial, we have that

 j;t D
1

2
1fyj;t�1 � 0:5g C

1

2
1fyj;t�1 < 0:5g

D
1

2
1fyj;t�1 � 0:5g C

1

2

�
1 � 1fyj;t�1 � 0:5g

�
D
1

2
; (18)

for all t . Since ut is a continuous U Œ0; 1� random variable in every period t , we have that

Et

�
1

�
ut �

1

2

��
D P

�
ut �

1

2

�
D Fu

�
1

2

�
D

1
2
� 0

1 � 0
D
1

2
; (19)

where Fu.�/ is the cumulative distribution function of U Œ0; 1�. �us, equations (17) and (19)

together prove the statement when agents are impartial (both always impartial and moderately

impartial). �

Proof of Proposition 3. Say extreme opinion 1 (i.e. yi;1 D 1) is formed, then as per Proposi-

tions 1 and 2 we know this is the right-biased opinion and therefore it should be the case that

.1 � �/� C � N
i D 1. Conversely, say extreme opinion 0 (i.e. yi;1 D 0) is formed. �en, we

know this is the le�-biased opinion and it should be that .1 � �/� C �.1 � N
i/ D 0. �ese two

conditions together imply that �.2 N
i � 1/ D 1. If we generally consider that 0 � � � 1 and

0 � N
i � 1, then the relation �.2 N
i � 1/ D 1 is only met when � D N
i D 1. �

Proof of Corollary 3. In measure theory, loosely speaking, a property is said to hold almost

everywhere if, in a technical sense, the set for which the property holds takes up nearly all

possibilities. �e concept of almost anywhere can be thought of as the polar opposite case. In this

sense, as per Proposition 2, if .�; �/ 2 R, then long-run learning implies that .1��/� C� N
i D � .

�erefore, since � > 0, the equality only holds when N
i D � (almost anywhere). Likewise, if

.�; �/ 2 L, then long-run learning implies that .1� �/� C �.1� N
i/ D � and the equality holds

only when N
i D 1 � � (almost anywhere). Conversely, if .�; �/ 2W learning is a more stringent

event because opinion type is a random variable and long-run learning is not a deterministic event

even if the two previous conditions are met. In all three cases, since parameters are continuously

distributed, there is opinion bias almost everywhere.
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Proof of Proposition 5. As per Lemma 2 in the Appendix C, the limiting opinion of any agent i

can be wri�en as

lim

t!1
yi;t D lim

t!1

1
t

Pn
jD1W

t
ij j̨;0 C b

1
t
K.i; t/

1
t

Pn
jD1W

t
ij

�
j̨;0 C ǰ;0

�
C b 1

t
L.i; t/

D lim

t!1

1

t

t�1X
kD0

nX
jD1

W k
ij s

.1/

j;t�k

1

t

t�1X
kD0

nX
jD1

W k
ij

�
s
.0/

j;t�k
C s

.1/

j;t�k

� :
By Lemma 1 we can split both series in the numerator and denominator in two parts

lim

t!1
yi;t D lim

t!1

1

t

0@ tmixX
kD0

nX
jD1

W k
ij s

.1/

j;t�k
C

t�1X
kDtmixC1

nX
jD1

W k
ij s

.1/

j;t�k

1A
1

t

0@ tmixX
kD0

nX
jD1

W k
ij

�
s
.0/

j;t�k
C s

.1/

j;t�k

�
C

t�1X
kDtmixC1

nX
jD1

W k
ij

�
s
.0/

j;t�k
C s

.1/

j;t�k

�1A

D lim

t!1

1

t

t�1X
kDtmixC1

nX
jD1

W k
ij s

.1/

j;t�k

1

t

t�1X
kDtmixC1

nX
jD1

W k
ij

�
s
.0/

j;t�k
C s

.1/

j;t�k

� :
Since the subindex k spans from tmix onwards (i.e. when the chain is already mixed), we can

use the invariant distribution matrix in the previous expression. �erefore the limiting opinion
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becomes

