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Abstract. A characterisation is provided of the belief updating processes that are in-

dependent of how an individual chooses to divide up/partition the statistical informa-

tion they use in their updating. These “divisible” updating processes are in general not

Bayesian, but can be interpreted as a re-parameterisation of Bayesian updating. This

class of rules incorporates over- and under-reaction to new information in the updating

and other biases. We also show that a martingale property is, then, sufficient the updating

process to be Bayesian.

1. Belief Updating

In this paper we consider arbitrary processes for updating beliefs in the light of statis-

tical evidence. We treat these updating processes as deterministic maps from the prior

beliefs and a signal structure (statistical experiments) to a profile of updated beliefs (one

for each possible signal). We place axioms on these updating processes and show that a

generalisation of Bayesian updating can be derived as a consequence of these axioms.

Consider an individual who receives two signals/pieces of information/news. There are

several ways such an individual can use these two signals to update their beliefs about

the world. One is to consider the joint distribution of these signals and to do just one

update. An alternative (which is natural when the signals arrive sequentially or over time)

is to separate the two signals and to update beliefs twice. That is, to update beliefs

once using the first signal and its distribution. And then to update these intermediate

beliefs a second time using the second signal and its conditional distribution given the

realisation of the first signal. If these two different procedures generate the same ultimate

profile of updated beliefs we will say that the updating is divisible. We will characterise

all the updating processes that have this divisibility property and show that they can be

interpreted as natural generalisation of Bayesian updating. Furthermore, we will show

that divisibility plus an unbiasedness/martingale property for the updating characterises

Bayesian updating.
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The main result of this paper shows that if updating satisfies four properties, then it

is characterised by a homeomorphism F from the space of beliefs into itself. The four

properties or axioms are: First, that uninformative experiments do not result in changes in

beliefs. Second, that the names of the signals do not matter just their probability content.

The third ensures that all updated beliefs are possible. The fourth is the divisibility property

described above. Any updating procedure, that satisfies these four properties, follows the

steps that are illustrated in the figure below. The initial beliefs are mapped to a “Shadow

Prior” using a homeomorphism F . Then, these shadow priors are updated in the standard

Bayesian fashion using the statistical information that is observed to create a Shadow

Posterior. Finally, the shadow posterior is mapped back to the space of original beliefs

using the inverse map F−1.

Beliefs Updated BeliefsyF xF−1

Shadow Prior
Bayes Updating−−−−−−−−−−−−−−−−−−−−→ Shadow Posterior

Figure 1. Updating that Satisfies Divisibility.

Our result is that if the belief revision protocol satisfies the divisibility property, then it

must have this structure. It is clear that Bayesian updating is a subset of this class, (F

is the identity). Specific properties of F ensure different properties of the belief revision.

Biases in the updating will be generated by the convexity or concavity of the map F . For

overreaction and under-reaction to signals we will argue that F needs to be an expansive or

a contraction mapping. In regions where F is a contraction the belief revision will exhibit

over-reaction in general and in regions where F−1 is a contraction the belief revision will

exhibit underreaction.

Many of the useful properties of Bayesian updating also carry over to this class of revision

protocols. For example, although the actual beliefs are not a martingale the shadow beliefs

are. Thus, in dynamic settings, updating that satisfies divisibility will be a deterministic

function of a martingale. As a result, consistency will hold for this larger class of updating

processes, provided F maps the extreme points of the belief simplex to themselves. That

is, when these updating processes are repeatedly applied to a sequence of data, they will

generate limiting beliefs that attach probability one to the truth. This property of divisible

updating contrasts with other models of non-Bayesian updating, for example Rabin and

Schrag (1999) and Epstein, Noor, and Sandroni (2010).

A question we also address is: what additional axioms are necessary to characterise

Bayesian updating? We show in the final section of this paper that only one further prop-

erty is sufficient for this, that is, belief revision is unbiased or follow a martingale.1 Thus

1There are several names used for this notion in different contexts: unbiased, Bayes plausibility have also

been used.
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any relaxation of Bayesian updating has to either violate the martingale property, the

divisibility property or one of the other axioms we impose.

Why do we focus on the divisibility of updating rather than some other property it may

have? There are several motivations for focussing on divisibility. The first is normative.

This is a property that is readily understandable by subjects and is a property that they

would like their updating to have. This is in contrast to the martingale property of Bayesian

updating (that the expectation of future beliefs equals the current belief), which is both

difficult to explain and harder to motivate as a property of updating.

The first is it resolves simplifies the determination of beliefs. The information economic

agents observe is typically not a unitary but a bundle of signals. It may be that even

apparently simple pieces of information (like the temperature is −5oC) is parsed into several

separate signals: “it is below freezing”, “it is also −5oC”. What divisibility ensures is that

the exact way that the updating is performed (using any bundle of signals) is unimportant

in determining the final beliefs. So, if the individual separates out various features of the

bundle and uses these individually to update their beliefs, then the order that they do this

has no ultimate effect their eventual beliefs. If updating does not satisfy the divisibility

property, then the updated beliefs will depend on how and in what order the individual has

applied the updating (see Section 1.1 below for an example of this).

The second is modelling parsimony. If divisibility is not satisfied, the individual has (in

general) multiple possible updated beliefs and an additional assumption is required to model

them. To predict the individual’s updated beliefs it will, then, also be necessary to have a

theory of how she chose to apply the updating rules to packages of signals.

The third is that treating the agent’s current beliefs as a state variable in their decision

taking is no longer legitimate. Agents may benefit by recalling more of the history than

just her current state of beliefs if the order of the updating matters. In dynamic settings

this issue is most clear. If the updating satisfies divisibility, then it is only necessary

for the individual to keep track of their current beliefs and update them any time new

information appears. Her current state of beliefs are sufficient to summarise all past signals

in a parsimonious way—nothing else about the past history must be remembered. There is

a dynamic consistency in the updating so the individuals who are not required to act can

simply collect information and use it to update beliefs when it is necessary. If the updating

is not divisible, then how often the updating rule has been applied in the past may affect

her current beliefs and thus may be something she needs to keep track of. In summary,

if the belief updating is not divisible, then a theory of how and when updating occurs is

required. Such a theory needs to address the trade-offs between the memory costs of storing

accumulated signals and the processing costs of when and how to update.
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1.1. An Example of Non-Divisible Updating

In this section we consider the model of non-Bayesian learning described Epstein, Noor,

and Sandroni (2010) or conservative Bayesian updating of Hagmann and Loewenstein (2017)

and apply it to an example.2 In these models of learning, the updated beliefs are a linear

combination of the prior and the posterior. We will show, using an example, that this

model of updating does not satisfy the divisibility property and seek to explain why the

updated beliefs vary for different protocols.

Consider an individual who is waiting for a bus and is learning about the arrival process

of buses. There are two states for the arrival process: In the good state a bus will arrive

in period t = 0, 1, . . . with probability (1 − α)αt (α ∈ (0, 1)) while in the bad state a bus

arrives in period t with probability (1− β)βt where α < β. She has initial beliefs µ ∈ (0, 1)

that the state is good and a bus will arrive at some point. If no bus arrives in period

t = 0, then a Bayesian would revise these beliefs downward in the light of this bad news

to αµ
(1−µ)β+µα . However, in this model of non-Bayesian learning she revises her beliefs to a

weighted average of the prior and Bayesian posterior:

(1) µ1 = (1− λ)µ+ λ
αµ

(1− µ)β + µα
, λ ≥ 0.

This is a particularly elegant model as it preserves the martingale property of the Bayesian

posteriors. The value λ is a parameter of the updating procedure, which can in general

depend on the current history, but in this example it is treated as a fixed property of the

updating. This model of updating generalises Bayesian updating (λ = 1), where λ adjusts

the effect the bad news of no arrival has the beliefs. Choosing λ < 1 allows the individual

to be under-confident or conservative in their updating of their beliefs. Conversely, λ > 1

allows the individual to be overconfident about the new information they have received.

Thus, λ allows a range of updates from extreme dogmatism (λ = 0) or jumping to certainty

(λ→ µ−1(1− α)−1).

Now consider what the individual’s beliefs could be after t periods waiting for a bus

without an arrival. One possible application of this updating procedure is to iterate the

updating process described in (1) for each of the t periods the individual has been waiting,

to get

µτ = (1− λ)µτ−1 + λ
αµτ−1

(1− µτ−1)β + µα
, τ = 0, 1, . . . , t.

This updated belief in period t, µt, clearly has required considerable mental agility on the

part of the individual. But it requires less memory, as the individual does not need to

keep track of all past events—the current value of the beliefs µs is all that she needs to

know.

2Both of these papers use this model of updating as a part of more general study of dynamic choice

when there is learning or information design. We do not address choice issues here, focussing solely on belief

revision.
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An alternative application of the updating procedure (1) would be to suppose that the

individual took all their current information at time t and performed one update of their

prior. This is the update (for example) that is done by someone who only gets to the bus

stop in period t and learns a bus has not yet arrived. Such a person would do one Bayesian

update and arrive at the updated belief αtµ
(1−µ)βt+µαt .

3 Hence the non-Bayesian updating

protocol (1) would in this case have an updated belief:

µ̃t := (1− λ)µ+ λ
αtµ

(1− µ)βt + µαt
.

The updated belief µ̃t has required a different kind of mental agility—requiring the individ-

ual to keep track of the past history of events and their original prior. The feature of the

updating procedure (1) we seek to remedy below is that the iterated and one-shot update

result in different beliefs: µ̃t 6= µt. The two different ways of using the same information

has generated different updated beliefs. The only time µ̃t = µt is when λ = 1 and the

updating is fully Bayesian.

There is no simple comparative static that describes when one of the updating procedures

described above makes the individual more optimistic than the other. If we take the initial

beliefs µ = 1
2 for simplicity, then µ̃2 = (1− λ)1

2 + λ α2

β2+α2 and the iterated updating gives:

µ1 = (1 − λ)1
2 + λ α

β+α , and µ2 = (1 − λ)µ1 + λ αµ1

(1−µ1)β+µ1α
. A calculation (see Appendix)

shows that

µ̃2 − µ2

λγ(1− γ)
=

1
1
µ1

+ γ
1−µ1

− 1

1 + γ + γ2 + γ3
, γ :=

α

β
, µ1 ∈ (0, 1/2).

This implies that µ̃2 > µ2 if and only if λ < 1. The intuition for this comparative static

is as follows. Varying λ tends to emphasise either the data or the prior. The iteration

of the updating mitigates this effect. To see how this works in practice first suppose that

λ < 1 and the prior is given increased weight. In the one-shot update, µ̃2, there is only

one opportunity for the bad news—two periods without busses—to drive the prior down.

But, when updating is iterated, it weakens the effect of the increased weight on the original

prior. It, instead, places some weight on the intermediate prior, µ1. Hence, µ2 will tend to

be smaller than µ̃2 when the information that arrives is bad news, because µ2 places less

weight on the original prior than µ̃2.

