
On the Variational Approach to the

Analysis of Tax Systems: A Cautionary

Tale

Cassiano B. Alves@ , Carlos E. da CostaI, and Humberto MoreiraI

@Department of Economics, Northwestern University

IFGV EPGE Brazilian School of Economics and Finance

Incomplete Draft - please do not circulate

Click here for the most recent version.

Abstract

We provide a formal de�nition for an alternative approach in the analysis

of optimal tax systems that has been extensively used in the literature. Addi-

tionally, we study optimal income taxation in a class of static one-dimensional

Mirleesian economies where preferences do not satisfy the Spence-Mirrlees

condition (SMC). We characterize necessary conditions for the optimal taxa-

tion using a structural mechanism design approach based on type assignment

functions. Because the SMC is violated, local incentive constraints no longer

su�ce for implementability, and an additional set of global incentive con-

straints must be explicitly taken into account. When these global constraints

bind, they create a tension between infra-marginal types whose ICs are not

handled by any local approach. Local perturbations (or small reforms) of the

optimal tax schedule may have global (�rst-order) impacts on welfare, thus

invalidating some of the assumptions underlying local variational methods.

JEL Classi�cation: D82, H21.

1 Introduction

The Taxation Principle - Hammond (1979) - guarantees that any incentive feasible

allocation can be implemented by a tax schedule. This means, in particular, that
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deriving optimal taxes is equivalent to deriving optimal allocations. Any method

advanced towards characterizing one is an advance towards characterizing the other.

In this context, following Piketty's (1997) and Saez's (2001) seminal contributions,

optimal income tax theory has geared towards the use of tax perturbation methods

as its main approach in the analysis of tax systems, as an alternative to Mirrlees'

(1971) structural mechanism design approach.1,2

These techniques are based on studying local perturbations (or small reforms)

of a baseline nonlinear tax system under some regularity assumptions regarding the

optimum. They have the signi�cant advantage of producing formulae based on em-

pirically relevant objects, usually behavioral elasticities, that are very transparent

about the economic forces driving the size and shape of the optimal tax schedule.

Since these elasticities are often observable and/or may be credibly estimated with

available real-world data using quasi-experimental designs, the variational approach

brought optimal tax theory closer to actual policy-making.

Another perceived advantage is that it does not require the strong restrictions

needed to characterize optimal taxes using a fully structural mechanism design

approach as in Mirrlees' (1971) original work. In particular, the Spence-Mirrless

condition (SMC) for agents' utility need not be assumed.3 Hence, the method

would be applicable in complex environments where imposing these restrictions

seems too strong. All of these gains come at the expense of making technical regu-

larity assumptions on endogenous objects. Golosov, Tsyvinski, and Werquin (2014)

provide a systematic analysis of the underlying assumptions necessary for applying

the method in the design of optimal tax systems. Intuitively, local perturbations

around the optimal tax system should not have any impact on welfare. The re-

quired su�cient assumption is the Lipschitz continuity of the agents' decisions with

respect to the tax policy, which is an endogenous object. Hence, it is not possible

to check its validity in any given application.

The goal of this paper is twofold. First, we present a class of simple Mirrleesian

economies that dispense with the SMC and remain tractable enough for the Mirrlees'

1Some other terminology has been used to denote these methods. Examples are variational
approach, allocations perturbation, tax reforms.

2In a similar vain, the so-called su�cient statistics approach proposed by Chetty (2009) uses
variational techniques to write the welfare impact of policy changes in terms of few reduced-form
elasticities in applications other than the design of income tax systems. The su�cient statistics
approach applied to the design of optimal income taxes is, in fact, the main contribution of Piketty
(1997) and Saez (2001).

3The SMC is often referred to as the single-crossing property. This condition guarantees that
agents' marginal utility is ordered with respect to their idiosyncratic characteristic or type. By
characterizing incentive compatibility constraints in terms of local conditions, the problem becomes
a simple optimal control program.
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approach (1971), and we investigate whether the regularity assumptions in Golosov,

Tsyvinski, and Werquin (2014) are veri�ed at the optimum tax scheme. Second, we

propose a di�erent class of solutions for the optimal design of income tax systems

featuring segregation of income groups. These solutions emerge naturally when

tackling the mechanism design problem using type assignment functions.4

For the class of economies we study, the SMC is replaced by the assumption

that the marginal disutility of producing taxable income is increasing in one region

and decreasing in another of the parameter space, where the boundary between the

regions is described by a monotonic function of income earned. This assumption,

�rst adopted in a monopoly pricing context by Araújo and Moreira (2010), implies

that local incentive compatibility constraints are not su�cient to ensure full incen-

tive compatibility. Typically, incentive compatible allocations are not monotonous

generating discrete pooling, i.e. the sets of agents for which the same bundles are

assigned need not be connected. Building on this work, Araujo, Moreira, and Vieira

(2015) exhibit a welfare improvement by relaxing the requirement of convex-valued

mechanisms.

Our proposed tax schedule promotes segregation of income groups, which allows

the government to more e�ciently balance the distortions within each group in

an environment where the tax system has to take into account global incentive

compatibility constraints. The government handles these constraints by making

sure that a pivotal agent is indi�erent between migrating from the high to the

low-income group.

We assess the properties of schedules that promote segregation of income groups

and show that, in particular, they do not satisfy the Lipschitz continuity assumption

described in Golosov, Tsyvinski, and Werquin (2014). Hence, we cannot make use

of the Gateaux di�erential to identify the optimum. In fact, when global incentive

constraints are binding, local perturbations of the tax system at the optimum have

infra-marginal welfare impacts that are not negligible. By distorting the taxation

on the pivotal type, global incentive compatibility requires distorting the allocation

of a positive measure set of individuals. Thus, the impact on welfare is proportional

to the shadow cost of this global incentive constraint measured by the associated

Lagrangian multiplier. As a consequence of these complexities, the use of variational

methods may fail in providing an optimal income tax system. Moreover, elasticities

emerging from the use of variational methods may not even be su�cient statistics

4The Mechanism Design Approach typically works in the space of direct mechanism that for
each type associates an allocation. Our method uses a type assignment functions which inverts
the logic: for each possible bundle a set of types is assigned.
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to the welfare analysis.5

It is important to stress that the violation of SMC is a necessary but not su�cient

condition to the failure of variational methods in characterizing optimal tax systems.

It is crucial to have a strong tension between intra-marginal bene�ts and infra-

marginal incentives generated by binding global incentive compatibility constraints.

Our class of economies is the most parsimonious environment in which one can

generate this tension and still is tractable enough to be solved using mechanism

design. It is a direct generalization of a Mirrleesian economy where agents have

quasi-linear preferences, and it is a particular case of the economies studied in

Golosov, Tsyvinski, and Werquin (2014).

One of the features of the Variational Approach is to be agnostic about the

underlying information frictions in the economic environment.6 However, unless we

fully specify the nature of the information friction, we have no hope of assuring

the validity of the Variational Approach in identifying the optimum. Apart from

its technical contributions, this paper should be thought of as a cautionary tale re-

garding the usage of variational methods in complex environments where the failure

of SMC and the associated impossibility of ordering marginal utilities according to

types naturally emerges.7 Moreover, depending on the characteristics of the under-

lying information friction the discrepancy between the optimal mechanism and the

one we get from the variational approach could be sizable.

The rest of the paper is organized as follows. After this introduction, we brie�y

discuss the related literature. In Section 2, we present a class of economies where

the agent's utility does not satisfy the Spence-Mirrlees condition. In Section 3,

we discuss the complications emerging in this environment and characterize the

relevant incentive constraints. In Section 4, we propose a novel approach to the

optimal income taxation based on type assignment function and compare with the

one emerging from the variational approach. Section 5 is reserved for the conclusion

and discussion of future steps.

5Piketty, Saez, and Stantcheva (2014), Hendren (2013) and Scheuer and Werning (2015) have
examples of complex environments where the elasticities that should be considered are not the
usual elasticity of taxable income.

6The application of the Variational Approach always delivers a candidate, regardless of whether
the required conditions on the optimal are satis�ed or not.

7 The possibility of binding global incentive constraints was recognized a long time ago by
Mirrlees (1999) in the Moral Hazard context. Unlike the screening environment of Mirrlees (1971),
in the Moral Hazard context he couldn't �nd a natural assumption in terms of fundamentals that
guarantees the su�ciency of the First Order Approach.
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Literature review

This paper lies in the intersection of two di�erent branches of the literature: (1) ad-

verse selection models without the SMC and (2) optimal taxation using variational

techniques.

Although perturbation methods have been in use since at least Sheshinski (1972),

the works by Piketty (1997); Dahlby (1998); Saez (2001) have shown how to ex-

tend them from the parametric restrictions on schedules that were imposed in the

early literature. These methods proved to be a signi�cant generalization since they

allowed us to assess optimal allocations, thus placing them on the same footing as

what was accomplished by Mirrlees (1971).8

These methods have expanded the scope of optimal tax theory to address mi-

gration (as in Lehmann, Simula, and Trannoy (2014) ), dynamics (as in Golosov,

Tsyvinski, and Werquin (2014)), general equilibrium e�ects (as in Sachs, Tsyvinski,

and Werquin (2016)) and taxation and political economy (as in Bierbrauer, Tsyvin-

ski, and Werquin (2017)). They have also brought theory closer to applications

since tax formulae are usually expressed in elasticities which can be recovered from

the data.