lim

t!1
yi;t D lim

t!1

nX
jD1

˘ij
1

t

t�1X
kDtmixC1

s
.1/

j;t�k

nX
jD1

˘ij
1

t

t�1X
kDtmixC1

�
s
.0/

j;t�k
C s

.1/

j;t�k

�

D

nX
jD1

˘ij lim

t!1

t � 1 � tmix

t

1

t � 1 � tmix

t�1X
kDtmixC1

s
.1/

j;t�k

nX
jD1

˘ij lim

t!1

t � 1 � tmix

t

1

t � 1 � tmix

t�1X
kDtmixC1

�
s
.0/

j;t�k
C s

.1/

j;t�k

�

D

nX
jD1

˘ij lim

t!1

1

t � 1 � tmix

t�1X
kDtmixC1

�
1fst�k D 1g C 1fst�k D ag1fut�k �  j;t�kg

�
nX

jD1

˘ij lim

t!1

1

t � 1 � tmix

t�1X
kDtmixC1

.1fst�k D 0g C 1fst�k D 1g C 1fst�k D ag/

D

P
j ˘ijEt

�
1fst D 1g C 1fst D ag1fut �  j;tg

�P
j ˘ijEt Œ1fst D 0g C 1fst D 1g C 1fst D ag�

D
.1 � ı/.1 � �/� C .1 � ı/�

P
j ˘ijEt

�
1fut �  j;tg

�
.1 � ı/

;

where the term Et

�
1fut �  j;tg

�
is as in Proposition 1, implying that the limiting consensus is

lim

t!1
yi;t D

8<:.1 � �/� C �
P
j ˘ij N
j ; if A

.1 � �/� C �
P
j ˘ij .1 � N
j / ; if B

�

Proof of Proposition 4. From Equation (15) in Appendix C, we know that ˛i;t , for any i , can be

iterated forwardly as

˛i;t D

nX
jD1

W t
ij j̨;0 C b

t�1X
kD0

nX
jD1

W k
ij s

.1/

j;t�k
:

.

Similarly, the expression ˛i;t C ˇi;t in Equation (16) can be wri�en as

˛i;t C ˇi;t D

nX
jD1

W t
ij

�
j̨;0 C ǰ;0

�
C b

t�1X
kD0

nX
jD1

W k
ij

�
s
.0/

j;t�k
C s

.1/

j;t�k

�
:
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�us, if b D 0 (i.e. agents do not pay a�ention to signals) and for any ı, the opinion of any

agent i 2 N at any time t boils down to

yi;t D

Pn
jD1W

t
ij j̨;0Pn

jD1W
t
ij

�
j̨;0 C ǰ;0

�
and therefore

lim

t!1
yi;t D y D

Pn
jD1˘ij j̨;0Pn

jD1˘ij
�
j̨;0 C ǰ;0

�
for any i . Equivalently, if ı D 1 (i.e. no signal enters into the network) and for any b, we have

that s
.0/

i;t�k
D s

.1/

i;t�k
D 0 for any i and t , since 1fst D ;g D 1 for all t as per Equations (2) and (3).

In this case, the limiting opinion of any agent i can be wri�en as in the case when b D 0 shown

above. �

Appendix E. Simulations statistics

E.1. Tests concerning di�erences among k proportions. To decide whether observed di�er-

ences among sample proportions are signi�cant or whether they can be a�ributed to chance we

must use tests concerning di�erences among proportions. For that, suppose that x1; x2; : : : ; xk are

observed values of k independent random variables X1; X2; :::; Xk having binomial distributions

with the parameters n1 and �1, n2 and �2; : : : , nk and �k . If the sample sizes are su�ciently large,

we can approximate the distributions of the independent random variables

Zi D
Xi � ni�ip
ni�i.1 � �i/

for i D 1; 2; : : : ; k

with standard normal distributions. �erefore, we know that we can look upon the test-statistic

