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Abstract

Not only retired couples hold more assets than singles, but high-
income couples grow their savings during most of their retirement
period. Why are they saving so much? Do they expect high medical
expenses, do they deeply care about the welfare of their surviving
spouse upon death, or do they want to leave bequests to others? What
happens to savings when one of the members of the couple dies and
why? We build a model of retired couples and singles facing uncertain
longevity and medical expenses in which couples and singles can have
different bequest motives. Both might care about heirs, but couples
might also care about their surviving spouse. We use the AHEAD
data and the method of simulated moments to estimate our model and
disentangle the importance of saving motives of couples and singles.
We also evaluate the effects of a Medicaid expansion on the savings
and bequests of couples and singles.
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1 Introduction

There is considerable agreement on the reasons why single retirees hold
assets. Recent work has shown that much of their saving behavior can be
explained by the possibility of expensive medical conditions at older ages
(De Nardi, French, and Jones [22, 23]), or by bequest motives that act as
luxury goods (De Nardi [18]). A number of recent studies seek to disentangle
these two motives by including other features of the data, such as survey
responses (Ameriks et al. [4] and [3]), long-term care insurance purchases
(Lockwood [40]), or Medicaid usage (De Nardi et al. [24]).

Less attention has been given to the saving of retired couples. Couples
tend to be richer than singles and face a more complex set of risks. To
what extent do members of a couple care about their own consumption and
medical expenses, as opposed to leaving bequests to their surviving spouse
and other heirs? What happens to savings when one of the members of the
couple dies, and why?

In the Assets and Health Dynamics of the Oldest Old (AHEAD) dataset,
about 50% of individuals aged 70 or older are in a couple, while about 50%
are single. Because retired couples are not only numerous, but also richer,
they hold a large share of the elderly’s wealth. Better understanding why
they save matters, including in the assessment of policy reforms.

Couples and singles differ in important ways. Being in a couple allows its
members to pool their longevity and medical expense risks, but also exposes
each member to their spouse’s risks, including the income loss and high
medical expenses that often accompany a spouse’s death (Braun et al. [11]).
A couple might also care about leaving bequests to the surviving spouse, in
addition to other heirs.

We start our analysis of couples by establishing facts about their retire-
ment savings and the medical expenses and longevity risks that they face.
We then develop a model of couples and singles during retirement, in a frame-
work that incorporates observed heterogeneity in life expectancy and medical
expenses, and that explicitly models means-tested social insurance. We al-
low for bequest motives to other heirs for both couples and singles, and for
altruism towards the surviving spouse for couples. We estimate our model
using the Method of Simulated Moments (MSM). Finally, we use the model
to evaluate the extent to which the savings of retirees are driven by bequest
motives towards the other spouse, bequest motives towards other heirs, and
medical expenses. We also evaluate the effects of a Medicaid expansion on



the savings and bequests.

In the first part of our analysis we document that while the savings of
retired singles tend to stay roughly constant or fall over time, those of couples
increase as long as both spouses are alive. We also find that assets drop
sharply at the time of death of each spouse and that, by the time the second
spouse dies, a large fraction of the wealth of the original couple has vanished.
Depending on the specification, assets decline $30,000-$60,000 at the time of
an individual’s death. A large share of this drop, but not all of it, is explained
by the high medical expenses at the time of death. For example, out of pocket
medical spending plus death expenses are approximately $20,000 during the
year of death (whereas medical spending is $6,000 per year for similarly aged
people who do not die).

Our second-step estimates allow us to evaluate to what extent the risk
sharing and economies of scale of a couple help insure against longevity and
medical-expense risk and to what extent couples get a better or worse deal
from publicly provided health insurance. They will also allow us to estimate
bequest motives towards the surviving spouse, in contrast to bequests to
children or others. Finally, it will enable us to study in what ways the
responses of a couple will differ from the responses of a single person when,
for example, public health insurance becomes more limited, or its quality
worsens, or some of its means-testing criteria become tighter.

2 Related Literature

Much of the previous structural literature only studies singles. In a pre-
vious paper (De Nardi, French, and Jones [23]) we show that post-retirement
medical expenses and government-provided insurance are important to ex-
plaining the saving patterns of U.S. single retirees at all income levels, in-
cluding high permanent-income individuals who keep large amounts of assets
until very late in life. These savings patterns are due to two important fea-
tures of out-of-pocket medical expenses. First, out-of-pocket medical and
nursing-home expenses can be large. Second, average medical expenditures
rise very rapidly with age and permanent income. Medical expenses that rise
with age provide the elderly with a strong incentive to save, and medical ex-
penses that rise with permanent income encourage the rich to be more frugal.
In other work, we showed that heterogeneous life expectancy is important
to matching the savings patterns of retired elderly singles (De Nardi, French



and Jones [22]).

Poterba et al. ([48]) show that relatively little dissaving occurs amongst
retirees whose family composition does not change, but that assets fall signif-
icantly when households lose a spouse. We find similar results. Furthermore,
as in French et al.( [30]), we document significant drops in assets when the
last member of the household passes away.

Previous literature had shown that high income individuals live longer
than low income individuals (see Attanasio and Emmerson [6] and Deaton
and Paxon [20]). This means that high income households must save a larger
share of their lifetime wealth if they are to smooth consumption over their
retirement. Differential mortality rates thus provide a potential explanation
for why high income households have higher savings rates than low income
households. We extend the analysis along this dimension by explicitly mod-
eling the interaction of life expectancy for individuals in couples and the
differential life expectancy for couples and singles.

Even in presence of social insurance such as Medicare and Medicaid,
households face potentially large out-of-pocket medical and nursing home
expenses (see French and Jones [32, 31], Palumbo [46], Feenberg and Skin-
ner [29], and Marshall et al. [41]). The risk of incurring such expenses might
generate precautionary savings, over and above those accumulated against
the risk of living a very long life ([39]).

Hubbard, Skinner and Zeldes [36] argue that means-tested social insur-
ance programs such as Supplemental Security Income and Medicaid provide
strong incentives for low income individuals not to save. De Nardi et al. [25]
finds that these effects extend to singles in higher permanent income quin-
tiles as well. In this paper, to allow for these important effects, we model
means-tested social insurance explicitly for both singles and couples.

Bequest motives could be another reason why households, and especially
those with high permanent income, retain high levels of assets at very old ages
(Dynan, Skinner and Zeldes [27] and Americks et al. [4]). De Nardi [18] and
Castaneda et al. [16] argue that bequest motives are necessary to explain
why the observed distribution of wealth is more skewed and concentrated
than the distribution of income (Quadrini et al. [21]). De Nardi et al [24]
shows that bequest motives help fit both assets and Medicaid recipiency
profiles for singles. We allow for a richer structure of bequest motives, in
that couples might want to leave resources to the surviving spouse, children
and other heirs, while singles might want to leave bequests to children and
other heirs.



Previous quantitative papers on savings have used simpler models that
omit one or more of these features. Hurd [37] estimates a structural model
of bequest behavior in which the time of death is the only source of uncer-
tainty. Palumbo [46] focuses on the effect of medical expenses and uncertain
lifetimes, but omits bequests. Dynan, Skinner and Zeldes [27, 28] consider
the interaction of mortality risk, medical expense risk and bequests, but use a
stylized two-period model. Moreover, none of these papers model household
survival dynamics, assuming instead that households (while “alive”) always
have the same composition. In contrast, we explicitly model household sur-
vival dynamics: when the first household member dies, assets are optimally
split among the surviving spouse and other heirs. Although Hurd [38] extends
his earlier model to include household survival dynamics, he omits medical
expense risk, and, in contrast to his earlier work, he does not estimate his
model.

Our work also complements the one on retirement behaviour by couples
by Blau and Gilleskie [10], Casanova [15], and Gallipoli and Turner [34].

Including couples and simultaneously considering bequest motives, social
insurance, uncertain medical expenses, and uncertain life expectancy is im-
portant for at least two reasons. First, Dynan, Skinner and Zeldes [28] argue
that explaining why the rich have high savings rates requires a model with
precautionary motives, bequest motives and social insurance. Second, si-
multaneously considering multiple savings motives allows us to identify their
relative strengths. This is essential for policy analysis. For example, the
effects of estate taxes depend critically on whether rich elderly households
save mainly for precautionary reasons, or mainly to leave bequests (see for
example Gale and Perozek [33]).

3 Data and key facts

We use data from the Asset and Health Dynamics Among the Oldest
Old (AHEAD) dataset. The AHEAD is a sample of non-institutionalized
individuals, aged 70 or older in 1993. These individuals were interviewed in
late 1993 /early 1994, and again in 1996, 1998, 2000, 2002, 2004, 2006, 2008,
and 2010.! Appendix A describes the details of our sample selection and
data work.

'We do not use 1994 assets, nor medical expenses, due to underreporting (Rohwedder
et al. [50]).