On a related literature, the su�cient statistic approach uses variational methods

to identify formulas for the welfare impact of policy reforms based on high-level

elasticities. For instance, Feldstein (1999) �rst pointed out that the elasticity of

taxable income is a su�cient statistic to welfare analysis. This approach has since

been extended by Chetty (2009), Piketty, Saez, and Stantcheva (2014), among

others as a middle-ground between structural and reduced form methods. For

instance, Saez's (2001) uses variational methods to re-write the Mirrlees' (1971)

formula for the optimal income tax rate in terms of labor supply elasticities.

Methodologically, our paper is built upon Araujo, Moreira, and Vieira (2015)

and closer to the literature of screening problems without the SMC. Notable ex-

amples are Araújo and Moreira (2010) and Schottmüller (2015). The literature of

models that do not satisfy SMC is tightly related to the multidimensional screening

literature (see Rochet and Choné (1998), Rochet and Stole (2003) and Armstrong

and Rochet (1999)). For instance, the failure of the SMC could also emerge natu-

rally due to multidimensionality; for example, in the problem of taxing couples (see

Alves, da Costa, and Moreira (2017)).

The use of type assignment functions as an alternative approach to mechanism

design dates back to Goldman, Leland, and Sibley (1984) and Noldeke and Samuel-

8Recall that under the Taxation Principle � Hammond (1979, 1987) � any constrained e�cient
allocation can be implemented through a suitable design of budget sets.
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son (2007). To the best of our knowledge, we are the �rst to use this method in the

optimal taxation context.

2 Environment

We start at a very general level imposing very little structure on the nature of

preferences and/or degree of heterogeneity. At this level of generality, we brie�y

describe the mechanism design program, state the taxation principle and describe

the tax perturbation method o�ering explicit assumptions that justify its use.

The economy is inhabited by a population of agents index by θ ∈ Θ with measure

equal to one. Agents have preferences de�ned over consumption, c ∈ R+, and

taxable income z ∈ Z ⊂ R+, increasing in the �rst and decreasing in the latter and

represented by U(c, z, θ).

An allocation is a mapping from Θ to R+ × Z associating with each θ a pair

(c(θ), z(θ)).

The revelation principle guarantees that the set of allocations that can be

reached, given the information structure and the resource constraint are payo�

equivalent to the set of allocations implemented by direct revelation mechanisms.

In our context, the strategy space in the direct mechanism is Θ, consisting of a

type announcement and an outcome function (z, c) : Θ → Z × R+ specifying an

income-consumption pair for each type θ reported. The mechanisms induces truth-

ful revelation through the imposition of incentive compatibility constraints. We use

interim Bayesian Nash equilibrium as our implementability concept.

De�nition 1. An allocation z, c : Θ → Z × R+ is said to be incentive-feasible

when:

i) the incentive compatibility constraints

U(c(θ), z(θ), θ) ≥ U(c(θ̂), z(θ̂), θ), (1)

for all θ̂, θ ∈ Θ, and;

ii) the economy's resource constraint,∫
Θ

[z(θ)− c(θ)]f(θ)dθ ≥ G, (2)

are satis�ed.
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Tax schedule and the taxation principle Under the mechanism design ap-

proach one chooses in the space of direct mechanisms the one which implements

the allocation leading to maximum welfare. The tax perturbation approach, on the

other hand, works directly on the space of tax schedules, often called indirect mech-

anisms. That is, assume that, instead of designing a truthful direct mechanism, a

slightly less sophisticated government de�nes a common budget set for all agents

through the choice of an arbitrary non-linear tax schedule, T : Z 7→ R.
Facing such budget set a θ agent chooses zθ(T ) = arg maxz U(z − T (z), z, θ).

The taxation principle guarantees that the set of allocations that are implemented

via direct mechanism coincide with the set of allocations that are implemented via

taxes.

One of the goals of this paper is to clarify how important phenomena in the

space of direct mechanisms translate to tax schedules and vice-versa. We state and

prove it in our context for completeness.

Proposition 1 (Taxation Principle). An allocation z, c : Θ → Z × R+ is

incentive-feasible if and only if it is tax-implementable. In other words, an allo-

cation is incentive-feasible if and only if there exists a tax schedule T : Z → R such

that for all θ ∈ Θ:

i) T (z(θ)) = z(θ)− c(θ);

ii) z(θ) ∈ arg maxz∈Z(Θ) U(z − T (z), z, θ), and;

iii) the government's budget constraint holds:
∫
θ∈Θ

T (z(θ))f(θ)dθ ≥ G.

Proof. See the Appendix.

Now, instead of prescribing an allocation for the type announcements, the gov-

ernment designs a menu of choices, or budget sets, and lets individuals self-select

their income. As we saw in Proposition 1, the allocation generated by this tax sys-

tem is incentive-feasible. Incentive compatibility in the mechanism design approach

translates into Marshallian demands under the tax system. The taxation principle

provides the tool to connect direct and indirect mechanisms. It states that any

incentive-feasible allocation can also be implemented via an income tax system and

conversely any allocation implied by a tax system is incentive-feasible. This result

is a powerful tool in the challenging task of formally characterizing the connection

between incentives and behavioral responses.
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Tax Perturbation Methods Tax perturbation methods consist in producing

small tax reforms around a candidate optimal schedule and checking whether im-

provements exist under a pre-speci�ed welfare metric. We are at an optimal when

no such reforms exist.

The impact of tax reforms are captured by behavioral responses, usually mea-

sured by relevant elasticities. More speci�cally, when calculating the welfare impacts

of a tax reform, the tax designer anticipates the changes in taxable income supply

and internalizes it to get the best tax schedule. To make the method workable,

assumptions are made that amount to stating that behavioral responses are well

behaved.

Note that these are assumptions regarding equilibrium objects, taxable income

elasticities, which themselves depend on properties of an endogenous object, the

optimal tax schedule. In most cases � Piketty (1997); Dahlby (1998); Saez (2001) �

these assumptions are never made explicit but alluded to with an appeal to 'sensibil-

ity', which makes it di�cult to assess the method's generality. A notable exception

is Golosov, Tsyvinski, and Werquin (2014). One of the stated goals of this work

is to provide a technical foundation for perturbation methods. We shall use their

formalization as the main reference of su�cient conditions for the application of tax

perturbation methods.

Let us, �rst re-state Assumption 2 in Golosov, Tsyvinski, and Werquin (2014).

Assumption 1 (GTW). The taxable income functional zθ(T ) is locally Lipschitz

continuous in every direction at the initial tax system T . That is, for any admissible

perturbation H ∈ C2, there exists µ̄ > 0 and M such that µ < µ̄ implies ‖zθ(T +

µH)− zθ(T + µH)‖ < M × µ.

This assumption makes it very transparent the fact that behavioral responses

being well behaved depends on properties of the initial schedule T . The essence of

our question is whether these properties are satis�ed by the optimal tax schedule.

As we shall see, this need not be the case. Maybe Assumption 1 is too stringent,

for it requires behavioral responses to be well behaved for all θ. We then consider

Assumption 1 in Hendren (2017), which imposes very few restriction on individual

responses, but does impose continuity in the aggregate. Our discussion, and nu-

merical example shows that even these weaker restrictions need not be valid at the

optimum.

To state Hendren's assumption, �rst de�ne R(T ) = E[T (zθ(T ))] as the govern-

ment's revenue given a tax schedule T . Then consider small perturbations around

this status quo schedule.
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Assumption 2 (Hendren). Let Tµ(z) = T (z) + µ
∑N

j=1 T
j(z) for some functions

T j. Then R is continuously di�erentiable in µ and

d

dµ

∣∣∣∣
µ=0

R(Tµ) =
N∑
j=1

d

dµ

∣∣∣∣
µ=0

R(T jµ),

where, for j = 1, ..N., T jµ(z) = T (z) + µT j(z).

2.1 A quasi-linear economy

As we have already mentioned, these assumptions pertain to the nature of the

planner's program solution. If they are veri�ed at the optimum, then the method

does characterize, i.e., conditions are necessary for the optimum. To assess whether

these assumptions are warranted we need to be able to actually solve the problem.

There is a major issue to be considered in this case. We know that under the SMC,

invariably imposed under the mechanism design approach, Assumptions 1 and 2

are valid. Our task is to relax this assumption while maintaining our capacity to

solve the associated mechanism design program. To do so, we now specialize the

economy to a quasi-linear one.

I.e., we assume

U(c, z, θ) = c− v(z, θ),

with Θ = [θ, θ̄].

Function v(z, θ) is an important piece of our analysis. It represents the utility

cost incurred by a type-θ agent to earn z units of income. We assume v(z, θ) to be

increasing on earnings, convex and three times continuously di�erentiable on Z×Θ.

The utility function considered here has the advantage of being simple to handle

and �exible enough to accommodate several utility functions used in the public

economics literature. The interpretation of parameter θ depends on the application

under consideration. For instance, it can be the labor market productivity as in

the original Mirrlees's (1971) economy, a labor taste parameter, a discount factor in

dynamic models or the amalgam of several variables from a multidimensional model.

In Appendix A we present some common environments in the public economics

literature and the implied function v(z, θ) as well as the interpretation for θ. We

write it on terms of the taxable income to stress the idea that individuals have

margins other than labor supply to adjust in response to taxes.

In autarky, individuals consume all their income and optimally choose the tax-
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able income in order to satisfy the following �rst-order necessary condition:9

1− vz(zA(θ), θ) = 0. (3)

Two properties of the autarky allocation are worth noting. First, all individuals

get the same marginal disutility of taxable income supply. They generate income

until the marginal cost in terms of the utility of making the extra unit is equal to

1, which is the marginal bene�t. Second, when vzθ > 0, higher types get lower

incomes in autarky, and when vzθ < 0, higher types get higher incomes.