Conversely, when λ > 1 the data is given increased weight in the updating. The one-shot

update, µ̃2, gives these two periods of bad news excessive weight. Whereas the iterated

update, µ2, decreases the weight given to the first period of the bad news by averaging

it with the prior. So, the individual is less optimistic when they do a one-shot up date

because it maximises the weight given to the data that has been collected. The iteration

now dilutes the effect of the over-emphasised data.4

3αt is the probability that no bus arrives in the first t periods in the good state.
4When t varies continuously it is possible to get a cleaner expression for µt and a similar comparative

static on µt and µ̃t can be obtained.
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Of course, the two ways of determining period t beliefs, µt and µ̃t, are not the only ways

the beliefs in period t could be arrived at. An individual could update several times over

the periods s = 0, . . . , t − 1—how many times this occurred would depend on the agent’s

costs of cogitation. Thus there is a whole family of potential updated beliefs at time t and

as time passes this family grows.

1.2. Examples of Divisible Updating

Here we describe three other classes of updating that do satisfy the divisibility property

and are non-Bayesian. These rules will only be stated in terms of the above example but

are derived from completely general updating functions that will be developed later in the

paper. The first is a simple generalisation of Bayes’ rule

µ1 =
αxµ

µαx + (1− µ)βx
, x ≥ 0.

A second would move the inverse probabilities apart by a factor that depends on the

information in the signals

1

µ1
− 1

1− µ1
=

1

µ
− 1

1− µ
+ y ln

β

α
.

A final one would use trigonometric functions

µ1 =
2

π
arctan

(√
α√
β

tan
π

2
µ

)
.

To verify that these updating rule satisfy divisibility is a trivial exercise. What is surprising

about the final updating rule is that there is no role for 1 − µ in the updating function.

This follows because of the identity cot θ = tan(π2 − θ).

1.3. Related Literature

There is a growing Economics literature, both experimental and theoretic, investigating

the consequences of a non-Bayesian updating of beliefs, see for example: Rabin and Schrag

(1999), Ortoleva (2012), Angrisani, Guarino, Jehiel, and Kitagawa (2017), Levy and Razin

(2017), Brunnermeier (2009), Bohren and Hauser (2017) among many others. Much of this

literature combines issues of updating and decision taking. This is not what the current

paper does—it focusses solely on the revision of beliefs and the properties one might want

to place on this revision. One theme of this literature has been to investigate the properties

of a particular assumption about how updating may occur. The aim here is somewhat

different, that is to try to understand what updating procedures are consistent with a given

property. One exception to the focus on decision taking is Epstein, Noor, and Sandroni

(2010) who provide a model of updating that captures the under and overreaction to new

information. Their model of updating is distinct from the class we consider in several

respects and has already been considered at length in the example above.
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In Gilboa and Schmeidler (1993) the notion of divisibility (termed there commutativity)

is introduced and is argued to be an important feature of belief updating particularly in

the context of updating ambiguous beliefs. Hanany and Klibanoff (2009), has perhaps

the closest connection with this one. Here it is shown that there is a unique “reweighted

Bayesian update” that generates a given set of dynamically consistent preferences. They

moreover show that this rule satisfies commutativity, a property equivalent to divisibility.

These reweighted Bayesian updates are a subset of the class of updating rules that described

here (the rules that update as in Figure 1). Here we described all continuous updating rules

that satisfy commutativity/divisibility. In Zhao (2016) a set of weaker axioms are shown

to characterise an updating rule that does not satisfy divisibility, but does satisfy an order

independence property similar to the one discussed in the appendix, however, this property

is required to hold only for independent events.

There are links between the notion of divisibility and the models dynamic choice under

uncertainty. In particular the literature on recursive preferences in dynamic settings, or

dynamically consistent preference update rules. Here agents are required to act consistently

in situations where information arrives over many periods and thus implicitly behave as if

they update divisibly; see for example Epstein and Zin (1989) or Epstein and Schneider

(2003)).

In the statistics literature the notion of prequentiality, Dawid (1984), emphasises the idea

that that forecasting should be an iterative procedure and there may be differences between

iteratively revised forecasts and other kinds of forecasting procedures.

2. A Model of Belief Updating

In this section we describe our model of belief revision and the most important axioms we

will impose on the updating. The approach taken is inspired by the axiomatic interpretation

of entropies: see for example Shannon and Weaver (1949),Tverberg (1958) or Aczél and

Dhombres (1989) p.66. We will not adopt the terminology of “priors” and “posteriors”,

reserving these terms for the Bayesian updating only. Instead the agent is assumed to

be equipped with “beliefs” that are revised when information arrives to form “updated

beliefs”.

There is an unknown parameter θ ∈ {1, 2, . . . , |Θ|} := Θ and an agent who has the initial

beliefs, µ = (µ1, . . . , µ|Θ|) ∈ ∆(Θ), about the value of this parameter. There is a statistical

experiment E that the agent can conduct which provides further information on θ.5 The

experiment comprises a finite set of signals s ∈ {1, 2, . . . , n} = S and parameter-dependent

probabilities for the signals pθ = (pθ1, . . . , p
θ
n) ∈ ∆(S). We will only consider experiments

with strictly positive probabilities for all signals: pθs > 0 for all s ∈ S and θ ∈ Θ, or that

pθ ∈ ∆o(S).6 We will also want to consider the probabilities of a given signal s ∈ S as the

5See Torgersen (1991), for example, for the general properties of statistical experiments.
6We use ∆o(S) to denote the interior of ∆(S).
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parameter varies, hence we will define ps := (p1
s, . . . , p

|Θ|
s ) ∈ (0, 1)|Θ|. Thus pθ are the rows

of the matrix E and ps are its columns. In summary, the agent has priors µ ∈ ∆(Θ) and

access to the experiment E := (pθ)θ∈Θ ∈ ∆o(S)|Θ|.

An updating process takes the experiment, E , and the beliefs, µ, and maps them to the

updated beliefs for each possible signal outcome, s ∈ {1, 2, . . . , n}. The outcome of the

updating process is a profile of n possible updated beliefs {µs ∈ ∆(Θ) : s ∈ S} (one for

each possible signal realisation s ∈ S). The “updating function” Un is defined to be the

map from the beliefs and the experiment to the profile of updated beliefs, that is

Un : ∆(Θ)×∆o(S)|Θ| → ∆(Θ)n, for n = 2, 3, . . . .

We will also write (µ1, . . . , µn) = Un(µ, (pθ)θ∈Θ) = Un(µ, E).7

The first condition the updating is required to satisfy is that if the signals are identical

then there is no updating. That is if pθ = pθ
′

for all θ, θ′ ∈ Θ then the updated belief is the

same as the original beliefs.

Axiom 1 (Uninformativeness). Un(µ, E) = (µ, . . . , µ), if pθ = pθ
′

for all θ, θ′ ∈ Θ.

The second condition is that the names of the signals are unimportant for how the beliefs

are revised, it is only the probabilities in the experiment that matter. Thus permuting the

order of the signals just permutes the order of the updated probabilities.

Axiom 2 (Symmetry). For any n, any permutation ω : {1, 2, . . . , n} → {1, 2, . . . , n}, any

µ, and any E = (pθ)θ∈Θ ∈ ∆o(S)|Θ|,

Un(µ, (ω(pθ))θ∈Θ)) =
(
Uω(1)
n (µ, E), . . . ,Uω(n)

n (µ, E)
)
,

where ω(pθ) := (pθω(1), . . . , p
θ
ω(n)) and Un(.) = (U1

n(.), . . . ,Unn (.)).

The final condition in this section requires that the updating is non-dogmatic and contin-

uous. Continuity is satisfied by many models of belief revision in the literature, but may

not hold if there are fixed costs of contemplation and belief revision; see Ortoleva (2012)

for an example of discontinuous updating. Non-dogmatic revision, loosely stated, allows an

agent to have arbitrary updated beliefs after a signal s if they observe sufficiently persua-

sive evidence. To be more precise, it says that if there are only two possible signals, then

for any initial belief (that attaches positive probability to every parameter) there exists a

unique experiment that generates an arbitrary updated belief after signal s = 1. This does

not require that all possible profiles of beliefs can be generated from a suitable statistical

experiment. It only requires that the range of updating function for a given signal is the

entire set ∆o(Θ). The additional requirement that this map is a bijection is required for

complete solution of the functional equation we later solve. Without uniqueness only local

7In this model the updated beliefs are a deterministic function of the signal and experiment. This is

not consistent with all models of updating. For example in Rabin and Schrag (1999) the updated beliefs

are randomly determined by a bias that is realised after the signal is observed. To capture this model of

updating it would be necessary for the function Un to take values in ∆(∆(Θ))n.
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solutions for Un exist.8 The uniqueness property would again be violated by models updat-

ing that have fixed costs of contemplation. In such models there may be sets of experiments

for which it is simply not worth revising beliefs, hence there would be many experiments

with the update equal to the prior.

Axiom 3 (Non-Dogmatic). The function U2 : ∆(Θ) × ∆o(S)|Θ| → ∆(Θ)2 is continuous.

For any µ, µ′ ∈ ∆o(Θ) there exists a unique Ẽ ∈ ∆o(S)|Θ| such that U1
2 (µ, Ẽ) = µ′.

2.1. Binary Experiments

We end this section by introducing the function u that describes the updating in the case

where there are only two signals—a binary experiment.9 This will play a key role in what

follows. Consider an experiment with only two signals: S = {1, 2} and E = (pθ1, p
θ
2)θ∈Θ. We

can write

U2(µ, E) ≡
(
U1

2 (µ, p1, p2),U2
2 (µ, p1, p2)

)
.

Recall that ps is the vector of parameter dependent probabilities for signal s = {1, 2}, so

p2 = 1− p2. The axiom of symmetry implies that the two functions on the right above are

identical when the arguments are transposed, that is, U1
2 (µ, p1, p2) ≡ U2

2 (µ, p2, p1). So, we

define u : ∆(Θ)× (0, 1)|Θ| → ∆(Θ) as

(2) u(µ, p1) := U1
2 (µ, p1,1− p1).

That is, u(µ, p1) describes the updated beliefs after a binary experiment where the signal

s = 1 occurred and p1 ∈ (0, 1)|Θ| were the parameter-dependent probabilities of the signal

s = 1 and 1− p1 were the probabilities for s = 2. This allows us to write the full profile of

updated beliefs for binary experiments only in terms of one function u: and

U2(µ, E) ≡ (u(µ, p1), u(µ, p2))

We will use divisibility to extend this decomposition so that it holds for experiments with

arbitrary numbers of signals (4). Axiom 1 applied to a binary experiment implies that the

function u(.) satisfies

(3) u(µ, p1) = µ, ∀µ ∈ ∆(Θ), p ∈ (0, 1).