We only consider retired households to abstract from the retirement de-
cisions and focus on the determinants of savings and consumption. Because
we only allow for household composition changes through death, we drop
households where an individual enters a household or an individual leaves
the household for reasons other than death. Fortunately, attrition for rea-
sons other than death is a minor concern in our data.

We break the data into 5 cohorts. The first cohort consists of individuals
that were ages 72-76 in 1996; the second cohort contains ages 77-81; the
third ages 82-86; the fourth ages 87-91; and the final cohort, for sample
size reasons, contains ages 92-102. Even with the longer age interval, the
final cohort contains relatively few observations. In the interest of clarity,
we exclude this cohort from our graphs, but we use all cells with at least 10
observations when estimating the model.

We use data for 8 different years; 1996, 1998, 2000, 2002, 2004, 2006, 2008,
and 2010. We calculate summary statistics (e.g., medians), cohort-by-cohort,
for surviving individuals in each calendar year—we use an unbalanced panel.
We then construct life-cycle profiles by ordering the summary statistics by
cohort and age at each year of observation. Moving from the left-hand-side
to the right-hand-side of our graphs, we thus show data for four cohorts, with
each cohort’s data starting out at the cohort’s average age in 1996.

Since we want to understand the role of income, we further stratify the
data by post-retirement permanent income (PI). Hence, for each cohort our
graphs usually display several horizontal lines showing, for example, median
assets in each PI group in each calendar year. These lines also identify the
moment conditions we use when estimating the model.

Our PI measure can be thought of as the level of income if there were two
people in the household at age 70. We measure post-retirement PI using non-
asset non-social insurance annuitized income and the methods described in
appendix B . The method maps the relationship between current income and
PI, adjusted for age and household structure. The income measure includes
the value of Social Security benefits, defined benefit pension benefits, veterans
benefits and annuities. Since we model means-tested social insurance from
SSI and Medicaid explicitly through our consumption floor, we do not include
SSI transfers. Because there is a roughly monotonic relationship between
lifetime earnings and the income variables that we use, our measure of post-
retirement PI is also a good measure of lifetime permanent income.



3.1 Savings and social insurance

The following figures display median assets, conditional on birth cohort
and income quintile, for different configurations of couples and singles.

Median Assets by Cohort and Income: Data, Singles
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Figure 1: Assets by age, income, and cohort for currently singles

Figure 1 displays the net worth (or assets, from now on, since the retirees
have very little debt) of the unbalanced panel of people who are currently sin-
gle, that is, either enter the sample because single at the start of the period,
or join it later as they become single (the picture would look very similar
if we were to limit the sample to only people who were initially single only,
see Appendix D). The figure displays the important observation that the
savings of elderly singles depends on their income (which is predetermined
at retirement). Elderly singles with the lowest lifetime incomes reach retire-
ment with little to no asset and accumulate no additional assets as they age.
Rather, they rely on annuitized income and government insurance to fund
their consumption and their medical expenses. In the middle of the income
distribution, these elderly singles start our retirement with some assets, but
then they run them down. At the top of the income distribution, instead,
assets of the survivors stay roughly constant as they age and survive. In
our previous work (De Nardi, French, and Jones [23] and De Nardi, French,
and Jones [24]) we have shown that the age profiles of medical expenses in
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old age, which increase with age and income, and the availability of means-
tested social insurance (such ad Medicaid and SSA) are key drivers of these
patterns and that bequest motives appear to explain little of the lack or slow
decumulation of the higher income singles.

Median Assets by Cohort and Income: Data, Couples
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Figure 2: Assets by age, income, and cohort for intact couples

Figure 2 displays the assets of “intact couples,” that is couples that start
out and continue as such. Thus, if one or both components die, we drop them
from the figure. This figure displays some important facts. First, conditional
on the same income quintile, even couples in the lowest income quintiles reach
retirement with some assets. Second, the asset profiles of the lower to middle
income surviving couples display no decumulation, even at the lowest levels
of income. Third, the highest income intact couples actually have increasing
savings in age for much of their retirement, with drops in their assets only
starting to appear after age 85.

Figure 3 reports median assets for the population of those who are initially
in a couple. Some of these couples lose one spouse during the period in
which we observe them, in which case we report the assets of the surviving
spouse. Relative to intact couples, initial couples in the higher PI quintiles
decumulate their assets more quickly. Some of this decumulation is due to
the loss of assets that occurs when one of the spourses dies.



Median Assets by Cohort and Income: Data, Initial Couples
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Figure 3: Median assets for households initial couples. Each line represents
median assets for a cohort-income cell, traced over the time period 1996-2010.
Thicker lines refer to higher permanent income groups. Solid lines: cohorts
ages 72-76 and 82-86 in 1996. Dashed lines: ages 82-86 and 92-96 in 1996.

To formalize and quantify this observation, we turn to documenting the
savings profiles of couples when one of their members dies. To do so, we
perform regression analysis.?

Figure 4 reports the predicted assets of a couple starting out, respectively,
in the top PI income quintile, and in the bottom one, and display the assets
under three scenarios. Under the first one, the couple remains intact until age
90. Under the second one, the men dies at age 80, while under the third one,
the woman dies at age 80. For both PI levels, assets stay either increase or

2We regress assets on a household fixed effect, dummies for household status (couple,
single man, single woman, everyone dead), a polynomial in age, and interactions between
these and permanent income. Including the household specific fixed effect means that we
can track wealth of the same households, when one member of the household dies. The
fixed effect includes all time invariant factors, including permanent income, so we cannot
include permanent income directly. To include permanent income directly, we then regress
the estimated fixed effect on the permanent income of that household.



Assets, by Permanent Income Percentile, Initially Couples
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Figure 4: Assets, conditional on permanent income and family structure, for
a couple (top lines for each PI) and in the case in which there is a switch to
becoming a single men or single woman (other two lines at each PI) at age
80. The survivors to the first death then die at age 90.

stay roughly constant if both partners are alive, but display a significant drop
at the death of one of the spouses. On average, wealth declines approximately
$60,000 at the time of he husband’s death and approximately $30,000 at the
time of the wife’s death.

The simpler exercise of merely tabulating the wealth decline when one
member of the household dies suggests smaller estimates of the wealth de-
cline at the time of death of a spouse. This procedure suggests a decline
of wealth of $30,000 at the death of a spouse. A large share of this drop,
but not all of it, is explained by the high medical expenses at the time of
death. For example, out of pocket medical spending plus death expenses are
approximately $20,000 during the year of death (whereas medical spending
is $6,000 per year for similarly aged people who do not die).

To measure the decline in wealth at the time of death of the final member
of the family, we exploit the exit surveys, which include information on the
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heirs’ reports of the value of the estate.® In addition, we also use data from
post-exit interviews, which are follow up surveys of heirs, to better measure
wealth held in the estate. The results suggest even larger declines in wealth
when the final member of the household dies. For those at the top of the
income distribution, the death of a single person results in a wealth decline
of approximately $110,000, whereas the decline is closer to $70,000 for those
at the bottom of the income distribution.

Medicaid Recipiency by Cohort and Income: Data, All

Medicaid Recipiency
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Figure 5: Medicaid recipiency by age, income, and cohort

Because previous work has shown that means-tested programs are very
important determinants of savings (see our related literature section) and
because our goal is understanding the savings of the retirees, it is important to
take into account the extent to which these retirees benefit from mean-tested
government insurance programs that help pay for their medical expenses,
such as Medicaid. Figure 5 plots Medicaid recipiency rates conditional on
age, income, and cohort for all of the retirees in our sample. Several patterns
are worth pointing out. First, the lines are flipped compared to the asset
graphs. It is the lowest income retirees that are more likely to end up on
Medicaid. Second, and consistently with the asset-tested nature of these

3Some couples lose both members between successive AHEAD waves, but this is a
relatively infrequent occurrence.
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programs (high assets people are not eligible) and the asset profiles that we
have described over the retirement period, Medicaid recipiency of increases
fast earlier in their retirement for retirees with intermediate values of income,
while it only tends to increase at very advanced ages for higher income people.

3.2 Health and mortality

Men Women
Income Nursing  Bad Good Nursing Bad Good
Percentile Home  Health Health Home  Health Health All

Singles

10 3.03 6.92 8.68 4.07 11.29  13.18 10.17

50 3.02 7.78 10.29 4.05 1229 1486 11.51

90 291 8.11 10.94 3.80 1251 1537 11.99
Couples

10 2.73 7.83 9.82 3.95 12.10  14.05 11.30

50 2.77 9.39 12.18 3.99 13.74  16.27 13.37

90 2.74 10.39  13.50 3.88 14.59  17.28  14.45
Single Men 8.99
Married Men 11.52
Single Women 13.88
Married Women 15.77
Oldest Survivor 17.90
Probability that Oldest Survivor is Woman 63.7%

Table 1: Life expectancy in years, conditional on reaching age 70.