Our setting is, therefore, very close to that in ?, with one small di�erence: we do

not impose SMC. Note that in this setting SMC amounts to imposing constancy in

the sign of vθz(z, θ). This assumption states that the marginal rate of substitution

between consumption and taxable income is everywhere decreasing (or everywhere

decreasing) in type. In our model the marginal rate of substitution between con-

sumption and income is given by

dc

dz

∣∣∣∣
V (c,z,θ)=cte

= vz(z, θ). (4)

Therefore, the utility function V (c, z, θ) satis�es the usual Spence-Mirrlees condition

if vzθ < 0 (or vzθ > 0), for all z ∈ Z and θ ∈ Θ. Graphically, in a diagram Z×C, the
indi�erence curves of individuals with lower types should be stepper (when vzθ < 0

) and cross each other at most once.

We depart from SMS by assuming the following.10

Assumption 3. The condition vzθ(z, θ) = 0 de�nes implicitly a monotonic function

z0 : Θ → Z such that vzθ(z, θ) > 0 for z < z0(θ) and vzθ(z, θ) < 0 for z > z0(θ).

For simplicity, assume additionally that vzzθ > 0.

Assumption 3 above, �rst used in Araújo and Moreira (2010), relaxes the re-

quirement that the utility function satis�es the SMC.11 Function z0(θ), henceforth

referred as a separating curve, splits the space Θ × Z into two regions where the

signal of the cross-derivative remains constant. Let us de�ne CS− = {(θ, z) ∈
Θ × Z : vzθ(z, θ) < 0} and CS+ = {(θ, z) ∈ Θ × Z : vzθ(z, θ) > 0} these regions.

The function z0(θ) can be increasing or decreasing depending on the application.

9Note that the second-order su�cient condition is satis�ed since we assumed function v(z, θ)
to be convex in z.

10The assumption vzzθ > 0 is not crucial but will be convenient to guarantee concavity of
government objective function.

11This assumption was also used in Schottmüller (2015), Choné and Gauthier (2017) and Araujo,
Moreira, and Vieira (2015).
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See Appendix A for examples of economies generating this particular type of failure

of the SMC. Figure 1 plots the separating curve generated in the economy from

Example 1.12

CS-

CS +

1.5 2.0 2.5 3.0 3.5 4.0
θ

1.0

1.5

2.0

2.5

z

The separating Curve Z0(θ)

Figure 1: The separating curve

Example 1 (Guiding Example). Assume that every individual in the economy

has two negatively and perfectly correlated characteristics: (i) labor market produc-

tivity θ to generate taxable income (measured in units of the output good) z = θl;

(ii) a cost in terms of utility given by χh(l), where χ represents a taste for labor

parameter.

Individuals with high θ generate more income for a given level of labor supply.

Individuals with high χ have higher disutility when supplying a given level l of labor.

Assuming θ and χ are negatively correlated in the following way: χ = χ(θ) the

function v(z, θ) takes the form:

v(z, θ) = χ(θ)h
(z
θ

)
(5)

assuming that χ(θ) = θ−K and h(·) = exp(·), where K is a constant, we will have

the failure of SMC as in Assumption 1. The parameter θ creates a tension between

productivity and tastes for labor. See Example A4 in Appendix A for more details.

In the region to the left of the separating curve the �laziness� e�ect dominates the

�productivity� e�ect and in the region to the right the opposite is true. Therefore,

there is no clear ordering of the marginal utility (or MRS) according to type θ. In

particular, as one can see in Figure 2, indi�erence curves for di�erent types may

cross twice.

In the next section we explore the consequences for optimal tax theory of re-

placing SMC by Assumption 3.

12In Appendix A this example is identi�ed by Example A4.
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Figure 2: A pair of indi�erence curves for the economy in Example 1

3 The failure of SMC and its implications

Typically taxation models include assumptions which discipline the relationship

between marginal rate of substitution and types. In more broad contexts of mecha-

nism design and signaling games, they are known as the Spence-Mirrlees (or single-

crossing) condition. They state that the marginal rate of substitution between con-

sumption and taxable income is decreasing in the type. In our model the marginal

rate of substitution between consumption and income is given by

dc

dz

∣∣∣∣
V (c,z,θ)=cte

= vz(z, θ). (6)

Therefore, the utility function V (c, z, θ) satis�es the usual Spence-Mirrlees condition

if vzθ < 0, for all z ∈ Z and θ ∈ Θ. Graphically, in a diagram Z×C, the indi�erence
curves of individuals with lower types should be stepper (when vzθ < 0 ) and cross

each other at most once. The assumption below, �rst used in Araújo and Moreira

(2010), relaxes the requirement that the utility function satis�es the SMC.13

Assumption 4. The condition vzθ(z, θ) = 0 de�nes implicitly a monotonic function

z0 : Θ → Z such that vzθ(z, θ) > 0 for z < z0(θ) and vzθ(z, θ) < 0 for z > z0(θ).

For simplicity, assume additionally that vzzθ > 0.14

The function z0(θ), henceforth referred as a separating curve, splits the space

13This assumption was also used in Schottmüller (2015), Choné and Gauthier (2017) and Araujo,
Moreira, and Vieira (2015).

14The assumption vzzθ > 0 is not crucial but will be convenient to guarantee concavity of
government objective function.
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Θ × Z into two regions where the signal of the cross-derivative remains constant.

Let us de�ne CS− = {(θ, z) ∈ Θ × Z : vzθ(z, θ) < 0} and CS+ = {(θ, z) ∈
Θ × Z : vzθ(z, θ) > 0} these regions. The function z0(θ) can be increasing or

decreasing depending on the application. See Appendix A for examples of economies

generating this particular type of failure of the SMC. Figure 1 plots the separating

curve generated in the economy from Example 1.15

CS-

CS +

1.5 2.0 2.5 3.0 3.5 4.0
θ

1.0

1.5

2.0

2.5

z

The separating Curve Z0(θ)

Figure 3: The separating curve

Example 2 (Guiding Example). Assume that every individual in the economy

has two negatively and perfectly correlated characteristics: (i) labor market produc-

tivity θ to generate taxable income (measured in units of the output good) z = θl;

(ii) a cost in terms of utility given by χh(l), where χ represents a taste for labor

parameter.

Individuals with high θ generate more income for a given level of labor supply.

Individuals with high χ have higher disutility when supplying a given level l of labor.

Assuming θ and χ are negatively correlated in the following way: χ = χ(θ) the

function v(z, θ) takes the form:

v(z, θ) = χ(θ)h
(z
θ

)
(7)

assuming that χ(θ) = θ−K and h(·) = exp(·), where K is a constant, we will have

the failure of SMC as in Assumption 1. The parameter θ creates a tension between

productivity and tastes for labor. See Example A4 in Appendix A for more details.

In the region to the left of the separating curve the �laziness� e�ect dominates the

�productivity� e�ect and in the region to the right the opposite is true. Therefore,

there is no clear ordering of the marginal utility (or MRS) according to type θ. In

15In Appendix A this example is identi�ed by Example A4.
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particular, as one can see in Figure 2, indi�erence curves for di�erent types may

cross twice.
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SMC Failure in our Guiding Example

Figure 4: A pair of indi�erence curves for the economy in Example 1

The natural ordering created by the SMC is an important tool to reduce the

complexity of IC constraints that had to be considered. Indeed, when the SMC is

satis�ed the set of implementable allocations is fully characterized by local condi-

tions. These local incentive compatibility constraints are the usual ones found in

the literature, summarized in the following lemma (the necessity of these conditions

does not depend on the validity of the SMC).

Let V : Θ→ R+ be the informational rent function of the agent in an incentive-

feasible mechanism z, c : Θ→ Z × R+. Hence, V (θ) = c(θ)− v(z(θ), θ).

Lemma 1. Suppose that z : Θ→ Z is part of a bounded incentive-feasible allocation

z, c : Θ → Z × R+. Then, the following are necessary local conditions for

implementability.

(i) (Envelope) The agent's informational rent function, is given by

V (θ) = V (θ)−
∫ θ

θ

vθ(z(s), s)ds, (8)

for all θ ∈ Θ;

(ii) (Monotonicity) z : Θ → Z is non-decreasing in the region CS− and non-

increasing in the region CS+.

Proof. See the Appendix.

14



Condition (i) of Lemma 1 guarantees payo� equivalence across incentive-feasible

mechanisms, and is equivalent to the �rst-order condition of agents' revelation prob-

lems. Condition (ii) is related to the local second-order necessary conditions of these

problems. We can recover consumption from the de�nition of informational rent:

c(θ) = V (θ) + v(z(θ), θ).

When the SMC is imposed, at any allocation, the MRS for di�erent types are

ordered in the same way. Under Assumption 1, in contrast, the ordering of MRS

between any two types will in general depend on the speci�c allocation one is

considering � see Figure ??. It is, then, natural to ask whether other non-local

necessary conditions for implementability must be taken into account since, without

a natural ordering, it is possible to have di�erent and �distant� agents choosing the

exact same allocation. In this case, a whole new set of global incentive compatibility

constraints must be imposed. The necessary condition described in the following

proposition is derived from these global incentive compatibility constraints.

Lemma 2 (Discrete pooling condition). Let z : Θ → Z be an implementable

allocation and let T (z) be the tax schedule that implements it (as in Proposition 1).

Suppose that z : Θ→ Z pools two di�erent types at z ∈ Z (i.e. z = z(θ) = z(θ̂)) a

income level where T : Z → R is di�erentiable. Then, we must have

vz(z, θ) = vz(z, θ̂). (9)

Proof. Let z : Θ → Z be an allocation. We know from Proposition 1 (taxation

principle) that there exists a tax schedule T : Z → R such that the problem of the

individual is

z(θ) ∈ arg max
z∈Z(Θ)

V (z − T (z), z, θ). (10)

Given the di�erentiability of the tax schedule, the optimum can be characterized

by the �rst-order condition at z(θ) that is given by

1− T ′(z(θ)) = vz(z(θ), θ). (11)

and analogously for z(θ̂).