8See, for example, Berg (1993).
9A dichotomy is a experiment where there are only two parameters.
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3. Axioms on Iterated Updating: Divisibility and Order

Independence

We now consider they key condition on the updating of beliefs that is studied in this

paper. The Axiom 4 is designed to capture the fact that the update is independent of

whether information is processed in an iterative way or as one-off process.10

Consider two possible ways of learning the signal s. The first is a one-step process where

a signal s is generated according to the experiment E = (pθ)θ∈Θ and then revealed to the

individual. The second is a two-step process where, first, with probabilities (pθ1, 1− pθ1)θ∈Θ

the signal s = 1 or the signal s 6= 1 is revealed to the agent in a simpler experiment.

Then, in the case where the outcome s 6= 1 was obtained in the first experiment, a signal

from the set {2, . . . , n} is generated from a second experiment with the correct conditional

probabilities (pθ−1(1− pθ1)−1)θ∈Θ (where pθ−s is the vector pθ with the sth element omitted).

In what follows we will use E−1 := (pθ−1(1−pθ1)−1)θ∈Θ to denote the experiment that occurs

conditional on s 6= 1.11

The Axiom 4 says that these two different processes for observing the signal s have no

effect on the individual’s ultimate profile of beliefs. This assertion has two distinct elements.

First it says that learning the signal is s = 1 when there are n − 1 other signals has the

same effect on the updated beliefs as learning the signal is s = 1 when there is a binary

experiment and the other signal occurs with probabilities 1−pθ1. Formally this requires that

U1
n(µ, E) ≡ u(µ, p1). Thus the relative probabilities of the signals that were not observed

have no role in determining how beliefs will be updated.

The second element of the Axiom 4 says that the updated beliefs an individual has when

they see the signal s′ > 1 in a one-off experiment (Us′n (µ, E)) are the same as the beliefs

they would have at the end of the two-step process. In this two step process they first

learn the signal was not s = 1 and updated their beliefs to u(µ,1 − p1) and then they

learn that the signal was s′ from the experiment E−1 and engaged in the further update to

Us′−1
n−1 (u(µ,1− p1), E−1).12 13

Axiom 4 (Divisibility). For all E = (pθ)θ∈Θ ∈ ∆o(S)|Θ|, µ ∈ ∆(Θ), and n ≥ 3

Un(µ, E) = [u(µ, p1),Un−1(u(µ,1− p1), E−1)] .

10As an alternative, in the Appendix we consider, Axiom 6, which requires that the updating of beliefs

is independent of the order that information arrives. (Reversing the order that two pieces of information

arrive has no effect on the ultimate profile of beliefs.) Although these axioms appear different, we show in

the Appendix that they are actually equivalent and so we will only use the divisibility axiom.
11Recall that pθ ∈ ∆o(Θ) and so 1 > pθ1.
12We use 1 to denote the vector (1, 1, . . . , 1) of appropriate length.
13The form of this function requires a little explanation. The updated beliefs after the signal s′ is the

s′−1th component of the profile Un−1 when the first signal is not present. Hence the change in the superscript

on Un−1.
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If this axiom is combined with symmetry and iteratively applied, it implies that any multi-

step procedure that is based upon the experiment E will result in the same updated profile

of beliefs.

4. Characterisation of Divisible Updating

In this section a proposition is proved that gives a full characterisation of any updating

procedure Un that satisfies the Axioms 1, 2, 3, and 4. We will show that any such updating

is characterised by a homeomorphism F that maps beliefs to shadow prior. Then, this

shadow prior is updated in a fully Bayesian manner to create a shadow posterior. Finally

the shadow posterior is mapped back by F−1 to form the individual’s updated beliefs. This

is illustrated in the figure below.

beliefs
U−−−−−−−−−−−−→ updated beliefsyF xF−1

shadow prior
Bayes Updating−−−−−−−−−−−−→ shadow posterior

Figure 2. Updating Functions Un that Satisfy Axioms 1, 2, 3, and 4.

The first step in the argument is to show that u(µ, ps), the function that determines the

updated beliefs after signal s, must be homogeneous degree zero in ps if it satisfies Axioms

1, 2, and 4. The intuition for this result is quite simple. Suppose that there are three

possible signals S = {1, 2, 3} and that one signal, say s = 2, is equally likely under all

states. We now apply the Axiom 4 to the two cases: one where s is determined in a one-off

experiment and the second where there is first an experiment with binary outcomes s = 2

and s 6= 2 and then s ∈ {1, 3} is selected with the appropriate conditional probabilities. As

observing s = 2 is uninformative, Axiom 1 implies the first stage of the two-step process

leads to no updating of the priors. However the second stage experiment, when a signal

s 6= 2 is selected, has increased the relative probabilities ps of the signals s ∈ {1, 3}. Thus

the equality in Axiom 4 implies that the beliefs after the one-step experiment (with low

relative probabilities ps of the signals s ∈ {1, 3}) are equal to the beliefs after the two-

step experiment (with higher relative probabilities of the signals). Thus scaling up the

probabilities had no effect on the updating of beliefs. This is the definition of homogeneity

degree zero.

Lemma 1. Suppose updating satisfies Axioms 1, 2, and 4, then the function u(µ, ps) defined

in (2) is homogeneous degree zero in ps. And

(4) Un(µ, E) ≡ (u(µ, p1), . . . , u(µ, pn)) .

Proof. Suppose that n = 3. Consider two ways the agent can process the signal s = 1: (a)

She could be told the outcome of an s = 1 or s > 1 experiment, which would result in the
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updated beliefs (5). (b) The agent could first be told s 6= 2 in an s = 2, s 6= 2 experiment

and then the outcome of a final experiment where s ∈ {1, 3}, which would result in the two

step second updating (6).

u(µ, p1)(5)

u
(
u (µ,1− p2) , (

pθ1
1−pθ2

)θ∈Θ

)
(6)

The combination of Axioms 2 and 4 applied to (5) and (6) implies

u(µ, p1) ≡u
(
u (µ,1− p2) , (

pθ1
1−pθ2

)θ∈Θ

)
∀pθ2 ∈ [0, 1− pθ1].(7)

If 1 − pθ2 = 1/λ for all θ, then (3) implies u (µ,1− p2) ≡ µ. So the right of (7) becomes

u(µ, (λpθ1)θ∈Θ) and we get the condition

u(µ, p1) ≡ u (µ, λp1) , ∀λ ∈ [1,min
θ

(pθ1)−1].

Hence the function u is homogeneous degree zero in p1 if Axiom 4 holds. The equation (4)

follows by combining Axiom 4 with symmetry. �

We now move on to establishing the main result which gives the form of the functions

u(µ, ps) defined in (2). The intuition for this characterisation of the function u(µ, ps) comes

from the fact that there many different intermediate experiments that will generate the same

final updated beliefs. This is summarised in the functional equation, given below, that was

derived in Lemma 17

u(µ, ps) ≡ u
(
u (µ,1− ps′) , ( pθs

1−pθ
s′

)θ∈Θ

)
∀ps′ .

This says that the update for the signal s, u(µ, ps), is also equal to the update for all

equivalent intermediate experiments when the signal s′ did not occur, then the individual

had to do two updates. (They would first revise their beliefs to u (µ,1− ps′) when s′ didn’t

occur. Then, they would do a second update upon observing s.)

One could turn this equation into a family of PDE’s and thereby determine u. However,

there are techniques to solve this particular functional equation without the assumption of

differentiability—continuity is enough. The first step is to turn it into a linear functional

equation by taking logarithms. Giving the equation

u(µ, ps) ≡ u (u (µ,1− ps′) , ps − (1− ps′)) .

One simple solution to this functional equation is to add the arguments together: u(µ, p) =

µ+ p. Suitably adapted to the fact that µ, ps, and u(.) are vectors of probabilities and the

homogeneity result above, this simple solution gives Bayes’ updating. For a more general

solution one can first notice that the functional equation tells us about the contours of the

function u(.). This is because as ps′ varies the arguments on right, that is u (µ,1− ps′) and

ps−(1−ps′) vary in a way that does not change the value of u. It is, then, relatively simple

to see that each such contour of the function u(.) is a translation of the other. Thus once

the form of one contour has been determined all other contours are just translations of it.

Hence choosing an arbitrary function to determine the shape of one contour and another
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to determine the value taken by each contour is sufficient to determine the entire function.

This is how the family of solutions to the functional equation given in the Proposition are

generated.

The role of Axiom 3 here is to ensure that we are looking for a continuous solution to

the functional equation, and that it holds globally not just locally. If continuity fails the

set of solutions to even the simplest functional equation becomes enormous.14 The role of

uniqueness is to ensure a global solution exists, F is a homeomorphism, otherwise there

may be many local solutions to the functional equation and only local solutions exist. These

local solutions also have the same form as the global solution, see Berg (1993).

Proposition 1. If the updating Un satisfies the Axioms 1, 2, 3, and 4, then there exists a

homeomorphism F : ∆(Θ)→ ∆(Θ) such that

(8) u(µ, ps) = F−1

(
F1(µ)p1

s∑
θ∈Θ Fθ(µ)pθs

, . . . ,
F|Θ|(µ)p

|Θ|
s∑

θ∈Θ Fθ(µ)pθs

)
;

where F (µ) ≡ (F1(µ), F2(µ), . . . , F|Θ|(µ)), and

Un(µ, E) = (u(µ, p1), . . . , u(µ, pn)) .

Proof. We begin by reducing the dimension of the variables in the function u(µ, ps). Define

w : ∆o(Θ)→ R|Θ|−1
++ as follows

w(µ1, . . . , µ|Θ|) :=

(
µ1

µ|Θ|
, . . . ,

µ|Θ|−1

µ|Θ|

)
;

(where R++ := {x ∈ R : x > 0}). The function w is a bijection, from ∆o(Θ) to R|Θ|−1
++ and

it has the inverse

w−1(x1, . . . , x|Θ|−1) =

(
x1

1 +
∑|Θ|−1

i=1 xi
, . . . ,

x|Θ|−1

1 +
∑|Θ|−1

i=1 xi
,

1

1 +
∑|Θ|−1

i=1 xi

)
.

We will now re-define the variables of the function u. First we define the variable φ :=

w(µ), which requires us to restrict µ ∈ ∆o(Θ) and use continuity to define u(µ, ps) when

µ is on the boundary of this set. We will also define π := w(ps). The fact u(µ, ps) is

homogeneous degree zero in ps ∈ (0, 1)|Θ|, by Lemma 17, implies that there is no loss by

this transformation. We will also apply the transformation w to the function and define

v(φ, π) ≡ w(u(µ, ps)). Hence we have transformed a function u : ∆o(Θ)×∆o(Θ)→ ∆o(Θ)

to a function v : R|Θ|−1
++ × R|Θ|−1

++ → R|Θ|−1
++ .

If we re-write (7) with this new notation we get

v(φ, π) ≡ v(v(φ, ρ), π/ρ), v : R|Θ|−1
++ × R|Θ|−1

++ → R|Θ|−1
++ ;

where ρ := w(1− p2) and π/ρ := w((
pθ1

1−pθ2
)θ∈Θ).