Table 1 shows life expectancies for singles and couples at age 70, respec-
tively.* Rich people, women, married people, and healthy people live much
longer than their poor, male, single, and sick counterparts.

4We estimate health transitions and mortality rates simultaneously by fitting the tran-
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More specifically, a single man at the 10th permanent income percentile
in a nursing home expects to live only 3.0 more years, while a single woman
at the 90th percentile in good health expects to live 15.4 more years. The
far right column of the top two panels shows average life expectancy condi-
tional on permanent income, averaging over both genders and over all health
states. It shows that singles at the 10th percentile of the permanent income
distribution live on average 10.2 years, whereas singles at the 90th percentile
live on average 12.0 years. It also highlights that a 70 year old man at the
10th permanent income percentile in a nursing home married to a 70 year
old woman with the same health expects to live only 2.7 more years, while
a 70 year old married woman at the 90th percentile in good health (married
to a 70 year old man also in good health) expects to live 17.3 more years.

Conditional only on gender, people in couples live about 2 years longer
than singles: single 70 year old women live on average 13.9 years versus
15.8 for married women but, conditional on PI and health, the differences in
longevity are much smaller. Thus, married people live longer than singles,
but much of the difference is explained by the fact that married people tend
to have higher PI and to be in better health.

The bottom part of Table 1 shows the number of years of remaining life
of the oldest survivor in a household when both the man and the woman are
70. On overage the last survivor lives and additional 17.9 years. In that case,
woman is the oldest survivor 63.7% of the time.

Table 2 shows that single men and women face on average a 26.4% and
37.2% chance of being in a nursing home for an extended stay, respectively,
while married men and women face on average a 19.5% and 36.3% chance of
being in a nursing home for an extended stay. Married people are much less
likely to transition into a nursing home at any age, but married people often
become single as their partner dies and as they age. Furthermore, married
people tend to live longer than singles, so they have more years of life to
potentially enter a nursing home. Permanent income has only a small effect
on ever being in a nursing home. Those with a high permanent income are
less likely to be in a nursing home at each age, but they tend to live longer.

sitions observed in the HRS to a multinomial logit model. We allow the transition prob-
abilities to depend on age, sex, current health status, marital status, permanent income,
as well as polynomials and interactions of these variables. Using the estimated transition
probabilities, we simulate demographic histories, beginning at age 70, for different gender-
PI-health combinations. All tables use the appropriate distribution of people over state
variables to compute the number which is object of interest.
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Men Women
Income Bad Good Bad Good
Percentile Health Health Health Health All

Singles

10 23.6 25.3 35.8 379 328

50 22.8 24.8 35.5 382 325

90 20.3 22.8 32.2 35.8  30.1
Couples

10 17.3 19.2 34.4 37.0 287

50 16.6 18.8 34.1 37.3  28.7

90 14.6 16.8 31.4 34.5  26.3
Single Men 26.4
Married Men 19.5
Single Women 37.2
Married Women 36.3

Table 2: Probability of ever entering a nursing home, conditional on being
alive at age 70.

3.3 Income

The goal of this subsection is to illustrate how income changes for cou-
ples when one of the two spouses dies. We model income as a function of
permanent income.® Figure 6 presents predicted income profiles for those at
the 20" and 80" percentiles of the permanent income distribution. For each
permanent income level, we display three scenarios, all commencing from the
income of a couple. Under the first scenario, the household remains a couple

5More specifically, income is a third order polynomial in age, dummies for family struc-
ture, family structure interacted with an age trend, and a fifth order polynomial in per-
manent income. The estimates use a fixed effects estimation procedures, where the fixed
effect is a transformation of initial permanent income. Hence the regression results can be
interpreted as the effect of changing age or family structure for the same household: see
appendix B for details of the procedure.
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Income, by Permanent Income Percentile, Initially Couples
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Figure 6: Income, conditional on permanent income and family structure.
Figure assumes all households begin as couples, then either stay in a couple,
or switch to being to a single men or single woman at age 80.

until age 100. Under the second one, the man dies at age 80. Under the
third one, the woman dies at age 80.

Couples’ average annual income ranges from about $14,000 to over $30,000
per year in the 20" and 80" percentiles of the PI distribution, respectively.
As a point of comparison, median wealth holdings for these two groups are
$70,000 and $330,000 at age 74, respectively.

Our estimates suggest that couples in which the husband dies at age
80 suffer a 40% decline in income, while couples in which the wife dies at
80 suffer a 30% decline in income. These income losses at the death of a
spouse reflect the fact that although both Social Security and defined benefit
pensions have spousal benefits, these benefits replace only a fraction of the
deceased spouse’s income.

More specifically, people can receive benefits either based on their own
history of Social security contributions (in which case they are a ‘“retired
worker” ), or based on their spouse’s or former spouse’s history (in which
case they receive the “spouse” or “widow” benefit). A married person who
never worked can receive 50% of their spouse’s benefit if their spouse is
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alive and is a “retired worker”. The same person can receive up to 100%
of their spouse’s benefit if their “retired worker” spouse has died. Thus
the household benefit can receive 100%+50%=150% of the former worker
spouse’s benefit when alive and 100% of the former worker spouse’s benefit
when either spouse has died. Thus, after the death of a household member the
household would maintain (100%/150%)=67% of the original Social Security
benefit and would experience a 33% drop in benefits.

In contrast, a person who earned the same amount as their spouse will
not receive a spousal or widow’s benefit. In this case, both spouses in the
couple will receive 100% of their own “retired worker” benefit, which is based
off of their own earnings history. After the death of a spouse, the household
benefit will be (100%/(100%+100%)= 50% of its level when both were alive.

To perform our calculations, we make several assumptions, including that
both spouses begin receiving benefits at the normal retirement age. In prac-
tice, there are many modifications to this rule, including those to account for
the age at which the beneficiary and spouse begin drawing benefits.> Our re-
gression estimates capture the average drop in income at the time of death of
a spouse, averaging over those who retire at different ages and have different
claiming histories.

3.4 Medical spending

The goal of this subsection is to illustrate how medical expenses change
for couples when one of the two spouses dies. In our model, we explicitly
model Medicaid, a means-tested program that helps insure medical expenses
of the needy. Thus, the appropriate measure of medical expense risk that we
have to measure in the data are out-of-pocket medical costs (net of insurance
co-pays that are not based on one’s resources), plus Medicaid payments.

The AHEAD data contains information on out of pocket medical spend-
ing, but not on Medicaid payments. Fortunately, the Medicare Current Ben-
eficiary Survey (MCBS) has extremely high quality information on Medicaid
payments plus out of pocket medical spending. It uses a mixture of both ad-
ministrative and survey data and is described in greater detail in De Nardi et
al [25]. One drawback of the MCBS, however, is that although it has infor-
mation on marital status and household income, it does not have information

6See https://socialsecurity.gov/planners/retire/yourspouse.html for more details of cal-
culation of spousal benefits.
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on the medical spending or health of the spouse.

To exploit the strength of both datasets, we use the conditional mean
matching procedure described in Appendix C to obtain our measured out-of-
pocket medical expenditures plus Medicaid payments for the AHEAD data
from the MCBS data. The procedure preserves both the mean as well dis-
tribution of medical spending, conditional on age, income, out of pocket
spending and other variables.

a b

Medical Expenses, 20th Percentile of Permanent Income, Initially Couples Medical Expenses, 80th Percentile of Permanent Income, Initially Couples
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Figure 7: Mean out-of-pocket medical expenditures by age, conditional on
permanent income and family structure. Figure assumes all households begin
as couples, then potentially change to a single men or single woman at age
80.

Figure 7 displays our predicted medical expense profiles for those at the
20th (left panel) and 80th (right panel) percentiles of the permanent income
distribution for those in bad health.”

For each permanent income level, we present three scenarios, all of which
start out with a couple. Under the first scenario, the household remains a
couple until age 100. Under the second one, the man dies at age 80. Under
the third one, the woman dies at age 80. The jump in medical spending
shown at age 80 represents the elevated medical spending during the year of

"We model the logarithm of medical spending as a fourth order polynomial in age,
dummies for family structure, the health of each family member (including whether that
family member just died), family structure interacted with an age trend, and a fifth order
polynomial in permanent income. As with the income estimate, we use fixed effects esti-
mation procedures, so the regression results can be interpreted as the effect of changing
age or family structure for the same household.
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death of a family member and amounts to almost $5,000 on average. Both
average medical spending and the jump at time of death are larger for those
with higher permanent income.

The figure shows that, before age 80, average annual medical spending
hoovers around $4,000 per year for the couples in both income groups. For
those at the 20" percentile of the PI distribution, medical expenses change
little with age. However, for couples in the 80" percentile, medical expenses
rise to well over $10,000 per year by age 95.

4 The model

Consider a retired household with family structure f; (either a single per-
son or a couple), seeking to maximize its expected lifetime utility at household
head age t, t =t,,t. + 1...,T 4+ 1, where ¢, is the retirement age, while 7T is
the maximum potential lifespan.