Since z(θ) = z(θ̂) = z,

vz(z, θ) = 1− T ′(z(θ)) = 1− T ′(z(θ̂)) = vz(z, θ̂). (12)

The condition in Lemma 2, henceforth denoted discrete pooling, is a direct con-
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sequence of the taxation principle and requires that discretely pooled types obtain

face the same marginal tax rate despite having 'very di�erent' types.

It is important to distinguish discrete pooling from continuous pooling where all

types in a neighborhood receive the same allocation. Continuous pooling usually

happens when the monotonicity constraint (as in Lemma 1 (ii)) is binding and an

ironing procedure is necessary to guarantee incentive-compatibility.

Figures 5a and 5b show how discrete pooling occurs in the space of indirect

and direct mechanisms, respectively. Here we should note that under SMC it is

impossible to have this kind of discrete pooling behavior since very di�erent agents

will have very di�erent slopes for their indi�erence curves at any given (c, z).

𝒛 − 𝑻 𝒛

V 𝐜, 𝐳, 𝜽ᇱ = 𝜥𝟏

V 𝒄, 𝒛, 𝜽ᇱᇱ = 𝜥𝟐

(a) Indirect Mechanism

𝒛𝟎 ȉ

𝒛(𝜽ᇱ) 𝒛(𝜽ᇱᇱ)
z ȉ

(b) Direct Mechanism

Figure 5: Discrete Pooling

Figures 6a and 6b show how continuous pooling occurs in the space of indirect

and direct mechanisms, respectively. Continuous pooling shows up as a �at region

in the direct mechanism and a kink in the tax schedule in the indirect mechanism.

The kink induces di�erent but close agents to make the same choice even though

they do not have the same MRS at their choice. At the kink, the marginal tax rate

is not de�ned, but only the right and left derivatives are de�ned. Therefore, if type

θ is choosing at the kink (i.e., his/her MRS is in between the right and the left

derivatives) all types in a neighborhood will do as well. Note that types θ′ and θ′′

are continuously and discretely pooled.

Let z : Θ→ Z be an arbitrary allocation and de�ne ψb, ψs : Z 7→ Θ, the pseudo-

inverse of z, as ψb(z) = inf{θ ∈ Θ; z(θ) ≤ z} and ψs(z) = sup{θ ∈ Θ; z(θ) ≤ z}.
Additionally, whenever {θ ∈ Θ; z(θ) ≤ z} = ∅ de�ne ψb(z) = θ and ψs(z) = θ.

Proposition 2 (Global IC). Let z : Θ → Z be a bounded allocation and ψb, ψs :

Z → Θ the pseudo-inverse functions of z. Therefore, for all θ, θ̂ ∈ Θ, z : Θ→ Z is

16
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Figure 6: Continuous Pooling

incentive compatible if and only if∫ z(θ)

z(θ̂)

[vz(z, ψs(z))− vz(z, ψb(z))] dz ≥ 0. (13)

Proof. De�ne the Global Incentive Function (GIF) as

Φ(θ, θ̂; z(·)) :=

∫ θ

θ̂

[∫ z(s)

z(θ̂)

vzθ(t, s)dt

]
ds. (14)

An allocation z : Θ → Z is incentive compatible if and only if for all θ, θ̂ ∈ Θ,

Φ(θ, θ̂; z(·)) ≥ 0 � see Appendix B.0.1.

Note that

0 ≤ Φ(θ, θ̂; z(·)) =

∫ θ

θ̂

[∫ z(s)

z(θ̂)

vzθ(t, s)dt

]
ds =

∫ z(θ)

z(θ̂)

[∫ ψs(z)

ψb(z)

vzθ(t, s)ds

]
dt

=

∫ z(θ)

z(θ̂)

[vz(t, ψs(t))− vz(t, ψb(t))] dt, (15)

where the second equality comes from Fubini's theorem and the last from the fun-

damental theorem of calculus. Change of variables gets the result.

The next corollary describes a particular global incentive-compatibility con-

straint that will be shown to be very relevant. It gives the conditions for which

a pivotal type θd does not envy the type in the upper bound of type space when
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the allocation features a U-shape format.

Corollary 1. Let z : Θ → Z be a bounded, U-shaped incentive-compatible alloca-

tion. Therefore, an arbitrary type θd ∈ Θ does not envy θ if∫ zh

zl

[vz(z, ψs(z))− vz(z, θd)] dz = 0, (16)

where ψb, ψs : Z → Θ the pseudo-inverse functions of z, zl = z(θd) and zh = inf{z ∈
Z : ψs(z) = θ}.

Proof. Note that for any z ∈ Z such that ψb(z) 6= ψs(z) (z ∈ [z, zl)) we have

discrete pooling and consequently vz(z, ψs(z)) − vz(z, ψb(z)) = 0 by Proposition 2

since z : Θ→ Z is incentive-compatible.

4 Optimal Taxation

4.1 Government

In a quasi-linear environment, the government needs a reason to redistribute income

across households. We assume that the government maximizes a weighted Utilitar-

ian Social Welfare Function.16 More speci�cally, the government wants to maximize

a weighted average of individuals' utilities where the weights of types are given by

the function g : Θ → R+, which we assume to be non-negative and to integrate to

1. If G(θ) =
∫ θ
θ
g(a)da �rst-order stochastically dominates F , the government puts

higher weight on individuals' utility with lower θ.

The government's problem in the structural mechanism design formulation is

to choose an incentive-feasible allocation c, z : Θ → R+ × Z to maximize the

welfare criterion. We can incorporate the local incentive-compatibility and budget

constraints in the objective function and rewrite the planner's mechanism design

problem as follows:17

max
z:Θ→Z

∫ θ

θ

W (z(θ), θ)dθ, (17)

subject to the global incentive constraints de�ned in equations (9) and (13) from

Propositions ?? and 2.

16Most papers in optimal taxation assumes the government to follow a unweighted utilitarian
or a Rawlsian social welfare criterion. Under the former criterion, only it is the di�erence between
marginal utility of consumption across households due to the concavity of the utility function which
generates a desire to redistribute income. However, with quasi-linear utility the marginal utility
of consumption is constant and equal to 1 for all individuals and a direct motive for redistribution
must be created.

17See Appendix C for a detailed derivation.
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The social welfare function augmented of incentive-feasibility constraints is given

by the function W : Z ×Θ→ R de�ned as

W (z, θ) =

[
z − v(z, θ) + vθ(z, θ)

G(θ)− F (θ)

f(θ)

]
f(θ). (18)

Let us de�ne some relaxed sub-problems that will help us build the proposed

mechanism. All these solutions emerge naturally in our approach based in type

assignment functions.18

Relaxed Solution Let zR : Θ → Z denote the solution of the relaxed problem

where all global-incentive compatibility constraints are ignored. Note that this

relaxed problem can be solved pointwise with the following Euler equation given by

Wz(z
R(θ), θ) = 0. (19)

For future reference de�ne TR : Z → R the tax schedule that would be implied by

this allocation, i.e., TR(z(θ)) = zR(θ)− cR(θ). It is important to note that this tax

schedule not necessarily implements this allocation. Indeed, it will not when the

allocation is not incentive compatible.

Discrete Pooling Solution Let zDP : Θ → Z denote the solution of the gov-

ernment problem where the discrete pooling condition as de�ned in equation (9)

and monotonicity constraints as de�ned in Lemma 1 (ii) are considered. zDP de-

scribes the solution when two �very di�erent� types are discretely pooled. The

Euler equation for this problem when types θ, θ̂ are pooled at income level z (i.e.,

z = zDP (θ̂) = zDP (θ)) is given by:

Wz(z, θ)

vzθ(z, θ)
f(θ) =

Wz(z, θ̂)

vzθ(z, θ̂)
f(θ̂). (20)

The mechanism proposed by Araújo and Moreira (2010) has the solutions of

these two subproblems as its elements connected through a vertical ironing proce-

dure.19

For future reference de�ne TDP : Z → R the tax schedule that would be implied

by this allocation, i.e., TDP (z(θ)) = zDP (θ)− cDP (θ).

18We refer the reader who may be interested in the details of these relaxed problems to Araújo
and Moreira (2010) and Araujo, Moreira, and Vieira (2015).

19The vertical ironing procedure creates additional distortions on the mechanism to guarantee
incentive-compatibility for the vertically pooled types.
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Figure 7: Numerical Solutions for Example A5

Isoperimetric Solution The isoperimetric problem, as proposed by Araujo,

Moreira, and Vieira (2015), has these same elements but instead of connecting

the solutions zR and zDP through vertical ironing, it allows for discontinuity of the

mechanism at a pivotal type θd. The introduction of the discontinuity requires us

to take into account an additional relevant global IC - that the pivotal type does

not envy the allocation prescribed to the highest type as characterized in Corollary

1.20

The Euler equation for this iso-perimetric problem when the GIC is binding is

given by

Wz(z, ψs(z)) + δvzθ(z, ψs(z)) = 0, (21)

where δ is the Lagrange multiplier associated with the binding GIC.

To illustrate these objects, Figure 7 plots the numerical solutions of these relaxed

problems for the economy from Example A5 (see Appendix A).

4.2 Variational Approach

The literature has used variational techniques to characterize optimal tax systems

since Dahlby (1998), Piketty (1997) and Saez (2001). However, we claim that

to use this as a methodology in the task in economic environments other than

the traditional Mirrlesian economies a more rigorous assessment of the underlying

conditions that justify this method is needed.21 The �rst step is to give a de�nition

that is consistent with what has been (loosely) done previously.