�2 D

kX
iD1

Z2i D

kX
iD1

.xi � ni�i/
2

ni�i.1 � �i/

as a value of a random variable having chi-square distribution with k degrees of freedom. When

the null hypothesisH0 is �1 D �2 D � � � D �k and the alternative hypothesis is that at least one of

the � ’s is di�erent, we can use the pooled estimate

O� D

Pk
iD1 xiPk
iD1 ni

and the test statistic becomes

�2 D

kX
iD1

.xi � ni O�/
2

ni O�.1 � O�/

a random variable whose value has chi-square distribution with k � 1 degrees of freedom because

an estimate is substituted for the unknown parameter � .
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Table 2. Summary statistics - simulated Op and parameters (� D 0)

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Op in network (A) 11,539 0.688 0.463 0 0 1 1 1

Op in network (B) 11,539 0.688 0.463 0 0 1 1 1

Op in network (C) 11,539 0.688 0.463 0 0 1 1 1

Op in network (D) 11,539 0.688 0.463 0 0 1 1 1

Op in network (E) 11,539 0.696 0.460 0 0 1 1 1

Op in network (F) 11,539 0.688 0.463 0 0 1 1 1

Op in network (G) 11,539 0.695 0.461 0 0 1 1 1

Op in network (H) 11,539 0.694 0.461 0 0 1 1 1

ı 11,539 0.499 0.302 0.050 0.200 0.500 0.800 0.950

� 11,539 0.652 0.205 0.232 0.475 0.663 0.830 0.950

� 11,539 0.500 0.324 0.050 0.200 0.650 0.800 0.950

R0 degree advantage in (B) 11,539 1.164 0.625 0 0.5 1 2 2

R0 degree advantage in (D) 11,539 1.161 0.626 0 0.5 1 2 2

R0 degree advantage in (E) 11,539 1.321 0.998 0 0.3 1 1 3

R0 degree advantage in (H) 11,539 1.218 0.765 0 0.7 1 1.5 3

R0 and L0 neighbors in (B) 11,539 0.670 0.470 0 0 1 1 1

R0 and L0 neighbors in (D) 11,539 0.500 0.500 0 0 0 1 1

R0 and L0 neighbors in (E) 11,539 0.504 0.500 0 0 1 1 1

R0 and L0 neighbors in (H) 11,539 0.671 0.470 0 0 1 1 1

Table 3. Summary statistics - simulated Op and parameters (� D 1)

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Op in network (A) 4,604 0.716 0.451 0 0 1 1 1

Op in network (B) 4,604 0.707 0.455 0 0 1 1 1

Op in network (C) 4,604 0.730 0.444 0 0 1 1 1

Op in network (D) 4,604 0.766 0.423 0 1 1 1 1

Op in network (E) 4,604 0.709 0.454 0 0 1 1 1

Op in network (F) 4,604 0.766 0.423 0 1 1 1 1

Op in network (G) 4,604 0.725 0.447 0 0 1 1 1

Op in network (H) 4,604 0.733 0.442 0 0 1 1 1

ı 4,604 0.501 0.302 0.050 0.200 0.500 0.800 0.950

� 4,604 0.659 0.208 0.232 0.475 0.663 0.836 0.950

� 4,604 0.503 0.324 0.050 0.200 0.650 0.800 0.950

R0 degree advantage in (B) 4,604 1.169 0.621 0 0.5 1 2 2

R0 degree advantage in (D) 4,604 1.178 0.622 0.500 0.500 1.000 2.000 2.000

R0 degree advantage in (E) 4,604 1.338 1.007 0 0.3 1 3 3

R0 degree advantage in (H) 4,604 1.217 0.772 0.333 0.500 1.000 1.500 3.000

R0 and L0 neighbors in (B) 4,604 0.658 0.474 0 0 1 1 1

R0 and L0 neighbors in (D) 4,604 0.498 0.500 0 0 0 1 1

R0 and L0 neighbors in (E) 4,604 0.507 0.500 0 0 1 1 1

R0 and L0 neighbors in (H) 4,604 0.664 0.472 0 0 1 1 1
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Table 4. Summary statistics - simulated Op and parameters (� D 10)

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Op in network (A) 4,680 0.698 0.459 0 0 1 1 1