We use w to denote women and h to denote men. Each person’s health
status, hs?, g € {h,w}, can vary over time. The person is either in a nursing
home, in bad health, or in good health.

For tractability, we assume a fixed age gap between the husband and the
wife in a couple, so that one age is sufficient to characterize the household. To
be consistent with the data frequency, and to reduce computation time, our
time period is two years long. We assume that wives are two years younger
than their husbands.

4.1 Preferences

Households maximize their utility by choosing savings, bequests and cur-
rent and future consumption. The annual discount factor is given by 5. Each
period, the household’s utility depends on its total consumption, ¢, and the
health status of each member. The within-period utility function for a single
is given by

1—v

u(e, hs) = (1 + 5(hs))f , (1)

with v > 0. When §(.) = 0, health status does not affect utility.
We assume that the preferences of couples can be represented by the

18



following utility function:®

UC(C, h8h7 hsw) = [1 + 5(h3h) +1+ 5(h8w)] (0/77)1_”

1—v

, (2)

where 1 < 7 < 2 determines the extent to which couples enjoy economies of
scale in the transformation of consumption goods to consumption services.

When a household member dies, the estate can be left to the surviving
spouse (if there is one) or to other heirs, including the household’s children.
Estates are subject to estate taxes, but the exemption level during the time
period in our sample is above the actual assets of the vast majority of the
households in our sample. For this reason, we abstract from explicitly mod-
elling estate taxation. When the final member of the household dies bequests
are net of their medical expenses.

We indicate with b the part of the estate, that does not go to the surviving
spouse, and assume that the deceased member of the household derives utility
6,(b) from leaving that part of the estate to heirs other than the spouse. The
subscript j indicates whether there is a surviving spouse or not, and whether
one or two people have just died. In particular, 6y(b) gives the utility from
bequests for a single person with no surviving spouse, 6;(b) gives the utility
from bequests when there is a surviving spouse, and that 65 (b) gives the utility
from bequests when both spouses die at the same time. More specifically,
the bequest function takes the form

b+ k. )A-v)

(1) = o, "I 3
where k; determines the curvature of the bequest function, and ¢; deter-
mines its intensity. Our formulation can support several interpretations of
the “bequest motive”: dynastic or “warm glow” altruism (as in Becker and
Tomes [8], Abel and Warshawsky [1], or Andreoni [5]); strategic motives (as
in Bernheim, Schleifer and Summers [9] or Brown [12]); or some form of
utility from wealth itself, as in (Carroll [14] and Hurd [37]).

8Mazzocco [42] shows that under full commitment, the behavior of a couple can be
characterized by a unique utility function if the husband and wife share identical discount
factors, identical beliefs and Harmonic Absolute Risk Aversion utility functions with iden-
tical curvature parameters.
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4.2 Technology and sources of uncertainty

We assume that non-asset income at time ¢, y,, is a deterministic function
of the household’s permanent income, I, age, family structure, and gender if
single.

v() =y, ¢, fi. ge)- (4)

There are several sources of uncertainty:

1) Health status uncertainty. The transition probabilities for the health
status of a person depend on one’s current health status, permanent income,
age, and gender and marital status. Hence the elements of the health status
transition matrix for a person of gender g are given by

m (-) = Pr(hsi, |1 t, g, hsi, fo). ()

2) Survival uncertainty. Let s{(-) = s(I,t, g, hs{, f;) denote the probabil-
ity that an individual of gender ¢ is alive at age t + 1, conditional on being
alive at age ¢, having time-¢ health status hsY, enjoying household permanent
income I, and having family structure f;.

3) Medical expense uncertainty at the household level. We define m; as
the flow of all out-of-pocket medical expenses, including insurance premia,
and medical expenses covered by the consumption floor incurred between t
and t+1. We assume that medical expenses depend upon the health status of
each family member, household permanent income, family structure, gender
if single, age, and an idiosyncratic component, 1);:

ln my :m(h8?7 hS:f”? hsﬁrl? hsllfilv ‘[7 gat + 17 ft—‘rl? ft) (6>
+o(hst, hsy hspq, hstiy 1, gt + 1, fuin, fi) X

Note that medical spending depends on last period’s household status and
last period’s health status, as well as their values in the current period. This
allows us to capture the jump in medical spending that occurs in the period a
family member dies, and to incorporate differences in medical spending (e.g.
the cost of prolonged periods of bad health or nursing home stays) by last
period’s health status. As m; is the flow of all medical expenses between ¢
and t+ 1 it depends on the time ¢t + 1 realisations of the exogenous processes
for family structure, health status and the idiosyncratic component - it is
not known by the decision maker in time ¢. Allowing for medical expenses
to depend on both family and health status in ¢ and ¢+ 1 does not introduce
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additional state variables because households take an expectation over the
flow of medical expenses between period t and ¢ + 1.

Following Feenberg and Skinner [29] and French and Jones [31], we assume
that 1, can be decomposed as

Yy = G+& &~ N(07 Ug)a (7>
G = met—l + €, €~ N(07 062)7 (8)

where & and ¢ are serially and mutually independent. In practice, we
discretize £ and (, using quadrature methods described in Tauchen and
Hussey [51].

The timing is the following: at the beginning of the period income is
received, and if the household qualifies, means-tested transfers are also re-
ceived. Then the household consumes and saves. After the consumption and
savings decisions are made the survival shock hits. Finally, the health shock
and the medical cost shocks are realized. Household members who die leave
assets to their heirs. We assume that the medical costs associated with death
and incurred by a surviving spouse, if there is one, are collected before the
bequest decision.

The timing of our model gives rise to three types of decision makers. Cou-
ples and Singles choose consumption and savings. The newly Single (widows
and widowers) choose the bequest to other heirs in addition to consumption
and savings.

Let us denote assets at the beginning of the period with a;. Assets have to
satisfy a borrowing constraint a; > 0. Let us indicate the constant and risk-
free, rate of return with r, and total post-tax income with Y(r a; + y:(-), 7),
with the vector 7 describing the tax structure.

4.3 Recursive formulation

To save on state variables we follow Deaton [19] and redefine the problem
in terms of cash-on-hand:

Ty =a; +y(ra,+T(-),7) +tr(). 9)
The law of motion for cash on hand next period is given by

Tepr = xp — ¢ —my — b+ T(r (w — e —my) + 41 (1), 7) +tria () (10)
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where b; > 0 is positive only when one spouse from a couple dies during the
prior period and leaves bequests to other heirs (e.g., children). We do not
include received bequests as a source of income, because very few households
aged 65 or older receive them. When all household members die their assets
are bequeathed to the remaining heirs.

Following Hubbard et al. [35, 36], we assume that the government pro-
vides means-tested transfers, try(-), that bridge the gap between a minimum
consumption floor and the household’s resources, net of an asset disregard
amount. Define the resources available next period before government trans-
fers with

Tor = ae— e —my — b+ T(r (zy — ¢ —my) + yea (), 7), (11)

Consistently with the main Medicaid and SSI rules, we can express govern-
ment transfers next period as

trip1(Teg1, hspy1) = max {07 Cmin(fer1) — max{0, T¢q — ad(ft—i—l)}}a (12)

We allow both the guaranteed consumption level ¢,,;, and the asset disregard
aq to vary with family structure. We impose that if transfers are positive,

Ct = Cmin(.ft)-
The law of motion for cash on hand next period can thus be rewritten as

Tir1 = Tep1 + rep1 (Tegr, hsegn). (13)
To ensure that cash on hand is always non-negative, we require
Ct S T, Vt. (14)

Medical expenses arrive after households make their savings decisions. We
define savings before medical expenses as

szl't—ct—bt (15)

Using the definition of cash-on-hand, the value function for a single individual
of gender g can be written as

‘/tg(xty hsg, I, Ct) = nax {U(Ct, hst) + 55(1775,97 hs?a ft)
Ct,at+1

x B, (Viy (e, hseen TG )

T B(L = s(L,t, g, hs?, f)6o(xi — oo — mg}, (16)
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subject to equations (4)-(8) and(11)-(14). The value function for a newly
widowed (single) individual of gender g can be written as

V;Enew’g(xta h8t7 Ia Ct) = maz& {U(Ct7 hst) + Ql(b?) + ﬂs(-L t: g, hS?, ft)

ce,bY ary1

X Ey (‘/2‘11(%“7 hsiy1, 1, Ct+1)>

8L s(Lt. g, hs?, )60l — mg},
an

subject to equations (4)-(8) and(11)-(14) and bequests are constrained by
by <z —cy. (18)

The value function for couples can be written as

Vié(2y,hs?, hs? I,¢) = max {uc(ct,hsg,hsjg")

Ct,at4+1
+ Bs(I,t,w, ks, 1)s(1,t, h, hsp, 1) Ey (Ve (21, hs)y, hsi, 1, Gar))
+ BS(Iv t,w, hS;U7 1)(]‘ - S(I7 t ha hS?, 1)>Et (V;fj-elw7w(x;u+17 hsztu—i-lv ]a gt-l—l))
+ 81— s(I,t,w, hs?, 1))s(1,t, by hsf, 1) E, (V2 @k bt 1 Gn))

+ 6(1 - S<I’taw7 h'szﬂv 1)(1 - S([ata ha hS?, 1)92(3:75 — C — mt)}v (19)

where the value function is subject to equations subject to equations (4)-(8)
and (11)-(18), with f; = 1 since we are referring to couples.