14See Aczél and Dhombres (1989) Chapter 1 for an example of this.
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Now we take logarithms to do a final transformation of this function. Let us define

φ̃ := lnφ, π̃ := lnπ, ρ̃ = ln ρ, and ṽ(φ̃, π̃) ≡ ln v(φ, π). Then, a final re-writing of (7) with

this new notation gives

ṽ(φ̃, π̃) ≡ ṽ(ṽ(φ̃, ρ̃), π̃ − ρ̃), ṽ : R|Θ|−1 × R|Θ|−1 → R|Θ|−1.

If we define y = π̃ − ρ̃ and z = ρ̃ this then becomes the functional equation

ṽ(φ̃, y + z) ≡ ṽ
(
ṽ(φ̃, z), y

)
, ∀φ, y, z ∈ R|Θ|−1.

This is called the translation equation and was originally solved in its multivariate form by

Aczél and Hosszú (1956). Given the uniqueness property in the regularity assumption, Ax-

iom 3, the results described in Moszner (1995) page 21 apply. Thus any continuous solution

to this equation has the property that here exists a continuous bijection g : R|Θ|−1 → R|Θ|−1

such that

(9) ṽ(φ̃, π̃) = g−1[g(φ̃) + π̃].

Now we will reverse the transformations of this problem. First we will remove the loga-

rithms in (9) to get

ln v(φ, π) = g−1[g(lnφ) + lnπ].

Then we will invert the g−1 function

g ◦ ln v(φ, π) = g(lnφ) + lnπ.

Now we will introduce the function h(x) = g(lnx) = (h1(x), . . . , h|Θ|−1(x)) to simplify this

expression.

h ◦ v(φ, π) = h(φ) + lnπ

h ◦ v(φ, π) = ln eh(φ) + lnπ

h ◦ v(φ, π) = ln
(
eh1(φ)π1, . . . , e

h|Θ|1(φ)π|Θ|−1

)
eh◦v(φ,π) =

(
eh1(φ)π1, . . . , e

h|Θ|−1(φ)π|Θ|−1

)
Finally, we define f(x) ≡ eh(x) and this becomes

f(v(φ, π)) =
(
f1(φ)π1, . . . , f|Θ|−1(φ)π|Θ|−1

)
.

Now substitute the w(.) transformation to get

(10) f ◦ w ◦ u(µ, ps) =

(
f1(w(µ))

p1
s

p|Θ||Θ|s
, . . . , f|Θ|−1(w(µ))

p
|Θ|−1
s

p
|Θ|
s

)
.

We will now define the function F : ∆o(Θ) → ∆o(Θ) so that the following diagram com-

mutes, that is, f ◦ w ≡ w ◦ F . This is possible as w is invertible.

∆o(Θ)
F−−−−→ ∆o(Θ)yw yw

R|Θ|−1
++

f−−−−→ R|Θ|−1
++
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F is a bijection and continuous hence it is a homeomorphism. We will extend this definition

of F where necessary to the boundary of ∆(Θ) using continuity. Using this we can re-write

(10) as

w ◦ F ◦ u(µ, ps) =

(
w1(F (µ))

p1
s

p
|Θ|
s

, . . . , w|Θ|−1(F (µ))
p
|Θ|−1
s

p
|Θ|
s

)
,

=

(
F1(µ)p1

s

F|Θ|(µ)p
|Θ|
s

, . . . ,
F|Θ|−1(µ)p

|Θ|−1
s

F|Θ|(µ)p
|Θ|
s

)
.

Now applying w−1 to both sides this gives

F ◦ u (µ, ps) ≡

(
F1(µ)p1

s∑
θ∈Θ Fθ(µ)pθs

, . . . ,
F|Θ|(µ)p

|Θ|
s∑

θ∈Θ Fθ(µ)pθs

)
.

Applying F−1 to both sides of this gives equation (8) in the proposition. The other displayed

equation in the proposition follows from a substitution of (8) into (4) �

As an example of this updating rule in action, consider again the model of the arrival of

busses in Section 1.1. Recall that µ was the probability the individual attached to the good

state and that a Bayesian updater would have a posterior αtµ
αtµ+βt(1−µ) if there had been t

periods without a bus arriving.

An individual who updates divisibly is described by a homeomorphism F : (µ, 1 − µ) 7→
(F1(µ), F2(1 − µ)) and its inverse F−1 : (µ, 1 − µ) 7→ (F−1

1 (µ), F−1
2 (1 − µ)). If such an

individual arrived at the bus stop and learnt that there had been t periods without a bus

arriving, then they would update their belief about the good state to

µt = F−1
1

(
F1(µ)αt

F1(µ)αt + F2(1− µ)βt

)
.

One more period without a bus would then lead the individual to do the further up-

date

µt+1 = F−1
1

(
F1(µt)α

F1(µt)α+ F2(1− µt)β

)
.

However, the updating rule for µt given here implies that

F1(µt) =
F1(µ)αt

F1(µ)αt + F2(1− µ)βt
, and F2(1− µt) = 1− F1(µt).

If these are substituted into the expression for µt+1 we get

µt+1 = F−1
1

(
F1(µ)αt+1

F1(µ)αt+1 + F2(1− µ)βt+1

)
.

Thus the beliefs µt+1 of our individual are exactly those of a new arrival at the bus

stop.

We now give two general classes of homeomorphisms F that generate particular classes

of divisible updating rules.
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4.1. Geometric Weighting

The first example of a homeomorphism F : ∆(Θ) → ∆(Θ) we consider results in an

updating function that has already been used to model overreaction or under-reaction to

new information.

F (µ) =

(
µα1

1∑
θ µ

αθ
θ

, . . . ,
µ
α|Θ|
|Θ|∑
θ µ

αθ
θ

)
;

An explicit form for F−1 only exists when α = αθ (for all θ) .

F−1(x) =

 µ
1/α
1∑
θ µ

1/α
θ

, . . . ,
µ

1/α
|Θ|∑
θ µ

1/α
θ

 , for α = αθ, ∀θ.

We can now simply substitute this functional form into (8) to generate a belief updating

rule that satisfies our Axioms. In general this gives the updating rule

u
(
µ, (pθs)θ∈Θ

)
≡ F−1

 µα1
1 p1

s∑
θ∈Θ µ

αθ
θ p

θ
s

, . . . ,
µ
α|Θ|
|Θ| p

|Θ|
s∑

θ∈Θ µ
αθ
θ p

θ
s

 .

When α = αθ for all θ

u
(
µ, (pθs)θ∈Θ

)
≡

(
µ1(p1

s)
1/α∑

θ∈Θ µθ(p
θ
s)

1/α
, . . . ,

µ|Θ|(p
|Θ|
s )1/α∑

θ∈Θ µθ(p
θ
s)

1/α

)
.

From this expression it is clear that this updating rule exaggerates or alters the probabilities

that enter into the normal Bayesian formula. This can be interpreted as overreaction or

under-reaction to new information. But, in Section 5.2, we will also show that this generates

a bias in the updating.

When α 6= αθ, there is no explicit solution for the full updated distribution. However, it is

possible to proceed in a slightly different way to understand how the relative probabilities

are updated. First, write

F ◦ u
(
µ, (pθs)θ∈Θ

)
≡

 µα1
1 p1

s∑
θ∈Θ µ

αθ
θ p

θ
s

, . . . ,
µ
α|Θ|
|Θ| p

|Θ|
s∑

θ∈Θ µ
αθ
θ p

θ
s


and then define (µ′1, . . . , µ

′
|Θ|) = u

(
µ, (pθs)θ∈Θ

)
to get(

(µ′1)α1∑
θ(µ
′
θ)
αθ
, . . . ,

(µ′|Θ|)
α|Θ|∑

θ(µ
′
θ)
αθ

)
≡

 µα1
1 p1

s∑
θ∈Θ µ

αθ
θ p

θ
s

, . . . ,
µ
α|Θ|
|Θ| p

|Θ|
s∑

θ∈Θ µ
αθ
θ p

θ
s

 .

Then dividing the θ′′ entry in this vector by the θ′ entry we get

uθ′′
(
µ, (pθs)θ∈Θ

)αθ′′
uθ′(µ, (pθs)θ∈Θ)

αθ′
=
µ
αθ′′
θ′′

µ
αθ′
θ′

pθ
′′
s

pθ′s
;

uθ′′
(
µ, (pθs)θ∈Θ

)
uθ′(µ, (pθs)θ∈Θ)

=
µθ′′

µθ′

(
pθ
′′
s

pθ′s

)1/α

︸ ︷︷ ︸
if α=αθ′′=αθ′

.
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In the case where the parameters αθ differ it is still possible to give an explicit expression

for the relative size of the updated belief in θ′ and θ′′

This updating rule is generalises the overconfidence/under-confidence protocol described

in Angrisani, Guarino, Jehiel, and Kitagawa (2017) and Bohren and Hauser (2017), for

example. If 1/αθ > 1 then the individual is overreacts to new information on parameter

value θ and is overconfident by placing too much weight on their observations. This is

achieved by exaggerating the differences in the signals and is more clearly seen in the ratio

of the updated beliefs given above. Conversely, if 1/αθ < 1 then the individual is under-

reacts to new information about their learning on parameter value θ—they place too much

weight on their prior and do not adjust their beliefs as much as a Bayesian would. In

these two papers, the under and over-reaction is uniform across all parameters. But, the

functional form permits the agent to be over-react for some parameters and under-react for

others. Thus there is the possibility of selective over and under-reaction where the agent

more readily changes beliefs about some parameters but not about others.

4.2. Exponential Weighting and Other Homeomorphisms

For all θ ∈ Θ, let fθ : [0, 1] → R+ be a strictly increasing and continuous function that

satisfies fθ(0) = 0. Then let us define F , as below

F (µ) =

(
f1(µ1)∑
θ fθ(µθ)

, . . . ,
f|Θ|(µ|Θ|)∑
θ fθ(µθ)

)
.

Without an explicit form for F−1 we can use the relation

F ◦ u
(
µ, (pθs)θ∈Θ

)
≡

(
f1(µ1)p1

s∑
θ∈Θ fθ(µθ)p

θ
s

, . . . ,
f|Θ|(µ|Θ|)p

|Θ|
s∑

θ∈Θ fθ(µθ)p
θ
s

)
.

Again if we write the updated beliefs as u
(
µ, (pθs)θ∈Θ

)
= (µ′1, . . . , µ

′
|Θ|), then the ratio of

any two entries gives

(11)
fθ(µ

′
θ)

fθ′(µ
′
θ′)

=
fθ(µθ)p

θ
s

fθ′(µθ′)pθ
′
s

.

As an example of such a function we could choose fθ(µ) = e−βθ/µ, which results in a

transformation of beliefs that is similar to a multinomial logit.

