# Once a liar always a liar?

Raymond M. Duch Nuffield College University of Oxford raymond.duch@nuffield.ox.ac.uk \* Denise Laroze Centre for Experimental Social Sciences Universidad de Santiago de Chile denise.laroze@cess.cl

Alexei Zakharov Higher School of Economics Moscow, Russia al.v.zakharov@gmail.com

December 26, 2018

Nuffield College Centre for Experimental Social Sciences (CESS) Working Paper, Oxford

<sup>\*</sup>Replication material can be found on https://github.com/rayduch/Once-a-Liar

### Abstract

Lying is prevalent on both a grand scale and in mundane, day-to-day, interactions. But for many people there are intrinsic costs that prevent them from distorting information to their advantage. The goal of this study is to investigate how these costs depend on the magnitude to which the truth is distorted. We observe over 1000 individuals from the U.K., Russia and Chile making over 10000 lying decisions in a public goods game, while varying the benefit of lying. We find that the incidence and magnitude of lying do not depend on the benefits, which is not consistent with the marginal cost of lying being increasing in the size of the lie. Instead, we find that some subjects tend to be maximal liars with very low intrinsic lying costs, while some others lie up to a threshold that is not very sensitive to the extrinsic benefits of lying. We argue that maximal and partial lying are distinct phenomena. First, in two countries out of three, lying is not strongly conditional on the behavior of other individuals. Second, both ability at a real effort task and selfish behavior in the Dictator Game are strong and consistent predictors of maximal, but not partial, lying. Finally, the reaction time for a partial lying decision was much longer than for either a maximal lie or an honest declaration.

### 1 Introduction

Opportunities to misrepresent private information to one's advantage are ubiquitous and the cost to society of this dishonesty are enormous. Health care fraud may amount to up to \$272 billion in US alone (Berwick and Hackbarth, 2012), and occupational fraud may cost 5% of company revenues worldwide (Association of Certified Fraud Examiners, 2016). Politicians and corporate executives lie, often to disastrous consequences. Lying occurs on scale both grand and small, as health services, tax authorities, banks, store owners, university professors, or public transportation firms are all well aware. According to some estimates, up to two thirds of day-to-day social interactions involve deception of some sort (M. DePaulo et al., 1996).

Dishonest behavior presents an empirical and theoretical puzzle. Classic economic theory predicts that individuals would always distort the truth to maximize their material gains, given the externally imposed costs and benefits (Becker, 1968). However, such behavior is far from universal in both laboratory and field. A large minority of subjects indeed cheat to the maximum extent possible (Abeler et al., 2014; Cohn et al., 2014), but most fail to take full advantage of lying (Abeler et al., 2017); it is now near consensus that, at least for some people, lying implies significant intrinsic costs.<sup>1</sup>

Many lying opportunities allow for partial lies, when the truth is distorted to a limited degree, and a part of the material gain is foregone. Partial lying is common and has been observed experimentally (Fischbacher and Follmi-Heusi, 2013; Gneezy et al., 2018). At the same time, the relationship between the size of the lie and the intrinsic costs of lying remains poorly understood. This implies two closely related research questions. First, what can we learn about the properties of individual cost functions? For example, are marginal costs of lying increasing with the magnitude of the lie, in which case we should expect the magnitude of a partial lie to vary with the benefit of lying? Second, how heterogeneous are individuals with respect to their cost functions? For example, do individuals belong to discrete preference types

<sup>&</sup>lt;sup>1</sup>Many individuals behave completely honestly even if lying confers significant material benefits. People such as whistleblowers or journalists in politically repressive countries tell the truth in the face of considerable peril. Honesty is a valued trait in many cultures; for example, the Biblical 9th Commandment prohibits bearing "false witness against thy neighbor", while historic warrior codes such as Bushido or Chivalry view honesty as virtuous and morally right. In experiments, a significant share of subjects choose to behave honestly when it is in their clear interest to distort the truth (Gneezy, 2005; Gibson et al., 2013; Gneezy et al., 2013; Rosenbaum et al., 2014; Jacobsen et al., 2017), and may refuse to lie even when doing so would benefit other people as well (Erat and Gneezy, 2012).

(for example, are there opportunistic versus honest types), or do the preferences for truthfulness vary continuously throughout the population?<sup>2</sup> And, if the individuals are heterogeneous, what are the correlates of individual lying proclivities? Understanding these questions is essential to managing lying behavior.

In this paper we addressed these questions by examining how the likelihood of lying and the size of the lie reacted to the economic context in which the decision occurs. We observed, over multiple periods, subjects earning income through a real effort task and deciding what fraction (if any) of the income to declare to the experimenter. A certain percentage of income was deducted from each subject; the deductions were pooled and redistributed across groups of four subjects. Our experimental design allows the subject to choose the size of the lie: from not lying, to a partial lie when some but not all income is declared, to a maximal lie when the subject declares no income.

We manipulated several features of the game. Our primary interest was to analyze the nature of intrinsic costs associated with the size of the lie. To this purpose, we varied the economic benefit of lying by letting the percentage of income that was deducted from subjects differ across experimental sessions. As a robustness check, we manipulated the economic conditions under which income was earned. In some sessions, wage inequality was introduced, and the subjects in each group differed by the amount of income that they earned for completing the real effort task. In other sessions, subjects randomly received a large unearned random bonus of a fixed size in addition to the income earned through the real effort task. Finally, in some sessions subjects were randomly re-assigned to groups in each period.

We report the following results. First, our observations do not support the assumption that the marginal costs of lying are positive and strictly increasing with the size of the lie. The experimental conditions — in particular, the percentage of declared income that was deducted — were not correlated with either the probability that the individual would lie maximally or partially or behave honestly, nor with the size of the lie conditional on lying partially. At the same time, lying behavior across all periods of the game was quite stable, despite the subjects being able to observe the pooled deductions made in the previous periods. As much as 34.9% of

<sup>&</sup>lt;sup>2</sup>Previous arguments both in favor (Hurkens and Kartik, 2009) and against (Gibson et al., 2013) the typebased model treated lying as a binary choice and, therefore, did not consider the possibility of limited lying.

individuals lied maximally in at least 8 periods out of 10, maximizing their monetary payoffs; another 23.6% were partial liars who consistently distorted information for private gain, but stopped short of maximizing their payoffs; finally, some 19.5% were consistently honest and cheated in no more than 2 periods.<sup>3</sup>

To see how our results imply that the marginal costs are not positive and increasing, consider the following argument. Let there be a unit mass of individuals indexed by i, and define the size of the lie  $l_i \in [0, 1]$  as the fraction of income that is not declared by individual i. Then the extrinsic benefit of lying will be linear in the size of the lie, and equal to  $\frac{3}{4}bI_il_i$ , where  $I_i$  is the income of i, and  $b \in [0, 1]$  is the deduction rate.

Now assume that the net intrinsic cost of lying be equal to  $\alpha_i c(l_i)$ , where  $c(\cdot)$  is a twice differentiable function, with c' > 0 and c'' > 0. The value  $\alpha_i \ge 0$  is the parameter specific to individual *i*; individuals with a smaller  $\alpha$  have a larger propensity to lie.<sup>4</sup> Let  $\frac{\alpha_i}{I_i}$  be distributed on  $[0, \infty)$  with distribution function  $F(\cdot)$  and density  $f(\cdot)$ .

The individual *i* will be honest if  $\frac{\alpha_i}{I_i} \geq \frac{3b}{4c'(0)} \equiv a_0$ , will be a maximal liar if  $\frac{\alpha_i}{I_i} \leq \frac{3b}{4c'(1)} \equiv a_1$ , and will be a partial liar otherwise, with size of the lie  $l^*(\frac{\alpha_i}{I_i})$  the solution to  $\frac{\alpha_i}{I_i} = \frac{3b}{4c'(l)}$ ; that value, as well as  $a_0$  and  $a_1$ , will be increasing in *b*.

Now suppose that, as in our experiment, the fractions of maximal liars, partial liars, and honest individuals do not change with b, and the fraction of partial liars is positive. Then we must have  $f(a_0) = f(a_1) = 0$ . But that also implies that the average size of lie for partial liars  $\frac{1}{F(a_0)-F(a_1)} \int_{a_1}^{a_0} l^*(a) dF(a)$  is increasing in b. However, in our experiment, the average size of the partial lie, as well as the fraction of partial/maximal liars, do not vary across treatments with different deduction rates.<sup>5</sup>

The outcome observed in the experiment is consistent with a different set of assumptions. Suppose that the cost of lying for individual *i* is zero if  $l_i$  is below some threshold value  $r_i \in [0, 1)$ ,

<sup>&</sup>lt;sup>3</sup>This is consistent with experimental work suggesting stability of within-subject choices over time and across different games (Andreoni and Miller, 2002). A number of subsequent experiments find that subjects make reasonably stable choices in identical replications of experimental games within a session (Fischbacher and Gachter, 2010), over time (Volk et al., 2012) and also in different games measuring similar preferences (Blanco et al., 2011).

<sup>&</sup>lt;sup>4</sup>Under plausible regularity assumptions, our argument can be extended to a more general cost of lying function, including one where the cost of lying depends on both the magnitude of lying, and the individual's income.

<sup>&</sup>lt;sup>5</sup>This argument requires the subjects to supply their effort inelastically, so their incomes are exogenous; however, we also believe this to be the case. The performance of subjects in the real effort task does not depend on the experimental conditions, including, crucially, the amount earned per completed real effort task.

and is equal to  $c_i(l_i)$  if  $l_i \in [r_i, 1]$ , where  $c_i(\cdot)$  is some function with  $c'_i > 0$  and  $c''_i > 0$ . If  $r_i > 0$ , then the individual can lie to a certain extent without incurring any costs. This assumption is grounded in a widely accepted perspective in the psychological literature that lies that fall below a certain threshold allow one to maintain a "positive self-image" and suffer little or no intrinsic cost, extracting some profit from the situation (Shalvi et al., 2015; Gino and Ariely, 2016),<sup>6</sup> while large lies can hurt the person's self-image, so lying costs increase in the size of the lie.<sup>7</sup> In that case, the individual will be a partial liar with  $l_i^* = r_i$  if  $\frac{c'_i(r_i)}{l_i} \geq \frac{3}{4}b$ , and will be a maximal liar if  $\frac{c'_i(1)}{l_i} \leq \frac{3}{4}b$ .

We can also make inferences about the distribution of the propensity to lie in the population. We observe that the likelihood of lying maximally did not depend on the deduction rate. If increasing the deduction rate from  $b_1$  to  $b_2$  does not change the share of maximal liars, then there must be some individuals with  $\frac{c'_i(1)}{I_i} \leq \frac{3b_1}{4}$ , some with  $\frac{c'_i(1)}{I_i} > \frac{3b_2}{4}$ , but no individuals such that  $\frac{c'_i(1)}{I_i} \in (\frac{3b_1}{4}, \frac{3b_2}{4}]$ . Hence, we can infer that there are two groups of subjects in the population, with low and high intrinsic costs of lying, and relatively few individuals with the costs of lying in the middle range.

We report two individual-level characteristics that were correlated with the costs of lying. People who performed well at the real effort task were more likely to be maximal liars, and less likely to be either partial liars or honest.<sup>8</sup> This finding is aggressively robust, for three reasons. First, this correlation is present in the three quite different countries where we conducted the experiments as well as in the combined sample. Second, in any given period, lying depended on the subject's average performance over the 10 periods, and did not react to that period's deviation from the subject's average performance. Third, high-performance subjects were less

<sup>&</sup>lt;sup>6</sup>The size of the threshold is specific to the individual and may be moderated by framing and circumstances, such as deniability (Mazar et al., 2008), recent behavior (Monin and T. Miller, 2001; Mazar and Zhong, 2010; Sachdeva et al., 2009), benefits to others (Gino et al., 2013), peer effects (Fosgaard et al., 2013), or moral reminders (Pruckner and Sausgruber, 2013).

<sup>&</sup>lt;sup>7</sup>When paid proportionally to the reported number from a privately rolled die, the subjects lied less frequently if the number rolled on number was 1 or 6 (Hilbig and Hessler, 2013). Similarly, Gneezy et al. (2018) argue that the cost of lying depends on the size of the lie by observing the difference between a treatment where the subjects have to report a number between 1 and 10, and a treatment where they report one of ten words in an unfamiliar language (and, therefore, there is no dimension on which the size of the lie can differ). Unlike our work, however, these studies did not address the question whether the marginal cost of lying was constant, increasing, or decreasing in the size of the lie.

<sup>&</sup>lt;sup>8</sup>Thus our finding is a refinement of recent research that finds a strong positive correlation between subject ability and lying proclivities, but does not differentiate between partial and maximal lying (Duch and Solaz, 2017; Gill et al., 2013).

likely than low-performance subjects to engage in near-maximal lying – that is when the size of the lie is large but the subject stops one step short from maximizing his profit. Maximal lying was also linked with donations in the dictator game: subjects who made zero donations were more likely to be maximal liars and less likely to be either partial liars or honest. This relationship is also highly significant in every country in our study. Females were less likely to lie maximally, and more likely to lie partially, while lying was not affected by whether income was obtained through effort or luck, the inequality of payoffs, or whether the subjects interacted in the same groups throughout the experiment or were rematched.

The only variable that was correlated with the magnitude of partial lying was generosity in the dictator game: Those who donated less lied to a greater extent. The decisions that involved partial lying also had longer reaction times than either maximal lying or honest choices. This finding is open to several interpretations. In a well-known framework for analyzing reaction times, shorter decisions are associated with an instinctive and emotional response, while longer decisions indicate cognitive reasoning (Rubinstein, 2007). A different strand of literature suggests that people are slower if they have to choose between alternatives that they value equally (Konovalov and Krajbich, 2017), so partial lying decisions might involve decision conflict. These two interpretations do not necessarily contradict each other, as the cognitive mechanism behind decision times is still not fully understood.<sup>9</sup>

## 2 Experimental Design

We employed a computer-based experimental design using ZTREE (Fischbacher, 2007). A total of 64 experimental sessions were conducted at the Centre for Experimental Social Sciences laboratories in University of Oxford, U.K., and Universidad de Santiago, Chile, and the Laboratory for Experimental and Behavioural Economics at the Higher School of Economics in Moscow, Russia. Several Chilean sessions were also conducted at Universidad del Desarrollo. In total, there were 1080 subjects (508 in the U.K., 316 in Chile, and 256 in Russia). Slightly over half

<sup>&</sup>lt;sup>9</sup>Much of the recent experimental evidence suggests that the lying decision is relatively complex and demanding and therefore takes more time. There is evidence to this effect in the cognitive psychology literature (Agosta et al., 2013; Verschuere and Shalvi, 2014). Lohse et al. (2018) find that time pressure results in more honest choices and more time, at least, allows individuals to better explore the lying options. And there is related evidence that the social consequences of prior decisions affect response times such that pro-social decisions may be quicker (Rand et al., 2014).

of all subjects were male (52.1% in U.K., 49.1% in Chile, and 52% in Russia). The majority of subjects were in their late teens and 20s, with the median age being 22 years in U.K. and Chile, and 20 years in Russia. The full list of sessions is available in Table A1, Appendix A.

The experiment consisted of between four and five stages. At the beginning of each stage, the subjects were given printed instructions for that stage, which were then read aloud by the experimenter. The payoffs for all stages were reported to the subjects at the end of the experiment.

The experiment started with the subjects playing a standard Dictator Game. Each subject was asked to allocate an endowment of 1000 ECUs between himself and another randomly selected subject in the room; participants were informed that only one in each pair will receive the endowment.<sup>10</sup>

The dictator game was followed by 10 periods where each subject first completed a oneminute real-effort task, earning a fixed amount of ECUs for each successful addition of two-digit numbers, and then had to declare the amount earned. A fixed percentage was then deducted from the declared amount, and redistributed among the subject's four-player group. The subject was then informed about the amount that was redistributed from other subjects in the group. The payoff from that part of the experiment was equal to the payoff from a randomly selected period.<sup>11</sup> The 10 paying periods were preceded by one (Russia) or two (Chile and the UK) practice periods.

After the RET and declaration stage, we elicited subjects' risk preferences with a standard 10-choice task (see, for instance, Holt and Laury (2002)), where each subject had to make 10 choices between a safe lottery and a risky lottery. Each safe lottery offered two similar amounts (£2 and £1.6 in the UK, 2000 and 1600 Pesos in Chile, and 50 and 40 Roubles in Russia), while the corresponding risky lottery offered a large and a small amount (3.85 and 0.1 £, 3850 and 100 Pesos, and 96.25 and 2.5 Roubles, respectively).<sup>12</sup> The subjects were informed that, at the

<sup>&</sup>lt;sup>10</sup>The screenshot from the dictator game stage of the experiment is shown on Figure A1 in Appendix A.

<sup>&</sup>lt;sup>11</sup>The screenshots from the RET and declaration stage of the experiment are shown on Figures A2-A5 in Appendix A show the screenshots from the experiment, while the printed instructions are shown on Figure A6. Following the RET and declaration stage, the subjects were then rematched and played another 10 periods, with declared incomes audited with some probability. In case of an audit, the deduction rate was applied to the entire income, and the subject payed a fine equal to 50% of the difference between the earned and declared amounts.

<sup>&</sup>lt;sup>12</sup>See Figures A7 and A7 in Appendix A for screenshots.

end of the experiment, one pair of lotteries would be selected at random, and the lottery chosen by the subject would be used to determine his payoff in that part of the experiment. Higher willingness to take risks should correspond to a higher proportion of risky lotteries chosen by the subject.

Finally, the subjects answered a post-experiment questionnaire. Before completing the final questionnaire, in some sessions subjects played two versions of the "die roll game" (previously, it was used extensively used to analyze both the extent and correlates of lying (Fischbacher and Follmi-Heusi, 2013; Abeler et al., 2014; Gächter and Schulz, 2016)). The subjects were first asked to roll a six-sided die in private and report its value. The task was then repeated with an electronic version of the die that appeared on the screen. The subjects were informed that the reward for each task would be equal to 100 ECU times the value reported.<sup>13</sup>

On average, a session lasted 90 minutes, including instructions and payment. ECU earnings were converted at the exchange rate of 300 ECUs per £1 in Oxford and 300 ECUs per 500 Chilean Pesos in Santiago. The exchange rate in Moscow was 7 ECU for sessions without the die roll task, and 8 ECU per Russian Rouble for sessions with the die roll task. The minimum, mean, and maximum payoffs in Oxford were £9.6, £20.72, and £39.9; in Moscow these figures were 430, 832.3, and 1250 Russian Roubles, and in Santiago they were 4300, 10224, and 16500 Chilean Pesos.

Our design had several advantages. First, the subjects could choose the magnitude of the lie, from being completely honest, to lying maximally, with the extrinsic benefits of lying being proportional to the percentage of income (either 10%, 20%, or 30% in most treatments) that was deducted from the subject's declared income.<sup>14</sup> Second, performance in the real effort task was used as a measure of the subject's ability, which is a potential correlate of dishonest behavior.<sup>15</sup> Third, the moral costs associated with lying and stealing can be lower when earned income is at stake (Gravert, 2013). Fourth, the dictator game at the beginning of the experiment allowed us to control for other-regarding preferences while looking at the correlates and causes of lying

 $<sup>^{13}\</sup>mathrm{See}$  Figures A9 and A10 in Appendix A for screen shots.

 $<sup>^{14}</sup>$ In Gneezy et al. (2018), the lying decision was also observed by the experimenter, but the extrinsic benefits of lying did not vary with the treatment.

<sup>&</sup>lt;sup>15</sup>Gill et al. (2013) is one work where ability at the real effort task was found to correlate with lying. However, in their study the benefit of lying did not vary, and the experimenter was not able to differentiate between maximal and partial lying.

behavior.<sup>16</sup> Fifth, we are able to see whether and to what extent maximal and partial lying in the main part of the experiment corresponds to lying in different setting — the die roll game. Finally, each subject was given multiple opportunities to lie.

Our main research goal was to determine how the intrinsic cost of lying varied with the magnitude of the lie — in particular, whether the marginal cost of lying was positive and increasing. For that purpose, we varied the benefit of lying. We also manipulated several other characteristics of the game, both in order to obtain a greater diversity of settings in which the lying decisions were made, and to test additional hypotheses about the determinants of lying behavior.

First, the extent to which income is attributed to effort or luck varies significantly both across individuals and across countries (Alesina and Angeletos, 2005), and has also been shown to associated with lying. This heterogeneity was introduced in the "Shock" treatment, where in each period two subjects in each group were randomly selected to receive a 1300 ECU bonus, and were told whether they received the bonus after the real effort task, but prior to declaring income. A connection between the manner in which income is earned and lying was previously investigated by Schurr and Ritov (2016), who found that lying is more likely for earned income. However, their experiment involved lying on an unrelated die game task that is not well suited to differentiate between maximal and partial lying; in contrast, in our case we were able to measure the extent of the lie with each decision, while varying the amount of unearned income at stake.<sup>17</sup>

Second, the design of our experiment allowed for the remuneration to be different across subjects, as income inequality is known to vary significantly across countries (Atkinson and Piketty, 2007). In the "Status" treatment, we induced wage inequality by varying the amount of income that subjects earned from the real effort task. In each group, two subjects earned 100 ECU for each successful addition, and two subjects earned 200 ECU (these roles were assigned at the beginning of the experiment, remained fixed throughout the first 10 periods, and were

<sup>&</sup>lt;sup>16</sup>In our experiment, lying reduces the welfare of the subject's other three group members (thus, the lies are "selfish black lies", in Erat and Gneezy (2012) terminology). Potentially, this complicates our analysis, as some of the previous results find a positive association between honesty and altruism (Cappelen et al., 2013; Sheremeta and Shields, 2013; Maggian and Villeval, 2016), although there is also evidence of no relationship between the two (Kerschbamer et al., 2016).

<sup>&</sup>lt;sup>17</sup>In a related experiment, Gravert (2013) found that earned income contributed to unethical behavior.

reassigned for the following 10 periods). This treatment was also highly valuable in allowing us to look at the extent to which the effort supplied by the subjects at the real effort task was affected by the rewards.

Third, in the "Non-fixed" treatment, the subjects were rematched every period to avoid strategic interaction. In that treatment, we also measured how accurately a subject was able to rank her performance at the real effort task, relative to the other subjects in her group. Before the beginning of the first period, each subject was also asked to rank her performance in the period relative to the other three group members, receiving 100 ECU if the prediction is correct. The same question was also asked before the beginning of one of the other 9 periods, and at the end of an another period.<sup>18</sup>

Finally, in the U.K. several more sessions are run under slightly different rules. In two "Dead-weight loss" sessions, only 30% of the deducted income was redistributed to the subjects. A higher incidence and/or magnitude of lying in this treatment would indicate that honest behavior is at least partly driven by other-regarding motives, instead of by the preference for honest behavior as such. In four "Redistribution" sessions, the two worst performers each received 35% of the public good and two top performers received 15%, increasing the potential impact of other-regarding preferences. A total of three U.K. sessions also included higher deduction rates (40% or 50%). Including or excluding these sessions does not affect the overall results. One "Redistribution" session was also conducted in Russia. The number of subjects in each treatment and for each deduction rate is shown in Table 1. The complete list of sessions is given in Table A1.

|                  | Baseline <sup>19</sup> | Status  | Shock  | Non-fixed |          |
|------------------|------------------------|---------|--------|-----------|----------|
| Deduction 10%    | 9(148)                 | 3(56)   | 3(48)  | 9(156)    | 24(408)  |
| Deduction $20\%$ | 8(128)                 | 4(60)   | 3(56)  | 6(96)     | 21(340)  |
| Deduction $30\%$ | 4(72)                  | 3(52)   | 3(52)  | 6(88)     | 16(264)  |
| Deduction $40\%$ | 2(44)                  |         |        |           | 2(44)    |
| Deduction $50\%$ | 1(24)                  |         |        |           | 1(24)    |
|                  | 24(416)                | 10(168) | 9(156) | 21(340)   | 64(1080) |

Table 1: Number of sessions (with number of subjects in parenthesis) for each treatment.

<sup>&</sup>lt;sup>18</sup>See Figures A15, A16, and A17 in Appendix A for screenshots.