20For z ∈ [zl, zh] as de�ned in Corollary 1.
21These papers use these variational techniques to write the traditional formula for the marginal

income tax rate �rst derived in Mirrlees (1971) in terms of empirically observable objects.
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De�nition 2. We de�ne as variational approach the technique to �nd optima using

perturbations within the class of tax schedules in which agents decision can be fully

characterized by local conditions (as in agents FONC eq (XXX)).

This is equivalent to assume that agents demand is always fully determined by

the local behavior of the budget set around the choices, and we can work with

linearized versions of these sets. Another equivalency, is the assumption that at the

optimal an envelope conditions is always met, regardless the characteristics of the

baseline mechanism that is being reformed.

Two things are crucial to be noted. First these conditions are imposed on en-

dogenous objects that can never be checked if satis�ed or not. Second, these as-

sumptions intrinsically imposes conditions that have to be met by any admissible

reforms. Therefore the usage of VA may restrict the search for the optimal in a

strict subclass of the a priori available mechanisms, generating then welfare losses.

We argued in the rest of these paper that there are situations where this will

be restrictive. The crucial element for it is the existence of binding global in-

centive compatibility constraints between agents choosing di�erent levels of in-

come/consumption pairs.22 The literature so far always impose (Explicitly or not)

conditions to avoid this possibility. In other words, the VA intrinsically assume that

the welfare impact of a reform that canges the tax liability at an income level z, is

con�ned to those agent choosing to have income at that same level in the baseline

tax system.

Several di�erent assumptions can impose conditions strong enough to guarantee

the validity of the variational approach. The literature has not agreed on which

conditions would be the �natural" one. For instance Saez (XXX) assumes that the

resulting tax schedule is a strictly convex function, Golosov, Tsyvinski, and Werquin

(2014) assumes that agents decisions are Lipschitz-continuous with respect to the

endogenous tax system, another possibility would be assume that agents decisions

(for a given tax system) are singleton. All these assumptions are examples of

constraints that guarantees the validity of VA.

We argued that the interpretation of VA as a restriction on the space of admis-

sible mechanism as a natural one since it is more transparent and easier to interpret

his economic meaning in terms of incentive constraints. The next proposition de-

scribes an important characteristic of mechanisms consistent with the VA.

Proposition 3. The resulting tax system of imposing the variational approach

22Saez (XXX) acknowledge the possibility of binding global incentive constraints. He avoided
the complications generated by that by assuming that it would happen at most in a zero measure
set of individuals.

21



presents convex values.

Proof. ...

Let's consider as an admissible reform at income level z ∈ Z a function h : Z →
R, h ∈ C2, such that h(z) = 0 in z ∈ Z/(z − ε, z + ε). Figure XXX illustrates such

reforms. These perturbations reforms the tax system only in a neighborhood of the

income level z, this will be convenient to make clear the impact of this reform in

agents that are not choosing income exactly at level z. The resulting tax schedule

is T (z) + h(z) leaving after tax income to be consumed by the agent that choose

income level z to be c = z − T (z)− h(z).

Recall that zθ(T ) represents the optimal choice (functional) of taxable income of

a type θ individual when facing a tax schedule T : Z → R, and Vθ(T ) the indirect

utility of this problem. We can write, the objective of government as

W̃(T ) =
1

β

∫
Θ

Vθ(T )g(θ)dθ +

∫
Θ

T (zθ(T ))f(θ)dθ (22)

where β is the shadow value of public funds, hence this objective is measure in

monetary units.

gz(z) =

∫
{θ∈Θ:zθ(T )=z}

g(θ)dθ, and fz(z) =

∫
{θ∈Θ:zθ(T )=z}

f(θ)dθ (23)

Now we can change measures to write everything in in terms of income, to get this

new objective

W̃(T ) =
1

β

∫
z∈Z

Vθ(T )gz(z)dz +

∫
z∈Z

T (z)fz(z)dz (24)

From the equation above it is worth noting that the distribution of income and

welfare weights are endogenous to the tax schedule.

The welfare impact of a tax change in the direction of a reform h : Z → R is

calculated by the following Gateaux derivative23

dW̃(T, h) =
1

β

∫
z∈Z

dVθ(T, h)g(z)dz +

∫
z∈Z

T ′(z)dz(T, h)f(z)dz. (25)

We shall denote the �rst term welfare e�ect and the second revenue e�ect.

1

β

∫
z∈Z

dVθ(T, h)g(z)dz (26)

23For convenience let's consider twice continuously di�erentiable reforms h ∈ C2
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and a budget (e�ciency) e�ect∫
z∈Z

T ′(z)dz(T, h)f(z)dz. (27)

4.3 An approach to the optimal taxation problem based on

type assignment functions

The Variational Approach works in the space of indirect mechanisms, where the

government proposes a tax schedule and lets individuals self-select. Although it is

easier to get �rst-order conditions using this technique, it is hard to have a clear

sense of all objects involved. In particular, it is hard to guarantee su�ciency of

these �rst-order constraints to derive formulae for the optimal taxation.

On the other hand, the traditional mechanism design approach is very clear

about the role of each structure but it is also extremely di�cult to apply when the

characteristics of the problem deviate from the standard model. Our suggestion is

to work with the type assignment functions as proposed by Noldeke and Samuelson

(2007). We can think of type assignment functions as the pseudo-inverses of a direct

mechanism.24

The main advantage of using this approach relies on the fact that global incentive

constraints are naturally described in terms of income levels instead of types. For

the local IC constraints, we have the opposite. They are naturally expressed in terms

of types (recall Lemma 1); by using this approach, we take the best characteristics

of both.

The �rst step to implement this approach is to re-write the objective function

of the government in equation (17) as follows:

∫ θ

θ

W (z(θ), θ)dθ =

∫ θ

θ

(∫ z(θ)

z

Wz(z, θ)dz

)
dθ +

∫ θ

θ

W (z, θ)dθ

=

∫ z

z

[W(z, ψs(z))−W(z, ψb(z))] dz +

∫ θ

θ

W (z, θ)dθ, (28)

where W : Z ×Θ→ R is given by

W(z, θ) =

∫ θ

θ

Wz(z, s)ds (29)

24Without SMC, it is common to have non-monotone solutions and the inverse function of any
such mechanism is not well de�ned. However, the pseudo-inverses (to the right and to the left)
are well de�ned.
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and ψb(·) and ψs(·) are the type assignment functions. The �rst equality follows

from the Fundamental Theorem of Calculus and the second from Fubini's Theorem.

Therefore we can rewrite government's optimal taxation problem in terms of

type-assignment functions as choosing ψb, ψs : Z → Θ to maximize the functional

in Equation 28 subject to all global incentive constraints. Formally, the problem is

max
ψb(·),ψs(·)

∫ z

z

[W(z, ψs(z))−W(z, ψb(z))] dz (30)

subject to all global incentive constraints: for all zl, zh ∈ Z∫ zh

zl

[vz(z, ψs(z))− vz(z, ψb(z))] dz ≥ 0. (31)

Note that the set of all global incentive constraints includes in particular: (i)

discrete pooling constraints, vz(z, ψb(z)) − vz(z, ψs(z)) = 0 whenever θ < ψb(θ) <

ψs(θ) < θ; (ii) monotonicity constraints: ψb non-increasing and ψs non-decreasing;

and (iii) and the local incentive constraints in Lemma 1 (i).

This problem has several convenient properties. First, notice that this problem

is entirely described in terms of income levels. The discrete pooling condition is a

point-wise constraint and the global incentive constraint is a collection of isoperimet-

ric constraints, which is very common in Calculus of Variations. As a consequence,

this formulation disentangles the local IC of global ICs, by allowing us to treat them

separately.

Numerical Simulations of Examples A4 and A5 display U-shaped solutions (i.e.

z : Θ→ Z such that there exists θ0 ∈ int(Θ) with z(·) decreasing for all θ < θ0 and

z(·) increasing for all θ > θ0 ). Inspired by this let's restrict the class of problems

to be considered.25

Assumption 5. Assume that the relaxed solution is U-shaped and cross the sep-

arating curve in its decreasing portion. Assume additionally that zR(θ) > zR(θ).

Lastly, assume that the solutions are uniquely determined.

Figure 5 illustrates the geometry of our class of problems. The typical geometry

has zDP (θ) ∈ [z0(θ), zR(θ)],26 zR(θ) is equal to the �rst best value. Te same thing

happens in the point where the solutions meet, i.e., zR(θ) = zDP (θ) = z0(θ). There-

fore, potentially we may have the usual non-distortion at the top result as well as

non-distortion at the middle. We will discuss this in greater depth later.

25Schottmüller (2015) study a class of monotone solutions where global incentive constraints
are binding even though no discrete pooling happens.

26With some abuse of notation, we can change the limits of the interval whenever z0(θ) > zR(θ).
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We believe that this class of solutions comprises many interesting applications

in public economics and provides a well-behaved solution that has very intuitive

and interesting characteristics. In particular, it reduces the set of global ICs to be

considered.

4.4 A solution featuring segregation

We propose a taxation schedule where the government segments individuals in two

groups: low and high income.27 The intuition for doing such a policy is as follows.

By dividing into two groups, the government can further explore the trade-o� be-

tween equity and e�ciency within each group. The only additional di�culty is that

the government should guarantee that individuals do not envy the allocations of the

other group. These are the global incentive conditions that may be binding, thus

helping to broaden the design of tax systems. In particular, when the conditions are

binding, the underlying assumptions for the use of variational methods are violated.