F (µ) =

(
e−β1/µ1∑
θ e
−βθ/µθ

, . . . ,
e−β|Θ|/µ|Θ|∑
θ e
−βθ/µθ

)
for βθ > 0 ∀θ.

This function F does not nest Bayesian updating—there are no values of the parameters

β for which this function is the identity. Suppose that βθ = β for all θ. Then F does

map points closer to µ̄ when β is small and move points away from µ̄ when β is large. As

β → 0, so F (µ) converges to µ̄ for all interior µ. And as β → ∞, so F (µ) converges to a

distribution that puts all weight on the largest elements of µ. Thus the extremes of this
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function are similar to those in the previous example. And, using the intuitions from our

previous example, we would expect large values of β to be associated with under-reaction

and small values of β to be associated with over-reaction to new information.

An explicit form for the inverse function F−1 is not given here. However, by taking the

ratio of any two entries (say θ̂ and θ̃) in these vectors we get

e
−βθ̂/µ

′
θ̂

e
−βθ̃/µ

′
θ̃

=
e−βθ̂/µθ̂pθ̂s

e−βθ̃/µθ̃pθ̃s
.

Alternatively

βθ̃
µ′
θ̃

−
βθ̂
µ′
θ̂

=
βθ̃
µθ̃
−
βθ̂
µθ̂

+ ln
pθ̂s

pθ̃s
.

Thus the updating of beliefs results in a linear shift in the inverse probabilities of each

parameter value. If βθ̂ = βθ̃ = β it is easy to see that large values of β decrease the

dependence of this shift on on the ratio of the probabilities. Thus there is the conjectured

under-reaction in this case.

4.3. Trigonometric Updating

Consider the function F : (µ, 1−µ) 7→ (sin2 π
2µ, sin

2 π
2 (1−µ)). This is a homeomorphism

from ∆({θ, θ′}) into itself as sin π
2 (1−µ) = cos π2µ. Thus F characterises a divisible updating

rule for dichotomous experiments. If this functional form is substituted into (11) we get

The updating function is

sin2 π
2µ
′
θ

sin2 π
2 (1− µ′θ)

=
pθs
pθs′

sin2 π
2µθ

sin2 π
2 (1− µθ)

Then applying the identity sin(π2 − x) = cosx this becomes

tan
(π

2
µ′θ

)
=

(
pθs
pθs′

)1/2

tan
(π

2
µθ

)
.

Finally this gives

µ′θ =
2

π
arctan

√pθs√
pθs′

tan
(π

2
µθ

) .

5. Properties of Divisible Updating

In this section we describe some of the general properties of the updating rules that

satisfy the Axioms 1, 2, 3, and 4. In particular we will show that these updating rules obey

consistency and describe conditions on the function F that ensure updating is biased in

particular ways.



DIVISIBLE UPDATING 19

We are going to need to impose the condition that the updating respects certainty. That

is, if the individual has a prior that attaches probability one to the parameter θ and observes

signals that only occur with positive probability under this prior, then they do not revise

their beliefs. We let eθ ∈ ∆(Θ) denote the prior that attaches probability one to the

parameter θ, that is, it is a vector with unity in the θ entry and zeros elsewhere.

(12) Un(eθ, E) = (eθ, . . . , eθ), for all E ∈ ∆o(S)|Θ|.

5.1. The Consistency of Divisible Updating

In this section we consider the limiting properties of the updating rule (8) as increasing

amounts of information are collected. That is, we will consider the limit of the updated

beliefs as the experiment E is repeatedly sampled for a given value of the parameter. The

main result is that the updating converges almost surely. And, if the experiment is informa-

tive, then the updated belief converges with probability one to certainty that the parameter

is θ. This property of updating is usually termed consistency when it holds in the Bayesian

case, see Diaconis and Freedman (1986) for example. The consistency of divisible updating

contrasts with other examples of non-Bayesian updating in the literature that do not satisfy

consistency.15

In a stationary environment there are two properties that might be desirable in a model

of updating: (1) the individual believes they will learn (they attach probability one to their

updated beliefs converging), (2) they do actually learn (their updated beliefs do converge

with probability one). In general there are updating procedures where neither, all, or one

of these properties hold. The result below shows that both of the above properties are

satisfied by divisible learning when the model is correctly specified.

We will begin with a description of the model where the individual repeatedly samples

from the same experiment for a given parameter value. Fix a parameter value θ and

an experiment E = (pθ)θ∈Θ. Let the stochastic process {st}∞t=0 ∈ S∞ be independently

sampled from the distribution pθ ∈ ∆o(S). We will use Pθ to denote the probability

measure on S∞ induced by this process. We will also inductively define the stochastic

process {µt}∞t=0 ∈ ∆(Θ)∞ so that µt+1 is the updated value of µt when the signal st is

observed. The formal definition is: µ0 ∈ ∆(Θ) and

(13) µt+1 := u
(
µt, pst

)
, t = 0, 1, . . .

Proposition 2 shows that for all θ the process {µt}∞t=0 converges Pθ almost surely provided

the updating satisfies Axioms 1, 2, 3, 4. Furthermore, it shows that if the updating satisfies

condition (12) and the signals are informative, then µt converges to eθ, Pθ almost surely.

That is the updating satisfies consistency.

15See Rabin and Schrag (1999) and Epstein, Noor, and Sandroni (2010) for examples of inconsistent

updating. In Lehrer and Teper (2015) the notion of consistency is used as an axiom to characterise Bayesian

updating.
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Proposition 2. If the updating Un satisfies the Axioms 1, 2, 3, 4, then for all θ there

exists µ∞ ∈ ∆(Θ) such that µt → µ∞, Pθ almost surely. If (a) pθ 6= pθ
′

for all θ′ 6= θ, (b)

µ0 ∈ ∆o(Θ), and (c) (12) holds, then µ∞ = eθ with Pθ probability one.

The proof of this result is given in the appendix. The proof is quite trivial; it just applies

the usual proof of the consistency of Bayesian updating (see for example DeGroot (1970))

to the shadow-belief revision process. It then uses the property that belief revision respects

certainty (12) to ensure that when the shadow beliefs approach certainty they are mapped

back (by a continuous inverse function) to beliefs that also approach certainty.

5.2. Bias in Divisible Updating

In this section we describe the classes of divisible updating rules that exhibit two kinds

of bias. The first type of bias (which we term “local consistency”) is that if θ is the true

parameter, then the expected value of the updated belief in θ is greater than the original

belief:

µθ ≤ Eθ(uθ(µ, ps)) .
Eθ is an expectation take relative to the objective distribution of the signals, so the condition

says that an observer expects the individual with initial beliefs µθ to have an increased belief

in θ when they observe the outcome of the experiment E and θ is true. This condition holds

globally for a Bayesian updater and is the well-known conditional submartingale property

for Bayesian posteriors.

The second bias, which we term “local inconsistency”, is the reverse of the above

µθ ≥ Eθ(uθ(µ, ps)) .

When this inequality holds an observer expects the individual to have an updated belief in

θ that is less than their original. This kind of bias does not arise because individuals are

ignoring or misinterpreting their signals. It arises because when θ is true the individual is

slow to move their belief in θ upwards in response to positive evidence but quick to move

beliefs down when evidence in favour of an alternative θ′ is observed. These two effects

give, on average, a downward movement of beliefs. Thus, the bias could be interpreted as

a reluctance to move to extreme beliefs or a sceptical attitude to extreme evidence. With

divisible updating this sceptical attitude cannot hold at all priors: it must be a local not

a global property. This is because (by the results in the previous section) beliefs must

ultimately converge to the truth for all divisible updating processes.

For tractability, the result on biases given here will apply only to experiments that have

two possible parameters Θ = {θ, θ′}: such experiments are also called dichotomies. In

dichotomies the homeomorphism F : (µθ, µθ′) 7→ (µ′θ, µ
′
θ′) can be described by its effect on

its first element:

F (µ) ≡ (f(µθ), 1− f(µθ)).
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Where f : [0, 1] → [0, 1] is strictly increasing and continuous (as F is a homeomorphism).

The belief updating of θ conditional on the signal s can then be written explicitly as

(14) uθ(µ, ps) = f−1 ◦ f(µθ)p
θ
s

f(µθ)pθs + (1− f(µθ))pθ
′
s

.

In the result below we show that one of the two biases occur if the function 1/f(.) is locally

either convex or concave. Hence, we need a notion of a neighborhood of the original belief

µθ ∈ (0, 1). Define the interval Rf (µθ) ⊂ (0, 1) so that µθ ∈ Rf (µθ) and uθ(µ, ps) ∈ Rf (µθ)

for all s ∈ S. This ensures that Rf (µθ) includes all possible values of the updated beliefs in

θ when the prior is µθ. Equipped with this definition we can provide sufficient conditions

for the biases described above. The proof of this proposition is given in the appendix.

Proposition 3. Suppose the divisible updating in a dichotomy is described by (14), where

f(.) is continuous and strictly increasing. Then,

(i) If 1/f(.) is convex on Rf (µθ), then µθ ≤ Eθ(uθ(µ, ps)).

(ii) If 1/f(.) is concave on Rf (µθ), then µθ ≥ Eθ(uθ(µ, ps)).

If f(0) = 0 then 1/f(.) is not concave on any interval of the form (0, x).

For Bayesian updating f(µ) is the identity (1/f(µ) = µ−1 is convex). In this case Propo-

sition 3 is the usual result that Bayesian updating is a conditional submartingale and on

average are revised upwards.

-

6

0

0

1

1

µ

f(µ) = µα

µα+(1−µ)α

Figure 3. µα

µα+(1−µ)α , for α < 1.

For an example, consider the divisible updating that is given in Section 4.1 where F

has a geometric weighting form (and we give each of the two parameters equal weight

αθ = αθ′ = α). In dichotomies this gives

f(µ) =
µα

µα + (1− µ)α
, uθ(µ, ps) =

µ(pθs)
1/α

µ(pθs)
1/α + (1− µ)(pθ′s )1/α

.

Calculus shows that 1/f(µ) is convex when α ≥ 1, so,this mode of updating is locally, and

globally, consistent. However, when α < 1 there exists an interval of values µ ∈ (1
2(1+α), 1]

where 1/f(µ) is concave, so for high values of µ the updating is locally inconsistent. As
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the individual gets closer to certain that θ is the true parameter, an outside observer would

expect that the individual’s belief in θ would decrease on average. The convergence to

certainty will be slower as a result of this downward drift. Inspection of the expression

for uθ(µ, ps) above shows that the updated beliefs become more sensitive to the signal

probabilities as α declines, thus it appears that this downward bias in the updating is

related to the increased sensitivity of this updating to the current signals. This overreaction

to information is something that we will investigate in the next section. An alternative

interpretation of this effect is to notice that when α < 1 the function f(.) maps beliefs

to more central positions away from the extremities of the interval [0, 1] and it is this the

feature that generates the local inconsistency at high beliefs.