5 Estimation

We adopt a two-step strategy to estimate the model. In the first step,
we estimate or calibrate those parameters that, given our assumptions, can
be cleanly identified outside our model. In particular, we estimate health
transitions, out-of-pocket medical expenses, and mortality rates from raw
demographic data. We calibrate the household economies of scale parameter.
We set the consumption floor for couples to be a multiple of the consumption
floor for singles, that we estimate.
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In the second step, we estimate the rest of the model’s parameters (dis-
count factor, risk aversion, health preference shifter, the consumption floor
for singles, and bequest parameters)

A= (67 v, 67wucmin<ft = 5)7 ¢07¢17 ¢27k07k17 k2)

with the method of simulated moments (MSM), taking as given the param-
eters that were estimated in the first step. In particular, we find the param-
eter values that allow simulated life-cycle decision profiles to “best match”
(as measured by a GMM criterion function) the profiles from the data.

Because our underlying motivations are to explain why elderly individu-
als retain so many assets and to explain why individuals with high income
save at a higher rate, we match median assets by cohort, age, and perma-
nent income. Because we wish to study differences in savings patterns of
couples and singles, we match profiles for the singles and couples separately.
Because Medicaid is an important program insuring medical expenses and
consumption of the poorest, we also match Medicaid recipiency.

In particular, the moment conditions that comprise our estimator are
given by

1. Median asset holdings by PI-cohort-year for the currently singles who
are still alive when observed.

2. Median asset holdings by PI-cohort-year for those who are currently
couples with both members currently alive.

When there is a death in a couple, the surviving spouse is included in
the current singles’ profile of the appropriate age, cohort, and perma-
nent income cell; in keeping with our assumption that all singles differ
only in their state variables.”

3. Medicaid recipiency by Pl-cohort-year for everyone who is currently
alive.

9This assumption appears to hold remarkably well in the data, in that conditional on
our state variables, the savings and Medicaid recipients of recently singles are very similar
to those of the people we were already single in the past. This is perhaps not surprising
given that the vast majority of single people in our sample were married at some point.
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The cells for net worth are computed as follows.'® Household 4 has family
structure f;; which indexes households that are currently couples and those
that either are currently singles. We sort type-f households in cohort ¢
by their permanent income levels, separating them into ) = 5 quintiles.
Suppose that household i’s permanent income level falls in the gth permanent
income interval of households in its cohort and family structure.

For Medicaid recipiency, we construct cells for all individuals, whether
they are married or not, but conditioning by PI and cohort and we match
Medicaid recipiency by cell.

The mechanics of our MSM approach are as follows. We compute life-
cycle histories for a large number of artificial households. Each of these
households is endowed with a value of the state vector (¢, fi, xy, I, hs?, hs¥, (;)
drawn from the data distribution for 1996, and each is assigned the entire
health and mortality history realized by the household in the AHEAD data
with the same initial conditions. This way we generate attrition in our simu-
lations that mimics precisely the attrition relationships in the data (including
the relationship between initial wealth and mortality).

We discretize the asset grid and, using value function iteration, we solve
the model numerically. This yields a set of decision rules, which, in combina-
tion with the simulated endowments and shocks, allows us to simulate each
individual’s assets, medical expenditures, health, and mortality. We compute
assets from the artificial histories in the same way as we compute them from
the real data. We use these profiles to construct moment conditions, and
evaluate the match using our GMM criterion. We search over the parame-
ter space for the values that minimize the criterion. Appendix F contains a
detailed description of our moment conditions, the weighting matrix in our
GMM criterion function, and the asymptotic distribution of our parameter
estimates.

When estimating the life-cycle profiles, and subsequently fitting the model
to those profiles, we face two well-known problems. First, in a cross-section,
older households were born in an earlier year than younger households and
thus have different lifetime incomes. Because lifetime incomes of households
in older cohorts will likely be lower than the lifetime incomes of younger
cohorts, the asset levels of households in older cohorts will likely be lower

10Simulated agents are endowed with asset levels drawn from the 1996 data distribution,
and thus we only match asset data 1998-2010. As was done when constructing the figures
from the HRS data, we drop simulated cells with fewer than 10 observations from the
moment conditions.
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also. Therefore, comparing older households born in earlier years to younger
households in later years leads to understate asset growth. Second, house-
holds with lower income and wealth tend to die at younger ages than richer
households. Therefore, the average survivor in a cohort has higher lifetime
income than the average deceased member of the cohort. As a result, “mor-
tality bias” leads the econometrician to overstate the average lifetime income
of members of a cohort. This bias is more severe at older ages, when a greater
share of the cohort members are dead. Therefore, “mortality bias” leads to
overstate asset growth.

We use panel data to overcome these first two problems. Because we are
tracking the same households over time, we are obviously tracking members
of the same cohort over time. Similarly, we do separate sets of simulations
for each cohort, so that the (initial) wealth and income endowments behind
the simulated profiles are consistent with the endowments behind the empir-
ical profiles. As for the second problem, we explicitly simulate demographic
transitions so that the simulated profiles incorporate mortality effects in the
same way as the data, both for couples and singles.

6 Estimation results

Section 3 includes results from our first-step estimation, that we use as
inputs for our structural model, and the outputs that we require our model
to match. In this section, we report our second-step parameter estimates for
our structural model, the model fit, and we discuss the model’s identification.

6.1 Second-step esults

7 Conclusions

Over one-third of total wealth in the United States is held by households
over age 65. This wealth is an important determinant of their consumption
and welfare. As the U.S. population continues to age, the elderly’s savings
will only grow in importance.

Retired U.S. households, especially those who are part of a couple and
have high income, decumulate their assets at a slow rate and often die with
large amounts of assets, raising the questions of what drives their savings
behavior and how their savings would respond to policy reforms.
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. discount factor, biennnial

RRA coefficient

d(hs9 = 1): preference shifter, nursing home

d(hs? = 2): preference shifter, bad health

w:
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Ro:

¢

KRi:

Pa:

Ko

weight on the surviving spouse

. bequest intensity, single

bequest curvature, single (in 000s)

bequest intensity, surviving spouse

bequest curvature, surviving spouse (in 000s)
bequest intensity, both spouses

bequest curvature, both spouses (in 000s)

Cmin(f = 2): consumption floor, couples

Cmin(f = 1): consumption floor, singles

0.7436
(0.0494)
2.936
(0.2315)
0.3949
(0.1082)
0.5272
(0.1110)
1.025
(0.2246)
12.10
(2.227)
14,020
(1,489)
39.34
(11.48)
183,000
(45,750)
0.4190
(0.7187)
7.115
(20,540)
6,089
(NA)
3,672
(345.3)

Notes: Standard errors in parentheses. NA refers to the fixed ratio

of

couples’ and singles’ consumption floors

Table 3: Estimated parameters from our second-step estimation
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We develop a model of optimal lifetime decision making and estimate key
properties of the model. We find that singles live less long than people who
are part of a couple, but are more likely to end up in a nursing home in
any given year. For that reason, singles also have higher medical spending,
per person, than people who are part of a couple. We also find that assets
drop sharply with the death of a spouse. By the time the second spouse
dies, a large fraction of the wealth of the original couple has vanished, with
the wealth falls at the time of death of each spouse explaining most of the
decline. A large share of these drops in assets is explained by the high medical
expenses at the time of death. This suggests that a large fraction of all assets
held in retirement are used to insure oneself against the risk of high medical
and death expenses.
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Appendix A: Sample selection and data handling

To keep the dynamic programming problem manageable, we assume a
fixed difference in age between spouses, and we take the average age difference
from our data. In our sample, husbands are on average 3 years older than
their wives. To keep the data consistent with this assumption, we drop all
households where the wife is more than 4 years older or 10 years younger
than her husband.

We begin with 6047 households. After dropping 401 households who
get married, divorced, were same sex couples, or who report making other
transitions not consistent with the model, 753 households who report earning
at least $3,000 in any period, 171 households with a large difference in the age
of husband and wife, and 87 households with no information on the spouse
in a household, we are left with 4,634 households, of whom 1,388 are couples
and 3,246 are singles. This represents 24,274 household-year observations
where at least one household member was alive.