Let θd ∈ [θ, θ] be a pivotal type whose behavior will determine the segregation

of groups. Before going into details, let's motivate the solution in some steps. First

consider the problem

max
ψb(·),ψs(·)

∫ z

z

[W(z, ψs(z))−W(z, ψb(z))] dz (32)

subject to:

(i)
[
θ − ψs(z)

]
[vz(z, ψb(z))− vz(z, ψs(z))] ≤ 0;28

(ii) [ψb(z)− θ] [vz(z, ψb(z))− vz(z, ψs(z))] ≥ 0;

(iii) ψb and ψs monotonous.

In this exposition we will assume that the only relevant constraint is the condi-

tion (i). This problem is the type assignment formulation of the problem considered

in Araújo and Moreira (2010). It involves parts of the relaxed solution zR(·) and

the discrete pooling solution zDP (·). The transition between groups is done through

a vertical ironing procedure at an endogenously determined pivotal type θd. This

ironing procedure means that the government commits to o�er any income level in

the interval [z(θ−d ), z(θ+
d )]. Figures 8a and 8b illustrate the vertical ironing proce-

dure.

Remark 1. The correspondence solution in this problem is convex valued and,

therefore, consistent with the variational method.
27The segregation in groups was inspired by Araujo, Moreira, and Vieira (2015).
28This is a compact way of writing the condition vz(z, ψb(z)) − vz(z, ψs(z)) ≤ 0 being valid

whenever ψs(z) < θ.
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Figure 8: Vertical Ironing as in Araújo and Moreira (2010)

It turns out that this requirement is very restrictive since several types in the

upper part of the type space are discretely pooled with the connected segment.

Hence, an additional distortion should be implemented to guarantee incentive com-

patibility. In other words, the discrete pooling IC becomes binding more often than

necessary.

In fact, we can do better. Let us construct our solution in three intuitive (and

entertaining) steps. Let θd be the pivotal type where the vertical ironing process

occurs. At this point, we can think of this pivotal type as endogenously determined

in the problem of (30). Later, this type will parametrize a class of solutions. De�ne

zh = z(θ−) and zl = z(θ+) the right and left limits of the allocation at this pivotal

type.

Step 1 Jump allows us to return to the relaxed solution bene�ting from a lower

level of distortion.

Instead of o�ering all level of income z ∈ [z(θ−d ), z(θ+
d )], the government could

o�er a discontinuous allocation at θd. In this case, the set of agents on the right part

of the type space would not be discretely pooled anymore. Hence, the allocation

could return to the less distorted relaxed solution. The transition between these

solutions is done through continuous pooling to guarantee monotonicity, creating a

kink in the tax schedule. De�ne zm = zR(θ). This is clearly a welfare improvement

since it returns to the less distorted relaxed solution (recall that the relaxed problem

is a more constrained problem).

Step 2 A global incentive compatibility constraint may be violated.

In the following Lemma 3 we present the set of potential global incentive com-
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patibility constraints that may be binding. Indeed, the only global constraints that

matter are the ones where the pivotal type θd is indi�erent between the lowest al-

location on the high-income group zh and the highest allocation in the low-income

group zl; and that the highest type θ does not envy the highest allocation at the

low-income group zl.

Lemma 3. Under the conditions of Assumption 5 the set of potentially binding

global incentive-compatibility constraints reduce only to the following two:∫ zh

zl

[vz(z, ψs(z))− vz(z, θd)] dz = 0 (33)

and ∫ zm

zl

[
vz(z, ψb(z))− vz(z, θ)

]
dz = 0. (34)

These constraints represent the marginal types that are more willing to get the al-
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location in the other group.

These constraints are con�icting i.e., if one is binding the other one will necessary

be slack. Therefore, depending on the problem, only one may be binding. For the

sake of simplicity, assume that the global IC, given by equation (34), is the one that

can potentially be binding.

The shaded area in Figure 8 marks region where this GIC is integrated over.

If the area weighted by vzθ is bigger to the right side of the separating curve, the

allocation will not be incentive-compatible.

Remark 2. If both GICs are slack, the solution in the previous step cannot be

improved, i.e., it is the optimal in this class.

Step 3 Distort allocations to restore incentive compatibility.

The last step requires distorting the allocation using zm, zh, andzl as margins to

restore the GIC. By construction, we have a class of solutions parametrized by the

pivotal type. The proposed solution in this paper is to maximize over the parameter

θd, henceforth referred to as the segregation mechanism. In Appendix C we present

the mathematical formulation of the optimization program.

Whenever θd ∈ int(Θ) the solution features segregation in low and high income

groups. The extreme cases θd = θ and θd = θ are the solutions proposed in Theorem

3 of Araújo and Moreira (2010) (see Figure 4 in the page 1125 for the intuition),

which are consistent with the variational method.

As we can see in Figure 11a and 11b the segregation mechanism creates an

extra distortion on high types to balance the impact of the binding GIC. Another

unusual characteristic is the 100% marginal tax rate at the optimum. This is a

empirical phenomenon that do not have any rationalization based on optimality in

the taxation literature. At the best of our knowledge, we provided the �rst theory

of why should a government implement 100% marginal tax rate in a optimal tax

schedule.

Remark 3. By construction, the monotonicity constraint of ψb and ψs being in-

creasing and decreasing, respectively, is satis�ed.

Remark 4. If there exists z ∈ [z, z] such that ψ+
b (z) = ψ−b (z) ≡ θd, the optimal

allocation does not present jump. Therefore, the solution in Araújo and Moreira

(2010) is a degenerate case of our proposed solution.
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4.5 Necessary conditions

The next propositions characterize the optimal marginal tax rate with respect to

the type assignment functions.

Proposition 4. Let ψb, ψs : Z → Θ the type assignment functions (correspon-

dences) that solves the segregation mechanism for a given θd. The �rst-order nec-

essary condition for the optimal marginal tax rate is given by:

(i) for z ∈ (zh, z], ψs(z) = θd and ψb(z) satis�es

T ′(z) = 1− vz(z, ψb(z)) =

[
G(ψb(z))− F (ψb(z))

f(ψb(z))

]
vzθ(z, ψb(z)); (35)

(ii) for z ∈ (zm, zh), ψs(z) = ψb(z) = ∅ and we have 100% marginal tax rate. This

is indeed a su�cient but not necessary condition;

T ′(z) = 1; (36)

(iii) for z ∈ [z, zl), we have discrete pooling and, ψs(z) and ψb(z) are de�ned by

[
1− vz(z, ψb(z))−

(
G(ψb(z))− F (ψb(z))

f(ψb(z))

)
vzθ(z, ψb(z))

]
f(ψb(z))

vzθ(z, ψb(z))
=[

1− vz(z, ψs(z))−
(
G(ψs(z))− F (ψs(z))

f(ψs(z))

)
vzθ(z, ψs(z))

]
f(ψs(z))

vzθ(z, ψs(z))
;

(37)
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(iv) for z ∈ (zl, zm], ψb(z) = θd and ψs(z) satis�es

T ′(z) = 1− vz(z, ψs(z)) =

[
G(ψs(z))− F (ψs(z))− δ

f(ψs(z))

]
vzθ(z, ψs(z)), (38)

where δ is the Lagrange multiplier associated with the binding GIC (either

Equation 33 or 34 from Lemma 3).

Remark 5. For z ∈ {zl, zh} we have continuous pooling and the type assignment

function is actually a correspondence.

Theorem 1. Whenever the segregation mechanism is not degenerate, that is, θd ∈
(θ, θ), the conditions underlying the Variational Method are violated. Moreover, in

this case, the segregation mechanism dominates the solution given by the variational

method in terms of welfare.

Proof. Given the formulation of our problem, this proof is straightforward. First

notice that whenever the segregation mechanism is not degenerate the resulting tax

schedule is discontinuous. Moreover, since the GIC constraint is binding in this

case, local perturbations of the tax schedules will break the GIC of all types close

to the pivotal type (or close to θ if the binding IC is the second equation of Lemma

3). Therefore, local reforms will have discontinuous impact on agents' decisions.

Therefore, zθ(T ) is not Lipschitz-continuous.

The intuition for the result in Theorem 1 goes as follows. According to the

Variational Method, the Gateaux di�erential of the welfare function, taking the

optimal mechanism as the baseline, should be zero in all directions. However,

we can �nd directions where the Gateaux derivative of the welfare function using

the segregation mechanism as the baseline will not be zero. As mentioned in the

introduction, local perturbations may have �rst-order impact on the welfare.

Conjecture 1. The taxation scheme proposed in Proposition 4 is the optimal in-

come tax mechanism in the class of càdlag mechanisms.

Example 3. Suppose that the common prior for the parameter θ is a uniform

distribution over the interval [0, 1]. The �rst-order necessary conditions for the

marginal tax rate in Proposition 4 can be written as:

(i) for z ∈ (zh, z], ψs(z) = θd and ψb(z) satis�es

T ′(z) = [G(ψb(z))− ψb(z)] vzθ(z, ψb(z)) (39)
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(iii) for z ∈ [z, zl), we have discrete pooling and ψs(z) and ψb(z) are de�ned by

T ′(z)

[
1

vzθ(z, ψb(z))
− 1

vzθ(z, ψs(z))

]
=

[G(ψb(z))−G(ψs(z))]− [ψs(z)− ψb(z)] (40)

(iv) for z ∈ (zl, zm], ψb(z) = θd and ψs(z) satis�es

T ′(z) = [G(ψs(z))− ψs(z)− δ] vzθ(z, ψs(z)), (41)

where δ is the Lagrange multiplier associated with the active GIC.