5.3. Sufficient Conditions for Under and Overreaction to Information

In this section sufficient conditions for the divisible updating rule to overreact or under-

react to new information are given. Again, for tractability, we will restrict attention to

dichotomies and consider updating that is characterised by a strictly increasing function

f : [0, 1] → [0, 1] as in (14). We will provide sufficient conditions on the function f(.) for

the updating it describes to be more or less variable than a Bayesian’s and then end with

some examples.

Overreaction has many meanings in the literature on updating; here it is defined to mean

that the updated beliefs have a greater variance than those of Bayesian updater who faces

the same experiment. The log-likelihood ratio of a Bayesian updater follows a homogeneous

random walk. Thus a prior-independent measure of the variability of Bayesian updating is

the variance of the log-likelihood ratio. This can be seen from the simple calculation

Var

[
ln

µ′θ
1− µ′θ

]
= Var

[
ln

µθ
1− µθ

+ ln
pθs
pθ′s

]
= Var

[
ln
pθ

pθ′

]
.

(Here µ′θ denotes the Bayesian update and the variance is taken unconditionally of the

parameter value.) Thus Var
[
ln pθ

pθ′

]
will be our benchmark and we will say the updating

uθ(µ, ps) in (14) exhibits overreaction if

Var

[
ln

uθ(µ, ps)

1− uθ(µ, ps)

]
> Var

[
ln

pθ

pθ′

]
, ∀µ.

Similarly, we will say that the updating exhibits under-reaction if

Var

[
ln

uθ(µ, ps)

1− uθ(µ, ps)

]
< Var

[
ln

pθ

pθ′

]
, ∀µ.

There is a simple intuition for the result below. If the inverse homeomorphism F−1,

described in Figure 2, expands space then when the shadow posterior and prior are mapped

back to the belief space they are even further apart. The response to the signals has become

more exaggerated and overreaction is present. Similarly, if the function F−1 contracts

space, then the learning that occurred in the shadow Bayesian world gets reduced when it
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is mapped back to the belief space by F−1. As a result the Bayesian learning in the shadow

space is understated and there is under-reaction to new information. In the one-dimensional

case this means that the slope of the function f(.) will play a role in characterising under-

or overreaction.

We now are able to state a result on when divisible updating exhibits over and under-

reaction in the two-parameter case.

Proposition 4. Suppose that the divisible updating in a dichotomy, uθ(µ, ps), is described

by the function f(.), as in (14), and that f is continuously differentiable.

If f ′(µ) > f(µ)(1−f(µ))
µ(1−µ) for all µ ∈ (0, 1), the updating exhibits under-reaction.

If f ′(µ) < f(µ)(1−f(µ))
µ(1−µ) for all µ ∈ (0, 1), the updating exhibits overreaction.

Two examples of divisible updating that we could investigate using this result are geo-

metric weighting and exponential weighting. Their associated f functions for dichotomies

(respectively denoted fg, fe) are defined below.

fg(µ) :=
µα

µα + (1− µ)α
, and fe(µ) :=

e−β/µ

e−β/µ + e−β/(1−µ)
.

Some calculus shows that

f ′g(µ) = α
fg(µ)(1− fg(µ))

µ(1− µ)
and f ′e(µ) = βfe(µ)(1− fe(µ))

(
1

µ2
+

1

(1− µ)2

)
.

Thus a simple application of Proposition 4 says that geometric updating exhibits under-

reaction if α > 1 and over reaction if α < 1. Whereas exponential updating exhibits under

reaction if β > 1/2 and can never satisfy the global conditions for overreaction.

6. Characterisation of Bayesian Updating

In this section we show that one additional axiom—that the updating is unbiased, or a

martingale, or satisfies Bayes’ plausibility—is sufficient for full Bayesian updating.

One might view of Proposition 1 as saying that the axioms we have provided so far

are “almost” enough for Bayesian updating. Thus it seems likely that a small additional

requirement will give characterise Bayesian updating. We do not claim that the martingale

property is minimal in this sense. There may well be weaker restrictions on the updating

process that when added to Axioms 1, 2, 3, and 4 restrict the updating to Bayesianism.

However, the unbiased nature of belief revision is such a fundamental property that it

does seem important to consider it directly. Furthermore the non-Bayesian updating of

Epstein, Noor, and Sandroni (2010) is a martingale. Hence, it provides a useful example of

a belief revision process that satisfies Axioms 1, 2, 3 and the martingale condition but is

not Bayesian.16

16This revision process only satisfies Axiom 3 when there is over-reaction. In the case of underreaction

extreme updated beliefs are not possible.
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Another route to take in this section would be to try to find an axiom that rules out

features of updating that are non-Bayesian but are nevertheless consistent with Proposition

1. For example, to try to find an axiom that does not admit over-reaction or under-reaction

to new information. This is not what the martingale axiom does. Indeed the model of

Epstein, Noor, and Sandroni (2010) does permit over-reaction or under-reaction and is also

a martingale. Thus it appears that it is the interaction of the martingale property and the

divisibility property that jointly act to give Bayesian updating.

The Axiom below considers the profile of updated belief distributions: this is the distri-

bution Usn(µ, (p)θ∈Θ) ∈ ∆(Θ) for each signal s. Then it averages these distributions with

weights that are the ex-ante probabilities of the signals:
∑

θ∈Θ µθp
θ
s. This average is the

decision maker’s predicted distribution of updated beliefs and the axiom requires that this

predicted distribution equals the original beliefs.

Axiom 5 (Unbiased). For any µ > 0, n > 1, and E = (pθ)θ∈Θ ∈ ∆o(S)|Θ| the updating

function Un(µ, E) satisfies

µ ≡
∑
s∈S

(∑
θ∈Θ

µθp
θ
s

)
Usn(µ, E).

We will now prove the following result

Proposition 5. If the updating Un satisfies the Axioms 1, 2, 3, 4, and 5, then it satisfies

Bayes rule, that is, Un(µ, E) ≡
(
u(µ, p1), . . . , u(µ, p|Θ|)

)
where

(15) u(µ, ps) ≡

(
µp1

s∑
θ∈Θ µp

θ
s

, . . . ,
µp
|Θ|
s∑

θ∈Θ µp
θ
s

)
.

Proof. It is sufficient to prove that the function F (.) in Proposition 1 is the identity. With-

out loss, we will consider the case where n = 2 and there is a binary experiment with signals

S = {1, 2}. When the parameter is θ we will write the probabilities of the two signals as

(pθ, 1− pθ).

In this case the unbiased condition, Axiom 5, is equivalent to:

µ ≡

(∑
θ

µθp
θ

)
F−1(u1

1, . . . , u
1
|Θ|) +

(∑
θ

µθ(1− pθ)

)
F−1

(
u2

1, . . . , u
2
|Θ|

)
,(16)

where u1
θ′ =

Fθ′(µ)pθ
′∑

θ Fθ(µ)pθ
, u2

θ′ =
Fθ′(µ)(1− pθ′)∑
θ Fθ(µ)(1− pθ)

, ∀θ′ ∈ Θ.

This holds for all values of µ ∈ ∆o(Θ), all pθ ∈ [0, 1], because F (.) is continuous bounded

and can be defined on the boundary of (0, 1).

We will begin by showing that F is the identity at the extreme points of the set ∆(Θ).

Letting pθ
′ → 0 in (16) for all θ′ 6= θ and pθ → 1 gives the identity

(17) µ ≡ µθF−1(eθ) + (1− µθ)F−1(yθ).
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where: eθ is a vector with 1 in the θ element and zeros elsewhere and yθ is a vector with

zero in the θ element and Fθ′(µ)/(1 − Fθ(µ)) for θ′ 6= θ. The θth element of the vector

identity (17) is
µθ

1− µθ
(1− F−1

θ (eθ)) ≡ F−1
θ (yθ).

If 1 6= F−1
θ (eθ), the left of this expression is arbitrarily large as µθ → 1, but the right takes

values only in [0, 1]. Thus, this identity holds for all µθ ∈ (0, 1) only if: 1 = F−1
θ (eθ) and

0 = F−1
θ (yθ). As F−1(µ) ∈ ∆(Θ), the first of these implies that eθ = F−1(eθ) and F is the

identity on its extreme points. The second condition, 0 = F−1
θ (yθ), implies that F maps

zero probabilities to zero probabilities.

We now derive a functional equation (19) which will allow us to establish the Proposition.

Letting pθ
′ → 0 for all θ′ 6= θ in (16) and imposing the continuity of F now implies

µ ≡ µθpθF−1 (eθ) + (1− µθpθ)F−1

(
F (µ)− pθFθ(µ)eθ

1− pθFθ(µ)

)
.

We have shown that F−1(eθ) = eθ, so this rearranges to give

(18) F

(
µ− pθµθeθ
1− µθpθ

)
≡ F (µ)− pθFθ(µ)eθ

1− pθFθ(µ)
.

We will reduce the dimension of the function F by dropping one element (µθ) of the vector

µ and considering it as a function that maps µ−θ to µ′−θ allowing the remaining probability

to be determined by the adding up requirement. Define µ−θ ∈ S := {x ∈ R|Θ|−1
+ : 1Tx ≤ 1}.

Now define Gθ : S → S, so that Gθ(θ−θ) describes how F maps the vector µ−θ into S, as

follows

F (µ) ≡ (Gθ(µ−θ), 1− 1TGθ(µ−θ)).

(As F is a homeomorphism, so too is G.) Dropping the θth row in the vector equation

(18)and re-writing what remains using the Gθ notation then gives

Gθ

(
µ−θ

1− µθpθ

)
≡ Gθ(µ−θ)

1− pθFθ(µ)
.

Finally, defining λ := (1− µθpθ)−1 ∈ [1, (1− µθ)−1] into the above then gives

(19) Gθ (λµ−θ) ≡
λ

λ− (1− λ)Fθ(µ)
µθ

Gθ(µ−θ), ∀ λ ∈ [1, (1− µθ)−1].

The function Gθ satisfies a property that is similar to homogeneity (full homogeneity holds

when Fθ(µ) = µθ).

For any µ ∈ ∆o(Θ) consider the sequence {µn}∞n=1 where

µn :=

(
µ−θ
n
,
n− 1 + µθ

n

)
.



26 MARTIN W. CRIPPS

Along this sequence we have that µnθ → 1 and Fθ(µ
n) → 1 by the previously established

result (F (eθ) = eθ) and the continuity of F . Writing the relation (19) for µn gives

Gθ

(
λ′

n
µ−θ

)
≡ λ′

λ′ − (1− λ′)Fθ(µn)
µnθ

Gθ

(
1

n
µ−θ

)
, ∀ 1 ≤ λ′ ≤ n

1− µθ
.

If we make the choices λ′ = n and λ′ = nλ, then we can use the left of this expression to

substitute for the terms Gθ (λµ−θ) and Gθ(µ−θ) in (19). This then gives

n

n− (1− n)Fθ(µn)
µnθ

Gθ

(
1

n
µ−θ

)
≡ λ

λ− (1− λ)Fθ(µ)
µθ

nλ

nλ− (1− nλ)Fθ(µn)
µnθ

Gθ

(
1

n
µ−θ

)
.