<sup>&</sup>lt;sup>19</sup>Including deadweight loss and redistribution treatments.

### 3 Results

Lying behavior. Our primary goal is to investigate how the incidence of corner solutions to the problem of choosing the magnitude of lying responds to changes in the benefits of lying. Hence we categorize all decisions as either full honesty (when the subject declares the entire income), maximal lying (when the income declared by the individual is exactly zero), and partial lying, which corresponds to all other decisions.

As Table 2 indicates, most of the individuals made similar lying decisions over the 10 periods of the experiment. Almost 26.9% of the participants declared 0% of their income in all 10 periods; a further 14.6% declared their entire income in every period, and 13.8% of the subjects always declared above 0% but below 100% of their income. A total of 70.3% of the subjects made one of these three decisions (lied maximally, lied partially, or were honest) in at least 9 periods, and 78% made the same one choice in at least 8 periods.

|                                                               | Chile | Russia | U.K. | Total |
|---------------------------------------------------------------|-------|--------|------|-------|
| Always declare 0%                                             | 7.14  | 20.3   | 42.1 | 26.9  |
| Declare $0\%$ in at least 8 periods                           | 12.3  | 28.1   | 52.0 | 34.9  |
| Always declare above 0%, but below 100%                       | 11.7  | 27.7   | 8.1  | 13.8  |
| Declare above $0\%$ , but below $100\%$ in at least 8 periods | 25.0  | 41.4   | 13.8 | 23.6  |
| Always declare 100%                                           | 31.2  | 3.1    | 10.2 | 14.6  |
| Declare $100\%$ in a least 8 periods                          | 39.3  | 7.0    | 13.8 | 19.5  |

Table 2: Observed lying behavior

We label the subjects who lied maximally, lied partially, or were honest over at least 8 periods as consistent maximal liars, consistent partial liars, and consistently honest subjects. In each country, the share of subjects whose observed behavior did not fall into any of these three categories was small, and the share of subjects who made all three types of decisions was even smaller — 11.8% in Chile, 8.6% in Russia, and 6.7% in the U.K.

There were significant cross-country differences in lying. In Chile the modal behavior was honest; in Russia it was partial lying, and in the U.K. maximal lying was modal. The differences in the distribution of the three types of observed behavior (consistent maximal lying, consistent partial lying, consistent honesty, and the residual category) between the countries were highly significant<sup>20</sup>; Figure C1 in Appendix C shows the frequency with which subjects in each country lied partially, lied maximally, or were honest.

The higher overall level of honesty among Chilean subjects may have been be due to the fact that most of the experimental sessions in Chile were conducted at the Universidad de Santiago, where students come from more modest socio-economic backgrounds than at either Higher School of Economics in Russia or Oxford University in the U.K. <sup>21</sup> However, the distribution of lying behaviors among the subjects recruited at the Universidad de Santiago was not different from that among the subjects recruited at Universidad del Desarrollo, where the subject pool was more similar to those in Russia and the U.K. (Chi-squared test, p = 0.4586, Univ. de Santiago n = 224, Univ. del Desarrollo n = 84).

**Consistent lying behavior.** In Figure 1 we report the estimation of a multinomial logit model where the dependent variable is the subject's type of observed behavior (one of the three lying types in Table 2). For ease of interpretation, all multinomial logit tables present the average marginal effects of variables on the probability of being a certain type, keeping other variables for each observation at their observed values.

We find that the magnitude of lying does not increase with the deduction rate; in fact, it appears to be quite inelastic with respect to the benefits of lying. The subject was more likely to be a consistent maximal liar if the deduction rate was 30% rather than 20% (p = 0.0242 on the Wald test), and more likely to be consistently honest if the deduction rate was 20% rather than 50% (p = 0.0442), but all other pairwise comparisons between deduction treatments produced no significant differences.<sup>22</sup> In Column 5 of Table C1, we regress the average magnitude of partial lying for subjects who lied partially over at least 8 periods; similarly, the deduction rates largely have no effect on this value. At the same time, neither the deduction rates, nor other experimental conditions affected the performance and income of the subjects (see Section B1).

Compared with the baseline treatment, the rematching of the subjects between periods and

<sup>&</sup>lt;sup>20</sup>Pairwise comparisons between countries using the Chi-squared test yielded p < 0.0001. This result would not change if we employ a different categorization of behavior (for example, defining consistent maximal liars as those who made 0% declarations in all 10 periods, and define other categories similarly).

<sup>&</sup>lt;sup>21</sup>See Belot et al. (2015) on subject pool composition and choices in standard economic games.

 $<sup>^{22}</sup>$ See Table C1 for the values of the coefficients. We will obtain similar results if we adopt a different classification of subject behavior, and consider whether the subject was a maximal liar, a partial liar, or honest, in every period of the game (Table C2).



Figure 1: Marginal effects of experimental conditions and individual covariates on the type of lying behavior

the introduction of unearned income had no effect on lying over the 10 periods. In the Status treatment, subjects who earned 100 ECU (rather than 200 ECU) per period were more likely to be consistent maximal liars, and less likely to be consistently honest. As we would expect from Table 2, there were strong country effects, with consistent maximal lying (even controlling for Dictator Game donation and RET performance) more likely in Russia and, especially, in the U.K. At the same time, partial cheating is more likely in Chile than in the U.K. (and overall most likely in Russia).

Maximal lying was clearly favored by high ability individuals. This is consistent with previous research (Schurr and Ritov, 2016; Vincent and Kouchaki, 2015; Duch and Solaz, 2017) demonstrating a correlation between ability, or success, and lying. We find that subject's ability is positively correlated specifically with maximal lying, and negatively correlated with both partial lying and honest choices. The average marginal effect of RET rank (which varies between 0 and 1) on the probability of lying maximally in at least 8 periods is 0.269. People who made a 0 donation on the Dictator Game (compared with a small, but positive donation) were more likely to be consistent maximal liars, less likely to be consistent partial liars, and no more or less likely to be consistently honest.

There are two other pieces of evidence suggesting that ability is correlated with maximal and partial lying. First, very small, but positive, declarations were more prevalent among low-performance subjects than among their high-performance counterparts (see Appendix B2). Second, lying was also linked to expected performance on the RET. In the first period of the Non-Fixed treatment, as much as 47.8% of subjects who expected to rank first were consistent maximal liars, compared with 25.4% of the subjects expecting to rank second, 17.2% of the subjects expecting to rank third, and 17.2% of those who expect to rank last.<sup>23</sup> Subjects expecting to rank first or second in the first period were more likely to have lied maximally in that period (p = 0.0007 on two-sided Fisher's exact test), but were not more or less likely to have lied partially (p = 0.6318).<sup>24</sup>

The lying decision. Our next goal is to assess the robustness of these results with a specification that allows us to estimate the likelihood of choosing one of the three different lying behaviors in each round of the experiment. In the first three columns of Table 3 we estimate a multinomial logit models with a trichtonomous dependent variable: where the subject in each period could declare 0% of income, declared 100%, or declared some intermediate amount. The "Others" category does not exist, as these models estimate the choice, in each period, of one of the three lying behaviors. There were 1,071 subjects, each making 10 income reporting decisions – hence 10,710 decisions in total.

Once again, we do not find that lying increases with the deduction rate. The estimated probability of lying maximally was actually lower when the deduction rate was 20%, compared with 10%, as well as with 30%, deduction rates. In Appendix C, Table C5 reports separate country results for this model. We see that this nonlinearity was driven entirely by one country, Chile, while in Russia, maximal lying was not responsive to the deduction rate, and in the UK, the only effect that we find is that the likelihood of maximal lying was slightly higher for 30% deduction rate, compared with 10% deduction rate. The probability of declaring the full amount of income was largely not affected by the deduction rate in Russia and the UK, and

 $<sup>^{23}</sup>$ See Table C3. In the table we also report the average actual rank in Period 1. The subjects were able to predict their rank with some accuracy; subjects who expected to rank better had higher average rank.

<sup>&</sup>lt;sup>24</sup>Similarly, subjects who expected to rank first or second prior to one of the other 9 periods were more likely to have lied maximally in that period (p = 0.0711 on two-sided Fisher's exact test), but were not more or less likely to have lied partially in the same period (p = 0.1874).

|                           |                |           | All cou         | intries       |                |           | All cou         | ntries    |
|---------------------------|----------------|-----------|-----------------|---------------|----------------|-----------|-----------------|-----------|
|                           |                | Ml        | ogit, average   | marginal effe | ects           |           | OLS             |           |
|                           | Maxima         | l lying   | Partial         | al lying      |                | est       | Partial         | lying     |
| RET rank                  | $0.284^{***}$  | (0.0358)  | $-0.112^{***}$  | (0.0383)      | $-0.172^{***}$ | (0.0379)  | 0.0756          | (0.0628)  |
| RET deviation             | -0.00112       | (0.00150) | $0.00401^{**}$  | (0.00180)     | -0.00289*      | (0.00155) | 0.00370         | (0.00291) |
| Male                      | $0.0643^{***}$ | (0.0214)  | -0.0899***      | (0.0220)      | 0.0256         | (0.0215)  | 0.0502          | (0.0363)  |
| Age                       | -0.00590***    | (0.00192) | 0.00270         | (0.00192)     | $0.00321^{*}$  | (0.00176) | 0.00316         | (0.00303) |
| Period                    | $0.0172^{***}$ | (0.00131) | $-0.0102^{***}$ | (0.00139)     | -0.00700***    | (0.00119) | $-0.0152^{***}$ | (0.00204) |
| DG=0                      | $0.330^{***}$  | (0.0486)  | $-0.253^{***}$  | (0.0307)      | $-0.0772^{*}$  | (0.0426)  | -0.0651         | (0.0598)  |
| DG frac                   | -0.182**       | (0.0761)  | $-0.144^{**}$   | (0.0681)      | $0.326^{***}$  | (0.0703)  | $0.282^{***}$   | (0.103)   |
| Deduction 20%             | -0.0434*       | (0.0252)  | 0.0202          | (0.0263)      | 0.0232         | (0.0248)  | -0.000828       | (0.0363)  |
| Deduction 30%             | 0.0287         | (0.0279)  | -0.0321         | (0.0272)      | 0.00344        | (0.0264)  | -0.00482        | (0.0426)  |
| Deduction 40%             | -0.0196        | (0.0543)  | 0.0614          | (0.0594)      | -0.0418        | (0.0534)  | $0.184^{*}$     | (0.0955)  |
| Deduction 50%             | 0.0934         | (0.0740)  | 0.0122          | (0.0853)      | -0.106         | (0.0686)  | $-0.279^{***}$  | (0.0689)  |
| Deadweight loss           | -0.0597        | (0.0509)  | -0.0292         | (0.0601)      | 0.0889         | (0.0589)  | -0.0313         | (0.117)   |
| Redistribution            | 0.0582         | (0.0429)  | -0.0126         | (0.0427)      | -0.0456        | (0.0433)  | -0.00202        | (0.0747)  |
| Russia                    | $0.107^{***}$  | (0.0329)  | $0.116^{***}$   | (0.0328)      | $-0.222^{***}$ | (0.0227)  | -0.0136         | (0.0418)  |
| UK                        | $0.302^{***}$  | (0.0299)  | $-0.139^{***}$  | (0.0299)      | $-0.163^{***}$ | (0.0258)  | -0.0787         | (0.0492)  |
| Shock                     | 0.0108         | (0.0375)  | 0.000712        | (0.0384)      | -0.0115        | (0.0393)  | -0.0334         | (0.0448)  |
| Shock, yes                | -0.0104        | (0.0216)  | 0.0339          | (0.0255)      | -0.0235        | (0.0232)  | -0.0118         | (0.0316)  |
| Status                    | 0.0658         | (0.0442)  | 0.000721        | (0.0464)      | -0.0665        | (0.0408)  | -0.0436         | (0.0534)  |
| Status, $200 \text{ ECU}$ | -0.0739        | (0.0472)  | -0.0396         | (0.0532)      | $0.113^{*}$    | (0.0623)  | 0.0497          | (0.0634)  |
| Non-fixed                 | 0.0227         | (0.0313)  | -0.0457         | (0.0318)      | 0.0230         | (0.0303)  | 0.0390          | (0.0507)  |
| Constant                  |                |           |                 |               |                |           | $0.241^{**}$    | (0.103)   |
| Observations              | 10718          |           | 10718           |               | 10718          |           | 2391            |           |
| Log pseudolikelihood      | -8993.9415     |           | -8993.9415      |               | -8993.9415     |           |                 |           |
| $\mathbb{R}^2$            |                |           |                 |               |                |           | 0.1025          |           |
| D20=D30                   | 0.00955        |           | 0.0644          |               | 0.474          |           | 0.920           |           |
| D20=D40                   | 0.662          |           | 0.485           |               | 0.223          |           | 0.0404          |           |
| D20 = D50                 | 0.0656         |           | 0.925           |               | 0.0651         |           | 0.00000834      |           |
| D30=D40                   | 0.389          |           | 0.123           |               | 0.405          |           | 0.0511          |           |
| D30 = D50                 | 0.391          |           | 0.610           |               | 0.123          |           | 0.0000761       |           |
| D40 = D50                 | 0.177          |           | 0.606           |               | 0.427          |           | 0.00000152      |           |
| Russia=UK                 | 2.13e-10       |           | 1.09e-17        |               | 0.0259         |           | 0.171           |           |

Table 3: Determinants of lying, by period

in Chile that probability was actually lower for a 20% deduction rate, compared with 10%. Likewise, we cannot say that the magnitude of partial lying was increasing with the deduction rate; there was no such effect in Chile and Russia, while in the UK the magnitude of partial lying was higher for 50% deduction rate, and lower for 40% deduction rate, compared with 10% deduction rate.

Table C1 suggests that most subjects had either very low or very high intrinsic costs of lying and hence over the range of lying costs in our game they lied virtually all the time or were always honest. However, the coefficient on *Period* in Table 3, suggests lying might change over the course of the game – in particular, the probability of maximal lying appears to be higher in later periods.

There are two reasons why this may be true. First, lying is path dependent. Table 4 introduces controls for the previous period's decision. The period effect on maximal lying was

actually negative in Table 4, with the probability of maximal lying decreasing by 0.13% each period, once the previous period's decisions are controlled for — this compares with a 1.72% per period increase in Table 3. The individual country results presented in the Appendix, Table C8, indicate this was the case for Chile and the UK, while in Russia the effect of period on maximal lying was not significant. The probability of partial lying, conditional on previous period's decision, did not change with time in Russia and the U.K., and decreased in Chile and in the combined sample.

| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                       |                      |                  | All countries All countries |                 |                 |                 |            |               |              |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|-----------------------------|-----------------|-----------------|-----------------|------------|---------------|--------------|--|--|--|
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                       |                      |                  | M                           | llogit, average | marginal effect | s               |            | C             | DLS          |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                        |                      | Maxima           | l lying                     | Partial lying   |                 |                 | Honest F   |               | artial lying |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                        | RET rank             | $0.0510^{***}$   | (0.00990)                   | $-0.0254^*$     | (0.0133)        | -0.0256**       | (0.0117)   | 0.0182        | (0.0184)     |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                        | RET deviation        | -0.00298*        | (0.00160)                   | $0.00424^{**}$  | (0.00214)       | -0.00126        | (0.00178)  | 0.00266       | (0.00304)    |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                        | Male                 | $0.0152^{***}$   | (0.00542)                   | $-0.0265^{***}$ | (0.00751)       | $0.0114^{*}$    | (0.00653)  | 0.00921       | (0.0105)     |  |  |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                           | Age                  | $-0.00169^{***}$ | (0.000582)                  | 0.000549        | (0.000657)      | $0.00114^{**}$  | (0.000505) | 0.00122       | (0.000780)   |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                        | Period               | -0.00131*        | (0.000708)                  | $-0.00168^*$    | (0.000880)      | $0.00299^{***}$ | (0.000742) | 0.00130       | (0.00112)    |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                        | DG=0                 | $0.0531^{***}$   | (0.0135)                    | $-0.0674^{***}$ | (0.0184)        | 0.0143          | (0.0161)   | -0.00800      | (0.0152)     |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                        | DG frac              | -0.0397**        | (0.0167)                    | -0.0374         | (0.0232)        | $0.0770^{***}$  | (0.0222)   | $0.0665^{**}$ | (0.0305)     |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                        | Deduction 20%        | -0.00715         | (0.00627)                   | 0.000680        | (0.00860)       | 0.00647         | (0.00751)  | -0.00692      | (0.0101)     |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                        | Deduction 30%        | 0.00881          | (0.00699)                   | $-0.0172^{*}$   | (0.00955)       | 0.00839         | (0.00826)  | -0.00936      | (0.0131)     |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                        | Deduction 40%        | -0.00158         | (0.0134)                    | 0.0156          | (0.0216)        | -0.0140         | (0.0187)   | 0.00171       | (0.0309)     |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                        | Deduction 50%        | 0.0307           | (0.0223)                    | -0.00720        | (0.0330)        | -0.0235         | (0.0264)   | -0.0803***    | (0.0160)     |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                         | Deadweight loss      | -0.0108          | (0.0147)                    | -0.0124         | (0.0219)        | 0.0232          | (0.0165)   | -0.0192       | (0.0317)     |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                        | Redistribution       | 0.0176           | (0.0111)                    | -0.0152         | (0.0165)        | -0.00242        | (0.0145)   | 0.0166        | (0.0217)     |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                         | Russia               | 0.0117           | (0.00850)                   | 0.0267**        | (0.0117)        | $-0.0384^{***}$ | (0.0107)   | -0.00952      | (0.0123)     |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                         | UK                   | $0.0502^{***}$   | (0.00919)                   | $-0.0279^{**}$  | (0.0108)        | -0.0223***      | (0.00850)  | -0.00931      | (0.0143)     |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                         | Shock                | 0.00634          | (0.0123)                    | -0.0144         | (0.0155)        | 0.00811         | (0.0145)   | -0.00101      | (0.0145)     |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                         | Shock, yes           | -0.0178          | (0.0156)                    | $0.0457^{**}$   | (0.0210)        | -0.0278         | (0.0179)   | -0.0241       | (0.0181)     |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                         | Status               | 0.0136           | (0.0114)                    | 0.00132         | (0.0157)        | -0.0150         | (0.0138)   | -0.0129       | (0.0148)     |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                         | Status, 200 ECU      | -0.0229*         | (0.0127)                    | -0.00621        | (0.0183)        | $0.0291^{*}$    | (0.0167)   | 0.0144        | (0.0181)     |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                        | Non-fixed            | 0.0123           | (0.00768)                   | $-0.0171^{*}$   | (0.0103)        | 0.00476         | (0.00886)  | -0.00629      | (0.0147)     |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                         | L.Declared 0%        | $0.770^{***}$    | (0.0207)                    | -0.232***       | (0.0165)        | -0.538***       | (0.0132)   | -0.413***     | (0.0481)     |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                         | L.Declared 1-99%     | $0.0279^{***}$   | (0.00983)                   | $0.447^{***}$   | (0.0124)        | $-0.475^{***}$  | (0.00776)  | -0.502***     | (0.0363)     |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                        | L.Partial cheat      | -0.107***        | (0.0167)                    | $-0.0538^{***}$ | (0.0192)        | $0.161^{***}$   | (0.0174)   | $0.792^{***}$ | (0.0224)     |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                         | L.Dec. others, 1000  | -0.00853***      | (0.00202)                   | $0.00711^{***}$ | (0.00257)       | 0.00142         | (0.00212)  | 0.0103***     | (0.00340)    |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                        | Constant             |                  |                             |                 |                 |                 |            | $0.485^{***}$ | (0.0443)     |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                         | Observations         | 9647             |                             | 9647            |                 | 9647            |            | 2173          |              |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                         | Log pseudolikelihood | -3770.977        |                             | -3770.977       |                 | -3770.977       |            |               |              |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                          | $\mathbb{R}^2$       |                  |                             |                 |                 |                 |            | 0.6547        |              |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | D20=D30              | 0.0251           |                             | 0.0659          |                 | 0.820           |            | 0.845         |              |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                          | D20=D40              | 0.674            |                             | 0.488           |                 | 0.276           |            | 0.772         |              |  |  |  |
| D30=D40         0.451         0.136         0.241         0.730           D30=D50         0.332         0.765         0.236         0.0000279           D40=D50         0.173         0.534         0.754         0.00538           Russia=UK         0.0000125         0.00000157         0.123         0.986 | D20=D50              | 0.0899           |                             | 0.811           |                 | 0.260           |            | 7.83e-08      |              |  |  |  |
| D30=D50         0.332         0.765         0.236         0.0000279           D40=D50         0.173         0.554         0.754         0.00538           Russia=UK         0.0000125         0.0000157         0.123         0.986                                                                            | D30=D40              | 0.451            |                             | 0.136           |                 | 0.241           |            | 0.730         |              |  |  |  |
| D40=D50         0.173         0.534         0.754         0.00538           Russia=UK         0.0000125         0.0000157         0.123         0.986                                                                                                                                                          | D30=D50              | 0.332            |                             | 0.765           |                 | 0.236           |            | 0.0000279     |              |  |  |  |
| Russia=UK 0.00000125 0.00000157 0.123 0.986                                                                                                                                                                                                                                                                    | D40 = D50            | 0.173            |                             | 0.534           |                 | 0.754           |            | 0.00538       |              |  |  |  |
|                                                                                                                                                                                                                                                                                                                | Russia=UK            | 0.00000125       |                             | 0.00000157      |                 | 0.123           |            | 0.986         |              |  |  |  |

\* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01

Table 4: Determinants of lying in periods 2-10, previous action

Subject decisions were highly dependent on past actions, and if a subject declared 0% in the previous period, she was 60.0% to 81.1% more likely, depending on the country, to have made a zero declaration this period (compared with a 100% declaration in the previous period), and was 35.9%-58.5% less likely to have declared 100%. The effect of partial lying in the previous period depended on how much income was declared; with lower declarations leading to higher probability of maximal lying and lower probability of honest behavior in the following period.

Second, income declared by the other group members in the previous period also had a significant effect on lying. In Table 4 we include the coefficient for the total income declared by the other three group members in the previous period (at the end of each period, the subject can deduce this value, because he is informed about the redistribution from the group, and the deduction rate is the same for all group members). Every additional 1000 ECU of income declared by other group members decreased the probability of maximal lying by 0.85% (alternatively, the probability of maximal lying decreased by 1.18% for each standard deviation increase in declared income), and this increased the probability of partial lying by 0.71% (or 0.99% for each standard deviation increase).

In order to estimate the effect of group member declarations over 10 periods, we predict whether the subject lied maximally, lied partially, or was honest for periods 2-10.<sup>25</sup> When predicting the individual's choice for each of periods 3-10, we use the predicted choice in the previous period as lagged own choice. We make two extreme counterfactual assumptions about the declarations of the other group members. First, we assume that they declare nothing in each period. Second, we assume that the other group members declared 100% of their income in each period. We also make the prediction using actual declarations of each subject's group members. Table 5 reports the aggregate outcome of these estimations, repeated over 1000 iterations (the distributions of these frequencies for 50 iterations are also reported in Appendix C, Figure C3).

We see that for Chile, lying behavior is stable in the sense that it is not conditional on the behavior of other group members. The estimated shares of maximal liars, partial liars, and honest subjects in period 10 change by less than 4% if the other group members always report zero incomes, compared with them always reporting their entire incomes. This is less true with respect to the UK; there, the probability that a given individual will be a maximal liar in period 10 is estimated to drop by just under 17% if all other individuals in his group always behave honestly, compared with lying maximally in every period. Finally, in Russia lying is strongly conditional on the behavior of other group members; having honest group members makes one much more likely to be a partial liar, and much less likely to be a maximal liar, compared with the group members declaring zero income.