5 Conclusion

In this paper, we studied the design of income tax schedules in a class of economies

where the Spence-Mirrlees condition is violated. We showed that the lack of or-

dination created by the absence of this condition typically generates allocations

featuring non-monotonicities and discontinuities. These properties are novelties in

the taxation literature and may invalidate the usage of variational methods. We

also proposed a new methodology to tackle the design of income taxes based on

type assignment functions.

The next steps in the literature could involve a better understanding of the

�correct� elasticities implied by our analysis, as well as an investigation of its be-

havior, and the possible usage of quasi-experimental designs to estimate them. Our

main conclusion is that additional caution should be taken when using variational

methods in complex environments, given the potential non-regularity problems.

A Appendix - examples of the function v(z, θ)

The function v(z, θ) is �exible enough to summarize a big class of economies used

in several applications in the public economics literature.

Example A1 Diamond (1998) was the �rst to use quasi-linear utility function in a

typical Mirleessian economy. Types represent individual idiosyncratic productivity

θ in the labor market. Individuals generate taxable income z = θl By supplying l

�units� of labor at a cost in utility terms given by a function h(l) assumed to be
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su�ciently well behaved. In this model, the function v(·) takes the form

v(z, θ) = h
(z
θ

)
. (42)

Typically h(·) is increasing, convex and twice continuously di�erentiable function.

Example A2 Another very common used utility function in taxation literature

is

v(z, θ) = θh(z), (43)

where type θ represents an idiosyncratic labor taste parameter and h(·) represents
the disutility incurred in supplying l = z unities of labor.

Example A3 In Alves, da Costa, and Moreira (2017) the functional form

v(z, θ) = min
za,zb≥0

{
h

(
za
θa

)
+ h

(
zb
θb

)
s.t. za + zb = z

}
(44)

is used to denote couples e�cient labor supply decision in a unitary model of house-

hold. In this application type θ = (θa, θb) is a two-dimensional vector representing

the idiosyncratic labor productivity parameter of each spouse in a couple and h(l)

represents the disutility incurred in supplying l = z/θi unities of labor.

The next two examples do not satisfy the Spence-Mirrlees condition property

and are helpful in guiding our discussion.

Example A4 This example mixes the structure of examples A1 and A2 to create

a very reasonable economy where agents' utilities do not satisfy SMC. Assume that

every individual in the economy has labor market productivity γ to generate taxable

income (measured in units of the output good) z = γl at a cost in terms of utility

given by δh(l), where δ represents a taste labor parameter. Individuals with high γ

generates more income for a given level of labor supply. Individuals with low δ have

lower disutility when supplying a level l of labor. Assuming γ and δ depend on a

common parameter θ in the following way: γ = θ and δ = ψ(θ). In this economy

the function v(z, θ) takes the form29

v(z, θ) = ψ(θ)h
(z
θ

)
. (45)

29In the numerical exercises we make h(l) = exp(εl) and ψ(θ) = θ − b.
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For these functional forms,

vz(z, θ) =
ψ(θ)

θ
h′
(z
θ

)
, vzz(z, θ) =

ψ(θ)

θ2
h′′
(z
θ

)
, (46)

and

vzθ(z, θ) =
ψ(θ)

θ2
h′′(l)l

[
d
dθ

(ψ(θ)/θ)

ψ(θ)/θ

h′(l)

h′′(l)l
θ − 1

]
. (47)

Therefore, vzθ(z, θ) ≥ 0 (≤ 0) if and only if

d
dθ

(ψ(θ)/θ)

ψ(θ)/θ

h′(l)

h′′(l)l
θ − 1 ≤ 0 (48)

or equivalently [
ψ′(θ)

ψ(θ)
θ − 1

]
h′(l)

h′′(l)l
≤ 1 (≥ 1). (49)

Let ε(l) be the elasticity of labor supply,

ε(l) =
h′(l)

h′′(l)l
. (50)

It is constant equal to ε for the iso-elastic case,

h(l) =
1

1 + 1/ε
l1+1/ε. (51)

It is equals to ε/l for the exponential case,

h(l) = exp(l/ε). (52)

Now assume that ψ(θ) = θ− b with b < θ, the condition de�ning the function z0(θ)

simpli�es to [
θ

θ − b
− 1

]
≤ 1

ε(l)
. (53)

In the iso-elastic case we have a vertical line at

θ = b(ε− 1). (54)

In the more interesting case of exponential function we have a decreasing function

separating the regions as assumed in Assumption 1. Indeed,

z0(θ) = ε
b

1− b/θ
. (55)
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Example A5 This example is adapted from Araujo, Moreira, and Vieira (2015)

to our taxation context. The utility function is

v(z, θ) = zθ2 − b2(θ + 4)
z2

2
+ 1. (56)

In this example type θ does not have a clear interpretation but it can be thought

as a combination of di�erent forces a�ecting the agent's utility in a non-trivial

way. Despite the arti�ciality, the simplicity of this example is very convenient to

allow us to quickly assess the potential pitfalls of using a variational approach in

an environment where the SMC condition fails. Indeed, the separating curve z0(θ)

(Assumption 1) in this particular example is a increasing line given by

z0(θ) =
θ

b2
. (57)

To simplify things even further, we assume that the government follows a Rawlsian

social welfare criterion.30 Assume that types are uniformly distributed on the in-

terval Θ = [0, 1]. We simulated this example using Wolfram's Mathematica. We

can use the solution in Figure ?? to illustrate the relaxed subproblems in a concrete

example.

B Proofs

Proof of Proposition 1

Proof. Let z, c : Θ→ Z×R+ be an incentive-feasible allocation. Let T : Z → R be

de�ned as follows. For all z ∈ z(Θ), de�ne T (z) = z(θ)− c(θ). For z ∈ z(Θ)c make

T (z) = z and z ∈ z(Θ)c make T (z) = z. Let F ∗ to denote the income distribution

in the economy. Note that,∫
Z

T (z)dF ∗(z) =

∫
Z(Θ)

T (z)dF ∗(z) +

∫
Z(Θ)c

T (z)dF ∗(z)

=

∫
Z(Θ)

T (z(θ))dF ∗(z(θ)) +

∫
Z(Θ)c

zdF ∗(z) ≥
∫

Θ

[z(θ)− c(θ)]f(θ)dθ ≥ 0. (58)

where in the �rst inequality we use that Z(Θ) ⊂ Z ⊂ R+ and the last inequality

comes from the feasibility of the allocation, proving (i).

30As in Alves, da Costa, and Moreira (2017), the solution for this problem is equivalent to a
solution of a dual program where the government maximizes tax revenue subject to the incentive
constraints and a minimum utility requirement for the least well-o� individual.
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For (ii) take θ ∈ Θ arbitrary, note that for any z ∈ z(Θ)c

V (z − T (z), z, θ) = z − T (z)− v(z, θ) = z − z − v(z, θ) ≤ −v(0, θ) (59)

Therefore, z ∈ z(Θ)c cannot be optimal 31

Now take any z ∈ z(Θ), therefore z = z(θ̂), for some θ̂ ∈ Θ. By incentive

compatibility, we have

V (z(θ)− T (z(θ)), z(θ), θ) = z(θ)− T (z(θ))− v(z(θ), θ)

= z(θ)− [z(θ)− c(θ)]− v(z(θ), θ) = c(θ)− v(z(θ), θ)

≥ c(θ̂)− v(z(θ̂), θ) = z(θ̂)− [z(θ̂)− c(θ̂)]− v(z(θ̂), θ)

= z(θ̂)− T (z(θ̂))− v(z(θ̂), θ) = V (z − T (z), z, θ),

proving (ii). Therefore, any incentive-feasible allocation can be implemented by a

non-linear tax schedule.

Now take a tax schedule T : Z → R and let z, c : Θ → Z × R+ the allocation

implemented by this tax schedule where z(θ) represents the income that type-θ

agent chooses to get when facing the proposed tax schedule. Let us show that it

is incentive-feasible. The agent consumes all his income net-of taxes, then c(θ) =

z(θ)− T (z(θ)) and the government budget constraint implies∫
Θ

[z(θ)− c(θ)]f(θ)dθ =

∫
Θ

z(θ)− [z(θ)− T (z(θ))]f(θ)dθ

=

∫
Θ

T (z(θ))f(θ)dθ =

∫
Z

T (z)dF ∗(z) ≥ 0, (60)

where the last inequality follows from the budget balance condition. Therefore, the

allocation is feasible. To prove the incentive compatibility note that since z(θ) is

the choice facing the tax schedule, for any other z ∈ Z and in particular z(θ̂). We

have

c(θ)− v(z(θ), θ) = z(θ)− T (z(θ))− v(z(θ), θ)

≥ z(θ̂)− T (z(θ̂))− v(z(θ̂), θ) = c(θ̂)− v(z(θ̂), θ),

where the inequality follows from the choice. Therefore, the allocation reached with

an income tax is incentive compatible.

31Assume for simplicity that 0 ∈ z(Θ).
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Proof of Lemma 1

These are usual results in the mechanism design literature. We will present a proof

in the less general case when the mechanism is di�erentiable because it is more

simple. For more general versions of this result we refer to the classical Milgrom

and Segal (2002) and Rochet (1987).