Op in network (B) 4,680 0.608 0.488 0 0 1 1 1

Op in network (C) 4,680 0.726 0.446 0 0 1 1 1

Op in network (D) 4,680 0.680 0.466 0 0 1 1 1

Op in network (E) 4,680 0.630 0.483 0 0 1 1 1

Op in network (F) 4,680 0.787 0.410 0 1 1 1 1

Op in network (G) 4,680 0.719 0.449 0 0 1 1 1

Op in network (H) 4,680 0.633 0.482 0 0 1 1 1

ı 4,680 0.504 0.301 0.050 0.200 0.500 0.800 0.950

� 4,680 0.658 0.206 0.232 0.475 0.663 0.830 0.950

� 4,680 0.490 0.323 0.050 0.200 0.350 0.800 0.950

R0 degree advantage in (B) 4,680 1.164 0.624 0.500 0.500 1.000 2.000 2.000

R0 degree advantage in (D) 4,680 1.172 0.623 0 0.5 1 2 2

R0 degree advantage in (E) 4,680 1.327 0.995 0 1 1 1 3

R0 degree advantage in (H) 4,680 1.208 0.753 0.333 0.667 1.000 1.500 3.000

R0 and L0 neighbors in (B) 4,680 0.668 0.471 0 0 1 1 1

R0 and L0 neighbors in (D) 4,680 0.504 0.500 0 0 1 1 1

R0 and L0 neighbors in (E) 4,680 0.495 0.500 0 0 0 1 1

R0 and L0 neighbors in (H) 4,680 0.671 0.470 0 0 1 1 1

Table 5. Summary statistics - simulated Op and parameters (� D 30)

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Op in network (A) 4,554 0.678 0.467 0 0 1 1 1

Op in network (B) 4,554 0.590 0.492 0 0 1 1 1

Op in network (C) 4,554 0.717 0.451 0 0 1 1 1

Op in network (D) 4,554 0.648 0.478 0 0 1 1 1

Op in network (E) 4,554 0.602 0.489 0 0 1 1 1

Op in network (F) 4,554 0.794 0.405 0 1 1 1 1

Op in network (G) 4,554 0.718 0.450 0 0 1 1 1

Op in network (H) 4,554 0.559 0.497 0 0 1 1 1

ı 4,554 0.499 0.299 0.050 0.200 0.500 0.800 0.950

� 4,554 0.656 0.207 0.232 0.475 0.663 0.830 0.950

� 4,554 0.501 0.324 0.050 0.200 0.650 0.800 0.950

R0 degree advantage in (B) 4,554 1.168 0.623 0.500 0.500 1.000 2.000 2.000

R0 degree advantage in (D) 4,554 1.142 0.618 0 0.5 1 2 2

R0 degree advantage in (E) 4,554 1.357 1.017 0.333 0.333 1.000 3.000 3.000

R0 degree advantage in (H) 4,554 1.214 0.761 0.333 0.500 1.000 2.000 3.000

R0 and L0 neighbors in (B) 4,554 0.665 0.472 0 0 1 1 1

R0 and L0 neighbors in (D) 4,554 0.502 0.500 0 0 1 1 1

R0 and L0 neighbors in (E) 4,554 0.515 0.500 0 0 1 1 1

R0 and L0 neighbors in (H) 4,554 0.658 0.474 0 0 1 1 1
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Table 6. Two Population Proportions - Result 6

i j ci cj Opi .ci / Opj .cj / CI5% CI95% �2 p-value

(A) (A) � D 0 � D 30 0.688 0.678 -0.006 0.026 1.641 0.2

(B) (B) � D 0 � D 30 0.688 0.59 0.082 0.115 140.542 0

(D) (D) � D 0 � D 30 0.688 0.648 0.024 0.056 23.694 0

(B) (D) � D 1 � D 1 0.707 0.766 -0.077 -0.041 41.405 0

(B) (D) � D 30 � D 30 0.59 0.648 -0.078 -0.039 32.948 0

Table 7. Correlation Matrix - Probability of e�cient consensus (� D 0)

(A) (B) (C) (D) (E) (F) (G) (H)