A key advantage of the AHEAD relative to other datasets is that it pro-
vides panel data on health status, including nursing home stays. We assign
individuals a health status of “good” if self-reported health is excellent, very
good or good, and are assigned a health status of “bad” if self-reported health
is fair or poor. We assign individuals to the nursing home state if they were
in a nursing home at least 120 days since the last interview (or on average
60 days per year) or if they spent at least 60 days in a nursing home before
the next scheduled interview and died before that scheduled interview.

The AHEAD has information on the value of housing and real estate,
autos, liquid assets (which include money market accounts, savings accounts,
T-bills, etc.), IRAs, Keoghs, stocks, the value of a farm or business, mutual
funds, bonds, “other” assets and investment trusts less mortgages and other
debts.

We do not include pension and Social Security wealth for four reasons.
First, we wish to to maintain comparability with other studies (Hurd [37],
Attanasio and Hoynes [7] for example). Second, because it is illegal to borrow
against Social security wealth pension and difficult to borrow against most
forms of pension wealth, Social Security and pension wealth are much more
illiquid than other assets. Third, their tax treatment is different from other
assets. Finally, differences in Social Security and pension are captured in
our model by differences in the permanent income measure we use to predict
annual income.

One important problem with our asset data is that the wealthy tend
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to underreport their wealth in virtually all household surveys (Davies and
Shorrocks [17]). This will lead us to understate asset levels at all ages. How-
ever, Juster et al. (1999) show that the wealth distribution of the AHEAD
matches up well with aggregate values for all but the richest 1 % of house-
holds. Given that we match medians (conditional on permanent income),
underreporting at the very top of the wealth distribution should not seri-
ously affect our results.

Appendix B: Inferring Permanent Income
We assume that log income follows the process

In Yit = K1 (t, fzt) + h([l) -+ Wit (20)

where k1(t, f;) is a flexible functional form of age t and family structure f;
(i.e., couple, single men, or single woman) and w;; represents measurement
error. The variable I; is the household’s percentile rank in the permanent
income distribution. Since it is a summary measure of lifetime income at
retirement, it should not change during retirement and is thus a fixed effect
over our sample period. However, income could change as households age
and potentially lose a family member. Our procedure to estimate equation
(20) is to first estimate the fixed effects model

Inyy = ki, fa) + 0 + wir (21)

which allows us to obtain a consistent estimate of the function kq(t, fi).
Next, note that as the number of time periods over which we can measure
income and other variables for individual ¢ (denoted T;) becomes large,

.

T; T;
. 1 « 1
pllmTi—ﬂwi Z[ln Yit — ’il(t7 fzt Wzt - — 1I1 Yix — t fzt)] - h( )

t=1

(22)
Thus we calculate the percentile ranking of permanent income I; for every
household in our sample by taking the percentile ranking of % ZtT;'l[ln Yit —
R1(t, fir)], where Ry(t, fir) is the estimated value of k1(¢, f;;) from equation
(21). Put differently, we take the mean residual per person from the fixed
effects regression (where the residual includes the estimated fixed effect),
then take the percentile rank of the mean residual per person to construct
I;. This gives us a measure of the percentile ranking of permanent income I;.
However, we also need to estimate the function h(l;), which gives a mapping

s
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from the estimated index I; back to a predicted level of income that can
be used in the dynamic programming model. To do this we estimate the
function

Iy — Ri(t, fir)] = h(Li) + wie (23)
where the function h(I;) is a flexible functional form.

In practice we model k4 (¢, f;;) as a third order polynomial in age, dummies
for family structure, and family structure interacted with an age trend. We
model h(l;) as a fifth order polynomial in our measure of permanent income
percentile.

Given that we have for every member of our sample ¢, f;;, and estimates
of I; and the functions «4(.,.), h(.), we can calculate the predicted value of
Inyy = Ri(t, fu) + }Az(/[\l) It is Iny;; that we use when simulating the model
for each household. A regression of Iny;; on In7;; yields a R? statistic of .74,
suggesting that our predictions are accurate.

Appendix C: Imputing Medicaid plus Out of Pocket
Medical Expenses

Our goal is to measure the data generating process of the sum of Medicaid
payments plus out of pocket expenses: this is the variable In(m;;) in equation
(??) of the main text. If the household is drawing Medicaid benefits, then
the household will spend less than In(m;;) on out of pocket medical spending
(Medicaid picking up the remainder).

The AHEAD data contains information on out of pocket medical spend-
ing, but not on Medicaid payments. Fortunately, the Medicare Current Ben-
eficiary Survey (MCBS) has extremely high quality information on Medicaid
payments plus out of pocket medical spending. One drawback of the MCBS,
however, is that although it has information on marital status and household
income, it does not have information on the medical spending or health of
the spouse. Here we explain how to exploit the best of both datasets.

We use a three step estimation procedure. First, we use the MCBS to in-
fer Medicaid payments for recipients, conditional on the observable variables
that exist in both datasets. Second, we impute Medicaid payments in the
AHEAD data using conditional mean matching procedure (which is a pro-
cedure very similar to hotdecking). Third, we estimate the data generating
process for out of pocket plus Medicaid medical spending in the HRS.

First Step Estimation Procedure:

We use the MCBS to infer Medicaid payments for recipients, conditional
on the observable variables that exist in both the MCBS and the HRS
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datasets. Define oop;; as the out of pocket medical expenses and my is
the sum of out of pocket plus Medicaid payments that we wish to plug in the
model, and so Med; is the dollar value of Medicaid payments.

To impute Med;; in (which is missing in the HRS), we follow David et al.
(1986) and French and Jones (2011) and use the following predictive mean
matching regression approach. First, for every member of the the MCBS
sample with a positive Medicaid indicator (i.e., a Medicaid recipient), we
regress the variable of interest Med on the vector of observable variables
z, yielding Med = 2z + €. Second, for each individual j in the MCBS we
calculate the predicted value M edj = zth, and for each member of the
sample we calculate the residual &;; = Med;; — M edj;. Third, we sort the
predicted value M edj; into deciles and keep track of all values of &;; within
each decile.

In practice we include in z;; nursing home status, the number of nights
spent in a nursing home, an age polynomial, total household income, marital
status, self-reported health, race, visiting a medical practitioner (doctor, hos-
pital or dentist), out of pocket medical spending, education and death of an
individual. Because the measure of medical spending in the HRS is medical
spending over two years, we take two year averages of the MCBS data to be
consistent with the structure of the HRS. A regression of Med,; on z;; yields
a R? statistic of .67, suggesting that our predictions are accurate.

Second Step Estimation Procedure:

Next, for every individual 7 in the HRS sample with a positive Medicaid
indicator, we impute M edzt = zztﬁ using the values of 6 estimated using the
MCBS. Then we impute ¢;; for each member of the HRS sample by finding a
random individual j in the MCBS with a value of M edj; in the same decile
as M ed;; in the HRS, and set ¢; = £j. The imputed value of Med; is
M 6dit + Eit-

As David et al. (1986) point out, our imputation approach is equivalent
to hot-decking when the “2” variables are discretized and include a full set
of interactions. The advantages of our approach over hot-decking are two-
fold. First, many of the “2” variables are continuous, and it seems unwise
to discretize them. Second we use a large number of observable variables
“2”7. We find that adding extra variables are very important for improving
goodness of fit when imputing medicaid payments. Even a small number of
variables generate a large number of hot-decking cells, as hot-decking uses
a full set of interactions. Thus, in this context, hot decking is too data
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intensive.

We predict Medicaid expenditures for 3,756 Medicaid eligible households
(i.e., Medicaid beneficiaries) in the HRS and report the results of this impu-
tation exercise in Table 4. Households where the last surviving member died
between the previous and current waves of the sample have the largest im-
puted Medicaid payments. In contrast, couples have the smallest Medicaid
payments per individual, but Medicaid expenditures at the household level
are larger than for either single men or women. The imputed Medicaid pay-
ments for both spouses in a couple are approximately equal and the results
for couples are not driven by the expenditures of only the husband or wife.
In Table 4 new widows and widowers who’s spouse has died between waves
of the HRS sample are included in the rows for single men and single women-
on average the Medicaid payments of dead spouses are less than 20% of the
single household’s Medicaid expenditures.

Family Number of Medicaid Standard
Structure Eligible Households Mean Deviation
Dead 1,040 21,800 31,500
Couples 287 15,300 25,700
Single Men 351 11,600 21,500
Single Women 2,078 12,300 21,800

Table 4: Imputed Medicaid payments for Medicaid beneficiaries in HRS.

The distribution of imputed Medicaid expenditures in the HRS is close
to the distribution observed in the MCBS. Mean imputed Medicaid expen-
ditures, Med;;, for Medicaid recipients in the HRS is $14,050. This is lower
than the corresponding value of $16,XXXK in the MCBS. This small differ-
ence is due to the distribution of observable variables, z, in both the MCBS
and HRS. In particular, the number of nights in a nursing home is 20X%
lower in the HRS than in the MCBS, due in part to the fact that the initial
HRS sample is for the non-institutionalized population who were not in a
nursing home.