Eliminating Gθ from the above and re-arranging gives

1 ≡ λ

λ− (1− λ)Fθ(µ)
µθ

λ− λ( 1
n − 1)Fθ(µn)

µnθ

λ− ( 1
n − λ)Fθ(µn)

µnθ

, ∀n.

We have shown that µnθ → 1 and Fθ(µ
n)→ 1 as n→∞, so this implies that

1 =
λ

λ− (1− λ)Fθ(µ)
µθ

, ∀ λ ∈ [1, (1− µθ)−1].

This implies Fθ(µ) = µθ. This condition holds for all θ and all µ ∈ ∆o(Θ), so F (µ) = µ for

all µ ∈ ∆o(Θ). As F is continuous on ∆(Θ) it follows that F is the identity. Substitution

of F (µ) = µ into (8) establishes the claim in this proposition. �

7. Unbiased Updating

In this section the set of updating rules that satisfy the unbiasedness property for the

experiment E characterised. It is shown that any updating rule in this class can be in-

terpreted as application of Bayes rule to an alternative experiment E ′ that has the same

unconditional signal probabilities as E but is otherwise unrestricted.

Let us first re-describe the model of updating using matrix notation. We begin by describ-

ing the parameter-dependent signal probabilities as a matrix. Let P be the non-negative

|S| × |Θ| matrix with columns pθ ∈ ∆(S); the signal distributions for the parameters θ.

If we treat the prior µ ∈ ∆(Θ) as a column vector, then the product Pµ ∈ ∆(S) gives

a vector that is the unconditional probabilities of signals for the experiment E = P . The

updating function which was has the general form (µ1, . . . , µn) = Un(µ, (pθ)θ∈Θ) will now

be written as U = U(µ, P ), where U is a non-negative |Θ| × |S| matrix U . The columns of

this matrix are µs ∈ ∆(Θ), the updated beliefs after the signal s. The unbiased property

for the updating function can now be written as:

µ ≡ U(µ, P )Pµ; where 1
TP = 1

T , 1
TU(µ, P ) = 1

T , 1
Tµ = 1.
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Any function U(µ, P ) that satisfies these for all experiments (µ, P ) describes an updat-

ing function with the martingale property. This motivates to the following (equivalent)

definition of an unbiased updating function.

Definition 1. The updating function U : ∆(Θ)×∆(S)|Θ| → ∆(Θ)n, is unbiased if

(20) µ = U(µ, P )Pµ;

for all µ ∈ ∆(Θ) and all P ∈ ∆(Θ)n.

By way of a benchmark let us describe standard Bayesian updating using this notation.

Let D(x) denote the n × n matrix with the vector x ∈ Rn on its diagonal and zeros else-

where. Given the experiment (µ, P ), the |Θ|× |S| matrix D(µ)P
T is therefore the true joint

distribution of signals and parameters. It has as its θth row the unconditional probability

that the signal is s and the parameter is θ. The marginal probability of the signals is given

by the vector Pµ and so the Bayesian update is

(21) UB(µ, P ) := D(µ)P
TD−1

(Pµ).

Verifying that this satisfies (20) we can do two calculations. The first verifies that this rule

generates probability vectors as columns: 1TUB(µ, P ) = µTP TD−1
(Pµ) = 1

T . The second

verifies that the updating is unbiased

UB(µ, P )Pµ = D(µ)P
TD−1

(Pµ)Pµ = D(µ)P
T
1 = D(µ)1 = µ.

The next result is a characterisation of all the updating functions U(µ, P ) that satisfy

the unbiased/martingale property. It shows that any such unbiased updating rule can be

interpreted as a Bayesian update with a misspecified experiment. That is an updating rule

is unbiased for the experiment P = E at µ if and only if it is a Bayesian update but for

another experiment E ′ = Q) such that Pµ = Qµ.

Proposition 6. The updating function U(µ, P ) is unbiased if and only if U(µ, P ) =

UB(µ,Q) for some Q ∈ ∆(S)|Θ| satisfying Pµ = Qµ.

Proof. Let us suppose that U(µ, P ) = UB(µ,Q) for some Q ∈ ∆(S)|Θ| satisfying Pµ = Qµ.

To show that U is unbiased, a substitution from (21) gives gives

U(µ, P )Pµ = UB(µ,Q)Pµ = D(µ)Q
TD−1

(Qµ)Pµ.

But as Pµ = Qµ this then can be written as

U(µ, P )Pµ = D(µ)Q
TD−1

(Qµ)Qµ = D(µ)Q
T
1 = D(µ)1 = µ.

Hence we have that U(µ, P )Pµ = µ which is the unbiased property for the updating.

Now suppose that U(µ, P ), the updating function, is unbiased. This means it must satisfy

the equation (20). If this is rearranged we get

µ = U(µ, P )Pµ

D−1
(µ)µ = D−1

(µ)U(µ, P )Pµ
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1 = D−1
(µ)U(µ, P )D(Pµ)D

−1
(Pµ)Pµ

1 = D−1
(µ)U(µ, P )D(Pµ)︸ ︷︷ ︸

QT

1

Hence there is a |Θ|×|S|matrix QT := D−1
(µ)U(µ, P )D(Pµ) (dependent on µ and P ) satisfying

Q ∈ ∆(S)|Θ|. Transposing this gives Q = D(Pµ)U(µ, P )TD−1
(µ) and so

Qµ = D(Pµ)U(µ, P )TD−1
(µ)µ = D(Pµ)U(µ, P )T1 = D(Pµ)1 = Pµ.

The definition of Q = D(Pµ)U(µ, P )TD−1
(µ), then can be inverted and transposed to write

the updating function explicitly: U(µ, P ) = D(µ)Q
TD−1

(Pµ). We have already shown that

Qµ = Pµ and so U(µ, P ) = D(µ)Q
TD−1

(Qµ). A comparison with (21) then gives us that

U(µ, P ) = UB(µ,Q) and so the updating is a Bayesian update with the experiment E = Q

which is what we wanted to show. �

8. Extensions and Applications

The assumption that the range of the updated beliefs is the whole probability simplex

∆(Θ), made here, is inconsistent with several important models of non-Bayesian belief

updating. For example, if the individual has limited memory or mental capacities, one

might want to consider updating procedures that generate one of a finite set of probability

measures. Thus the range of the updating function is finite. Models of learning where

updated beliefs are discrete and finite, such as Hellman and Cover (1970), Dow (1991), and

Wilson (2014), pose a considerable challenge for divisibility. It is not clear whether it is

ever possible to satisfy divisibility of belief revision in such a setting.

There are other models of belief revision where the updates themselves are random. Thus

the updating function maps an experiment and an initial belief to a profile of probability

measures over updated beliefs. One example of this random updating is Rabin and Schrag

(1999). It seems conceivable that a generalised notion of divisibility might apply in this

setting.
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Appendix

The Calculations for the Example in Section 1.1

Recall that µ = 1/2 and:

µ̃2 = (1− λ)1
2 + λ

α2

β2 + α2
,

µ1 = (1− λ)1
2 + λ

α

β + α
, µ2 = (1− λ)µ1 + λ

αµ1

(1− µ1)β + µ1α
.

We now take this expression for µ̃2 and make a sequence of substitutions. First for µ1 and

then for µ2. A final re-arranging then gives the displayed equation.

µ̃2 = (1− λ)1
2 + λ

α2

β2 + α2

= µ1 + λ
α2

β2 + α2
− λ α

β + α

= µ2 + λ
α2

β2 + α2
− λ α

β + α
+ λµ1 − λ

αµ1

(1− µ1)β + µ1α

µ̃2 − µ2

λ
= − αβ(β − α)

(β2 + α2)(β + α)
+

(β − α)µ1(1− µ1)

(1− µ1)β + µ1α
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µ̃2 − µ2

λ(β − α)
= − αβ

(β2 + α2)(β + α)
+

1
β
µ1

+ α
1−µ1

The final term above is an increasing function of µ1 when µ1 ∈ [0, 1/2]. The RHS is positive

when µ1 = 1/2 and negative when µ1 = 0. As λ increases from zero, so µ1 decreases from
1
2 to zero. Thus there exists a unique value λ̄ such that µ̃2 > µ2 if an only if λ < λ̄. But

µ̃2 = µ2 when λ = 1 so we know µ̃2 > µ2 if an only if λ < 1.

Axiom on Order Reversal and its Implications

To describe this formally we consider a subset of signals: A ⊂ S. Then, we posit a pair of

two-step procedures for learning the signal s: The first procedure begins with an experiment

where the agent is told the signal s only if the realised s is in the set A. But if the realised

signal s is not in the set A, then the agent is just told s 6∈ A. If they were told s 6∈ A in

the first experiment, then a second experiment is run where the agent learns the value of

s ∈ S \A.

The second procedure reverses this order. First the agent runs an experiment where they

learn the value of s only if s ∈ S \A. If the signal is not in this set then they are told just

s ∈ A. If they were told s ∈ A at the first stage, then a second experiment is run where

they learn the value of s ∈ A. In Axiom 6 below we requires that both of these processes

for learning the signal s result in the same terminal belief profile. We do not, however,

require that either of these belief revision procedures has a terminal belief profile that is

the same as the one-step process above.

Some additional notation is necessary for the formal statement of this Axiom. The set

A := {1, 2, . . . ,m} and S \A := {m+ 1, . . . , n}. The fact that we restrict A to only consist

of the first m signals is unimportant, because of the symmetry axiom this will apply to all

non-empty subsets of signals A. As A has m elements, the update after the first experiment

of the first procedure is described by the function Um+1. Whereas the update after the first

experiment of the second procedure is described by the function Un−m+1, because S \ A
has n − m elements. In the first experiment of the first procedure the signals have the

probabilities pθA := (pθ1, . . . , p
θ
m, q

θ
A) ∈ ∆o(m + 1), where qθA = 1 −

∑m
k=1 p

θ
k. Similarly

in the first experiment in the second procedure the signals have the probabilities pθS\A =

(qθS\A, p
θ
m+1, . . . , p

θ
n) ∈ ∆(n−m+1), where qθS\A = 1−

∑n
k=m+1 p

θ
k. Thus the first experiment

in the first procedure results in the profile of updated beliefs Um+1(µ, (pθA)θ∈Θ) and the first

experiment in the second procedure has the updated beliefs Un−m+1(µ, (pθS\A)θ∈Θ).