Random assignment to income shocks and differential wages had no significant affect on

 $<sup>^{25}</sup>$ We use models identical to ones in Appendix Table C8, with the exception that we do not include the coefficient for the magnitude of partial lying in the past period.

|        | Assumption about declarations of other | Maximal lying | Partial lying | Honest        |
|--------|----------------------------------------|---------------|---------------|---------------|
|        | group members                          |               |               |               |
| Chile  | Actual declarations                    | .203 (.021)   | .328(.02)     | .469(.028)    |
|        | Declared $0\%$ in each period          | .185(.02)     | .334 (.028)   | .481 $(.032)$ |
|        | Declared $100\%$ in each period        | .216 $(.026)$ | .32(.024)     | .464 $(.027)$ |
|        | Actual behavior in period 10           | .211          | .328          | .461          |
| Russia | Actual declarations                    | .463 (.022)   | .408 (.02)    | .129 (.018)   |
|        | Declared $0\%$ in each period          | .616 $(.026)$ | .286 $(.025)$ | .098 $(.016)$ |
|        | Declared $100\%$ in each period        | .111 (.02)    | .69 $(.025)$  | .199 $(.025)$ |
|        | Actual behavior in period 10           | .469          | .395          | .137          |
| UK     | Actual declarations                    | .652 (.015)   | .182 (.015)   | .166 (.016)   |
|        | Declared 0% in each period             | .688 $(.017)$ | .16 $(.015)$  | .152 (.014)   |
|        | Declared $100\%$ in each period        | .523 $(.02)$  | .267 $(.019)$ | .21 $(.016)$  |
|        | Actual behavior in period 10           | .657          | .177          | .165          |

For each country, each of the rows 1-3 corresponds to the result of 1000 estimations, and reports the mean and standard deviation of the prevalence of maximal lying, partial lying, and honest behavior in Period 10. The fourth row reports the actual frequencies in Period 10.

Table 5: Predicted and actual behavior in Period 10

lying. The effect of earning 200 ECU in the Status treatment on maximal cheating, reported in Table 3, was confined to only one country — the UK. The receipt of unearned income in the Shock treatment had an effect on first-period lying in Chile (Table C9); it made lying in the first period more likely. Otherwise, its effect on either the likelihood of maximal and partial lying, or on the magnitude of partial lying was either nonexistent or not consistent across countries and model specifications.

All estimated models strongly confirm, in all countries, the positive association between subject ability and maximal lying. The average marginal effect of RET rank (which varies between 0 and 1) on the probability of maximal lying in a given period is between 0.178 and 0.368. The association becomes smaller if one takes into account previous period's decision, but is large, between 0.147 and 0.331, in period 1 (these coefficients are reported in Table 6 and Table C9 in Appendix C).

Moreover, most importantly, this relationship is not driven by unexpectedly high or low levels of performance in a given period, but by the subject's average ability across all periods.<sup>26</sup>

Subjects effort in the RET appear to be supplied inelastically, as RET performance was

<sup>&</sup>lt;sup>26</sup>In each period, we calculate the difference between the subject's actual performance at the RET task, and the performance predicted from subject and period fixed effects. We find that the coefficient for RET deviation was largely not significant.

|                      |                |           |                 | All       | countries      |           |              |             |
|----------------------|----------------|-----------|-----------------|-----------|----------------|-----------|--------------|-------------|
|                      |                | Ml        |                 | OLS       |                |           |              |             |
|                      | Maxima         | l lying   | Partial         | lying     | Honest         |           | Pa           | rtial lying |
| RET rank             | $0.238^{***}$  | (0.0396)  | -0.0677         | (0.0489)  | -0.171***      | (0.0456)  | 0.0742       | (0.0811)    |
| RET deviation        | $0.0114^{*}$   | (0.00670) | 0.00749         | (0.00802) | $-0.0189^{**}$ | (0.00778) | -0.0179      | (0.0120)    |
| Male                 | $0.0617^{***}$ | (0.0239)  | $-0.0729^{***}$ | (0.0281)  | 0.0112         | (0.0261)  | -0.00118     | (0.0461)    |
| Age                  | -0.00255       | (0.00225) | 0.00302         | (0.00264) | -0.000470      | (0.00226) | -0.00220     | (0.00397)   |
| DG=0                 | $0.391^{***}$  | (0.0601)  | -0.267***       | (0.0433)  | $-0.124^{**}$  | (0.0493)  | -0.0640      | (0.0846)    |
| DG frac              | -0.0228        | (0.0899)  | $-0.184^{*}$    | (0.0951)  | $0.207^{**}$   | (0.0825)  | $0.263^{*}$  | (0.135)     |
| Deduction 20%        | -0.0345        | (0.0279)  | 0.0469          | (0.0336)  | -0.0124        | (0.0300)  | 0.0320       | (0.0458)    |
| Deduction 30%        | 0.00202        | (0.0304)  | 0.0378          | (0.0362)  | -0.0398        | (0.0316)  | 0.0554       | (0.0564)    |
| Deduction 40%        | -0.0446        | (0.0585)  | 0.0906          | (0.0789)  | -0.0460        | (0.0708)  | 0.482***     | (0.101)     |
| Deduction 50%        | -0.0221        | (0.0629)  | 0.114           | (0.102)   | -0.0924        | (0.0855)  | -0.0752      | (0.160)     |
| Deadweight loss      | -0.0633        | (0.0543)  | -0.0436         | (0.0698)  | 0.107          | (0.0667)  | 0.0427       | (0.174)     |
| Redistribution       | 0.00354        | (0.0434)  | 0.0557          | (0.0560)  | -0.0592        | (0.0533)  | -0.150**     | (0.0706)    |
| Russia               | $0.0956^{**}$  | (0.0423)  | $0.259^{***}$   | (0.0455)  | $-0.354^{***}$ | (0.0253)  | $0.127^{**}$ | (0.0539)    |
| UK                   | $0.255^{***}$  | (0.0352)  | -0.0758*        | (0.0404)  | $-0.179^{***}$ | (0.0318)  | -0.0263      | (0.0609)    |
| Shock                | 0.00653        | (0.0515)  | -0.0419         | (0.0589)  | 0.0353         | (0.0572)  | -0.0366      | (0.0608)    |
| Shock, yes           | 0.0241         | (0.0641)  | -0.00218        | (0.0749)  | -0.0219        | (0.0676)  | 0.0992       | (0.0843)    |
| Status               | 0.0549         | (0.0496)  | -0.0283         | (0.0562)  | -0.0266        | (0.0555)  | -0.0912      | (0.0776)    |
| Status, 200 ECU      | -0.0161        | (0.0532)  | -0.0429         | (0.0655)  | 0.0589         | (0.0726)  | 0.131        | (0.0957)    |
| Non-fixed            | -0.00469       | (0.0350)  | -0.0547         | (0.0406)  | 0.0594         | (0.0380)  | 0.0504       | (0.0633)    |
| Constant             |                |           |                 |           |                |           | 0.292**      | (0.135)     |
| Observations         | 1071           |           | 1071            |           | 1071           |           | 218          |             |
| Log pseudolikelihood | -895.7424      |           | -895.7424       |           | -895.7424      |           |              |             |
| $R^2$                |                |           |                 |           |                |           | 0.1549       |             |
| D20=D30              | 0.247          |           | 0.808           |           | 0.410          |           | 0.668        |             |
| D20=D40              | 0.866          |           | 0.579           |           | 0.635          |           | 0.00000644   |             |
| D20=D50              | 0.848          |           | 0.513           |           | 0.355          |           | 0.501        |             |
| D30=D40              | 0.444          |           | 0.513           |           | 0.932          |           | 0.0000760    |             |
| D30=D50              | 0.712          |           | 0.462           |           | 0.547          |           | 0.423        |             |
| D40=D50              | 0.775          |           | 0.842           |           | 0.657          |           | 0.00148      |             |
| Russia=UK            | 0.00000541     |           | 6.10e-18        |           | 2.99e-08       |           | 0.00866      |             |

Table 6: Determinants of lying in period 1

independent from experimental conditions (see Appendix B1). At the same time, subject ability has a negative effect on the likelihood of partial lying, and no effect on the magnitude of partial lying.<sup>27</sup>

Similarly, a subject who made a zero donation in the Dictator Game was more likely to lie maximally in a given round, compared with a subject who donated some positive amount (in all countries and all specifications), and was less likely to lie partially (in Russia and the U.K., in all specifications). At the same time, a subject who donated a positive amount was more likely to make a 100% declaration, compared with a subject who donated a smaller amount; this association was present in every country.

Males were less likely than females to be partial liars in both Russia and the U.K. However, the effect of gender on maximal lying was present in the U.K. only. The effect of age on either type of lying was only observed in the U.K. In Tables C10 and C11 we introduce additional individual-level controls. We find that interpersonal trust, risk preferences, and income have no effect on lying that would be consistent across national contexts; at the same time, individuals

<sup>&</sup>lt;sup>27</sup>In Table C12 we replace the subject's RET rank and the period's deviation with the subject's performance in the nonpaying practice period, and find that performance in the practice period is predictive of maximal lying in later periods.

who expressed less support for various forms of opportunistic behavior were less likely to be maximal liars.<sup>28</sup> Our main results — that deduction rates have no effect on lying, and that subject performance is associated with more maximal lying — hold if we consider males and females separately (Table C6).

There was no correlation between the magnitude of partial lying in each period and different experimental treatments. At the same time, there was significant within-subject variation in the magnitude of partial lying. If a consistent partial liar declared a positive amount (but less then 100%) of income, he or she was only 24.4% likely to have declared the same amount of income in the next period (this figure increased to 41.1% if the subject's performance in the RET task was the same in the two periods). The magnitude of partial lying was higher in Russia and, especially, in the U.K. — countries where the subjects were also more likely to consistently declare 0% of their income. However, while the partial liars were heterogeneous in the fraction of income they declared, efforts to explain this heterogeneity were not successful.<sup>29</sup>

Lying and the die roll game At the end of the experimental sessions, we presented our subjects with an additional opportunity to lie at a standard die-rolling game.<sup>30</sup> Our expectation was lying in the main part of the experiment should predict behavior in the die-tolling game. Figure 2 reported die rolls, depending on the individual's behavior in the main part of the experiment.

Our expectation was that the maximal liars would be more likely than other behavioral types to report 6; partial liars more likely to report 5; while the decisions by honest subjects would reflect the expected unbiased distribution. Our results for consistent maximal liars are as expected — they had a 64.4% probability of reporting 6 on the die roll, compared with 36.2% for consistently honest subjects (p < 0.0001 on the two-tailed Fischer's exact test). Consistent maximal liars were also less likely to report 2 or 5 (p = 0.0344 and p = 0.0359 on the two-sided Fischer's exact test) than consistently honest subjects.

 $<sup>^{28}\</sup>mathrm{See}$  Table C13 for the composition of the civicness index used in the regression.

<sup>&</sup>lt;sup>29</sup>The only individual-level covariate that was significant in more than one country was self-reported ideology: In Russia and the UK, subjects who reported to be leftist declared a larger share of income.

 $<sup>^{30}</sup>$ A total of 444 subjects played the die roll game; the sessions where the die roll game was included in the experiment are given in Table A1.



Figure 2: Lying and the Die Roll Result.

We do less well predicting partial lying and honesty. There was lying in the die roll game even by the subjects who were consistently honest in the main part of the experiment. The 102 honest subjects from the lying game reported 5 and 6 as much as 30 and 40 times, respectively. That was significantly more often than 16.6% of the time which corresponds to truthful reporting (p = 0.0042 and p < 0.0001, one-side binomial test). The results did not change much if we consider the 73 subjects who were honest in every period of the experiment; they reported 5 and 6 after the die roll 20 and 27 times, respectively (p = 0.0281 and p = 0.0005, one-sidebinomial test).

Numbers reported by the consistent partial liars were not lower or higher than those reported by consistently honest subjects (Wilcoxon-Mann-Withney ranksum test Prob> |z| = 0.8420, consistently honest subjects n = 102, consistent partial liars n = 117). Similarly, there was also no difference between subjects who were completely honest in every period, and those who partially lied in every period (Wilcoxon-Mann-Withney ranksum test Prob> |z| = 0.8202, completely honest subjects n = 73, partial liars in every period n = 62).<sup>31</sup> In particular, consistent partial liars were no more likely than honest subjects to report 5 — the choice associated with partial lying (p = 1.0000 on the two-tailed Fisher's exact test).<sup>32</sup>

<sup>&</sup>lt;sup>31</sup>Chi-squared tests also fails to reject the hypothesis that the distributions of reported numbers are different, with p = 0.89 and p = 0.4102, respectively.

 $<sup>^{32}</sup>$ In Table C4 we report the results of the logistic regressions for the six reported die roll values. The dependent variables are dummy variables for individual types (with the baseline category being honest subjects). For consistent partial liars, we also account for the average fraction of income declared. We find that maximal liars

We obtain similar results for the digital version of the die game, when the die was rolled on the screen and the actual as well as reported die rolls were recorded.<sup>33</sup> The digital die roll game allowed us to record the instances of maximal lying, when the subject rolled the value between 1 and 4, and reported 6, and partial lying (not reporting either 6 or the actual value, if the latter was between 1 and 4; the frequencies of these behaviors are recorded in Table C14). Consistent maximal liars were more likely to lie maximally on the digital die task than either consistent partial liars or consistently honest subjects (p = 0.0007 and p = 0.0026 on the respective twosided Fisher's exact tests), and not more or less likely to lie partially (p = 0.5894 and p = 1.000the respective two-sided Fisher's exact tests). At the same time, consistent partial liars and consistently honest subjects were not more or less likely to either lie maximally or lie partially at the digital die game (p = 0.7835 and p = 0.7696 on the respective two-sided Fisher's exact tests).<sup>34</sup>

One of our core expectations is confirmed here: we see high levels of maximal lying in the die-rolling game by subjects we classify as maximal liars in the main part of the experiment. However, the subjects we classified as consistently honest lied more than we expected in the die-rolling game, and the numbers that they reported were not different from those reported by consistent partial lying.

This may be true for two reasons. First, the lying costs in the main part of the experiment may potentially have been higher than in the die roll game. This might be true because the subjects who lied may have experienced additional discomfort as their decisions were observed by the experimenter.<sup>35</sup> One's maximal lying was also evident to a member of one's group if the other three group members also lied maximally. Hence, a subject who was honest or lied partially in the main part of the experiment may have lied maximally in the die roll game. This

are more likely, than honest subjects, to report 6 and are also less likely to report 1. Partial liars are no more or less likely to report any of the values than honest subjects, regardless of the average amount that they declared.

 $<sup>^{33}</sup>$ The distribution of reported rolls for this part of the experiment is shown on Figure C4 in Appendix C. Predictably, a smaller share of subjects, 29.1%, reported 6 on the digital die game, compared with 43% of the subjects who reported 6 when the actual die was rolled and the outcome was not observed by the experimenter.

<sup>&</sup>lt;sup>34</sup>The subjects who lied maximally in every period were more likely to lie maximally at the digital die task than those who either lied partially in every period, or were honest in every period (p = 0.0002 and p < 0.0001on the respective two-sided Fisher's exact tests), and not more or less likely to lie partially (p = 0.3036 and p = 0.4857, respectively). There was no difference in the incidence of either non-maximal lying (p = 0.1474) or maximal lying (p = 1.0000) on the digital die task between those who lied partially in every period in the main part of the experiment, and those who were honest in every period.

 $<sup>^{35}</sup>$ In Gneezy et al. (2018) experiment, subjects lied more when their choices were not observed by the experimenter.

could also be true due to altruistic concerns, as lying in the main game was costly for other participants.<sup>36</sup> Second, lying thresholds can be contingent on the context and the nature of the cheating decision. Hence, in one game an individual may have had a zero lying threshold and behaved honestly, while in another she had a positive lying threshold and chose to lie partially, and vice versa. This is consistent with the findings that the size of the lying threshold is sensitive to context and framing (Mazar et al., 2008; Gino and Ariely, 2016).

**Reaction Time** In our experiment, we measured the time subjects took to make their income declaration decisions. Recent studies have found that reaction time is correlated with lying, but both positive and negative relationships were reported.<sup>37</sup> We find that partial lying was associated with much greater reaction time (t = 12.73, sd=18.63, n = 3455) than either honest declarations (t = 10.52, sd=22.21, n = 2793) or maximal lying (t = 4.31, sd=7.72, n = 4464). The empirical distributions of reaction time for 100% declarations dominated the distribution for 0% declarations, but was dominated by the distribution of response times for intermediate declarations (Figure 3; this is also true for each individual country, see Figure C5 in Appendix C).



Figure 3: Cumulative distributions of reaction times for different declarations

<sup>&</sup>lt;sup>36</sup>In our game, honest decisions involve more redistribution to the subject's group members. However, Dictator Game behavior is also predictive of lying in the die roll game, where altruistic concerns are absent. Subjects who donated 0 in the Dictator Game have, on average, reported 6 after the die roll 65.8% of the time, compared with 38.5% of the time for subjects who donated more than 0. This difference was significant in Russia and the U.K. (p = 0.0407 and p = 0.0029 for two-sided Fisher's exact test).

<sup>&</sup>lt;sup>37</sup>Deviations from self-interested lying have been shown to require reflection and hence higher reaction times (Shalvi et al., 2012; Gino et al., 2011; Tabatabaeian et al., 2015). However, other experiments have found that honesty is a quick natural response (Foerster et al., 2013; Verschuere and Shalvi, 2014; Levine, 2014).

In Table C17 in Appendix C, we regress the log reaction time for each decision on individual and treatment controls. In Model 1 we control for the individual's choice, while in Model 2 we also control for the choice made in the previous period, and find that an honest declaration is a much quicker decision than a partial lie. In Model 3 we control for all possible combinations of decisions made in this and previous periods, as well as for decisions made in Period 1. We find that in Period 1, it took more time to declare 100% of the income than to lie maximally, but less time than to lie partially (p < 0.0001 on both comparisons); a similar nonlinear relationship between the magnitude of the lie and reaction time was present if the subject was honest in the previous period, while a repeated maximal lie took less time than any other type of decision.<sup>38</sup> We obtain similar results by estimating parametric survival-time models, assuming exponential (Table C18) and Weibull (Table C19) distributions of reaction time.

The U-shaped relationship between the magnitude of the lie and reaction time suggests two possibilities. First, partial lying necessarily involves a choice from a broad range of alternatives, and hence involves more reflection than either a honest choice or a maximal lie. Second, both noncooperation and honesty can be heuristic responses (Rand et al., 2014; Verschuere and Shalvi, 2014), while partial lie involves decision conflict and is slower.

## 4 Discussion

Individuals lie on a regular basis in their everyday lives, and for many people lying is associated with intrinsic costs that increase with the degree to which the truth is distorted. The goal of this work was to learn more about the nature of these costs. For this goal, we observed over 1,000 individuals from the U.K., Russia and Chile making over 10,000 lying decisions in a public goods game with earned income. We implemented treatments aimed at varying the benefit of lying, as well as several other characteristics of the game, such as whether there was earned as well as unearned income.

We find that both maximal lying (when the subjects maximized their monetary gain) and

<sup>&</sup>lt;sup>38</sup>The experimental conditions had some effect on the reaction time. Once the individual's choices are controlled for, the deduction rates and the benefit of lying had no effect; however, the reaction time was higher in the Shock treatment, especially if the subject received uncarned income it that period. The reaction time decreased with periods, was shorter for individuals with higher ability at the RET task, and was longer for males and subjects who made higher donations in the dictator game.

partial lying were common, as well as honest behavior, and lying was not responsive to externally imposed benefits. This is not consistent with the marginal cost of lying increasing in the magnitude of the lie (in which case one would expect the magnitude of partial lies and/or the incidence of maximal lie to increase with the benefits of lying).

We offer an alternative explanation that partial lying is a result of some subjects have lying thresholds; the intrinsic costs of lying for such individuals are low when the magnitude of the lie is below the threshold. Our experiments suggest that such thresholds are heterogeneous both across individuals and across individual decisions, but are unaffected by extrinsic benefits and other experimental conditions.<sup>39</sup>

These thresholds may be shaped by the concerns about one's social identity; social identity theory argues that people derive intrinsic payoffs from belonging to one or another social category (Akerlof and Kranton, 2000; Bénabou and Tirole, 2011). When the magnitude of lying falls below a threshold value individuals are able to maintain a positive self-image and therefore avoid any intrinsic costs of lying Gino and Ariely (2016). Individuals may also care about whether their actions are perceived by other people as dishonest, which may cause partial lying (Gneezy et al., 2018).

We demonstrate that partial lies and maximal lies are distinct phenomena. First, we observe subjects making multiple potential lying decisions, and find that individuals either lie maximally most of the time, or lie partially most of the time, with relatively few individuals doing a lot of both. In two countries out of three, the individual's choice whether to lie maximally, lie partially, or be honest was not conditional, or was only weakly conditional, on the lying of other individuals in the four-member group.

Second, there are individual characteristics that distinguish between maximal liars on one hand, and partial liars and honest individuals on the other. As has been pointed out elsewhere (Duch and Solaz, 2017), ability is correlated with lying. Our findings are more nuanced. Highability individuals are indeed more likely to be maximal liars. However, low ability is positively

<sup>&</sup>lt;sup>39</sup>This finding is contrary to Gibson et al. (2013) who conclude that the likelihood of lying will vary continuously with the costs and benefits. However, our experiment is different in several important respects. First, we explicitly vary the benefits of lying by assigning subjects to treatments with different deduction rates. In the Status treatment, we also manipulate the amount of income that individuals earn through the real effort task, while in the Shock treatment subjects who receive the bonus have high exogenous costs of not lying. Second, the lying decisions are made with respect to the individual's earned income. Finally, our design involves subjects making repeated decisions.

associated not only with honest behavior, but with partial lying as well.

At the same time, partial lies vary both within and between subjects, while efforts to account for this variation were not particularly successful. Of particular interest is the fact that variables that account for lying strategies (maximal, partial and honest) do not explain variations in the magnitude of partial lies, and people who tend to engage in near-maximal lying do not share the same characteristics as those who tend to lie to the maximal extent.<sup>40</sup> A similar pattern is present when we look at other-regarding preferences. Individuals who made zero donations in the Dictator Game were more likely to be maximal liars and less likely to be partial liars, compared with individuals who donated some positive amount. At the same time, an individual who made a positive donation was more likely to be an honest type, compared with an individual who made a smaller or no donation.

Third, our observations are consistent with the assumption that individuals who lie maximally have very small or zero intrinsic costs of lying. Otherwise, maximal lying should have been less prevalent for lower deduction rates, as some of the individuals with higher intrinsic costs of lying would prefer not to lie maximally when the deduction rate is low. Instead, maximal lying (as well as honest behavior and partial lying) was equally prevalent among all deduction rates in our experiment.

Finally, it requires a high reaction time in order to arrive at a partial lying decision, while both honest choices and, especially, maximal lies involve relatively short reaction time. The long reaction time might suggest that partial lying reflects a preference for maintaining one's positive social identify while at the same time uncertainty about precisely how big a lie would be consistent with such a goal.

Both partial and maximal lying occurred in all three of the different national subject pools — the U.K. Chile and Russia. Moreover, several of the above patterns that characterize lying are present in all three countries: reaction time is lower for maximal lies and honest decisions than for partial lies; ability is positively correlated with maximal lying and negatively — with partial lies and honesty; people who tend to lie maximally in the public goods game behave similarly in the die tossing game.

<sup>&</sup>lt;sup>40</sup>In Table C10 we look at partial lying involving very small declarations of earnings (such as between 1 and 50 ECUs). Even at these extremes we observe that low ability subjects are more likely to engage in partial lying.

National context, though, is not irrelevant. All three countries in our study exhibit these same three distinct behaviors although their distribution within each country is quite different. In Chile the modal behavior was predominantly honest — 40 percent of subjects reported 100 percent of their earnings. In Russia honest behavior was least common, while in the U.K. we saw the highest concentration of maximal liars. Why they differed is an important puzzle that is beyond the scope of these data but is the focus of our ongoing research.

As we pointed out earlier, the economic costs of lying are enormous. An important challenge then is simply designing mechanisms for reducing lying both in the public and private sectors. The point of departure should be a good understanding of the lying mechanism. We make some modest contributions in this respect. Our experimental results suggest that modifying the extrinsic costs of not lying may have little effect. This is simply the case because many in the population will lie maximally regardless of the stakes; at the same time, the threshold for partial lying is also not likely to be affected by the extrinsic costs of lying.