Third Step Estimation Procedure:

Our value of m; in the HRS is thus oop; + Med;;, where Med;; was
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calculated in the second step. Define Xy = (hsh, hs¥ I, g,t, fi, fi—1). Recall
that equation (7?) of the main text is given by In(my;) = m(Xy)+0(Xi) X 1.
Using HRS, we use fixed effects estimation procedures to estimate

ln(mit) = qo; + m(Xlt) + €t. (24)

which gives 7m(X;,). Next we construct the estimated residuals (e + a;) =
In(m;;) —m(X;:) and estimate the regression (using OLS and no fixed effects):

(Gmi)z = h(Xi) + G- (25)

This allows us to recover the variance of €; conditional on X;.
In order to infer the variance of medical expenditures conditional on X,
note that from equations (??) and (?7?)

U(Xit) X @ij‘t = ln(mit) — m(XZ ) = (Eit + Ozi). (26)
so we can obtain the conditional variance by noting that E[i)2] = 1 and so
[0 (Xit)|* = El(eir + 0:)?| Xit] (27)

where we estimate E[(e;; + ;)% X] = h(X;;) in equation (25).
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Appendix D: Other savings graphs

Median Assets by Cohort and Income: Data, Intact Singles
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Figure 8: Median assets for households initially single. Each line represents
median assets for a cohort-income cell, traced over the time period 1996-2010.
Thicker lines refer to higher permanent income groups. Solid lines: cohorts
ages 72-76 and 82-86 in 1996. Dashed lines: ages 82-86 and 92-96 in 1996.

Figure 8 displays the asset profiles for households that were single when
first observed in the AHEAD, classified according. Median assets are increas-
ing in permanent income, with the 74-year-olds in the highest PI income of
the singles holding about $240,000 in median assets, while those at the lowest
PI quintiles holding essentially no assets. Over time, those with the highest
PI tend to hold onto significant wealth well into their nineties, those with
the lower PIs never save much, while those in the middle Pls display quite
some asset decumulation as they age.
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Appendix E: Outline of the computation of the value
functions and optimal decision rules

We compute the value functions by backward induction. We start from
the singles, find their time 7" value function and decision rules by maximizing
equation (17) subject to the relevant constraints, and V7, , = 6y(z; — ),
g = h,w. This yields the value function V! and the decision rules for time
T. We then find the decision rules at time 7" — 1 by solving equation (17)
with V7. Continuing this backward induction yields decision rules for time
T—-2,T-3,..1.

We find the decisions for couples by maximizing equation (19), subject
to the relevant constraints and the value function for the singles, and setting
V., to the appropriate bequest motive value. This yields the value function
Vi and the decision rules for time 7. We then find the decision rules at
time 7' — 1 by solving equation (19) using V5, V7, g = h,w. Continuing this
backward induction yields decision rules for time T'— 2,7 — 3, ..., 1.

We discretize the persistent component and the transitory components of
the health shock, and interest rate into Markov Chain following Tauchen and
Hussey (1991). We assume a finite number of permanent income categories.
We take cash-on-hand to lay into a finite number of grid points.

Given each level of permanent income of the household, we solve for de-
cision rules for each possible combination of cash-on-hand, income, health
status, and persistent component of the health shock. We use linear interpo-
lation within the grid and linear extrapolation outside of the grid to evaluate
the value function at points that we do not directly compute.

For the singles, for simplicity of notation, here for the most part we
drop any reference to the missing spousal variables everywhere, and just use
similar notation to the one for couples (except for the number of arguments
in the function). In the code, we have different names, say for example for
the survival of single people and couples.
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The value function for the singles, g = h,w and f; = 0 is given by:

V?(‘rta h8t7 ]a gt) = max {U(Cta hst) + B(l - S(hst7 Iaga t 0))80(1:15 - Ct)+

Ct,Tt41

dm d¢  de

Bs(hs, 1,g,t,0) {Z D> " Pr(hsi = hsilhsi, 1, g,t,0)Pr(Gin = GIG) Pr(& = &)

k=1 I=1 n=1
V;!—Jl-l (xt+l(k7 la n)a hst-l-l(k)? I? Ct+1(l)):| }
Subject to:

Zi41 = Ty — ¢+ y<7"($t — ) + Yy (1,0), T>

Tt > Cmin(9), & < xp,
In(myyq(k,l,n)) = mI(hspa(k), It + 1) + 0% (hsi1(k), I, t + 1)hyq (L, n)
Vep1(l,n) = Ga(l) + &qa(n),

se1(k,l,n) = zepr — myga (K, n)
tripi(k,ln) = maX{Oa Cmin(f¢) — max(0, s¢11 — ad(i))}

i1k, L,n) = spa(k,Ln) +triq(k, 1n)

Vz; COH level, determine maximum consumption (and hence savings)
Ve € (Cmin, ), compute u?(c, m) and 6y (:L‘t — ct).
V(g,t,I) For each gender, age, PI, compute savings = z;,4
Vhs;, (; For each health state and pers. medex shock TODAY
Vhsii1(k), G1(1),€(n) tomorrow’s shocks
x441(k, [, n) compute tomorrow’s COH for each state
Interpolate and extrapolate V% | (zi41(k, 1, n), hsiy1(k), I, G411 (1))
Compute
5S(hst7]7t) Zrznl 7i1 ff:l H(kvlvn)‘/;t!—]|—1<xt+1(k’lvn)7h8t+1(k)7lvgt+1(l))
B(1 — s(hsi, I, 1)) go(wr — ) + u9(cy, hsy)
W (e, x4, I, hsy, () = sum of the two lines just above
max., W(ey, x4, I, hsy, ¢;)
i (x4, I, hsy, (;) =maximizer
Vi (4, I, hst, ;) =maximum
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The value function for the couples is given by:

Vié(xy, hs®, hs? I,(;) = max {uc(ct,hs?,hsqg”)—i-
b/

Ct,Tt+1 7b%u "t

—1—5(1 — s(hs”, I,w,t, 1)> (1 — s(hs" I, h,t, 1))92(xt — )+

dm d¢  de
Bs(hs”, I, w,t,1)(1 — s(hs", [, h,,1)) (@(bﬁ) twy Y
k=1 =1

=1 n=

PT(QH = Cth)
1

Pr(&q1 = &) Pr(hsiy, = hsplhsy, I w,t, 1)V, (x}fjrl(k, l,n), hsf (k) I, Ct+1(l))) +

dm d¢  de
B(1 = s(hs", I, w,t,1))s(hs", I, h,t,1) <el<b;”> twy Y
k=1 I=1

=1 n=

Pr(G1 = Gl¢)
1

PT(&-H gn)PT(hSt—H hskh|h3t>I h t 1)‘/;&]—11—1 (xt-i—l(k’l?n) h5t+1( )717 Ct—f—l(l)))—'_

Bs(hs”, I,w,t,1)s(hs" I, h,t1)
dm d¢ dg

dm
<Z Z Z Z ‘/til (‘rt-l-l(k:fw kwa l7 n)? hszlfv+17 hSiLJrla I7 Ct+1 (l))

kh=1 kw=1 I=1 n=1
Pr(G1 = ¢|¢)Pr(&m = §n)Pr(hs?+1 = hskh|h3?, I h,t,1)Pr(hsy,, = hspw|hsy, I, w,t, 1)) }

(28)
subject to

Ty > Cmin(c), o <z, Vit
O0<by <zt —0c, VI, 1=h,w,
Vi = yle, 1, t+1)
yZ+1 =y(i, [, t+1)
zig ={r — o +y(7" Ty — ) + Y, T )}
ZZH = {2, — ¢ +y(7" Ty — Ct) +yt+17 )}

Inm§ o (kn, kw, l,n) = m(hspy(kn), hsy (ky),t +1,1)
+06(h8?+1(kh)7 hS;U+1(kw)a [> t + 1)¢t+1(l7 TL)
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nm{y (k,1,n) = m(g, hsyyy (k). 6+ 1,1) + 0%(g, hsy (k), 1.t + 1)iba (I, )
Yer1(l,n) = G (1) + &1 (n),
i1 (Fny ks 1n) = max{zfy —miy (i, kw, [,n), cnin(c) }
rl (ko ln) = maX{Zfﬂ - miﬂ(l{;, l,n) = by, Cmin (1) }

Computation
V()
Ve, € (Cmin, T1)
0 ($t - Ct)
V(bi S (073:15))
01(by)
V(m, m)
u (ct, mh, m¥ )
Vta Ct
sumC: expected value next period in case both survive
sumH: expected value next period in case husband dies
sumW: expected value next period in case wife dies
bequestUCM: utility from bequests when both die
W (e, a, Im,mi, G) = u (e, my,mp) + Bs st , sumC
+B5$}n,1,t(1 - Sﬁm,z,t) sumH
+/6(1 - S%,I,t)sinlm,l,t SumW_'_B(]. - 571;}1’1725)(]. - SZL,I,t)—i_
B(1—sw ;)1 — sk ;) bequestUCM
maxe, W(Cta T, [7 m?7 mzﬁua Ct)
(g, I, mP, m¥, ¢;) =maximizer
Vi(xy, I, ml, m¥, ;) =maximum

In the calculation of next period’s expected value in the case in which
one spouse dies (sumH and sumW), we compute the optimal decision rule
for bequests, conditional on each consumption choice. In the end when we get
the decision rule for consumption, we automatically get the optimal decision
rule of bequest corresponding to each state b¢(zy, I, m', m¥, ;)

43



Appendix F: Moment Conditions and the Asymptotic
Distribution of Parameter Estimates

Our estimate, A, of the “true” preference vector A is the value of A that
minimizes the (weighted) distance between the estimated life cycle profiles for
assets found in the data and the simulated profiles generated by the model.
For each calendar year t € {1, ..., T}, we match median assets for 5 permanent
income quintiles in 5 birth year cohorts, both for singles and couples, leading
to a total of 50T moment conditions. Sorting households into quintiles also
requires us to estimate the 1/5th, 2/5th, 3/5th and 4/5th permanent income
quantiles for each birth year cohort and initial family type. This produces a
total of 40 nuisance parameters, which we collect into the vector . Each of
these parameters has its own moment condition.