Axiom 6 (Order Independence). For all E = (S, (pθ)θ∈Θ), µ ∈ ∆(Θ), any m ≤ n, and

n ≥ 3.[
U1
m+1

(
µ, (pθA)θ∈Θ

)
, . . . , Umm+1

(
µ, (pθA)θ∈Θ

)
, Un−m

(
Um+1
m+1

(
µ, (pθA)θ∈Θ

)
,

(
p̃θ
S\A
qθA

)
θ∈Θ

)]
≡
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Um

(
U1
n−m+1

(
µ, (pθS\A)θ∈Θ

)
,

(
p̃θA
qθ
S\A

)
θ∈Θ

)
, U2

n−m+1

(
µ, (pθS\A)θ∈Θ

)
, . . . , Un−m+1

n−m+1

(
µ, (pθS\A)θ∈Θ

)]
Where: p̃θA := (pθ1, . . . , p

θ
m), p̃θS\A := (pθm+1, . . . , p

θ
n).

Axiom 6 does not impose the condition that either of the terms in this equality is equal to

the profile of beliefs in the one-off belief revision process: Un(µ, (pθ)θ∈Θ). Axiom 4 says that

when m = 1 both of these terms are equal to Un(µ, (pθ)θ∈Θ). Then, an iterated application

of Axiom 4 will imply they are equal for all m. Thus Axiom 6 is implied by Axiom 4 and

symmetry, but potentially this axiom is weaker than divisibility.

To see that this is not actually the case, and Axiom 6 implies Axiom 4, consider this

condition when m = 1. In the first procedure, where s = 1 or s 6= 1 is learned first the

terminal belief profile is:[
U1

2

(
µ, (pθ1, 1− pθ1)θ∈Θ

)
, Un−1

(
U2

2

(
µ, (pθ1, 1− pθ1)θ∈Θ

)
,

(
pθ−1

1−pθ1

)
θ∈Θ

)]
Or, recalling the definition (2),[

u
(
µ, (pθ1)θ∈Θ

)
, Un−1

(
u
(
µ, (1− pθ1)θ∈Θ

)
,

(
pθ−1

1−pθ1

)
θ∈Θ

)]
.

However, (when m = 1) the terminal belief profile after the second procedure for learning

the signal is Un(µ, (pθ)θ∈Θ). This is because under this procedure at the first stage the

agent learns s if s ≥ 2 and otherwise learns that s < 2. But this implies that the first

stage of the second procedure completely reveals s and there is no additional learning at

the second stage. Thus when m = 1 Axiom 6 implies

Un(µ, (pθ)θ∈Θ) =

[
u
(
µ, (pθ1)θ∈Θ

)
, Un−1

(
u
(
µ, (1− pθ1)θ∈Θ

)
,

(
pθ−1

1−pθ1

)
θ∈Θ

)]
,

which is precisely the condition in Axiom 4.

Proof of Proposition 2

Proof. The updating satisfies the axioms required for Proposition 1 to hold, hence it is

characterised by a homeomorphism F : ∆(Θ) → ∆(Θ). We can, therefore, define the

stochastic process followed by the shadow beliefs, {µ̃t}∞t=0, where µ̃t := F (µt). Applying

the updating rule (8) in period t with the signal st to the initial beliefs µt, we have that

the updated beliefs satisfy

F (µt+1) = F (u(µt, (pθst)θ∈Θ)) =

(
F1(µt)p1

st∑
θ∈Θ Fθ(µ

t)pθst
, . . . ,

F|Θ|(µ
t)p
|Θ|
st∑

θ∈Θ Fθ(µ
t)pθst

)
.
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Substitution for µ̃t then gives

µ̃t+1 =

 µ̃t1p
1
st∑

θ∈Θ µ̃
t
θp
θ
st
, . . . ,

µ̃t|Θ|p
|Θ|
st∑

θ∈Θ µ̃
t
θp
θ
st

 .

Applying the above we can, then, write

µ̃tθ
µ̃tθ′

=
µ̃t−1
θ

µ̃t−1
θ′

pθst−1

pθ
′
st−1

.

This is the expression for the Bayesian updating of the shadow beliefs. Iterating this relation

and taking logarithms we get

1

t
ln
µ̃tθ
µ̃tθ′

=
1

t
ln
µ̃0
θ

µ̃0
θ′

+
1

t

t−1∑
τ=0

ln
pθsτ

pθ
′
sτ
, µ̃0

θ′ > 0.

When the parameter is θ, the terms in the above summation are independently and iden-

tically distributed with the expectation H(pθ‖pθ′) =
∑

s p
θ
s ln pθs

pθ′s
≥ 0. This is the relative

entropy of the measures pθ and pθ
′
. By the Strong Law of Large Numbers (Kallenberg

(2002) p.73)

lim
t→∞

1

t
ln
µ̃tθ
µ̃tθ′
→ H(pθ‖pθ′), ∀θ′ 6= θ;

Pθ almost surely. For θ′ with H(pθ‖pθ′) > 0 this implies µ̃tθ′ → 0 Pθ almost surely. And
µ̃tθ
µ̃t
θ′

=
µ̃0
θ

µ̃0
θ′

for θ′ with H(pθ‖pθ′) = 0. Thus µ̃t converges almost surely to µ̃∞ ∈ ∆(Θ). As F

is a homeomorphism this implies µt = F−1(µ̃t) converges almost surely to µ∞ = F−1(µ̃∞).

When the assumption pθ 6= pθ
′

for all θ′ holds then H(pθ‖pθ′) > 0 for all θ′ and µ̃∞ = eθ.

By (12) this implies that µ∞ = F−1(µ̃∞) = eθ. �

Proof of Proposition 3

Proof. We begin by establishing part (i) of the result. Re-arranging (14) we get a relation

for uθ(µ, p
s), the updated belief in the parameter θ conditional on the signal s,

f ◦ uθ(µ, ps) =
f(µθ)p

θ
s

f(µθ)pθs + (1− f(µθ))pθ
′
s

.

This is the shadow posterior on θ. Now we calculate the shadow posterior odds ratio. Then

take its expectation conditional on the parameter θ, that is

Eθ
(

1− f ◦ uθ(µ, ps)
f ◦ uθ(µ, ps)

)
=
∑
s

pθs
(1− f(µθ))p

θ′
s

f(µθ)pθs
=

1− f(µθ)

f(µθ)
.

Adding unity to the extremes of this equality gives

Eθ
(

1

f ◦ uθ(µ, ps)

)
=

1

f(µθ)
.
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The function 1
f(.) is assumed to be convex on an interval of values containing the points

{uθ(µ, ps) : s ∈ S}. Therefore, by Jensen’s inequality

1

f ◦ Eθ(uθ(µ, ps))
≤ Eθ

(
1

f ◦ uθ(µ, ps)

)
=

1

f(µθ)
.

When f(.) is increasing the extremes of this inequality imply that µθ ≤ Eθ(uθ(µ, ps)). This

establishes the first part of the result. Part (ii) is established by observing that the final

inequality is reversed when concavity replaces convexity.

Finally, we must show that 1
f(.) cannot be concave on the open interval (0, x), for any

x > 0. Suppose it were concave on such an interval for some x ∈ (0, 1) . Then for ε < x

and any λ ∈ [0, 1]
1

f(λε+ (1− λ)x)
≥ λ 1

f(ε)
+ (1− λ)

1

f(x)
,

But as ε→ 0 the RHS of the first of these inequalities converges to infinity (as f(ε)→ 0).

Thus f((1 − λ)x) = 0 for all λ ∈ (0, 1) which contradicts the fact that f(.) is strictly

increasing. �

Proof of Proposition 4

Proof. A differentiable, strictly increasing map f : [0, 1] → [0, 1] determines the divisible

updating uθ(µ, p
s) as in (14). We define the (differentiable and strictly increasing) function

ψ : R→ R as

ψ(λ) = ln f

(
eλ

1 + eλ

)
− ln

[
1− f

(
eλ

1 + eλ

)]
, λ ∈ R.

Also, note for later that

(22) ψ′(λ) = f ′(x)
x

f(x)

1− x
1− f(x)

, where x :=
eλ

1 + eλ
.

If we define λ′s := ln uθ(µ,ps)
1−uθ(µ,ps)

and λ := ln µθ
1−µθ , then (14) implies that

ψ(λ′s) = ψ(λ) + ln
pθs
pθ′s
.

The function ψ is invertible, so this allows us to write

(23) λ′s = ln
uθ(µ, ps)

1− uθ(µ, ps)
= ψ−1

(
ψ(λ) + ln

pθs
pθ′s

)
.

Now we calculate the variance of the updated beliefs log likelihood ratio. This is

Var

[
ln

uθ(µ, ps)

1− uθ(µ, ps)

]
=

1

2

∑
s,s′∈S

πsπs′

(
ln

uθ(µ, ps)

1− uθ(µ, ps)
− ln

uθ(µ,ps′)

1− uθ(µ,ps′)

)2

.
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Here πs =
∑

θ µ
θpθs is defined to be the unconditional probability of the signal s in the

experiment E . A substitution from (23) then gives

Var

[
ln

uθ(µ,ps)

1− uθ(µ, ps)

]
=

1

2

∑
s,s′∈S

πsπs′

(
ψ−1

(
ψ(λ) + ln

pθs
pθ′s

)
− ψ−1

(
ψ(λ) + ln

pθs′

pθ
′
s′

))2

.

As we have assumed the function f is continuously differentiable we can apply the inter-

mediate value theorem to the function ψ−1. Hence,

ψ−1

(
ψ(λ) + ln

pθs
pθ′s

)
− ψ−1

(
ψ(λ) + ln

pθs′

pθ
′
s′

)
=
dψ−1(λ̃)

dλ

(
ln pθs

pθ′s
− ln

pθ
s′

pθ
′
s′

)
for some λ̃ satisfying mins ln pθs

pθ′s
≤ λ̃ − ψ(λ) ≤ maxs ln pθs

pθ′s
. Let B denote this interval

of potential values of λ̃, then if this calculation is substituted into the expression for the

variance we can then get a lower bound on the variance

Var

[
ln

uθ(µ, ps)

1− uθ(µ, ps)

]
≥ min

λ̃∈B

[
dψ−1(λ̃)

dλ

]2
1

2

∑
s,s′∈S

πsπs′

(
ln
pθs
pθ′s
− ln

pθs′

pθ
′
s′

)2

= min
λ̃∈B

[
dψ−1(λ̃)

dλ

]2

Var

[
ln

pθ

pθ′

]
.

An upper bound can be obtained in a similar way

Var

[
ln

uθ(µ, ps)

1− uθ(µ, ps)

]
≤ max

λ̃∈B

[
dψ−1(λ̃)

dλ

]2

Var

[
ln

pθ

pθ′

]
.

These inequalities imply that bounding the derivatives of ψ−1 will generate over and under

reaction. As ψ and its inverse are strictly increasing functions with positive derivatives. The

above inequalities imply that a sufficient condition for the updating to satisfy the condition

for overreaction is dψ−1(λ̃)/dλ > 1 for all λ̃ and a sufficient condition for under-reaction is

dψ−1(λ̃)/dλ < 1. The calculation of the derivative dψ/dλ in (22) then implies the sufficient

conditions given in the Proposition. �
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