Are there appeals to intrinsic motivations that might resonate with the types of lying behavior that we identify in the population? Possibly, although our efforts were not particularly successful in this regard. Treatments that manipulated the relationship between effort and income, how income is redistributed and deadweight loss had little effect on lying behavior. We find some evidence that subjects who observed their group members declare a large amount of incomes were less likely to lie maximally. Nevertheless, the effect was present and strong only in one country — Russia.

Our experimental results illustrate that the distribution of lying strategies can vary quite significantly across national, and perhaps other, contexts. Policies, and the investments necessary, for addressing lying in contexts where honest behavior or partial lying is predominant will differ significantly from those populated primarily by maximal liars. Efforts to address lying must therefore begin by estimating the distribution of lying strategies in the population of interest. The challenge for future research will be to build on our insights into the heterogeneity of lying behavior in order to understand what moderates lying in the population.

## References

- Abeler, J., Becker, A., and Falk, A. (2014). Representative evidence on lying costs. Journal of Public Economics, 113(Supplement C):96 – 104.
- Abeler, J., Nosenzo, D., and Raymond, C. (2017). Preferences for truth-telling. Manuscript.
- Agosta, S., Pezzoli, P., and Sartori, G. (2013). How to detect deception in everyday life and the reasons underlying it. Applied Cognitive Psychology, 27(2):256–262.
- Akerlof, G. A. and Kranton, R. E. (2000). Economics and identity. The Quarterly Journal of Economics, 115(3):715–753.
- Alesina, A. and Angeletos, G.-M. (2005). Fairness and redistribution. American Economic Review, 95(4):960–980.
- Algan, Y., Cahuc, P., and Sangnier, M. (2016). Trust and the welfare state: The twin peaks curve. *The Economic Journal*, 126(593):861–883.
- Andreoni, J. and Miller, J. (2002). Giving according to garp: An experimental test of the consistency of preferences for altruism. *Econometrica*, 70(2):737–753.
- Association of Certified Fraud Examiners (2016). Report to the nations: On occupational fraud and abuse. https://www.acfe.com/rttn2016/docs/2016-report-to-the-nations.pdf.
- Atkinson, A. B. and Piketty, T. (2007). Top incomes over the twentieth century: a contrast between continental european and english-speaking countries. OUP Oxford.
- Becker, G. S. (1968). Crime and Punishment: An Economic Approach. Journal of Political Economy, 76(2):169–217.
- Belot, M., Duch, R., and Miller, L. (2015). A comprehensive comparison of students and nonstudents in classic experimental games. *Journal of Economic Behavior and Organization*, 113:26–33.
- Bénabou, R. and Tirole, J. (2011). Identity, morals, and taboos: Beliefs as assets. The Quarterly Journal of Economics, 126(2):805–855.

- Berwick, D. and Hackbarth, A. (2012). Eliminating waste in us health care. JAMA, 307(14):1513–1516.
- Blanco, M., Engelmann, D., and Normann, H. T. (2011). A within-subject analysis of otherregarding preferences. *Games and Economic Behavior*, 72(2):321 – 338.
- Cappelen, A. W., Konow, J., Sorensen, E. O., and Tungodden, B. (2013). Just luck: An experimental study of risk-taking and fairness. *American Economic Review*, 103(4):1398– 1413.
- Cohn, A., Fehr, E., and Marechal, M. A. (2014). Business culture and dishonesty in the banking industry. *Nature*, 516:86–89.
- Duch, R. and Solaz, H. (2017). Who is cheating and why? Working Paper. Nuffield College Centre for Experimental Social Sciences, University of Oxford.
- Erat, S. and Gneezy, U. (2012). White lies. Management Science, 58(4):723–733.
- Fischbacher, U. (2007). z-tree: Zurich toolbox for ready-made economic experiments. Experimental Economics, 10:171–78.
- Fischbacher, U. and Follmi-Heusi, F. (2013). Lies in disguise: An experimental study of cheating. Journal of the European Economic Association, 11(3):525–547.
- Fischbacher, U. and Gachter, S. (2010). Social preferences, beliefs, and the dynamics of free riding in public goods experiments. *American Economic Review*, 100(1):541–56.
- Foerster, A., Pfister, R., Schmidts, C., Dignath, D., and Kunde, W. (2013). Honesty saves time (and justifications). *Frontiers in psychology*, 4:473.
- Fosgaard, T. R., Hansen, L. G., and Piovesan, M. (2013). Separating will from grace: An experiment on conformity and awareness in cheating. *Journal of Economic Behavior &* Organization, 93:279 – 284.
- Gächter, S. and Schulz, J. F. (2016). Intrinsic honesty and the prevalence of rule violations across societies. *Nature*, 531:496–499.

- Gibson, R., Tanner, C., and Wagner, A. F. (2013). Preferences for truthfulness: Heterogeneity among and within individuals. *American Economic Review*, 103(1):532–548.
- Gill, D., Prowse, V., and Vlassopoulos, M. (2013). Cheating in the workplace: An experimental study of the impact of bonuses and productivity. *Journal of Economic Behavior & Organization*, 96:120 – 134.
- Gino, F. and Ariely, D. (2016). Dishonesty explained: What leads moral people to act immorally.Guilford Publications.
- Gino, F., Krupka, E. L., and Weber, R. A. (2013). License to cheat: Voluntary regulation and ethical behavior. *Management Science*, 59(10):2187–2203.
- Gino, F., Schweitzer, M. E., Mead, N. L., and Ariely, D. (2011). Unable to resist temptation: How self-control depletion promotes unethical behavior. Organizational Behavior and Human Decision Processes, 115(2):191 – 203.
- Gneezy, U. (2005). Deception: The role of consequences. *American Economic Review*, 95(1):384–394.
- Gneezy, U., Kajackaite, A., and Sobel, J. (2018). Lying aversion and the size of the lie. American Economic Review, 108(2):419–53.
- Gneezy, U., Rockenback, B., and Serra-Garcia, M. (2013). Measuring lying aversion. *Journal* of Economic Behavior & Organization, 93:293–300.
- Gravert, C. (2013). How luck and performance affect stealing. Journal of Economic Behavior & Organization, 93:301 – 304.
- Hilbig, B. E. and Hessler, C. M. (2013). What lies beneath: How the distance between truth and lie drives dishonesty. *Journal of Experimental Social Psychology*, 49(2):263 266.
- Holt, C. A. and Laury, S. K. (2002). Risk aversion and incentive effects. American Economic Review, 92:1644–1655.
- Hurkens, S. and Kartik, N. (2009). Would i lie to you? on social preferences and lying aversion. Experimental Economics, 12:180–192.

- Jacobsen, C., gaard, T. R., and Pascual-Ezama, D. (2017). Why do we lie? a practical guide to the dishonesty literature. *Journal of Economic Surveys*, pages n/a–n/a.
- Kerschbamer, R., Neururer, D., and Sutter, M. (2016). Insurance coverage of customers induces dishonesty of sellers in markets for credence goods. *Proceedings of the National Academy of Sciences*, 113(27):7454–7458.
- Konovalov, A. and Krajbich, I. (2017). Revealed indifference: Using response times to infer preferences. https://ssrn.com/abstract=3024233.
- Levine, T. R. (2014). Truth-default theory (tdt): A theory of human deception and deception detection. *Journal of Language and Social Psychology*, 33(4):378–392.
- Lohse, T., Simon, S. A., and Konrad, K. A. (2018). Deception under time pressure: Conscious decision or a problem of awareness? *Journal of Economic Behavior & Organization*, 146:31 – 42.
- M. DePaulo, B., A. Kashy, D., E. Kirkendol, S., M. Wyer, M., and Epstein, J. (1996). Lying in everyday life. 70:979–95.
- Maggian, V. and Villeval, M. C. (2016). Social preferences and lying aversion in children. Experimental Economics, 19(3):663–685.
- Mazar, N., Amir, O., and Ariely, D. (2008). The dishonesty of honest people: A theory of self-concept maintenance. *Journal of Marketing Research*, 45(6):633–644.
- Mazar, N. and Zhong, C.-B. (2010). Do green products make us better people? Psychological Science, 21(4):494–498.
- Monin, B. and T. Miller, D. (2001). Moral credentials and the expression of prejudice. 81:33–43.
- Pruckner, G. J. and Sausgruber, R. (2013). Honesty on the streets: A field study on newspaper purchasing. Journal of the European Economic Association, 11(3):661–679.
- Rand, D. G., Peysakhovich, A., Kraft-Todd, G. T., Newman, G. E., Wurzbacher, O., Nowak, M. A., and Greene, J. D. (2014). Social heuristics shape intuitive cooperation. *Nature Communications*, 5:3677 EP –.

- Rosenbaum, S., Billinger, S., and Stieglitz, N. (2014). Lets be honest: A review of experimental evidence of honesty and truth-telling. *Journal of Economic Psychology*, 45:181–196.
- Rubinstein, A. (2007). Instinctive and cognitive reasoning: A study of response times. The Economic Journal, 117(523):1243–1259.
- Sachdeva, S., Iliev, R., and Medin, D. L. (2009). Sinning saints and saintly sinners: The paradox of moral self-regulation. *Psychological Science*, 20(4):523–528.
- Schurr, A. and Ritov, I. (2016). Winning a competition predicts dishonest behavior. *Proceedings* of the National Academy of Sciences.
- Shalvi, S., Eldar, O., and Bereby-Meyer, Y. (2012). Honesty requires time (and lack of justifications). *Psychological Science*, 23(10):1264–1270. PMID: 22972904.
- Shalvi, S., Gino, F., Barkan, R., and Ayal, S. (2015). Self-serving justifications: Doing wrong and feeling moral. *Current Directions in Psychological Science*, 24(2):125–130.
- Sheremeta, R. M. and Shields, T. W. (2013). Do liars believe? beliefs and other-regarding preferences in sender???receiver games. Journal of Economic Behavior & Organization, 94:268 – 277.
- Tabatabaeian, M., Dale, R., and Duran, N. D. (2015). Self-serving dishonest decisions can show facilitated cognitive dynamics. *Cognitive Processing*, 16(3):291–300.
- Verschuere, B. and Shalvi, S. (2014). The truth comes naturally! does it? Journal of Language and Social Psychology, 33(4):417–423.
- Vincent, L. and Kouchaki, M. (2015). Creative, rare, entitled, and dishonest: How commonality of creativity in one's group decreases an individual's entitlement and dishonesty. Academy of Management Journal.
- Volk, S., Thoni, C., and Ruigrok, W. (2012). Temporal stability and psychological foundations of cooperation preferences. *Journal of Economic Behavior & Organization*, 81(2):664 – 676.

# Appendix A Experiment design

| #        | Country       | Treatment | Tax rate | Subjects | Risk       | Die        | Note                                                                                    |
|----------|---------------|-----------|----------|----------|------------|------------|-----------------------------------------------------------------------------------------|
| 1        | U.K.          | Baseline  | 10       | 24       | Yes        | No         |                                                                                         |
| 2        | U.K.          | Baseline  | 20       | 24       | Yes        | No         |                                                                                         |
| 3        | U.K.          | Baseline  | 30       | 24       | Yes        | No         |                                                                                         |
| 5        | U.K.          | Baseline  | 40<br>50 | 24 24    | Yes        | No         |                                                                                         |
| 6        | U.K.          | Status    | 10       | 24       | Yes        | No         |                                                                                         |
| 7        | U.K.          | Status    | 20       | 12       | Yes        | No         |                                                                                         |
| 8        | U.K.          | Status    | 20       | 16       | Yes        | No         |                                                                                         |
| 9        | U.K.          | Status    | 30       | 20       | Yes        | No         |                                                                                         |
| 10       | U.K.<br>U.K   | Baseline  | 10       | 24       | Yes        | No         | 30% of deductions go to two top performers $30%$ of deductions go to two top performers |
| 12       | U.K.          | Baseline  | 30       | 20       | Yes        | No         | 30% of deductions go to two top performers                                              |
| 13       | U.K.          | Baseline  | 40       | 20       | Yes        | No         | 30% of deductions go to two top performers                                              |
| 14       | U.K.          | Baseline  | 10       | 24       | Yes        | No         | Only 30% of deductions are redistributed                                                |
| 15       | U.K.          | Baseline  | 20       | 20       | Yes        | No         | Only 30% of deductions are redistributed                                                |
| 16       | U.K.          | Shock     | 10       | 16       | Yes        | No         | 100 ECU per answer+1300 ECU bonus                                                       |
| 17       | U.K.          | Shock     | 20       | 20       | Yes        | No<br>N-   | 100 ECU per answer $+1300$ ECU bonus                                                    |
| 18       | U.K.<br>Chile | Shock     | 30       | 20       | Yes        | No         | 100 ECU per answer+1300 ECU bonus                                                       |
| 20       | Chile         | Shock     | 20       | 20       | Yes        | No         | 150 ECU per answer+1300 ECU bonus, 8 observations invalid                               |
| 21       | Chile         | Shock     | 30       | 16       | Yes        | No         | 150 ECU per answer+1300 ECU bonus                                                       |
| 22       | Chile         | Status    | 10       | 16       | Yes        | No         | •                                                                                       |
| 23       | Chile         | Status    | 20       | 16       | Yes        | No         |                                                                                         |
| 24       | Chile         | Status    | 30       | 16       | Yes        | No         |                                                                                         |
| 25       | Chile         | Baseline  | 10       | 12       | Yes        | No<br>N-   |                                                                                         |
| 26<br>27 | Chile         | Baseline  | 20       | 12       | Yes        | No         |                                                                                         |
| 28       | U.K.          | Non-fixed | 10       | 16       | Yes        | Yes        |                                                                                         |
| 29       | U.K.          | Non-fixed | 10       | 16       | Yes        | Yes        |                                                                                         |
| 30       | U.K.          | Non-fixed | 10       | 16       | Yes        | Yes        |                                                                                         |
| 31       | U.K.          | Non-fixed | 10       | 12       | Yes        | Yes        |                                                                                         |
| 32       | U.K.          | Non-fixed | 20       | 12       | Yes        | Yes        |                                                                                         |
| 33       | U.K.          | Non-fixed | 30       | 16       | Yes        | Yes        |                                                                                         |
| 34<br>35 | Chile         | Non-fixed | 20       | 20       | Yes        | Yes        |                                                                                         |
| 36       | Chile         | Non-fixed | 30       | 20       | Yes        | Yes        |                                                                                         |
| 37       | Chile         | Non-fixed | 10       | 16       | Yes        | Yes        |                                                                                         |
| 38       | Chile         | Non-fixed | 20       | 12       | Yes        | Yes        |                                                                                         |
| 39       | Chile         | Non-fixed | 30       | 8        | Yes        | Yes        |                                                                                         |
| 40       | U.K.          | Baseline  | 10       | 16       | Yes        | Yes        |                                                                                         |
| 41<br>49 | U.K.<br>U.K   | Non-fixed | 20<br>30 | 10       | res<br>Ves | res<br>Ves |                                                                                         |
| 43       | Chile         | Non-fixed | 10       | 20       | Yes        | Yes        | Universidad del Desarrollo                                                              |
| 44       | Chile         | Non-fixed | 10       | 24       | Yes        | Yes        | Universidad del Desarrollo                                                              |
| 45       | Chile         | Non-fixed | 20       | 20       | Yes        | Yes        | Universidad del Desarrollo                                                              |
| 46       | Chile         | Non-fixed | 30       | 20       | Yes        | Yes        | Universidad del Desarrollo                                                              |
| 47       | Russia        | Baseline  | 10       | 8        | Yes        | No         |                                                                                         |
| 48       | Russia        | Baseline  | 10       | 8<br>16  | Yes        | No         |                                                                                         |
| 49<br>50 | Russia        | Baseline  | 10       | 16       | Yes        | No         |                                                                                         |
| 51       | Russia        | Baseline  | 20       | 16       | Yes        | No         |                                                                                         |
| 52       | Russia        | Baseline  | 20       | 16       | Yes        | No         |                                                                                         |
| 53       | Russia        | Baseline  | 20       | 8        | Yes        | No         |                                                                                         |
| 54       | Russia        | Baseline  | 20       | 12       | Yes        | No         | 30% of deductions go to two top performers                                              |
| 55       | Russia        | Shock     | 10       | 16       | Yes        | Yes        | 100 ECU per answer+1300 ECU bonus                                                       |
| 56<br>57 | Russia        | Shock     | 20       | 16       | Yes        | Yes        | 100  ECU per answer $+1300  ECU$ bonus                                                  |
| 58       | Russia        | Status    | 20       | 16       | Yes        | Yes        |                                                                                         |
| 59       | Russia        | Status    | 30       | 16       | Yes        | Yes        |                                                                                         |
| 60       | Russia        | Baseline  | 30       | 16       | Yes        | Yes        |                                                                                         |
| 61       | Russia        | Shock     | 30       | 16       | Yes        | Yes        | 100  ECU per answer + 1300  ECU bonus                                                   |
| 62       | Russia        | Non-fixed | 10       | 16       | Yes        | Yes        |                                                                                         |
| 63       | Russia        | Non-fixed | 20       | 16       | Yes        | Yes        |                                                                                         |
| 04       | nussia        | non-nxed  | 30       | 14       | res        | res        |                                                                                         |

Table A1: List of sessions



Figure A1: Dictator Game



Figure A2: On-screen instructions for real effort task, U.K.

|    | Round 1 of 10 |    | Remarking time 47 |
|----|---------------|----|-------------------|
|    |               |    |                   |
| 15 | +             | 39 |                   |
|    |               |    |                   |
|    | Result        |    |                   |
|    |               |    |                   |

Figure A3: Real effort task, U.K.



Figure A4: Declaration of gains following real effort task, U.K.

| Round 1 of 10                              |    |  |  |  |  |  |  |
|--------------------------------------------|----|--|--|--|--|--|--|
| Number of correct answers: 6               |    |  |  |  |  |  |  |
| Your Preliminary Gains: 900                |    |  |  |  |  |  |  |
| Your Declared Gains: 900                   |    |  |  |  |  |  |  |
| Your Declared Gains have not been verified |    |  |  |  |  |  |  |
| Amount received from pooled deductions: 38 |    |  |  |  |  |  |  |
| Profit this round 847.50                   |    |  |  |  |  |  |  |
|                                            |    |  |  |  |  |  |  |
|                                            |    |  |  |  |  |  |  |
|                                            |    |  |  |  |  |  |  |
|                                            |    |  |  |  |  |  |  |
|                                            | OK |  |  |  |  |  |  |

Figure A5: Results following declaration of gains, U.K.



#### NUFFIELD CENTER FOR EXPERIMENTAL SOCIAL SCIENCES

Module 2:

- a) This module consists of 10 rounds. At the beginning of the module participants are randomly assigned to groups of four. You won't know the identity of the other group members. The composition of each group will remain unchanged.
- b) In each one-minute round you will be asked to compute a series of additions. Your *Preliminary Gains* depend on how many correct answers you provide. You will get 150 ECUs for each correct answer.
- c) At the end of each round, once you have received information concerning your Preliminary Gains, you will be asked to declare these gains. In this module **10%** of these Declared Gains will then be deducted from your Preliminary Gains.
- d) In each round there is a certain probability that your *Declared Gains* will be compared with your actual *Preliminary Gains* in order to verify these two amounts correspond. In this module this probability is **0%**.
- e) If this verification finds a discrepancy between the *Preliminary* and *Declared* gains an extra amount will be deducted from your *Preliminary Gains*. In this module this amount will correspond to 50% of the observed discrepancy. In addition, the regular deduction of 10% will apply to the *Preliminary Gains* and not to the declared amount.
- f) Deductions applying to the four group members will then be pooled and equally distributed amongst those members.
- g) Your profits are calculated and displayed at the end of each round in the following manner:
- Profit = Preliminary Gains Deduction from the Declared Gains Potential deductions due to discrepancy + Group amount
- h) At the end of the module one round will be chosen at random, and your earnings

will be based on your profit of that round at the exchange rate 300ECUs = 1 £i) You will be informed of your earnings for this module at the end of the experiment.

Figure A6: Printed instructions, RET and declaration stage



Figure A7: On-screen instructions Risk Aversion questions

| A: 1998 2.250 martin 2909 1.650 martin | A: 00% 2.00 pounds, 40% 110 pounds    |
|----------------------------------------|---------------------------------------|
| B: 1998 3.85 passis                    | B: 00% 3.8 pounds, 40% 110 pounds     |
| C A                                    | C A                                   |
| C B                                    | C B                                   |
| A: 20% 2.20 prants, 80% 1.50 prants    | A: 70% 2.05 prunds, 30% 1.50 prunds   |
| B: 20% 3.85 prants, 80% 0.10 prants    | B: 70% 3.85 prunds, 30% 0.10 prunds   |
| C A                                    | C A                                   |
| C B                                    | C B                                   |
| A: 30% 2.00 panets, 70% 1.60 panets    | A: 8%, 2.05 punds, 2%, 1.69 punds     |
| B: 30% 3.85 panets, 70% 0.09 panets    | B: 8% 3.85 punds, 2% 0.19 punds       |
| C A                                    | C A                                   |
| C B                                    | C B                                   |
| A: 10% 2.10 provids, 60% 1.10 provids  | A: 50% 2.05 provids, 15% 1.68 provids |
| B: 40% 3.36 provids, 60% 0.10 provids  | B: 50% 3.85 provids, 15% 0.10 provids |
| C A                                    | C B                                   |
| C 0                                    | C B                                   |
| A: 19% 2.00 provets, 19% 1.10 provets  | A: 100% 2.00 psouds, 0% 1.00 psouds   |
| B: 59% 3.05 provets, 19% 0.10 provets  | B: 100% 3.05 psouds, 0% 0.00 psouds   |
| C A                                    | C A                                   |
| C B                                    | C B                                   |
|                                        | or                                    |

Figure A8: Risk aversion questions





| Instructions:                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| You will now determine the second part of your payment for the questionnaire. You will now use<br>a virtual die and repeat the last payment task. Once you are ready, please click the "Ready"<br>button below. You will be asked to roll the die one time and report the value showing on the die.<br>You will earn 100 x the number you report in ECU. You may roll the die as many times as you<br>would like after that, to confirm that it is a fair die. |
| Roll the die                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Please roll the virtual die and report the value shown on the die into the box below. Your award for this stage depends on the value you report.                                                                                                                                                                                                                                                                                                               |
| Value on the die:                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Salanzi                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Figure A10: The virtual die game



Figure A11: Post-experiment questionnaire, civicness questions



Figure A12: Post-experiment questionnaire, age and gender questions



Figure A13: Post-experiment questionnaire, trust and political self-identification questions



Figure A14: Post-experiment questionnaire, income question

| Round 1 of 5                                  |    |
|-----------------------------------------------|----|
|                                               |    |
| You are Type G                                |    |
| Number of correct answers: 7                  |    |
| Your Preliminary Gains: 1400                  |    |
| Your Declared Gains: 1400                     |    |
| Your Declared Gains have not been verified    |    |
| Total Deductions: 140.00                      |    |
| Amount received from pooled deductions: 35.00 |    |
| Profit this round 1295.00                     |    |
|                                               |    |
|                                               |    |
|                                               |    |
|                                               |    |
|                                               | ОК |

Figure A15: Results following declaration of gains, status treatment, U.K.

| Round 1 of 10                                 |    |
|-----------------------------------------------|----|
|                                               |    |
|                                               |    |
| This round you received a Bonus of 1300       |    |
| Number of correct answers: 7                  |    |
| Your Preliminary Gains: 2000                  |    |
| Your Declared Gains: 2000                     |    |
| Your Declared Gains have not been verified    |    |
| Total Deductions: 200.00                      |    |
| Amount received from pooled deductions: 50.00 |    |
| Profit this round 1850.00                     |    |
|                                               |    |
|                                               |    |
|                                               |    |
|                                               |    |
|                                               | OK |

Figure A16: Results following declaration of gains, shock treatment, U.K.

| Round 1 of 10                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                    |
| Before the first round begins, please indicate how well you think you will<br>do in this round relative to other members of your group. You will earn<br>an additional 100 ECUs for this stage if you are correct. |
| I think I will answer the<br>Monit Correct<br>Vecicity Mana Correct<br>Trind Mana Correct<br>Front Mana Correct                                                                                                    |
|                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                    |

Figure A17: Performance prediction before the real effort task, non-fixed treatment, U.K.