(A) 1 1 1 1 0:981 1 0:979 0:985

(B) 1 1 1 1 0:981 1 0:979 0:985

(C) 1 1 1 1 0:981 1 0:979 0:985

(D) 1 1 1 1 0:981 1 0:979 0:985

(E) 0:981 0:981 0:981 0:981 1 0:981 0:981 0:995

(F) 1 1 1 1 0:981 1 0:979 0:985

(G) 0:979 0:979 0:979 0:979 0:981 0:979 1 0:983

(H) 0:985 0:985 0:985 0:985 0:995 0:985 0:983 1

Table 8. Correlation Matrix - Probability of e�cient consensus (� D 1)

(A) (B) (C) (D) (E) (F) (G) (H)

(A) 1 0:555 0:855 0:540 0:601 0:672 0:803 0:571

(B) 0:555 1 0:578 0:464 0:509 0:513 0:567 0:481

(C) 0:855 0:578 1 0:610 0:635 0:784 0:892 0:624

(D) 0:540 0:464 0:610 1 0:480 0:625 0:611 0:523

(E) 0:601 0:509 0:635 0:480 1 0:565 0:633 0:496

(F) 0:672 0:513 0:784 0:625 0:565 1 0:774 0:612

(G) 0:803 0:567 0:892 0:611 0:633 0:774 1 0:619

(H) 0:571 0:481 0:624 0:523 0:496 0:612 0:619 1

Table 9. Correlation Matrix - Probability of e�cient consensus (� D 10)

(A) (B) (C) (D) (E) (F) (G) (H)

(A) 1 0:304 0:811 0:194 0:361 0:607 0:780 0:252

(B) 0:304 1 0:339 0:130 0:214 0:276 0:341 0:151

(C) 0:811 0:339 1 0:203 0:410 0:702 0:899 0:261

(D) 0:194 0:130 0:203 1 0:121 0:245 0:191 0:139

(E) 0:361 0:214 0:410 0:121 1 0:314 0:433 0:155

(F) 0:607 0:276 0:702 0:245 0:314 1 0:690 0:230

(G) 0:780 0:341 0:899 0:191 0:433 0:690 1 0:267

(H) 0:252 0:151 0:261 0:139 0:155 0:230 0:267 1
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Table 10. Correlation Matrix - Probability of e�cient consensus (� D 30)

(A) (B) (C) (D) (E) (F) (G) (H)

(A) 1 0:259 0:801 0:130 0:297 0:581 0:703 0:135

(B) 0:259 1 0:296 0:045 0:137 0:220 0:288 0:071

(C) 0:801 0:296 1 0:141 0:338 0:668 0:828 0:152

(D) 0:130 0:045 0:141 1 0:089 0:172 0:140 0:036

(E) 0:297 0:137 0:338 0:089 1 0:256 0:368 0:043

(F) 0:581 0:220 0:668 0:172 0:256 1 0:654 0:132

(G) 0:703 0:288 0:828 0:140 0:368 0:654 1 0:159

(H) 0:135 0:071 0:152 0:036 0:043 0:132 0:159 1
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Network (A) Network (B) Network (C) Network (D)

Network (E) Network (F) Network (G) Network (H)

Figure 5. Simulated frequency Op in � �M : common prior case (� D 0)

Network (A) Network (B) Network (C) Network (D)

Network (E) Network (F) Network (G) Network (H)

Figure 6. Simulated frequency Op in � �M : heterogeneous priors case (� D 30)


	1. Introduction
	2. Literature review and contribution
	3. The model
	Notation:
	3.1. Network structure
	3.2. Initial beliefs and signals.
	3.3. Interpretation of ambiguous signals
	3.4. Belief evolution

	4. Theoretical results
	5. Random graph simulation: determining consensus type
	5.1. Common prior.
	5.2. Heterogeneous priors.
	5.3. Simulation.

	6. Conclusions
	References
	Appendix A. Beta-Bernoulli model and likelihood function of interpreted signals
	Appendix B. Beta Distribution: Mode, Mean, Median
	Mode
	Mean
	Median

	Appendix C. Auxiliary Lemmas
	Appendix D. Proofs of main propositions and corollaries
	Appendix E. Simulations statistics
	E.1. Tests concerning differences among k proportions