Proof. Assume that z : Θ → R+ is di�erentiable in the interior of CS+ (and CS−

respectively). Let V (θ′, θ) be the utility that θ-agent gets by announcing to be

type θ′ in the mechanism. Incentive compatibility requires V (θ, θ) ≥ V (θ′, θ), for

all θ′ ∈ Θ. By di�erentiability we can characterize the optimum using �rst and

second-order conditions. The �rst-order condition for incentive compatibility is

∂

∂θ′
V (θ′, θ)

∣∣∣∣
θ′=θ

= 0; (61)

and the second-order condition for incentive compatibility is

∂2

∂θ′2
V (θ′, θ)

∣∣∣∣
θ′=θ

≤ 0. (62)

The FOC boils down to

d

dθ
c(θ)− vz(z(θ), θ)

d

dθ
z(θ) = 0. (63)

On the other hand, using it, we have

V̇ (θ) =
∂

∂θ
V (θ, θ)

=
d

dθ
c(θ)− vz(z(θ), θ)

d

dθ
z(θ)− vθ(z(θ), θ)

= −vθ(z(θ), θ) (64)

and applying the fundamental theorem of calculus we have (i). Taking the total

derivative of the FOC we have

d2

dθ′2
V (θ, θ) = − d2

dθ′dθ
V (θ, θ). (65)

Then, from the SOC we have

d2

dθ′dθ
V (θ, θ) = vzθ(z(θ), θ)

d

dθ
z(θ) ≥ 0. (66)
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Therefore, dz(θ)
dθ

and vzθ(z, (θ)θ) should have opposite signs, proving (ii).

Proof of Lemma 3

Proof. This is a very intuitive result that follows from the function v(z, θ) being

continuously di�erentiable and the monotonicity constraints of the type assignment

functions ψb(·), ψs(·).

B.0.1 Derivation of the global incentive function

Using Lemma 1 (i), it is convenient to write the incentive compatibility constraint

using the Global Incentive Function (GIF):

Φ(θ, θ̂; z(·)) :=

∫ θ

θ̂

[∫ z(s)

z(θ̂)

vzθ(t, s)dt

]
ds. (67)

Fix a mechanism z : Θ→ R+ and take θ ∈ Θ. Incentive compatibility requires

V (θ, θ) ≥ V (θ′, θ), for all θ′ ∈ Θ. This is equivalent to

V (θ)− V (θ′, θ) = V (θ)− c(θ′) + v(z(θ′), θ) ≥ 0 ⇐⇒

V (θ)− V (θ′) + v(z(θ′), θ)− v(z(θ′), θ′) ≥ 0 ⇐⇒∫ θ

θ′
[vθ(z(s), s)− v(z(θ′), s)] ds =

∫ θ

θ′

[∫ z(s)

z(θ′)

vzθ(t, s)dt

]
ds ≥ 0.

Therefore, de�ning

Φ(θ, θ′, z(·)) =

∫ θ

θ′

[∫ z(s)

z(θ′)

vzθ(t, s)dt

]
ds, (68)

we have Φ(θ, θ′, z(·)) ≥ 0 for all θ, θ′ ∈ Θ if and only if z : Θ → R+ is incentive

compatible.

By construction, an allocation z : Θ → R+ is incentive compatible i�, for all

θ, θ̂ ∈ Θ, Φ(θ, θ̂; z(·)) ≥ 0. As we can see above, under the SMC, vzθ(t, s) would have

a constant sign and the necessary monotonicity condition would also be su�cient

for incentive compatibility.32 Without the SMC, we do not have a natural ordering

of agents and the impact of vzθ(t, s) to the right side of the separating curve has

to be compensated with the impact to the left side on the GIF to get incentive

compatibility.

32Notice that for θ, θ̂ such that z(θ) = z(θ̂), we have Φ(θ̂, θ) = −Φ(θ, θ̂).
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C Incorporating local IC's.

The mechanism design problem of the government is to choose the best allocation

rule c, z : Θ → R+ × Z assigning a pair of income and consumption to each type

inducing truthful revelation. Formally,

max
c(·),z(·)

∫ θ

θ

V (c(θ), z(θ), θ)g(θ)dθ (69)

subject to the budget constraint,∫
θ∈Θ

[z(θ)− c(θ)]f(θ)dθ ≥ 0; (70)

and the incentive-compatibility constraints: for all θ ∈ Θ,

θ ∈ arg max
θ′∈Θ

V (c(θ′), z(θ′), θ). (71)

This formulation is very convenient because it makes easy to incorporate the local

incentive-compatibility constraints and the government budget constraints into the

objective function.

Recall the de�nition of the informational rent get by an agent with type θ in an

incentive-compatible mechanism is given by V (θ) = c(θ) − v(z(θ), θ).33 Using the

envelope condition (Lemma 1 (i)) we can eliminate consumption from the problem.

c(θ) = V (θ) + v(z(θ), θ) = V (θ) + v(z(θ), θ)−
∫ θ

θ

vθ(z(s), s)ds. (72)

Plugging it into the budget constraint we have

0 =

∫ θ

θ

[z(θ)−c(θ)]f(θ) =

∫ θ

θ

[
z(θ)− V (θ)− v(z(θ), θ) +

∫ θ

θ

vθ(z(s), s)ds

]
f(θ)dθ

= −V (θ) +

∫ θ

θ

[
z(θ)− v(z(θ), θ) +

∫ θ

θ

vθ(z(s), s)ds

]
f(θ)dθ

= −V (θ) +

∫ θ

θ

[
z(θ)− v(z(θ), θ) + vθ(z(θ), θ)

1− F (θ)

f(θ)

]
f(θ)dθ (73)

Where we used the fact that the budget constraint must be satis�ed with equality

33Recall that Lemma 1 (i) implies payo� equivalence, up to a constant, for all incentive-
compatible mechanism.
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since agents utility are strictly increasing in consumption. Re-arranging to have

V (θ) =

∫ θ

θ

[
z(θ)− v(z(θ), θ)− vθ(z(θ), θ)

1− F (θ)

f(θ)

]
f(θ)dθ. (74)

Equation (78) shows the guaranteed utility level that the lower bound on type

space gets in any incentive-feasible allocation. Together with Lemma 1, we see that

the government guarantees an utility level that is taxed/subsidized away as type

increases increases.

Substituting Equation 72 in the objective function of the government we have

∫ θ

θ

g(θ) [c(θ)− v(z(θ), θ)] dθ =

∫ θ

θ

g(θ)

[
V (θ)−

∫ θ

θ

vθ(z(s), s)ds

]
dθ

= V (θ)−
∫ θ

θ

g(θ)

[∫ θ

θ

vθ(z(s), s)ds

]
dθ = V (θ)−

∫ θ

θ

vθ(z(θ), θ) [1−G(θ)] dθ

=

∫ θ

θ

[
z(θ)− v(z(θ), θ) + vθ(z(θ), θ)

G(θ)− F (θ)

f(θ)

]
f(θ)dθ (75)

Therefore, de�ning the function W : Z ×Θ→ R given by

W (z, θ) =

[
z − v(z, θ) + vθ(z, θ)

G(θ)− F (θ)

f(θ)

]
f(θ). (76)

and the problem of the government can be written as

max
z(θ)

∫ θ

θ

W (z(θ), θ)dθ (77)

subject to all additional global incentive compatibility constraints.

Lemma 4. Let z : Θ → Z be an incentive-feasible allocation. Then the informa-

tional rent of the lowest type is given by

V (θ) =

∫ θ

θ

[
z(θ)− v(z(θ), θ) + vθ(z(θ), θ)

1− F (θ)

f(θ)

]
f(θ)dθ. (78)

This lemma provides the guaranteed utility level that the lower bound on type

space gets in any incentive-feasible allocation. Together with Lemma 1, we see that

the government guarantees an utility level that is taxed/subsidized away as type

increases. It is given by the average �virtual welfare� of all agents in the economy.
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The Segregation Problem

Let θd ∈ Θ be a pivotal type that parametrizes the program and let Z = [z, z] to be

the set of possible income values. The Segregation Problem is de�ned as follows.34

max
ψb,ψs,zl,zm,zh

∫ zl

z

[W(z, θd)−W(z, ψb(z))] dz

+

∫ zm

zl

[W(z, ψs(z))−W(z, θd)] dz

+

∫ z

zh

[W(z, ψs(z))−W(z, ψb(z))] dz (79)

subject to:

(i) Monotonicity, ψb non-increasing and ψs non-decreasing.

(ii) For all z ∈ [zh, z],

[ψb(z)− θ] [vz(z, ψb(z))− vz(z, ψs(z))] ≥ 0, (80)

and

θ ≤ ψb(z) ≤ ψs(z) ≤ θd; (81)

(iii) For all z ∈ [z, zl],[
θ − ψs(z)

]
[vz(z, ψb(z))− vz(z, ψs(z))] ≤ 0; (82)

and

θd ≤ ψb(z) ≤ ψs(z) ≤ θ; (83)

(iv) and the GIC from Lemma 3,∫ zh

zl

vz(z, ψs(z))− vz(z, θd)dz ≥ 0. (84)

∫ zm

zl

vz(z, ψb(z))− vz(z, θ)dz ≥ 0. (85)

The solution for this problem is parametrized by the pivotal type. We can

34Since ψb, ψs : Z → Θ should assign a type for every possible income level, for z ∈ (zm, zl)
assign ψb(z) = θd and ψs(z) = θ completing the de�nition of the type assignment functions.
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choose it in order to maximize the welfare criterion. Let us denote it by the optimal

segregation mechanism.

Call δθd and δθ the Lagrange multiplier associated with GIC in equations (33)

and (34). Since by Lemma 3 only one of the GIC will be binding, i.e. δθd > 0 if and

only if δθ = 0 and vice-versa, we can de�ne the Lagrange multiplier of the active

constraint as δ = δθd + δθ.

There are some very interesting aspects of this formulation. First of all, This

program can be solved point-wisely which makes the problem much more tractable

than the direct mechanism design and variational approaches.

The usual solutions proposed in the literature are degenerate cases of the seg-

regating mechanism. In particular, whenever θd ∈ {θ, θ} the resulting solution will

be consistent with the Variational method as de�ned in Golosov, Tsyvinski, and

Werquin (2014).
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