## Appendix B Supplemental analysis.

### B1 Performance at the real-effort task.

Here, we look at the determinants of performance at the real effort task. In both Russia and the U.K., the experiment was carried out at elite universities (Higher School of Economics and Oxford, respectively), while in Chile 15/19 sessions were held at the more inclusive Universidad de Santiago and the remaining 4 sessions were held at the elite Universidad del Desarrollo. This is reflected in performance: subjects, on average, complete 8.29 (sd=2.43) additions in Chile, 11.25 (sd=2.59) in Russia, and 11.85 (sd=3.89) in the U.K. All differences between countries are significant (p = 0.0069 for two-tailed Welch *t*-test comparing average performance in Russia and the U.K., and p < 0.0001 for all other pairwise comparisons; the distributions of subject performance are plotted on Figure B1).



Figure B1: Distribution of average performance by country

In Table B1 we provide the results of OLS regressions of subject's average performance. The

regression include control variables for Civicness (see Algan et al. (2016)), calculated as the normalized first principle component based on ten survey questions regarding the justifiability of certain types of unethical behaviors, such as not paying for public transport (Table C13 has specific question wording). Trust is measured using a standard social capital question on how much a person can trust others. Following Holt and Laury (2002), the Safe choices variable is an additive index of ten lottery choices (selecting between two payment options) with increasing probabilities of earning the largest payment options. Ideology is measured using an 11-point Left-Right self-placement scale. Income is a self reported survey question on family income, where higher categories reflect higher income levels, and categories are country specific (see Figures A11-A14 in Appendix A).

In Russia and the U.K., the Dictator Game donations are negatively associated with the subsequent RET performance, while male subjects rank significantly higher in every country, other individual-level covariates are generally not significant.

|                 | Cl            | hile      | Ru              | ssia       | U               | K         | All              |            |  |
|-----------------|---------------|-----------|-----------------|------------|-----------------|-----------|------------------|------------|--|
| Male            | $1.647^{***}$ | (0.322)   | $1.457^{***}$   | (0.309)    | $1.197^{***}$   | (0.365)   | $1.361^{***}$    | (0.203)    |  |
| Age             | -0.0545*      | (0.0290)  | -0.0246         | (0.0404)   | $-0.0978^{***}$ | (0.0199)  | -0.0960***       | (0.0150)   |  |
| DG=0            | 0.258         | (0.900)   | 0.217           | (0.462)    | 0.0349          | (0.674)   | 0.403            | (0.367)    |  |
| DG above 0      | 0.000458      | (0.00100) | $-0.00214^{**}$ | (0.000952) | -0.00316**      | (0.00135) | $-0.00189^{***}$ | (0.000644) |  |
| Deduction 20%   | 0.270         | (0.359)   | 0.435           | (0.323)    | -0.460          | (0.463)   | 0.146            | (0.231)    |  |
| Deduction 30%   | -0.0456       | (0.387)   | 0.0141          | (0.466)    | -0.130          | (0.461)   | 0.0121           | (0.254)    |  |
| Deduction 40%   |               |           |                 |            | 0.0666          | (1.182)   | 0.447            | (1.043)    |  |
| Deduction 50%   |               |           |                 |            | 1.182           | (0.867)   | 1.055            | (0.678)    |  |
| Deadweight loss |               |           |                 |            | $2.652^{***}$   | (0.804)   | $2.253^{***}$    | (0.628)    |  |
| Redistribution  |               |           |                 |            | 1.176           | (0.758)   | $0.838^{*}$      | (0.507)    |  |
| Russia          |               |           |                 |            |                 | . ,       | $2.430^{***}$    | (0.278)    |  |
| UK              |               |           |                 |            |                 |           | $3.106^{***}$    | (0.311)    |  |
| Shock           | 0.534         | (0.551)   | 0.385           | (0.467)    | $1.846^{***}$   | (0.711)   | $0.839^{***}$    | (0.310)    |  |
| Status          | $1.084^{*}$   | (0.569)   | 0.644           | (0.587)    | $1.434^{*}$     | (0.748)   | $0.841^{**}$     | (0.358)    |  |
| Status, 200 ECU | -0.797        | (0.618)   | 0.0535          | (0.775)    | 0.740           | (0.836)   | 0.121            | (0.465)    |  |
| Non-fixed       | $1.710^{***}$ | (0.495)   | $1.152^{***}$   | (0.431)    | 0.173           | (0.638)   | $0.699^{**}$     | (0.275)    |  |
| Civicness       | 0.131         | (0.166)   | -0.229          | (0.147)    | $-0.348^{*}$    | (0.189)   | -0.209**         | (0.0984)   |  |
| Trust           | $0.658^{**}$  | (0.326)   | -0.477          | (0.319)    | $-0.635^{*}$    | (0.370)   | -0.273           | (0.207)    |  |
| SafeChoices     | -0.0622       | (0.0868)  | 0.0677          | (0.0820)   | -0.0308         | (0.0907)  | 0.0142           | (0.0527)   |  |
| Ideology        | 0.0857        | (0.0750)  | -0.0977         | (0.0771)   | $0.153^{*}$     | (0.0820)  | $0.0798^{*}$     | (0.0465)   |  |
| Income          | -0.248        | (0.561)   | -0.523          | (0.805)    | -0.127          | (0.530)   | -0.122           | (0.355)    |  |
| Constant        | $7.459^{***}$ | (1.261)   | $11.59^{***}$   | (1.211)    | $13.46^{***}$   | (1.231)   | $9.657^{***}$    | (0.751)    |  |
| Observations    | 234           | . /       | 256             |            | 332             | . /       | 822              | . ,        |  |
| $R^2$           | 0.220         |           | 0.178           |            | 0.212           |           | 0.326            |            |  |

OLS regressions. Dependent variable is average performance over 10 rounds. DG frac is the fraction of the 1000 ECU donated in the dictator game. Norms is the social norms index (see Table C13). SafeChoices if the number (0-10) of safe choices on the lottery task. Income is the number of the individual's income bracket, rescaled between 0 and 1 (for Chile and the UK), and the individual's perceived income decile, escaled between 0 and 1 (for Russia). p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

Table B1: Determinants of subject's average performance.

Experimental treatments generally did not have any effect on average performance of the subjects. Importantly, in the Status treatment, subjects earning 200 ECU per correct answer performed no better than subjects who earned only 100 ECU; this would not have been the case if the subjects were facing an increased marginal cost of effort. Similarly, the deduction rate did not have any effect on performance at the real-effort task — despite the fact that it did not affect the amount of lying.

In Table B2 we regress the number of correct answers in a given period on a set of treatment, individual, and period-level covariates. Performance increases with time, improving every period by an average of 0.14 correct answers over periods 2-10 indicating some potential learning effects. Performance is largely unaffected by either previous period's windfall income in the shock treatment (although the coefficient is negative and significant in the combined dataset), or by the income declared by the group members in the previous period.

|                     | С             | hile       | Ru              | ssia       | UI              | K         | All              |            |
|---------------------|---------------|------------|-----------------|------------|-----------------|-----------|------------------|------------|
| Male                | 1.601***      | (0.316)    | 1.489***        | (0.304)    | 1.222***        | (0.361)   | $1.349^{***}$    | (0.202)    |
| Age                 | $-0.0523^{*}$ | (0.0289)   | -0.0235         | (0.0414)   | $-0.0972^{***}$ | (0.0198)  | $-0.0952^{***}$  | (0.0150)   |
| Period              | $0.155^{***}$ | (0.0155)   | $0.164^{***}$   | (0.0165)   | $0.107^{***}$   | (0.0151)  | $0.138^{***}$    | (0.00868)  |
| DG=0                | 0.281         | (0.861)    | 0.228           | (0.449)    | 0.0729          | (0.664)   | 0.447            | (0.366)    |
| DG above 0          | 0.000439      | (0.000982) | $-0.00221^{**}$ | (0.000933) | -0.00309**      | (0.00134) | $-0.00184^{***}$ | (0.000643) |
| Deadweight loss     |               |            |                 |            | $2.389^{***}$   | (0.796)   | $2.173^{***}$    | (0.627)    |
| Redistribution      |               |            |                 |            | 1.120           | (0.741)   | 0.782            | (0.504)    |
| Russia              |               |            |                 |            |                 |           | $2.453^{***}$    | (0.288)    |
| UK                  |               |            |                 |            |                 |           | $3.089^{***}$    | (0.326)    |
| Shock               | 0.494         | (0.572)    | 0.606           | (0.494)    | $1.947^{***}$   | (0.744)   | $0.963^{***}$    | (0.330)    |
| L.Shock=Yes         | -0.172        | (0.292)    | $-0.452^{*}$    | (0.264)    | -0.400          | (0.317)   | $-0.342^{*}$     | (0.177)    |
| Status              | $1.045^{*}$   | (0.572)    | 0.752           | (0.557)    | $1.409^{*}$     | (0.736)   | $0.845^{**}$     | (0.357)    |
| Status, 200 ECU     | -0.763        | (0.622)    | -0.0396         | (0.748)    | 0.767           | (0.817)   | 0.103            | (0.466)    |
| Non-fixed           | $1.640^{***}$ | (0.489)    | $1.231^{***}$   | (0.424)    | 0.0286          | (0.630)   | $0.666^{**}$     | (0.274)    |
| L.Dec. others, 1000 | 0.0850        | (0.0861)   | $-0.213^{*}$    | (0.112)    | 0.172           | (0.111)   | 0.0201           | (0.0672)   |
| Civicness           | 0.125         | (0.166)    | -0.240*         | (0.142)    | -0.348*         | (0.188)   | $-0.217^{**}$    | (0.0989)   |
| Trust               | $0.642^{**}$  | (0.321)    | -0.516          | (0.322)    | $-0.674^{*}$    | (0.364)   | -0.273           | (0.207)    |
| SafeChoices         | -0.0710       | (0.0856)   | 0.0526          | (0.0791)   | -0.0417         | (0.0892)  | 0.00575          | (0.0521)   |
| Ideology            | 0.0898        | (0.0729)   | -0.0855         | (0.0737)   | $0.169^{**}$    | (0.0805)  | $0.0875^{*}$     | (0.0464)   |
| Income              | -0.249        | (0.546)    | -0.607          | (0.783)    | -0.243          | (0.521)   | -0.169           | (0.354)    |
| Constant            | $6.508^{***}$ | (1.254)    | $11.08^{***}$   | (1.209)    | $12.76^{***}$   | (1.231)   | 8.921***         | (0.780)    |
| Observations        | 2106          |            | 2304            |            | 2988            |           | 7398             |            |
| $R^2$               | 0.173         |            | 0.158           |            | 0.181           |           | 0.271            |            |

OLS regressions. Dependent variable is parformance in a round. Standard errors are clustered by subject. DG frac is the fraction of the 1000 ECU donated in the dictator game. Norms is the social norms index (see Table C13). SafeChoices if the number (0-10) of safe choices on the lottery task. Income is the number of the individual's income bracket, rescaled between 0 and 1 (for Chile and the UK), and the individual's perceived income decile, rescaled between 0 and 1 (for Russia). \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

Table B2: Determinants of subject's performance, periods 2-10.

Importantly, performance is not negatively associated with civicness. In fact, in Russia and the UK this association is positive. This makes it less likely that the observed association between maximal lying and performance is due to the fact that some subjects participate in the experiment only to earn money, and are more willing to both cheat and exert effort at the real-effort task. In Russia, in the post-experiment survey we also asked a number of questions about trusting behavior — whether the person lends money or belongings or keeps the door open; in ? this was a significant predictor of trustworthy behavior in experiments, but in our study these questions ware not associated with either higher or lower performance at the real effort task (Table C16). Maximal lying was also positively associated with performance in a non-incentivized practice period (Table C12).

### B2 Near-maximal lying

In our experiments, subjects sometimes declared positive, but very small amounts of income. We believe that most of such "near-maximal" lying is not a chance variation from maximal lying, but driven by the same concerns as partial lying in general — such as finding justification for self-serving behavior (Gino and Ariely, 2016). This conjecture can be analyzed by comparing the prevalence of partial, maximal, and near-maximal lying among different population groups. Of interest here is whether near-maximal liars tend to share population characteristics with maximal liars or, alternatively, resemble partial liars. Our take on the latter outcome is that near-maximal lying is a form of partial lying – and that stopping short of maximal lying provides subjects with a self-serving justification for their behavior.

Previously, we found that subject ability is positively correlated with maximal lying. In Figure B2 we report the fraction of declarations that were classified as maximal lying, limited lying, and near-maximal, defined as being above 0% and at or below 20% of the earnings. In all three countries, near-maximal lying was more prevalent among subjects with below-median performance (p = 0.0003, p < 0.0001, and p = 0.0271 on the Fisher's exact test in Chile, Russia, and the U.K.).

This result persists if we consider increasingly strict definitions of near-maximal lying. In Table C20 in Appendix Appendix A, we compare the prevalence of small but positive declarations (such as 1-90 ECU, 1-80 ECU, all the way down to 1 ECU) among high and low performance subjects. We find that in all three countries high performers are less likely to engage in near-maximal lying, even if we only consider the declarations as small as between 1 and 30 ECU. In Russia, 1 ECU was declared on 26 occasions, 19 of them by low performers — a difference significant at p = 0.0282. Looking at other correlates yields similar results:



Figure B2: Prevalence of lying depending on subject performance

Near-maximal lying is more prevalent among females (Table C21) and those who made positive donations in the Dictator game (Table C22).

# Appendix C Supplemental tables and figures.



The figures show the percent of subjects for each number of rounds with 0% and 100% declarations

Figure C1: Frequency of cheating decisions by country. Axis show number of periods.

|                      |                 |           | Ml             | ogit, average | marginal effec | ts        |                |           | C            | DLS       |
|----------------------|-----------------|-----------|----------------|---------------|----------------|-----------|----------------|-----------|--------------|-----------|
|                      | Consistent      | maximal   | Consister      | nt partial    | Consistent     | ly honest | Oth            | ier       | Parti        | al lying  |
| RET rank             | 0.269***        | (0.0395)  | -0.130***      | (0.0436)      | -0.118***      | (0.0409)  | -0.0206        | (0.0456)  | 0.0717       | (0.0620)  |
| Male                 | $0.0584^{**}$   | (0.0238)  | $-0.107^{***}$ | (0.0246)      | 0.0174         | (0.0233)  | 0.0312         | (0.0258)  | 0.0543       | (0.0370)  |
| Age                  | $-0.00584^{**}$ | (0.00232) | 0.00158        | (0.00209)     | 0.00252        | (0.00200) | 0.00175        | (0.00218) | 0.00298      | (0.00334) |
| DG=0                 | $0.374^{***}$   | (0.0604)  | -0.205***      | (0.0305)      | -0.0583        | (0.0497)  | $-0.111^{***}$ | (0.0415)  | -0.0733      | (0.0858)  |
| DG frac              | -0.134          | (0.0898)  | $-0.134^{*}$   | (0.0727)      | $0.297^{***}$  | (0.0765)  | -0.0293        | (0.0816)  | $0.277^{**}$ | (0.117)   |
| Deduction 20%        | -0.0462         | (0.0281)  | 0.00487        | (0.0286)      | 0.0304         | (0.0270)  | 0.0109         | (0.0312)  | -0.00538     | (0.0383)  |
| Deduction 30%        | 0.0232          | (0.0310)  | -0.0462        | (0.0301)      | -0.00235       | (0.0288)  | 0.0253         | (0.0333)  | -0.00507     | (0.0438)  |
| Deduction 40%        | -0.0404         | (0.0603)  | 0.0279         | (0.0765)      | -0.0650        | (0.0617)  | 0.0776         | (0.0823)  | 0.173        | (0.105)   |
| Deduction 50%        | 0.0963          | (0.0919)  | -0.0524        | (0.105)       | $-0.118^*$     | (0.0717)  | 0.0743         | (0.115)   | -0.288       | (0.187)   |
| Deadweight loss      | -0.0468         | (0.0552)  | -0.0180        | (0.0701)      | 0.0717         | (0.0665)  | -0.00695       | (0.0718)  | -0.0173      | (0.116)   |
| Redistribution       | 0.0339          | (0.0476)  | -0.0292        | (0.0491)      | -0.0442        | (0.0491)  | 0.0394         | (0.0576)  | 0.00445      | (0.0782)  |
| Shock                | -0.00271        | (0.0413)  | -0.00493       | (0.0400)      | -0.0113        | (0.0410)  | 0.0189         | (0.0437)  | -0.0411      | (0.0546)  |
| Status               | $0.0896^{*}$    | (0.0485)  | 0.0321         | (0.0512)      | -0.0739*       | (0.0444)  | -0.0478        | (0.0488)  | -0.0471      | (0.0628)  |
| Status, 200 ECU      | -0.101**        | (0.0460)  | -0.0683        | (0.0500)      | $0.133^{*}$    | (0.0805)  | 0.0358         | (0.0739)  | 0.0483       | (0.0793)  |
| Non-fixed            | 0.0381          | (0.0353)  | -0.0370        | (0.0341)      | 0.0177         | (0.0334)  | -0.0188        | (0.0358)  | 0.0343       | (0.0481)  |
| Russia               | $0.0733^{*}$    | (0.0399)  | $0.126^{***}$  | (0.0377)      | $-0.192^{***}$ | (0.0229)  | -0.00712       | (0.0371)  | -0.0174      | (0.0438)  |
| UK                   | $0.289^{***}$   | (0.0354)  | $-0.114^{***}$ | (0.0328)      | $-0.139^{***}$ | (0.0277)  | -0.0354        | (0.0340)  | -0.0756      | (0.0478)  |
| Constant             |                 |           |                |               |                |           |                |           | 0.169        | (0.112)   |
| Observations         | 1072            |           | 1072           |               | 1072           |           | 1072           |           | 253          |           |
| Log pseudolikelihood | -1163.3435      |           | -1163.3435     |               | -1163.3435     |           | -1163.3435     |           |              |           |
| $R^2$                |                 |           |                |               |                |           |                |           | 0.1130       |           |
| D20=D30              | 0.0242          |           | 0.104          |               | 0.278          |           | 0.671          |           | 0.995        |           |
| D20=D40              | 0.924           |           | 0.763          |               | 0.126          |           | 0.412          |           | 0.0890       |           |
| D20=D50              | 0.120           |           | 0.590          |               | 0.0442         |           | 0.580          |           | 0.132        |           |
| D30=D40              | 0.306           |           | 0.344          |               | 0.326          |           | 0.524          |           | 0.101        |           |
| D30 = D50            | 0.430           |           | 0.954          |               | 0.124          |           | 0.671          |           | 0.136        |           |
| D40 = D50            | 0.179           |           | 0.513          |               | 0.553          |           | 0.980          |           | 0.0257       |           |
| Russia=UK            | 3.74e-10        |           | 1.37e-12       |               | 0.0543         |           | 0.416          |           | 0.216        |           |

The first four columns report are average marginal effects for multinomial logistic regression (the dependent variable is whether the subject is a consistent maximal liar, consistent partial liar, is consistently honest, or none of those). The fifth column reports OLS regression, the dependent variable is the fraction of income declared, averaged across all rounds where the subject lied partially, for all subjects who lied partially in at least 8 rounds. Robust standard errors. RET rank is the national rank, between 0 and 1, of subject's national performance at the real effort task. RET Deviation is the difference between actual number of correct additions and one predicted from subject and period FE. DG frac is the fraction of the 1000 ECU donated in the dictator game. \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01





Figure C2: Distributions of behavior by Dictator Game donations.

|                      | Mlogit, average marginal effects |           |                |           |                |           |                |           |             | LS        |
|----------------------|----------------------------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|-------------|-----------|
|                      | Consistent                       | maximal   | Consisten      | t partial | Consistent     | ly honest | Oth            | ier       | Partia      | l lying   |
| RET rank             | $0.194^{***}$                    | (0.0382)  | -0.0349        | (0.0350)  | -0.0903**      | (0.0375)  | -0.0687        | (0.0527)  | $0.156^{*}$ | (0.0812)  |
| Male                 | $0.0719^{***}$                   | (0.0230)  | -0.0832***     | (0.0204)  | -0.0178        | (0.0212)  | 0.0291         | (0.0305)  | 0.0186      | (0.0469)  |
| Age                  | -0.00366                         | (0.00231) | -0.00119       | (0.00250) | 0.00140        | (0.00177) | 0.00346        | (0.00307) | 0.00131     | (0.00405) |
| DG=0                 | $0.364^{***}$                    | (0.0625)  | $-0.122^{***}$ | (0.0239)  | -0.0787**      | (0.0386)  | $-0.163^{***}$ | (0.0590)  | -0.0337     | (0.0988)  |
| DG frac              | -0.0495                          | (0.0897)  | -0.104*        | (0.0591)  | $0.215^{***}$  | (0.0688)  | -0.0621        | (0.101)   | 0.214       | (0.148)   |
| Deduction 20%        | -0.0298                          | (0.0272)  | 0.0219         | (0.0236)  | 0.0237         | (0.0245)  | -0.0159        | (0.0360)  | 0.0326      | (0.0455)  |
| Deduction 30%        | -0.00434                         | (0.0287)  | -0.0362        | (0.0248)  | 0.00272        | (0.0258)  | 0.0378         | (0.0382)  | -0.00419    | (0.0576)  |
| Deduction 40%        | -0.0170                          | (0.0569)  | -0.0762        | (0.0464)  | -0.0765        | (0.0492)  | $0.170^{**}$   | (0.0803)  | 0.125       | (0.182)   |
| Deduction 50%        | 0.0138                           | (0.0618)  | 0.00129        | (0.0871)  | -0.0615        | (0.0766)  | 0.0465         | (0.118)   | -0.192      | (0.174)   |
| Deadweight loss      | -0.0381                          | (0.0513)  | -0.0195        | (0.0539)  | 0.0715         | (0.0676)  | -0.0140        | (0.0857)  | -0.155      | (0.129)   |
| Redistribution       | 0.00132                          | (0.0404)  | -0.0108        | (0.0385)  | -0.00986       | (0.0535)  | 0.0194         | (0.0637)  | 0.00222     | (0.0879)  |
| Shock                | -0.000408                        | (0.0388)  | -0.0231        | (0.0293)  | 0.0228         | (0.0410)  | 0.000719       | (0.0514)  | -0.0465     | (0.0646)  |
| Status               | 0.0678                           | (0.0474)  | 0.00101        | (0.0381)  | -0.0213        | (0.0461)  | -0.0474        | (0.0622)  | 0.00257     | (0.0716)  |
| Status, 200 ECU      | -0.0334                          | (0.0493)  | -0.0110        | (0.0427)  | 0.0860         | (0.0692)  | -0.0416        | (0.0796)  | 0.0151      | (0.0880)  |
| Non-fixed            | -0.00118                         | (0.0334)  | $-0.0672^{**}$ | (0.0268)  | 0.0333         | (0.0324)  | 0.0350         | (0.0435)  | 0.0597      | (0.0572)  |
| Russia               | $0.0706^{*}$                     | (0.0417)  | $0.0911^{**}$  | (0.0358)  | $-0.165^{***}$ | (0.0188)  | 0.00344        | (0.0459)  | 0.0276      | (0.0511)  |
| UK                   | $0.259^{***}$                    | (0.0357)  | $-0.0533^*$    | (0.0288)  | -0.103***      | (0.0237)  | -0.103**       | (0.0410)  | -0.0976     | (0.0600)  |
| Constant             |                                  |           |                |           |                |           |                |           | 0.132       | (0.127)   |
| Observations         | 1072                             |           | 1072           |           | 1072           |           | 1072           |           | 148         |           |
| Log pseudolikelihood | -1083.0225                       |           | -1083.0225     |           | -1083.0225     |           | -1083.0225     |           |             |           |
| $\mathbb{R}^2$       |                                  |           |                |           |                |           |                |           | 0.1645      |           |
| D20=D30              | 0.383                            |           | 0.0245         |           | 0.440          |           | 0.174          |           | 0.518       |           |
| D20=D40              | 0.825                            |           | 0.0439         |           | 0.0481         |           | 0.0223         |           | 0.616       |           |
| D20=D50              | 0.487                            |           | 0.813          |           | 0.269          |           | 0.598          |           | 0.200       |           |
| D30=D40              | 0.827                            |           | 0.422          |           | 0.123          |           | 0.112          |           | 0.499       |           |
| D30=D50              | 0.773                            |           | 0.671          |           | 0.413          |           | 0.942          |           | 0.295       |           |
| D40=D50              | 0.684 0.411                      |           |                | 0.865 0.  |                |           |                | 0.195     |             |           |
| Russia=UK            | 8.36e-09                         |           | 0.00000192     |           | 0.00903        |           | 0.00978        |           | 0.0199      |           |