The way in which we construct these moment conditions builds on the ap-
proach described in French and Jones [32]. Useful references include Buchin-
sky [13] and Powell [49]. Consider first the permanent income quantiles. Let
q € {1,2,...,Q — 1} index the quantiles. Assuming that the permanent in-
come distribution is continuous, the m,-th quantile of permanent income for
initial family type f of cohort ¢, gr (c, f), is defined as

Pr (Ii < gn,(c; e f) = 7. (29)

In other words, the fraction of households with less than g, in permanent
income is 7;. Using the indicator function, the definition of 7;-th conditional
quantile can be rewritten as

E([H{L € gr(c. )} — ] x Hei =} x 1{fi=f}) =0, (30)

for c € {1,2,...,C}, f € {single, couple}, ¢ € {1,2,...,Q — 1}.

The more important set of moment conditions involves the permanent
income-conditional age-asset profiles. Suppose that household i’s permanent
income level falls in the gth permanent income interval of households in its
cohort, i.e.,

Gry s (¢, ) < L; < gn,(c, f). (31)
We assume that my = 0 and 7 = 1, so that g, (c, f) = —oo and g, (c, f) =
00. Let acfqt(A, x) be the model-predicted median observed asset level for
group cfqt. Recall that the median is just the 1/2 quantile. Assuming
that observed assets have a continuous conditional density, we arrive at the
following moment condition:

E(1{aw < acpa(Do, x0)} — 1/2]c, f, ¢, t, household observed at t) = 0. (32)
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Equation (32) is merely equation (?7) in the main text, adjusted to allow
for “missing” as well as deceased households, as in French and Jones [31].
Using indicator function notation, we can convert this conditional moment
equation into an unconditional one:

B( [ < acu(Bo,xo)} = 1/2] % Hes = e} x 1{fi = f}

X Hgm,_1(c, [) < 1; < gr,(c, f)} x 1{household observed at t} | t) =0,
(33)

for c € {1,2,...,C}, f € {single, couple}, g € {1,2,...,Q}, t € {t1,ta...,t1}.

Suppose we have a data set of I independent households that are each
observed at T' separate calendar years. Let ¢(A,~; xo) denote the (507" +40)-
element vector of moment conditions described immediately above, and let
$1(.) denote its sample analog. Letting W denote a (507 +40) x (507 +40)
weighting matrix, the MSM estimator (A’ ,4') is given by

S1(A, v x0) Widr(A, ;5 x0),

arg min
{An} T

where 7 is the ratio of the number of observations to the number of simulated
observations.

In practice, we estimate yo as well, using the approach described in the
main text. Computational concerns, however, compel us to treat xo as known
in the analysis that follows. Under regularity conditions stated in Pakes and
Pollard [45] and Duffie and Singleton [26], the MSM estimator 6 is both
consistent and asymptotically normally distributed:

a((5)-(%)) - vew
v 70
with the variance-covariance matrix V given by
V =(1+7)(D'WD) 'D’'WSWD(D'WD) ™,

where: S is the variance-covariance matrix of the data;

dp(A,7; Xxo0)
0N

dp(A,7; x0)

D=
A=Ay ol

] (34)
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is the (507 +40) x (9+40) gradient matrix of the population moment vector;

and W = plim_, _{W;}. Moreover, Newey [43] shows that if the model is
properly specified,
I

I+7

P1(A, % x0) R™H01(A, 45 Xo0) ~ Xeor—o»
where R™! is the generalized inverse of

R = PSP,
P = I-DD'WD) 'D'W.

The asymptotically efficient weighting matrix arises when W ; converges
to S7!, the inverse of the variance-covariance matrix of the data. When
W = S~! V simplifies to (1+7)(D'S™'D)~!, and R is replaced with S. But
even though the optimal weighting matrix is asymptotically efficient, it can
be severely biased in small samples. (See, for example, Altonji and Segal [2].)
We thus use a “diagonal” weighting matrix, as suggested by Pischke [47]. The
diagonal weighting scheme uses the inverse of the matrix that is the same as
S along the diagonal and has zeros off the diagonal of the matrix.

We estimate D, S and W with their sample analogs. For example, our
estimate of S is the (507" + 40) x (507" + 40) estimated variance-covariance
matrix of the sample data. When estimating preferences, we use sample
statistics, so that a.pe(A, x) is replaced with the sample median for group
cfqt. When computing the chi-square statistic and the standard errors, we
use model predictions, so that the sample medians for group cfqt is replaced
with its simulated counterpart, acht(A, X)-

One complication in estimating the gradient matrix D is that the func-
tions inside the moment condition ¢(A,~y; x) are non-differentiable at certain
data points; see equations (30) and (33). This means that we cannot con-
sistently estimate D as the numerical derivative of ¢;(.). Our asymptotic
results therefore do not follow from the standard GMM approach, but rather
the approach for non-smooth functions described in Pakes and Pollard [45],
Newey and McFadden [44] (section 7) and Powell [49].

In finding D, it proves useful to partition ¢(.) into the 507-element vector
©a(.), corresponding to the moment conditions described by equation (33)
and the 40 — element vector ¢, (.), corresponding to the moment conditions
described by equation (30). Using this notation, we can rewrite equation
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(34) as

9oA(Ao,Y05x0)  9va(Ao,Y05X0)

_ DA oy
D= oo, (Romoixe)  9es(dorone) | (35)
A7 oy

and proceed element-by-element.
It immediately follows from equation (30) that

o~ (Ao, 703 Xo)

=0.
BN (36)
To find w, we rewrite equation (30) as
y
Pr(c;, =c& fi = f) x [F (gm](c, e, f) — Wj} =0, (37)

where F (gx,(c, f)lc, f) is the c.d.f. of permanent income for family type-
f members of cohort ¢ evaluated at the m;-th quantile. Differentiating this

9o~ (Ao,705x0
o'

equation shows that )isa diagonal matrix whose diagonal elements

are given by

Pr(c;=c& fi=f) x f(gr,(c; le, f) - (38)
In practice we find f (gx,(c, f)|c, f), the conditional p.d.f. of permanent
income evaluated at the m;-th quantile, with a kernel density estimator.

To find 8%%2’70”‘0) and 8%(%2’,70”‘0), it is helpful to rewrite equation (33)

as

Pr (cz- =c & f; = f & household observed at t) X

grq (6 f) acfqt(Ao,Xx0) 1
/ / Flaale, £, 1 )i — 5| F(Lle, )L =0, (39)
g (e,f) [/ —o0

Tg—1

It follows that the rows of w are given by

Pr(c;=c& fi=f& gr,_,(c, f) < I; < gn,(c, ) & household observed at t) x

Dacsqr(Ao, Y03 Xo)
f(acht|ca [ Gri (e f) £ 1; < gg (e, f),t) « fat 82' 05 Xo)

Proceeding similarly, it can be shown that each row of %W has the
following two non-zero elements:

Pr (ci = c & f; = f & household observed at t) X

( —f(groor (e Dle, ) [Facpale, fgm, (e, £).) = 1/2] )l (41)
f(gwq(ca e, f) [F(aqut|C> e gﬂq(C, f)vt) - 1/2] ’

(40)
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with

f(gﬂ’o(c7f)|c7f) [F(acht|c7 fﬂgwo(ca f)at) _1/2} = 07 (42)
f(gﬂ'Q(c7 f)|C, f) [F(acht‘ca f,ng(Ca f)at) - 1/2} = 0. (4?))
In practice, we find F’ (ac fatle, 1, t), the conditional c.d.f. of assets evaluated

at the median a.s, by finding kernel estimates of the mean regression of
H{ait < acpqey on I (holding ¢, f and, ¢ fixed).
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