The first four columns report average marginal effects for multinomial logistic regression (the dependent variable is whether the subject was a maximal liar, partial liar, or honest, in all 10 rounds). Robust standard errors. The fifth column reports OLS regression, the dependent variable is the fraction of income declared, averaged across all rounds, for subjects who lied partially in every round. RET rank is the national rank, between 0 and 1, of subject's national performance at the real effort task. RET Deviation is the difference between actual number of correct additions and one predicted from subject and period FE. DG frac is the fraction of the 1000 ECU donated in the dictator game. \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01

Table C2: Determinants of lying, alternative categorization of subject behavior

|                                             |            | Predicted ran | nk in Period 1 | -          |
|---------------------------------------------|------------|---------------|----------------|------------|
|                                             | 1          | 2             | 3              | 4          |
| Consistent maximal                          | 43         | 35            | 17             | 5          |
|                                             | 47.8%      | 25.4%         | 17.2%          | 17.2%      |
| Consistent partial                          | 12         | 31            | 26             | 7          |
|                                             | 13.3%      | 22.5%         | 26.3%          | 24.1%      |
| Consistent honest                           | 21         | 42            | 32             | 9          |
|                                             | 23.3%      | 30.4%         | 32.3%          | 31.0%      |
| Other                                       | 14         | 30            | 24             | 8          |
|                                             | 15.6%      | 21.7%         | 23.2%          | 27.6%      |
| Total                                       | 90         | 138           | 99             | 29         |
| Mean rank within one's group, period 1 (sd) | 2.03(1.06) | 2.49(1.01)    | 2.74(1.07)     | 3.21(1.01) |
| p-value for two-tailed Welch $t$ -test      | 0.0016     | 0.0681        | 0.0350         |            |

Table C3: Predicted rank and actual rank in the first period and prevalence of cheating behaviors. Comparisons are of average group rank of subjects with a given predicted rank, and the average group rank of subjects with the next predicted rank. All other pairwise comparisons are significant at p < 0.001.

|                               | 1        | 2              | 3         | 4            | 5         | 6             |
|-------------------------------|----------|----------------|-----------|--------------|-----------|---------------|
| Type: Consistent maximal liar | -0.0733* | -0.0623        | -0.0235   | 0.0157       | -0.133**  | 0.205***      |
|                               | (0.0394) | (0.0409)       | (0.0370)  | (0.0496)     | (0.0653)  | (0.0636)      |
| Type: Consistent partial liar | 0.0535   | -0.00417       | -0.0798   | -0.00329     | 0.00863   | 0.0301        |
|                               | (0.0367) | (0.0411)       | (0.0547)  | (0.0617)     | (0.0821)  | (0.0899)      |
| Av. fraction, partial liars   | -0.0932  | 0.0376         | 0.111     | 0.103        | 0.00353   | -0.208        |
|                               | (0.0737) | (0.0655)       | (0.0865)  | (0.0965)     | (0.144)   | (0.166)       |
| Type: Other                   | -0.0105  | -0.0188        | -0.0773*  | $0.0752^{*}$ | 0.0855    | -0.0783       |
|                               | (0.0309) | (0.0327)       | (0.0455)  | (0.0447)     | (0.0592)  | (0.0694)      |
| Russia                        | -0.0204  | $-0.0647^{**}$ | -0.00562  | -0.0186      | 0.00988   | $0.0974^{*}$  |
|                               | (0.0291) | (0.0311)       | (0.0334)  | (0.0356)     | (0.0515)  | (0.0571)      |
| UK                            | 0.0321   | -0.0459        | -0.0201   | -0.0792*     | -0.0408   | $0.154^{***}$ |
|                               | (0.0281) | (0.0315)       | (0.0350)  | (0.0428)     | (0.0569)  | (0.0585)      |
| Observations                  | 444      | 444            | 444       | 444          | 444       | 444           |
| LL                            | -86.6587 | -93.8448       | -120.3585 | -147.9447    | -247.7718 | -280.3446     |

Logistic regression, marginal coefficients. Individual controls not shown. Average fraction declared is shown for partial liars \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

Table C4: Logit regression of die roll values

|                      |               |                      | Ch                 | ile                  |                  |                      |               | hile                 |
|----------------------|---------------|----------------------|--------------------|----------------------|------------------|----------------------|---------------|----------------------|
|                      |               | М                    | logit, average     |                      |                  | DLS                  |               |                      |
|                      | Maxima        | lying                | Partial            | lying                | Hone             | est                  | Part          | ial lying            |
| RET rank             | $0.214^{***}$ | (0.0664)             | -0.127             | (0.0792)             | -0.0866          | (0.0876)             | 0.0176        | (0.136)              |
| RET deviation        | -0.00261      | (0.00235)            | 0.00421            | (0.00359)            | -0.00160         | (0.00354)            | $0.0132^{**}$ | (0.00637)            |
| Male                 | 0.0563        | (0.0380)             | -0.0163            | (0.0477)             | -0.0400          | (0.0512)             | $0.112^{*}$   | (0.0615)             |
| Age                  | 0.00188       | (0.00254)            | $-0.00680^{*}$     | (0.00388)            | 0.00492          | (0.00460)            | 0.00204       | (0.00549)            |
| Period               | 0.00929***    | (0.00185)            | 0.000908           | (0.00258)            | $-0.0102^{***}$  | (0.00262)            | -0.00311      | (0.00394)            |
| DG=0                 | 0.406         | (0.146)              | -0.215***          | (0.0876)             | -0.191           | (0.141)              | -0.00608      | (0.105)              |
| DG frac              | -0.0695       | (0.126)              | -0.276             | (0.132)              | 0.346            | (0.160)              | 0.268         | (0.228)              |
| Deduction 20%        | -0.0839       | (0.0378)             | -0.0770            | (0.0512)             | 0.161            | (0.0561)             | -0.0173       | (0.0706)             |
| Shock                | 0.0230        | (0.0397)<br>(0.127)  | -0.0903            | (0.0477)<br>(0.103)  | 0.0075           | (0.0550)<br>(0.0931) | 0.0080        | (0.0747)<br>(0.0032) |
| Shock yes            | 0.0111        | (0.127)              | 0.00132            | (0.103)              | -0.0124          | (0.0331)<br>(0.0427) | -0.0118       | (0.0332)<br>(0.0603) |
| Status               | 0.161         | (0.0211)<br>(0.153)  | 0.00102            | (0.114)              | -0.179*          | (0.108)              | 0.0263        | (0.118)              |
| Status, 200 ECU      | -0.0607       | (0.0664)             | -0.0816            | (0.0910)             | 0.142            | (0.110)              | 0.137         | (0.123)              |
| Non-fixed            | $0.155^{*}$   | (0.0826)             | -0.129             | (0.0798)             | -0.0258          | (0.0771)             | 0.139         | (0.0952)             |
| Constant             |               | . ,                  |                    | · · · ·              |                  | · · · ·              | 0.0821        | (0.210)              |
| Observations         | 3078          |                      | 3078               |                      | 3078             |                      | 718           |                      |
| Log pseudolikelihood | -2831.1669    |                      | -2831.1669         |                      | -2831.1669       |                      |               |                      |
| $\mathbb{R}^2$       |               |                      |                    |                      |                  |                      | 0.0893        |                      |
| D20=D30              | 0.0140        |                      | 0.810              |                      | 0.129            |                      | 0.180         |                      |
|                      |               |                      | Rus                | sia                  |                  |                      | R             | ussia                |
|                      |               | Μ                    | logit, average     | marginal effec       | ts               |                      |               | OLS                  |
|                      | Maxima        | l lying              | Partial            | lying                | Hone             | est                  | Part          | ial lying            |
| RET rank             | $0.178^{**}$  | (0.0780)             | -0.0899            | (0.0812)             | -0.0877          | (0.0642)             | 0.212**       | (0.0894)             |
| RET deviation        | 0.000840      | (0.00364)            | $0.00711^{*}$      | (0.00384)            | $-0.00795^{***}$ | (0.00296)            | 0.00184       | (0.00381)            |
| Male                 | 0.0413        | (0.0456)             | $-0.149^{***}$     | (0.0466)             | $0.107^{***}$    | (0.0343)             | 0.0190        | (0.0516)             |
| Age                  | -0.0189       | (0.0129)             | 0.0166             | (0.0106)             | 0.00231          | (0.00497)            | 0.00199       | (0.00400)            |
| Period               | 0.0189***     | (0.00287)            | -0.0225***         | (0.00295)            | 0.00362*         | (0.00205)            | -0.0233***    | (0.00304)            |
| DG=0                 | 0.302         | (0.104)              | -0.356             | (0.0754)             | 0.0540           | (0.0754)             | -0.0634       | (0.0805)             |
| DG frac              | -0.281        | (0.188)              | 0.0648             | (0.155)              | 0.216            | (0.100)              | 0.231         | (0.148)<br>(0.0524)  |
| Deduction 20%        | -0.0657       | (0.0513)             | 0.110              | (0.0550)             | -0.0327          | (0.0349)<br>(0.0281) | -0.00475      | (0.0534)<br>(0.0646) |
| Bedistribution       | 0.0388        | (0.0038)<br>(0.0802) | -0.0103            | (0.0033)<br>(0.0877) | -0.0343          | (0.0381)<br>(0.0758) | 0.0563        | (0.0040)<br>(0.122)  |
| Shock                | 0.0101        | (0.0002)<br>(0.0735) | -0.0625            | (0.0611)             | 0.0524           | (0.0130)<br>(0.0636) | -0.0931*      | (0.122)<br>(0.0559)  |
| Shock, yes           | -0.0150       | (0.0430)             | 0.0318             | (0.0414)             | -0.0168          | (0.0325)             | 0.0108        | (0.0437)             |
| Status               | -0.0248       | (0.0895)             | -0.0309            | (0.0955)             | 0.0557           | (0.0703)             | -0.0400       | (0.0594)             |
| Status, 200 ECU      | 0.0208        | (0.104)              | -0.0540            | (0.111)              | 0.0332           | (0.0906)             | 0.00632       | (0.0853)             |
| Non-fixed            | 0.0342        | (0.0729)             | $-0.127^{*}$       | (0.0668)             | 0.0931           | (0.0577)             | 0.00744       | (0.0839)             |
| Constant             |               |                      |                    |                      |                  |                      | $0.291^{**}$  | (0.112)              |
| Observations         | 2560          |                      | 2560               |                      | 2560             |                      | 1012          |                      |
| Log pseudolikelihood | -2100.0405    |                      | -2100.0405         |                      | -2100.0405       |                      |               |                      |
| $R^2$                |               |                      |                    |                      |                  |                      | 0.1421        |                      |
| D20=D30              | 0.225         |                      | 0.237              |                      | 0.971            |                      | 0.315         |                      |
|                      |               |                      | UI                 | К                    |                  |                      |               | UK                   |
|                      |               | Μ                    | logit, average     | marginal effec       | cts              |                      |               | OLS                  |
|                      | Maxima        | l lying              | Partial            | lying                | Hone             | est                  | Part          | ial lying            |
| RET rank             | $0.368^{***}$ | (0.0493)             | -0.0665            | (0.0475)             | $-0.301^{***}$   | (0.0522)             | 0.0118        | (0.124)              |
| RET deviation        | -0.00114      | (0.00212)            | 0.00223            | (0.00239)            | -0.00109         | (0.00189)            | -0.00425      | (0.00523)            |
| Male                 | 0.0857***     | (0.0319)             | -0.120             | (0.0276)             | 0.0343           | (0.0286)             | -0.0165       | (0.0707)             |
| Age                  | -0.00729      | (0.00236)            | 0.00474            | (0.00208)            | 0.00255          | (0.00205)            | 0.00154       | (0.00415)            |
| DC-0                 | 0.0210        | (0.00200)            | -0.0100            | (0.00195)            | -0.0104          | (0.00102)            | -0.0157       | (0.00323)            |
| DG_0<br>DG frac      | -0 134        | (0.0311)<br>(0.102)  | -0.233<br>-0.207** | (0.0332)<br>(0.0883) | 0.340***         | (0.0420)<br>(0.0982) | 0.0303        | (0.111)<br>(0.250)   |
| Deduction 20%        | 0.0150        | (0.102)<br>(0.0393)  | 0.0306             | (0.0358)             | -0.0456          | (0.0302)<br>(0.0303) | 0.0535        | (0.230)<br>(0.0768)  |
| Deduction 30%        | 0.0699*       | (0.0406)             | -0.0469            | (0.0343)             | -0.0230          | (0.0357)             | 0.0871        | (0.105)              |
| Deduction 40%        | -0.000970     | (0.0645)             | 0.0634             | (0.0594)             | -0.0625          | (0.0457)             | $0.202^{*}$   | (0.108)              |
| Deduction 50%        | 0.100         | (0.0771)             | 0.0118             | (0.0741)             | -0.112**         | (0.0472)             | -0.307***     | (0.104)              |
| Deadweight loss      | -0.0937       | (0.0631)             | 0.00492            | (0.0560)             | 0.0887           | (0.0569)             | -0.0983       | (0.133)              |
| Redistribution       | 0.0491        | (0.0520)             | -0.0148            | (0.0440)             | -0.0342          | (0.0440)             | -0.130        | (0.108)              |
| Shock                | 0.00231       | (0.0604)             | -0.0262            | (0.0550)             | 0.0239           | (0.0567)             | -0.200**      | (0.0904)             |
| Shock, yes           | -0.0351       | (0.0390)             | $0.0823^{*}$       | (0.0452)             | -0.0472          | (0.0287)             | -0.0442**     | (0.0220)             |
| Status               | 0.140**       | (0.0658)             | -0.0589            | (0.0635)             | -0.0807          | (0.0549)             | -0.0969       | (0.149)              |
| Status, 200 ECU      | -0.151*       | (0.0820)             | 0.000806           | (0.0958)             | 0.150            | (0.115)              | -0.0369       | (0.138)              |
| Non-fixed            | -0.0326       | (0.0474)             | 0.0529             | (0.0437)             | -0.0203          | (0.0378)             | -0.0452       | (0.106)              |
| Observations         | E080          |                      | 5080               |                      | F090             |                      | 0.224         | (0.152)              |
| Log pseudolikeliher  | 3703 7006     |                      | 3703 7006          |                      | 3703 7006        |                      | 100           |                      |
| $B^2$                | -3133.1330    |                      | -5135.1330         |                      | -3133.1330       |                      | 0 1020        |                      |
| $D_{20} = D_{30}$    | 0.206         |                      | 0.0410             |                      | 0.556            |                      | 0.1320        |                      |
| D20=D30              | 0.200         |                      | 0.5410             |                      | 0.550            |                      | 0.132         |                      |
| D20=D50              | 0.284         |                      | 0.800              |                      | 0.189            |                      | 0.000685      |                      |
| D30=D40              | 0.288         |                      | 0.0672             |                      | 0.427            |                      | 0.368         |                      |
| D30=D50              | 0.703         |                      | 0.438              |                      | 0.106            |                      | 0.00408       |                      |
| D40=D50              | 0.239         |                      | 0.519              |                      | 0.389            |                      | 0.00000483    |                      |

Table C5: Determinants of lying in each period, by country

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | All countri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | es, females                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ries, females                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Alogit, average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | marginal effe                                                                                                                                                                                                                                                                                                                                                                                              | cts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maxima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | llying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Partial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lying                                                                                                                                                                                                                                                                                                                                                                                                      | Hone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ial lying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RET rank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.285***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.0511)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.155**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.0610)                                                                                                                                                                                                                                                                                                                                                                                                   | -0.129**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.0602)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.0813)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ago                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.00474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.00222)<br>(0.00335)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.00291)<br>(0.00376)                                                                                                                                                                                                                                                                                                                                                                                     | -0.00288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.00244)<br>(0.00202)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.00346)<br>(0.00396)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0161***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.00333)<br>(0.00195)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.00962***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.00310)<br>(0.00218)                                                                                                                                                                                                                                                                                                                                                                                     | -0.00649***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.00183)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.0170***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.00390)<br>(0.00260)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DG=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.406***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.0758)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.364***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.0399)                                                                                                                                                                                                                                                                                                                                                                                                   | -0.0420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.0718)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.0672)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DG frac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $-0.198^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.105)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.119)                                                                                                                                                                                                                                                                                                                                                                                                    | $0.363^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.122)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.272^{**}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.136)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Deduction 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.0532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.0334)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.0112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.0405)                                                                                                                                                                                                                                                                                                                                                                                                   | $0.0644^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.0376)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.0491)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Deduction 30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.0380)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.0470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.0418)                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.0396)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.0515)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Deduction 40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.00443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.0845)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.113)                                                                                                                                                                                                                                                                                                                                                                                                    | -0.0204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.113)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.222*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.127)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Deduction 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.121)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.124)                                                                                                                                                                                                                                                                                                                                                                                                    | -0.241***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.0400)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.219***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.0760)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Deadweight loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.108*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.0566)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.100)                                                                                                                                                                                                                                                                                                                                                                                                    | -0.0376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.0904)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.138)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Redistribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.0605)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.0753)                                                                                                                                                                                                                                                                                                                                                                                                   | -0.104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.0702)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.0925)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Russia<br>UV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.0479)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.0512)                                                                                                                                                                                                                                                                                                                                                                                                   | -0.299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.0322)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.0557)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Shock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.0181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.0408)<br>(0.0506)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.0484)<br>(0.0661)                                                                                                                                                                                                                                                                                                                                                                                       | -0.0915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.0308)<br>(0.0568)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.0556)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Shock ves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.0273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.0249)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.0001)<br>(0.0378)                                                                                                                                                                                                                                                                                                                                                                                       | 0.00850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.0344)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.0382)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.0589)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.148**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.0751)                                                                                                                                                                                                                                                                                                                                                                                                   | -0.133**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.0607)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.0654)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Status, 200 ECU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.0593)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.0901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.0782)                                                                                                                                                                                                                                                                                                                                                                                                   | $0.143^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.0865)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.0702)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Non-fixed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.0627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.0464)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.0563)                                                                                                                                                                                                                                                                                                                                                                                                   | -0.0151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.0502)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.0671)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.139)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                            | 4790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Log pseudolikelihood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3882.7852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3882.7852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                            | -3882.7852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\mathbb{R}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| D20=D30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                            | 0.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| D20=D40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                            | 0.443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| D20=D50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                            | 3.27e-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $D_{30} = D_{40}$<br>$D_{20} = D_{50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                            | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $D_{30} = D_{50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000000195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bussia=UK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.08e-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0000678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | All countr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ies, males                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All cour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tries, males                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | All countr<br>flogit, average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ies, males<br>marginal effe                                                                                                                                                                                                                                                                                                                                                                                | cts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All cour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>tries, males</b><br>OLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maxima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | l lying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All countr<br>Alogit, average<br>Partial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ies, males<br>marginal effe<br>lying                                                                                                                                                                                                                                                                                                                                                                       | ets<br>Hone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | All coun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>tries, males</b><br>OLS<br>ial lying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RET rank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Maxima<br>0.273***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>l lying<br>(0.0553)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | All countr<br>Allogit, average<br>Partial<br>-0.0640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ies, males<br>marginal effectivity<br>lying<br>(0.0550)                                                                                                                                                                                                                                                                                                                                                    | cts<br>Hone<br>-0.209***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | est<br>(0.0551)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All coun<br>Part<br>0.147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tries, males<br>OLS<br>ial lying<br>(0.126)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RET rank<br>RET deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Maxima<br>0.273***<br>0.00201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N<br>l lying<br>(0.0553)<br>(0.00223)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | All countr<br>Alogit, average<br>Partial<br>-0.0640<br>0.000198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $      ies, males \\       marginal effective \\                                   $                                                                                                                                                                                                                                                                                                                       | ets Hone<br>-0.209***<br>-0.00221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | est (0.0551) (0.00217)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | All coun<br>Part<br>0.147<br>0.0118**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ttries, males<br>OLS<br>ial lying<br>(0.126)<br>(0.00512)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RET rank<br>RET deviation<br>Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maxima<br>0.273***<br>0.00201<br>-0.00394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N<br>(0.0553)<br>(0.00223)<br>(0.00244)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All countr<br>Allogit, average<br>Partial<br>-0.0640<br>0.000198<br>0.00230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ies, males<br>marginal effectivity<br>(0.0550)<br>(0.00244)<br>(0.00227)                                                                                                                                                                                                                                                                                                                                   | cts Hone<br>-0.209***<br>-0.00221<br>0.00164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(0.0551) \\ (0.00217) \\ (0.00226)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All coun<br>Part<br>0.147<br>0.0118**<br>0.00102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ttries, males<br>OLS<br>ial lying<br>(0.126)<br>(0.00512)<br>(0.00485)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RET rank<br>RET deviation<br>Age<br>Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Maxima<br>0.273***<br>0.00201<br>-0.00394<br>0.0169***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N<br>(0.0553)<br>(0.00223)<br>(0.00244)<br>(0.00188)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | All countr<br>Alogit, average<br>Partial<br>-0.0640<br>0.000198<br>0.00230<br>-0.0121***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ies, males<br>marginal effectivity<br>(0.0550)<br>(0.00244)<br>(0.00193)<br>(0.00193)                                                                                                                                                                                                                                                                                                                      | -0.209***<br>-0.00221<br>0.00164<br>-0.00479***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \text{est} \\ (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.00165) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | All coun<br>Part<br>0.147<br>0.0118**<br>0.00102<br>-0.0104***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ttries, males<br>OLS<br>(0.126)<br>(0.00512)<br>(0.00485)<br>(0.00349)<br>(0.00349)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Maxima<br>0.273***<br>0.00201<br>-0.00394<br>0.0169***<br>0.239***<br>0.239***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 lying<br>(0.0553)<br>(0.00223)<br>(0.00244)<br>(0.00188)<br>(0.0685)<br>(0.100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | All countr<br>All countr<br>Partial<br>-0.0640<br>0.000198<br>0.00230<br>-0.0121***<br>-0.153***<br>-0.053***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ies, males<br>marginal effect<br>lying<br>(0.0550)<br>(0.00244)<br>(0.00227)<br>(0.00193)<br>(0.0462)<br>(0.0462)                                                                                                                                                                                                                                                                                          | Ets<br>-0.209***<br>-0.00221<br>0.00164<br>-0.00479***<br>-0.0863<br>0.055***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.0002) \\ (0.000$                      | All coun<br>Part<br>0.147<br>0.0118**<br>0.00102<br>-0.0104***<br>-0.00555<br>-0.00555                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ttries, males<br>OLS<br>(0.126)<br>(0.00512)<br>(0.00485)<br>(0.00349)<br>(0.102)<br>(0.002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maxima<br>0.273***<br>0.00201<br>-0.00394<br>0.0169***<br>0.239***<br>-0.250**<br>0.0698*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 lying<br>(0.0553)<br>(0.00223)<br>(0.00244)<br>(0.00188)<br>(0.0685)<br>(0.120)<br>(0.0280)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | All countr<br>Mlogit, average :<br>Partial<br>-0.0640<br>0.000198<br>0.00230<br>-0.0121***<br>-0.153***<br>-0.00612<br>0.0602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ies, males<br>marginal effectivity<br>(0.0550)<br>(0.00244)<br>(0.00227)<br>(0.00193)<br>(0.0462)<br>(0.0874)<br>(0.0874)                                                                                                                                                                                                                                                                                  | -0.209***<br>-0.00221<br>0.00164<br>-0.00479***<br>-0.0863<br>0.256***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0926) \\ (0.0926) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.0262) \\ (0.026$                      | All coun<br>Part<br>0.147<br>0.0118**<br>0.00102<br>-0.0104***<br>-0.00555<br>0.375<br>0.0158                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ttries, males<br>OLS<br>(0.126)<br>(0.00512)<br>(0.00485)<br>(0.00485)<br>(0.00349)<br>(0.102)<br>(0.226)<br>(0.0224)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maxima<br>0.273***<br>0.00201<br>-0.00394<br>0.0169***<br>0.239***<br>-0.250**<br>-0.0688*<br>0.0053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 lying<br>(0.0553)<br>(0.00223)<br>(0.00244)<br>(0.00188)<br>(0.0685)<br>(0.120)<br>(0.0389)<br>(0.0410)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All countr<br>All countr<br>Partial<br>-0.0640<br>0.000198<br>0.00230<br>-0.0121***<br>-0.153***<br>-0.00612<br>0.0606<br>-0.0181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \textbf{ies, males} \\ marginal effective (0.0550) \\ (0.00244) \\ (0.00227) \\ (0.00193) \\ (0.0462) \\ (0.0874) \\ (0.0380) \\ (0.0363) \end{array}$                                                                                                                                                                                                                                   | -0.209***<br>-0.00221<br>0.00164<br>-0.00479***<br>-0.0863<br>0.256***<br>0.00827<br>-0.00726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \text{est} \\ (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0926) \\ (0.0368) \\ (0.0371) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | All coun<br>Part<br>0.147<br>0.0118**<br>0.00102<br>-0.0104***<br>-0.00555<br>0.375<br>-0.0158<br>0.0179                                                                                                                                                                                                                                                                                                                                                                                                                                       | ttries, males<br>OLS<br>(0.126)<br>(0.00512)<br>(0.00485)<br>(0.00349)<br>(0.102)<br>(0.226)<br>(0.0724)<br>(0.0815)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%<br>Deduction 30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maxima<br>0.273***<br>0.00201<br>-0.00394<br>0.0169***<br>0.239***<br>-0.250**<br>-0.0688<br>0.0253<br>-0.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 lying<br>(0.0553)<br>(0.00223)<br>(0.00244)<br>(0.00188)<br>(0.0685)<br>(0.120)<br>(0.0389)<br>(0.0410)<br>(0.145)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | All countr<br>All countr<br>Partial<br>-0.0640<br>0.000198<br>0.00230<br>-0.0121***<br>-0.153***<br>-0.00612<br>0.0606<br>-0.0181<br>0 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ies, males<br>marginal effectives<br>(0.0550)<br>(0.00244)<br>(0.00227)<br>(0.00193)<br>(0.0462)<br>(0.0874)<br>(0.0380)<br>(0.0363)<br>(0.0363)<br>(0.190)                                                                                                                                                                                                                                                | -0.209***<br>-0.00221<br>0.00164<br>-0.00479***<br>-0.0863<br>0.256***<br>0.00827<br>-0.00726<br>0.0185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \text{est} \\ (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0926) \\ (0.0368) \\ (0.0371) \\ (0.168) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | All coun<br>Part<br>0.0118**<br>0.00102<br>-0.0104***<br>-0.00555<br>0.375<br>-0.0158<br>0.0179<br>-0.0406                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \mbox{tries, males} \\ \hline \mbox{OLS} \\ \mbox{ial lying} \\ \hline \mbox{(0.126)} \\ \mbox{(0.00512)} \\ \mbox{(0.00349)} \\ \mbox{(0.00349)} \\ \mbox{(0.102)} \\ \mbox{(0.226)} \\ \mbox{(0.0724)} \\ \mbox{(0.0815)} \\ \mbox{(0.254)} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%<br>Deduction 30%<br>Deduction 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maxima<br>0.273***<br>0.00201<br>-0.00394<br>0.0169***<br>0.239***<br>-0.0688*<br>0.0253<br>-0.209<br>0.00178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 lying<br>(0.0553)<br>(0.00223)<br>(0.00244)<br>(0.00188)<br>(0.0685)<br>(0.120)<br>(0.0389)<br>(0.0410)<br>(0.145)<br>(0.0892)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | All countr<br>All countr<br>Partial<br>-0.0640<br>0.00238<br>0.00238<br>-0.0121***<br>-0.153***<br>-0.00612<br>0.0606<br>-0.0181<br>0.190<br>-0.0262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{l} \textbf{ies, males} \\ marginal effect \\ lying \\ (0.0550) \\ (0.00244) \\ (0.00227) \\ (0.00193) \\ (0.0462) \\ (0.0874) \\ (0.0380) \\ (0.0363) \\ (0.190) \\ (0.107) \end{array}$                                                                                                                                                                                                    | Hone           -0.209***           -0.00221           0.00164           -0.00479***           -0.0863           0.256***           0.00827           -0.00726           0.0185           0.0245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \text{ost} \\ (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0368) \\ (0.0371) \\ (0.168) \\ (0.109) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | All coun<br>Part<br>0.147<br>0.0118**<br>0.00102<br>0.0104***<br>-0.00555<br>0.375<br>0.0158<br>0.0179<br>-0.0406<br>-0.374**                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \mbox{tries, males} \\ \mbox{OLS} \\ \mbox{ial lying} \\ (0.126) \\ (0.00512) \\ (0.00485) \\ (0.00349) \\ (0.102) \\ (0.226) \\ (0.0724) \\ (0.0815) \\ (0.254) \\ (0.152) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%<br>Deduction 30%<br>Deduction 40%<br>Deduction 50%<br>Deduction 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Maxima<br>0.273***<br>0.00201<br>-0.00394<br>0.0169***<br>0.239***<br>-0.250**<br>-0.0688*<br>0.0253<br>-0.209<br>0.00178<br>-0.0580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 lying<br>(0.0553)<br>(0.00223)<br>(0.00244)<br>(0.0088)<br>(0.0389)<br>(0.0140)<br>(0.0389)<br>(0.0410)<br>(0.145)<br>(0.0892)<br>(0.0892)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All countr<br>All countr<br>Partial<br>-0.0640<br>0.000198<br>0.00230<br>-0.0121***<br>-0.053***<br>-0.0612<br>0.0606<br>-0.0181<br>0.190<br>-0.0262<br>-0.145**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tes, males<br>marginal effe-<br>lying<br>(0.0550)<br>(0.00244)<br>(0.00227)<br>(0.00193)<br>(0.0462)<br>(0.0874)<br>(0.0363)<br>(0.190)<br>(0.107)<br>(0.0601)                                                                                                                                                                                                                                             | Hone           -0.209***           -0.00221           0.00164           -0.00479***           -0.0863           0.256***           0.00827           -0.00726           0.0185           0.0245           0.203**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{ist} \\ (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0368) \\ (0.0368) \\ (0.0368) \\ (0.0371) \\ (0.168) \\ (0.109) \\ (0.0857) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | All coun<br>Part<br>0.147<br>0.0118**<br>0.00102<br>-0.0104***<br>-0.00555<br>0.375<br>-0.0158<br>0.0179<br>-0.0406<br>-0.374**<br>-0.312*                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \textbf{tries, males} \\ \textbf{OLS} \\ \textbf{ial lying} \\ \hline (0.126) \\ (0.00512) \\ (0.00485) \\ (0.00349) \\ (0.102) \\ (0.226) \\ (0.0724) \\ (0.0815) \\ (0.254) \\ (0.152) \\ (0.162) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%<br>Deduction 30%<br>Deduction 30%<br>Deduction 50%<br>Deduction 50%<br>Redistribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Maxima<br>0.273***<br>0.00201<br>-0.00394<br>0.0169***<br>0.239***<br>-0.250**<br>-0.0688*<br>0.0253<br>-0.209<br>0.00178<br>-0.0580<br>0.0753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 lying<br>(0.0553)<br>(0.00223)<br>(0.00244)<br>(0.0088)<br>(0.0088)<br>(0.120)<br>(0.0389)<br>(0.0410)<br>(0.145)<br>(0.0892)<br>(0.0808)<br>(0.0789)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All countr<br>All countr<br>Partial<br>-0.0640<br>0.000198<br>0.00230<br>-0.0121***<br>-0.153***<br>-0.06612<br>0.0606<br>-0.0181<br>0.190<br>-0.0262<br>-0.145**<br>-0.0879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{l} \textbf{ies, males} \\ marginal effectives \\ (0.0550) \\ (0.00244) \\ (0.00227) \\ (0.00193) \\ (0.0462) \\ (0.0380) \\ (0.0380) \\ (0.190) \\ (0.107) \\ (0.0601) \\ (0.0601) \\ (0.0643) \end{array}$                                                                                                                                                                                 | Hone           -0.209***           -0.00221           0.00164           -0.00479***           -0.0863           0.256***           0.00827           -0.00726           0.0185           0.0245           0.203**           0.0126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \text{ost} \\ \hline (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0368) \\ (0.0371) \\ (0.168) \\ (0.109) \\ (0.0857) \\ (0.0857) \\ (0.0828) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | All coun<br>Part<br>0.147<br>0.0118**<br>0.00102<br>-0.0104***<br>-0.00555<br>0.375<br>-0.0158<br>0.0179<br>-0.0406<br>-0.374**<br>-0.312*<br>-0.122                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \label{eq:constraint} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%<br>Deduction 30%<br>Deduction 40%<br>Deduction 50%<br>Deadweight loss<br>Redistribution<br>Russia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} & Maxima \\ \hline 0.273^{***} \\ 0.00201 \\ -0.00394 \\ 0.0169^{***} \\ -0.250^{**} \\ -0.250^{**} \\ -0.0688^{*} \\ 0.0253 \\ -0.209 \\ 0.00178 \\ -0.0580 \\ 0.0753 \\ 0.133^{***} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 lying<br>(0.0553)<br>(0.00223)<br>(0.00244)<br>(0.0088)<br>(0.0685)<br>(0.120)<br>(0.0389)<br>(0.0410)<br>(0.145)<br>(0.0808)<br>(0.0808)<br>(0.0789)<br>(0.0428)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | All countr<br>All countr<br>Partial<br>-0.0640<br>0.000198<br>0.00230<br>-0.0121***<br>-0.153***<br>-0.00612<br>0.0606<br>-0.0181<br>0.190<br>-0.0262<br>-0.145**<br>-0.0879<br>0.00637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{l} \textbf{ies, males} \\ marginal effect \\ lying \\ \hline (0.0550) \\ (0.00244) \\ (0.00227) \\ (0.00193) \\ (0.0462) \\ (0.0874) \\ (0.0363) \\ (0.0363) \\ (0.107) \\ (0.0601) \\ (0.0601) \\ (0.0643) \\ (0.0384) \end{array}$                                                                                                                                                        | $\begin{array}{c} \text{-0.209}^{***} \\ -0.00221 \\ 0.00164 \\ -0.00479^{***} \\ -0.0863 \\ 0.256^{***} \\ 0.00827 \\ -0.00726 \\ 0.0185 \\ 0.0245 \\ 0.203^{**} \\ 0.0126 \\ -0.139^{***} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \text{ost} \\ (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0368) \\ (0.0368) \\ (0.0371) \\ (0.168) \\ (0.109) \\ (0.0857) \\ (0.0852) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | All coun<br>Part<br>0.0118**<br>0.00102<br>-0.0104***<br>-0.00555<br>0.375<br>-0.0158<br>0.0179<br>-0.0406<br>-0.374**<br>-0.312*<br>-0.122<br>-0.0690                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \label{eq:constraint} \\ \begin{tabular}{ c c c c c c c } \hline triang & (0.126) \\ \hline (0.00512) & (0.00512) \\ \hline (0.00349) & (0.102) \\ \hline (0.226) & (0.0724) \\ \hline (0.0724) & (0.0815) \\ \hline (0.254) & (0.152) \\ \hline (0.152) & (0.162) \\ \hline (0.286) & (0.0659) \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%<br>Deduction 30%<br>Deduction 50%<br>Deduction 50%<br>Deducion 50%<br>Deducion 50%<br>Deducion 50%<br>Ueadweight loss<br>Redistribution<br>Russia<br>UK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maxima<br>0.273***<br>0.00201<br>-0.00394<br>0.0169***<br>0.239***<br>-0.0688*<br>0.0253<br>-0.259<br>0.00178<br>-0.0580<br>0.0753<br>0.133***<br>0.379***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 1\\ lying\\ (0.0553)\\ (0.00223)\\ (0.00244)\\ (0.00188)\\ (0.0685)\\ (0.120)\\ (0.0389)\\ (0.0410)\\ (0.145)\\ (0.0892)\\ (0.0808)\\ (0.0789)\\ (0.0789)\\ (0.0789)\\ (0.0413)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | All countr<br>All countr<br>Partial<br>-0.0640<br>0.00230<br>-0.0121***<br>-0.153***<br>-0.00612<br>0.0606<br>-0.0181<br>0.190<br>-0.0262<br>-0.145**<br>-0.0879<br>0.00637<br>-0.206***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ies, males           marginal effect           lying           (0.0550)           (0.0550)           (0.00244)           (0.00217)           (0.0193)           (0.0462)           (0.0380)           (0.190)           (0.107)           (0.0601)           (0.0384)                                                                                                                                      | $\begin{array}{c} \text{Hone} \\ \hline & \text{Hone} \\ \hline & -0.209^{***} \\ & -0.00221 \\ & 0.00164 \\ & -0.00479^{***} \\ & -0.0863 \\ & 0.256^{***} \\ & 0.00827 \\ & -0.00726 \\ & 0.01726 \\ & 0.0126 \\ & 0.0126 \\ & -0.139^{***} \\ & -0.173^{***} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \text{ist} \\ (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0371) \\ (0.168) \\ (0.109) \\ (0.109) \\ (0.0857) \\ (0.0828) \\ (0.0382) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | All cour<br>Part<br>0.147<br>0.0118***<br>0.00102<br>0.0104***<br>-0.00555<br>0.375<br>-0.0158<br>0.0179<br>-0.0406<br>-0.374**<br>-0.312*<br>-0.122<br>-0.0690<br>-0.0758                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \mbox{tries, males} \\ \mbox{OLS} \\ \mbox{ial lying} \\ (0.126) \\ (0.00512) \\ (0.00485) \\ (0.00349) \\ (0.102) \\ (0.226) \\ (0.0724) \\ (0.0815) \\ (0.254) \\ (0.152) \\ (0.152) \\ (0.162) \\ (0.0659) \\ (0.0659) \\ (0.124) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%<br>Deduction 30%<br>Deduction 30%<br>Deduction 50%<br>Deduction 50%<br>Deadweight loss<br>Redistribution<br>Russia<br>UK<br>Shock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} Maxima \\ 0.273^{***} \\ 0.00201 \\ -0.00394 \\ 0.0169^{***} \\ 0.239^{***} \\ -0.250^{**} \\ -0.0688^{*} \\ 0.0253 \\ -0.209 \\ 0.00178 \\ -0.0580 \\ 0.0753 \\ 0.133^{***} \\ 0.379^{***} \\ 0.379^{***} \\ 0.00513 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 1 \\ lying \\ (0.0553) \\ (0.00223) \\ (0.00244) \\ (0.0088) \\ (0.0088) \\ (0.120) \\ (0.0389) \\ (0.0410) \\ (0.145) \\ (0.0892) \\ (0.0410) \\ (0.0892) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0553) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | All countr<br>All countr<br>Partial<br>-0.0640<br>0.000198<br>0.00230<br>-0.0121***<br>-0.053***<br>-0.06612<br>0.0606<br>-0.0181<br>0.190<br>-0.0262<br>-0.145**<br>-0.0879<br>0.00637<br>-0.206**<br>-0.0659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{l} \hline \textbf{ies, males} \\ marginal effectives \\ \hline lying \\ \hline (0.0550) \\ (0.00244) \\ (0.00227) \\ (0.00193) \\ (0.0462) \\ (0.0874) \\ (0.0380) \\ (0.190) \\ (0.107) \\ (0.107) \\ (0.0641) \\ (0.0384) \\ (0.0372) \\ (0.0417) \\ \end{array}$                                                                                                                         | Hone           -0.209***           -0.00221           0.00164           -0.00479***           -0.0863           0.256***           0.00827           -0.00726           0.0185           0.203**           0.0126           -0.139****           -0.173***           0.0607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \text{ist} \\ (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0368) \\ (0.0368) \\ (0.0368) \\ (0.109) \\ (0.0857) \\ (0.0828) \\ (0.0352) \\ (0.0352) \\ (0.0352) \\ (0.0357) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All cour<br>Part<br>0.147<br>0.0118**<br>0.00102<br>-0.0104***<br>-0.00555<br>0.375<br>-0.0158<br>0.0179<br>-0.0406<br>-0.374**<br>-0.312*<br>-0.122<br>-0.0690<br>-0.0758<br>0.0155                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \mbox{tries, males} \\ \mbox{OLS} \\ \mbox{ial lying} \\ \mbox{(}0.126) \\ \mbox{(}0.00512) \\ \mbox{(}0.00485) \\ \mbox{(}0.00349) \\ \mbox{(}0.102) \\ \mbox{(}0.102) \\ \mbox{(}0.226) \\ \mbox{(}0.0724) \\ \mbox{(}0.0815) \\ \mbox{(}0.254) \\ \mbox{(}0.152) \\ \mbox{(}0.162) \\ \mbox{(}0.286) \\ \mbox{(}0.0659) \\ \mbox{(}0.124) \\ \mbox{(}0.0803) \\ \mbox{(}0.0803) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%<br>Deduction 30%<br>Deduction 30%<br>Deduction 50%<br>Deadweight loss<br>Redistribution<br>Russia<br>UK<br>Shock, yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Maxima<br>0.273***<br>0.00201<br>-0.00394<br>0.0169***<br>-0.250**<br>-0.260**<br>-0.260**<br>-0.0688*<br>0.0253<br>-0.209<br>0.00178<br>-0.0580<br>0.0753<br>0.133***<br>0.379***<br>0.00513<br>0.00470<br>0.005**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 lying<br>(0.0553)<br>(0.00223)<br>(0.00244)<br>(0.00188)<br>(0.0685)<br>(0.120)<br>(0.0389)<br>(0.0410)<br>(0.0428)<br>(0.0428)<br>(0.0428)<br>(0.0428)<br>(0.0428)<br>(0.0428)<br>(0.0428)<br>(0.0428)<br>(0.0320)<br>(0.0320)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | All countr<br>All countr<br>Partial<br>-0.0640<br>0.000198<br>0.00230<br>-0.0121***<br>-0.153***<br>-0.06612<br>0.0606<br>-0.0181<br>0.190<br>-0.0262<br>-0.145**<br>-0.0879<br>0.00637<br>-0.26659<br>0.0382<br>0.0382<br>-0.03**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ies, males           marginal effective           lying           (0.0550)           (0.00244)           (0.00227)           (0.00193)           (0.0462)           (0.0380)           (0.107)           (0.0601)           (0.0383)           (0.107)           (0.0601)           (0.0384)           (0.0384)           (0.0312)           (0.0312)                                                      | Hone           -0.209***           -0.00221           0.00164           -0.00479***           -0.0863           0.256***           0.00827           -0.00726           0.0185           0.0245           0.203**           0.0126           -0.139***           -0.0607           -0.0425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \text{ost} \\ \hline (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0368) \\ (0.0368) \\ (0.109) \\ (0.168) \\ (0.109) \\ (0.0857) \\ (0.0857) \\ (0.0382) \\ (0.0352) \\ (0.0380) \\ (0.0576) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0281) \\ (0.0$ | All cour<br>Part<br>0.147<br>0.0118**<br>0.00102<br>-0.0104***<br>-0.00555<br>0.375<br>-0.0158<br>0.0179<br>-0.0406<br>-0.374**<br>-0.312*<br>-0.122<br>-0.0690<br>-0.0758<br>0.0155<br>-0.0758                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \label{eq:constraint} \text{tries, males} \\ \text{OLS} \\ \text{ial lying} \\ \hline (0.126) \\ (0.00512) \\ (0.00485) \\ (0.00349) \\ (0.102) \\ (0.226) \\ (0.0724) \\ (0.0815) \\ (0.254) \\ (0.152) \\ (0.152) \\ (0.162) \\ (0.286) \\ (0.286) \\ (0.0659) \\ (0.124) \\ (0.0803) \\ (0.0487) \\ (0.151) \\ (0.124) \\ (0.0803) \\ (0.0487) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ (0.111) \\ $ |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%<br>Deduction 30%<br>Deduction 40%<br>Deduction 50%<br>Deadweight loss<br>Redistribution<br>Russia<br>UK<br>Shock<br>Shock, yes<br>Status 200 ECU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximai<br>0.273***<br>0.00201<br>-0.00394<br>0.0169***<br>0.239***<br>-0.0688*<br>0.0253<br>-0.209<br>0.00178<br>-0.0580<br>0.0753<br>0.133***<br>0.379***<br>0.00513<br>0.00470<br>0.122**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 1\\ lying\\ (0.0553)\\ (0.00223)\\ (0.00244)\\ (0.00184)\\ (0.00185)\\ (0.120)\\ (0.0389)\\ (0.0410)\\ (0.145)\\ (0.0892)\\ (0.0808)\\ (0.0789)\\ (0.0413)\\ (0.0553)\\ (0.0413)\\ (0.0553)\\ (0.0609)\\ (0.0609)\\ (0.0609)\\ (0.0742)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | All countr<br>All countr<br>Partial<br>-0.0640<br>0.000198<br>0.00230<br>-0.0121***<br>-0.153***<br>-0.00612<br>0.0606<br>-0.0181<br>0.190<br>-0.0262<br>-0.145**<br>-0.0879<br>0.00637<br>-0.206***<br>-0.0659<br>0.0382<br>-0.124**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ies, males           marginal effect           lying           (0.0550)           (0.00241)           (0.00227)           (0.00193)           (0.0462)           (0.0363)           (0.190)           (0.0461)           (0.0601)           (0.0383)           (0.190)           (0.0383)           (0.197)           (0.0384)           (0.0372)           (0.0417)           (0.0312)           (0.0501) | Hone           -0.209***           -0.00221           0.00164           -0.00479***           -0.0863           0.256***           0.00827           -0.00726           0.0185           0.0245           0.023**           0.0126           -0.173****           -0.0607           -0.0429           0.00167           0.0542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \text{ost} \\ (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0546) \\ (0.0368) \\ (0.0368) \\ (0.0371) \\ (0.168) \\ (0.109) \\ (0.0857) \\ (0.0857) \\ (0.0382) \\ (0.0352) \\ (0.0352) \\ (0.0356) \\ (0.0576) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.0585) \\ (0.05$      | All coun<br>Part<br>0.0118**<br>0.00102<br>-0.0104***<br>-0.00555<br>0.375<br>-0.0158<br>0.0179<br>-0.0406<br>-0.374**<br>-0.312*<br>-0.0122<br>-0.0690<br>-0.0758<br>0.0155<br>-0.0754<br>-0.0155<br>-0.0704<br>-0.150<br>0.0100                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \textbf{tries, males} \\ \textbf{OLS} \\ \textbf{ial lying} \\ \hline (0.126) \\ (0.00512) \\ (0.00485) \\ (0.00349) \\ (0.00349) \\ (0.00349) \\ (0.0226) \\ (0.0724) \\ (0.0815) \\ (0.254) \\ (0.152) \\ (0.152) \\ (0.286) \\ (0.0659) \\ (0.124) \\ (0.0803) \\ (0.0487) \\ (0.115) \\ (0.146) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%<br>Deduction 30%<br>Deduction 50%<br>Deduction 50%<br>Deduction 50%<br>Deduction 50%<br>Deduction 50%<br>Deduction 50%<br>Scatuse<br>Status<br>Status<br>Status<br>Status<br>Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Maxima<br>0.273***<br>0.00201<br>-0.00394<br>0.0169***<br>0.239***<br>-0.0688*<br>0.0253<br>-0.259<br>0.00178<br>-0.0580<br>0.0753<br>0.133***<br>0.379***<br>0.00513<br>0.00470<br>0.122**<br>-0.0905<br>0.0894*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 1\\ lying\\ (0.0553)\\ (0.00223)\\ (0.00244)\\ (0.00184)\\ (0.00185)\\ (0.120)\\ (0.0389)\\ (0.0410)\\ (0.145)\\ (0.0892)\\ (0.0389)\\ (0.0789)\\ (0.0428)\\ (0.0789)\\ (0.0428)\\ (0.0789)\\ (0.0428)\\ (0.0553)\\ (0.0553)\\ (0.0553)\\ (0.0553)\\ (0.0544)\\ (0.0743)\\ (0.0743)\\ (0.0743)\\ (0.0743)\\ (0.0743)\\ (0.0743)\\ (0.0544)\\ (0.0743)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.054)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)\\ (0.0544)$ | All countr<br>All countr<br>Partial<br>-0.0640<br>0.000198<br>0.00230<br>-0.0121***<br>-0.0153***<br>-0.00612<br>0.0606<br>-0.0181<br>0.190<br>-0.0262<br>-0.145**<br>-0.0659<br>0.0382<br>-0.124**<br>0.0362<br>0.145***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                       | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \text{ist} \\ (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0368) \\ (0.0371) \\ (0.168) \\ (0.109) \\ (0.0827) \\ (0.0828) \\ (0.0352) \\ (0.0352) \\ (0.0352) \\ (0.0380) \\ (0.0576) \\ (0.0281) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.0855) \\ (0.085) \\ (0.085) \\ (0.0855) \\ (0.085)$      | All cour<br>Part<br>0.147<br>0.0118**<br>0.00102<br>-0.0104***<br>-0.00555<br>0.375<br>-0.0158<br>0.0179<br>-0.0406<br>-0.374**<br>-0.312*<br>-0.122<br>-0.0690<br>-0.0758<br>0.0155<br>-0.0758<br>0.0155<br>-0.0704<br>-0.150<br>0.190<br>0.09571                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \mbox{tries, males} \\ \mbox{OLS} \\ \mbox{ial lying} \\ (0.126) \\ (0.00512) \\ (0.00485) \\ (0.00349) \\ (0.102) \\ (0.226) \\ (0.0724) \\ (0.0815) \\ (0.254) \\ (0.152) \\ (0.152) \\ (0.162) \\ (0.286) \\ (0.0659) \\ (0.124) \\ (0.0803) \\ (0.0487) \\ (0.115) \\ (0.115) \\ (0.146) \\ (0.0920) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%<br>Deduction 30%<br>Deduction 30%<br>Deduction 50%<br>Deduction 50%<br>Deadweight loss<br>Redistribution<br>Russia<br>UK<br>Shock<br>Shock, yes<br>Status, 200 ECU<br>Non-fixed<br>Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} Maxima \\ 0.273^{***} \\ 0.00201 \\ -0.00394 \\ 0.0169^{***} \\ 0.239^{***} \\ -0.250^{**} \\ -0.0688^{*} \\ 0.0253 \\ -0.209 \\ 0.00178 \\ -0.0580 \\ 0.0753 \\ 0.133^{***} \\ 0.379^{***} \\ 0.379^{***} \\ 0.379^{***} \\ 0.00513 \\ 0.00470 \\ 0.122^{**} \\ -0.0905 \\ 0.0884^{*} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 1 \\ lying \\ (0.0553) \\ (0.00223) \\ (0.00244) \\ (0.00885) \\ (0.0389) \\ (0.0389) \\ (0.0410) \\ (0.145) \\ (0.0892) \\ (0.0410) \\ (0.145) \\ (0.0892) \\ (0.0428) \\ (0.0789) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0$                   | $\begin{array}{c c} \hline \textbf{All countr}\\ \hline \textbf{All countr}\\ Partial\\ \hline Partial\\ \hline 0.0640\\ 0.000198\\ 0.00230\\ \hline 0.0121^{***}\\ \hline 0.053^{***}\\ \hline 0.053^{***}\\ \hline 0.0606\\ \hline 0.0181\\ 0.190\\ \hline 0.0262\\ \hline 0.145^{**}\\ \hline 0.0879\\ 0.00637\\ \hline 0.2062\\ \hline 0.0382\\ \hline 0.0382\\ \hline 0.0362\\ \hline 0.124^{**}\\ 0.0362\\ \hline 0.145^{***}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{l} \hline \textbf{ies, males} \\ marginal effectives \\ \hline lying \\ \hline (0.0550) \\ (0.00244) \\ (0.00227) \\ (0.00193) \\ (0.0462) \\ (0.0874) \\ (0.0380) \\ (0.0363) \\ (0.190) \\ (0.107) \\ (0.0641) \\ (0.0364) \\ (0.0384) \\ (0.0372) \\ (0.0417) \\ (0.0312) \\ (0.0501) \\ (0.0774) \\ (0.0376) \end{array}$                                                               | $\begin{array}{c} & \text{Hone} \\ \hline & -0.209^{***} \\ -0.00221 \\ 0.00164 \\ -0.00479^{***} \\ -0.0863 \\ 0.256^{***} \\ 0.00827 \\ -0.00726 \\ 0.0185 \\ 0.0245 \\ 0.203^{**} \\ 0.0126 \\ -0.139^{***} \\ 0.0126 \\ -0.139^{***} \\ 0.0607 \\ -0.0429 \\ 0.00167 \\ 0.0543 \\ 0.0567 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \text{ist} \\ (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0368) \\ (0.0368) \\ (0.0368) \\ (0.109) \\ (0.0362) \\ (0.0352) \\ (0.0352) \\ (0.0352) \\ (0.0352) \\ (0.0355) \\ (0.0281) \\ (0.0555) \\ (0.0454) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | All cour<br>Part<br>0.147<br>0.0118**<br>0.00102<br>-0.0104***<br>-0.00555<br>0.375<br>-0.0158<br>0.0179<br>-0.0406<br>-0.374**<br>-0.312*<br>-0.122<br>-0.0690<br>-0.0758<br>0.0155<br>-0.0758<br>0.0155<br>-0.0704<br>-0.150<br>0.190<br>-0.00571<br>0.286                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \mbox{tries, males} \\ \mbox{OLS} \\ \mbox{ial lying} \\ \mbox{(}0.126\mbox) \\ \mbox{(}0.00512\mbox) \\ \mbox{(}0.00485\mbox) \\ \mbox{(}0.00349\mbox) \\ \mbox{(}0.00349\mbox) \\ \mbox{(}0.102\mbox) \\ \mbox{(}0.102\mbox) \\ \mbox{(}0.0724\mbox) \\ \mbox{(}0.0724\mbox) \\ \mbox{(}0.0724\mbox) \\ \mbox{(}0.0724\mbox) \\ \mbox{(}0.0815\mbox) \\ \mbox{(}0.152\mbox) \\ \mbox{(}0.162\mbox) \\ \mbox{(}0.286\mbox) \\ \mbox{(}0.0803\mbox) \\ \mbox{(}0.0487\mbox) \\ \mbox{(}0.146\mbox) \\ \mbox{(}0.0939\mbox) \\ \mbox{(}0.004\mbox) \\ \mbox{(}0.004\mbox) \\ \mbox{(}0.004\mbox) \\ \mbox{(}0.004\mbox) \\ \mbox{(}0.0939\mbox) \\ \mbox{(}0.004\mbox) \\ \mbox) \\ \mbox{(}0.004\mbox) \\ \mbox) \\ \mbox{(}0.004\mbox) \\ \mbox) \\ \mbox{(}0.004\mbox) \\ \mbox) \\ \mbox) \\ \mbox{(}0.004\mbox) \\ \mbox) \mbox$                                                                       |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%<br>Deduction 30%<br>Deduction 30%<br>Deduction 50%<br>Deduction 50%<br>Deadweight loss<br>Redistribution<br>Russia<br>UK<br>Shock<br>Shock, yes<br>Status, 200 ECU<br>Non-fixed<br>Constant<br>Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Maxima<br>0.273***<br>0.00201<br>-0.00394<br>0.0169***<br>-0.250**<br>-0.253<br>-0.209<br>0.00178<br>-0.0580<br>0.0753<br>0.133***<br>0.379***<br>0.00513<br>0.00470<br>0.122**<br>-0.0905<br>0.0884*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 1 \\ lying \\ (0.0553) \\ (0.00223) \\ (0.00244) \\ (0.0088) \\ (0.0685) \\ (0.120) \\ (0.0389) \\ (0.0410) \\ (0.145) \\ (0.0892) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0553) \\ (0.0320) \\ (0.0609) \\ (0.0743) \\ (0.0454) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | All countr<br>All countr<br>Partial<br>-0.0640<br>0.000198<br>0.00230<br>-0.0121***<br>-0.153***<br>-0.06612<br>0.0606<br>-0.0181<br>0.190<br>-0.0262<br>-0.145**<br>-0.0879<br>0.00637<br>-0.26659<br>0.0382<br>-0.124***<br>-0.0362<br>-0.145***<br>4968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \text{Hone} \\ \hline & \text{Hone} \\ \hline & -0.209^{***} \\ & -0.00221 \\ & 0.00164 \\ & -0.00479^{***} \\ & -0.0863 \\ & 0.256^{***} \\ & 0.00827 \\ & -0.00726 \\ & 0.0185 \\ & 0.0245 \\ & 0.0245 \\ & 0.0126 \\ & -0.139^{***} \\ & 0.0126 \\ & -0.139^{***} \\ & 0.0126 \\ & -0.139^{***} \\ & 0.0126 \\ & -0.139^{***} \\ & 0.0126 \\ & -0.0429 \\ & 0.00167 \\ & -0.0543 \\ & 0.0567 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \text{ost} \\ (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0368) \\ (0.0368) \\ (0.109) \\ (0.168) \\ (0.109) \\ (0.0857) \\ (0.0857) \\ (0.0857) \\ (0.0352) \\ (0.0352) \\ (0.0352) \\ (0.0352) \\ (0.0352) \\ (0.0352) \\ (0.0352) \\ (0.0352) \\ (0.0454) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | All cour           Part           0.147           0.0118**           0.00102           -0.0104***           -0.00555           0.375           -0.0158           0.0179           -0.0406           -0.374**           -0.122           -0.0690           -0.0758           0.0155           -0.0704           -0.150           0.190           -0.00571           0.286           791                                                                                                                                                         | $\begin{array}{c} \mbox{tries, males} \\ OLS \\ \mbox{ial lying} \\ \hline (0.126) \\ (0.00512) \\ (0.00485) \\ (0.00349) \\ (0.102) \\ (0.226) \\ (0.0724) \\ (0.0815) \\ (0.254) \\ (0.152) \\ (0.152) \\ (0.162) \\ (0.286) \\ (0.286) \\ (0.0659) \\ (0.124) \\ (0.0803) \\ (0.0487) \\ (0.115) \\ (0.146) \\ (0.0939) \\ (0.204) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%<br>Deduction 30%<br>Deduction 40%<br>Deduction 50%<br>Deadweight loss<br>Redistribution<br>Russia<br>UK<br>Shock<br>Shock, yes<br>Status<br>Status, 200 ECU<br>Non-fixed<br>Constant<br>Observations<br>Log pseudolikelihood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maxima<br>0.273***<br>0.00201<br>-0.00394<br>0.0169***<br>0.230***<br>-0.0688*<br>0.0253<br>-0.209<br>0.00178<br>-0.0580<br>0.0753<br>0.133***<br>0.379***<br>0.00513<br>0.00470<br>0.122**<br>-0.0905<br>0.0884*<br>4968<br>-4062.9836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 1 \\ lying \\ (0.0553) \\ (0.00223) \\ (0.00244) \\ (0.00184) \\ (0.00185) \\ (0.120) \\ (0.0389) \\ (0.0410) \\ (0.145) \\ (0.0802) \\ (0.0410) \\ (0.0789) \\ (0.0789) \\ (0.0789) \\ (0.0789) \\ (0.0413) \\ (0.0413) \\ (0.0413) \\ (0.0553) \\ (0.0553) \\ (0.0609) \\ (0.0743) \\ (0.0454) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | All countr<br>All countr<br>Partial<br>-0.0640<br>0.000198<br>0.00230<br>0.0121***<br>-0.153***<br>-0.00612<br>0.0606<br>-0.0181<br>0.190<br>-0.0262<br>-0.145**<br>-0.0657<br>-0.0657<br>-0.0659<br>0.0382<br>-0.124**<br>0.0362<br>-0.145**<br>4968<br>-4062.9836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                       | Hone           -0.209***           -0.00221           0.00164           -0.00479***           -0.0863           0.256***           0.00827           -0.00726           0.0185           0.0245           0.203**           0.0126           -0.139***           -0.1667           -0.0667           -0.0543           0.0567           4968           -4062.9836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{ist} \\ (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0371) \\ (0.168) \\ (0.109) \\ (0.0857) \\ (0.0828) \\ (0.0352) \\ (0.0380) \\ (0.0576) \\ (0.0281) \\ (0.0585) \\ (0.0855) \\ (0.0454) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | All cour<br>Part<br>0.147<br>0.0118**<br>0.00102<br>0.0104***<br>-0.00555<br>0.375<br>0.0158<br>0.0179<br>-0.0406<br>-0.374**<br>-0.312*<br>-0.0122<br>-0.0690<br>-0.0758<br>0.0155<br>-0.0758<br>0.0155<br>-0.0758<br>0.0155<br>-0.0704<br>-0.150<br>0.190<br>-0.0286<br>791                                                                                                                                                                                                                                                                  | $\begin{array}{c} \mbox{tries, males} \\ OLS \\ \mbox{ial lying} \\ \hline (0.126) \\ (0.00512) \\ (0.00485) \\ (0.00349) \\ (0.102) \\ (0.226) \\ (0.0724) \\ (0.0815) \\ (0.254) \\ (0.152) \\ (0.162) \\ (0.162) \\ (0.162) \\ (0.162) \\ (0.162) \\ (0.162) \\ (0.162) \\ (0.162) \\ (0.162) \\ (0.162) \\ (0.162) \\ (0.162) \\ (0.162) \\ (0.162) \\ (0.162) \\ (0.162) \\ (0.163) \\ (0.0803) \\ (0.0487) \\ (0.115) \\ (0.115) \\ (0.146) \\ (0.0939) \\ (0.204) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%<br>Deduction 30%<br>Deduction 50%<br>Deduction 50%<br>Deduction 50%<br>Deadweight loss<br>Redistribution<br>Russia<br>UK<br>Shock, yes<br>Status<br>Status, 200 ECU<br>Non-fixed<br>Constant<br>Observations<br>Log pseudolikelihood<br>R <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{r} & Maxima \\ 0.273^{***} \\ 0.00201 \\ -0.00394 \\ 0.0169^{***} \\ 0.239^{***} \\ -0.250^{**} \\ -0.0688^{*} \\ 0.0253 \\ -0.259 \\ 0.00178 \\ -0.0580 \\ 0.0753 \\ 0.133^{***} \\ 0.379^{***} \\ 0.379^{***} \\ 0.00513 \\ 0.00470 \\ 0.122^{**} \\ -0.0905 \\ 0.0884^{*} \\ \hline 4968 \\ -4062.9836 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 1 \\ lying \\ (0.0553) \\ (0.00223) \\ (0.00244) \\ (0.00184) \\ (0.00185) \\ (0.120) \\ (0.0389) \\ (0.0410) \\ (0.145) \\ (0.0892) \\ (0.0808) \\ (0.0789) \\ (0.0413) \\ (0.0553) \\ (0.0553) \\ (0.0553) \\ (0.0553) \\ (0.05743) \\ (0.0454) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | All countr<br>All countr<br>Partial<br>-0.0640<br>0.000198<br>0.00230<br>-0.0121***<br>-0.153***<br>-0.0661<br>0.0181<br>0.190<br>-0.0262<br>-0.145**<br>-0.0879<br>0.00637<br>-0.206***<br>-0.0659<br>0.0382<br>-0.145**<br>-0.0362<br>-0.145**<br>4968<br>-4062.9836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{l} \textbf{ies, males} \\ marginal effect \\ lying \\ (0.0550) \\ (0.00244) \\ (0.00227) \\ (0.00193) \\ (0.00193) \\ (0.00462) \\ (0.0384) \\ (0.0363) \\ (0.107) \\ (0.0643) \\ (0.0384) \\ (0.0372) \\ (0.0417) \\ (0.0312) \\ (0.0376) \\ \end{array}$                                                                                                                                  | $\begin{tabular}{ c c c c c c c } \hline Hone \\ \hline & -0.209^{***} \\ & -0.00221 \\ & 0.00164 \\ & -0.00479^{***} \\ & -0.0863 \\ & 0.256^{***} \\ & 0.00857 \\ & -0.00726 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & -0.139^{***} \\ & 0.0126 \\ & -0.139^{***} \\ & 0.0126 \\ & -0.139^{***} \\ & 0.0126 \\ & -0.139^{***} \\ & 0.0126 \\ & -0.0429 \\ & 0.00167 \\ & 0.0543 \\ & 0.0567 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \text{ist} \\ (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0371) \\ (0.0368) \\ (0.0371) \\ (0.168) \\ (0.109) \\ (0.0828) \\ (0.0352) \\ (0.0352) \\ (0.0380) \\ (0.0576) \\ (0.0281) \\ (0.0585) \\ (0.0855) \\ (0.0454) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | All cour           Part           0.147           0.0118**           0.00102           -0.00555           0.375           -0.0158           0.0179           -0.0406           -0.374**           -0.122           -0.0690           -0.0758           0.0155           0.0758           0.0150           0.190           -0.00571           0.286           791           0.1318                                                                                                                                                              | $\begin{array}{c} \mbox{tries, males} \\ OLS \\ \mbox{ial lying} \\ (0.126) \\ (0.00512) \\ (0.00485) \\ (0.00349) \\ (0.102) \\ (0.226) \\ (0.0724) \\ (0.0815) \\ (0.254) \\ (0.152) \\ (0.152) \\ (0.162) \\ (0.286) \\ (0.0659) \\ (0.124) \\ (0.0803) \\ (0.0487) \\ (0.115) \\ (0.115) \\ (0.115) \\ (0.146) \\ (0.0939) \\ (0.204) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%<br>Deduction 30%<br>Deduction 30%<br>Deduction 50%<br>Deadweight loss<br>Redistribution<br>Russia<br>UK<br>Shock<br>Shock, yes<br>Status<br>Status, 200 ECU<br>Non-fixed<br>Constant<br>Observations<br>Log pseudolikelihood<br>R <sup>2</sup><br>D20=D30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{r} & Maxima \\ \hline & 0.273^{***} \\ 0.00201 \\ -0.00394 \\ 0.0169^{***} \\ 0.239^{***} \\ -0.250^{**} \\ -0.0688^{*} \\ 0.0253 \\ -0.209 \\ 0.00178 \\ -0.0580 \\ 0.0753 \\ 0.133^{***} \\ 0.00513 \\ 0.133^{***} \\ 0.00513 \\ 0.00470 \\ 0.122^{**} \\ -0.0905 \\ 0.0884^{*} \\ \hline \\ \begin{array}{r} 4968 \\ -4062.9836 \\ 0.0253 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 1 \\ lying \\ (0.0553) \\ (0.00223) \\ (0.00244) \\ (0.0088) \\ (0.0685) \\ (0.120) \\ (0.0389) \\ (0.0410) \\ (0.145) \\ (0.0892) \\ (0.0410) \\ (0.0410) \\ (0.0428) \\ (0.0789) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.$                   | All countr<br>All countr<br>Partial<br>-0.0640<br>0.000198<br>0.00230<br>-0.0121***<br>-0.053***<br>-0.06612<br>0.0606<br>-0.0181<br>0.190<br>-0.0262<br>-0.145**<br>-0.0659<br>0.0382<br>-0.145***<br>-0.0659<br>0.0382<br>-0.145***<br>4968<br>-4062.9836<br>0.0351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{l} \textbf{ies, males} \\ marginal effect \\ lying \\ (0.0550) \\ (0.00244) \\ (0.00227) \\ (0.00127) \\ (0.00127) \\ (0.00462) \\ (0.0380) \\ (0.0380) \\ (0.190) \\ (0.107) \\ (0.0641) \\ (0.0363) \\ (0.0384) \\ (0.0372) \\ (0.0312) \\ (0.0372) \\ (0.0501) \\ (0.0774) \\ (0.0376) \end{array}$                                                                                      | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \text{ist} \\ (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0368) \\ (0.0368) \\ (0.0368) \\ (0.0361) \\ (0.0887) \\ (0.0857) \\ (0.0828) \\ (0.0352) \\ (0.0352) \\ (0.0352) \\ (0.0355) \\ (0.0281) \\ (0.0555) \\ (0.0454) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | All cour           Part           0.0118**           0.00102           -0.0104***           -0.00555           0.375           -0.0158           0.0179           -0.0406           -0.374**           -0.122           -0.0690           -0.0758           0.0155           0.127           -0.0590           -0.0758           0.0155           0.190           -0.00571           0.286           791           0.1318           0.660                                                                                                      | $\begin{array}{c} \mbox{tries, males} \\ \mbox{OLS} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%<br>Deduction 30%<br>Deduction 40%<br>Deduction 50%<br>Deadweight loss<br>Redistribution<br>Russia<br>UK<br>Shock<br>Shock, yes<br>Status, 200 ECU<br>Non-fixed<br>Constant<br>Observations<br>Log pseudolikelihood<br>R <sup>2</sup><br>D20=D30<br>D20=D40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{r} & Maxima \\ 0.273^{***} \\ 0.00201 \\ -0.00394 \\ 0.0169^{***} \\ 0.239^{***} \\ -0.250^{**} \\ -0.0688^{*} \\ 0.0253 \\ -0.209 \\ 0.00178 \\ -0.0580 \\ 0.0753 \\ 0.133^{***} \\ 0.379^{***} \\ 0.379^{***} \\ 0.00513 \\ 0.00470 \\ 0.122^{**} \\ -0.0905 \\ 0.0884^{*} \\ \hline \\ \begin{array}{r} 4968 \\ -4062.9836 \\ 0.0253 \\ 0.335 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 1 \\ lying \\ (0.0553) \\ (0.00223) \\ (0.00244) \\ (0.0088) \\ (0.0685) \\ (0.120) \\ (0.0389) \\ (0.0410) \\ (0.145) \\ (0.0892) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0454) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All countr           Partial           -0.0640           0.000198           0.00230           -0.153***           -0.153***           -0.06612           0.00198           0.00230           -0.0121***           -0.06612           0.0606           -0.0181           0.190           -0.0262           -0.145**           -0.0659           0.0382           -0.124**           0.0362           -0.145**           4968           -4062.9836           0.0351           0.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{l} \textbf{ies, males} \\ marginal effectives \\ lying \\ (0.0550) \\ (0.00244) \\ (0.00227) \\ (0.00193) \\ (0.0462) \\ (0.0874) \\ (0.0380) \\ (0.107) \\ (0.0363) \\ (0.107) \\ (0.0643) \\ (0.0384) \\ (0.0372) \\ (0.0417) \\ (0.0312) \\ (0.0501) \\ (0.0774) \\ (0.0376) \end{array}$                                                                                                | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \text{ist} \\ \hline (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0368) \\ (0.0368) \\ (0.109) \\ (0.0387) \\ (0.0887) \\ (0.0382) \\ (0.0382) \\ (0.0380) \\ (0.0576) \\ (0.0281) \\ (0.0585) \\ (0.0454) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | All cour           Part           0.147           0.0118**           0.00102           -0.0104***           -0.00555           0.375           -0.0158           0.0179           -0.0406           -0.374**           -0.122           -0.0690           -0.0758           0.0155           -0.0704           -0.150           0.190           -0.00571           0.286           791           0.1318           0.660           0.926                                                                                                        | $\begin{array}{c} \mbox{tries, males} \\ \mbox{OLS} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%<br>Deduction 30%<br>Deduction 50%<br>Deduction 50%<br>Deduction 50%<br>Deadweight loss<br>Redistribution<br>Russia<br>UK<br>Shock, yes<br>Status<br>Status, 200 ECU<br>Non-fixed<br>Constant<br>Observations<br>Log pseudolikelihood<br>R <sup>2</sup><br>D20=D30<br>D20=D50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maxima<br>0.273***<br>0.00201<br>-0.00394<br>0.0169***<br>0.239***<br>-0.250**<br>-0.0688*<br>0.0253<br>-0.209<br>0.00178<br>-0.0580<br>0.0753<br>0.133***<br>0.379***<br>0.00513<br>0.00470<br>0.122**<br>-0.0905<br>0.0884*<br>4968<br>-4062.9836<br>0.0253<br>0.335<br>0.446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 1 \\ lying \\ (0.0553) \\ (0.00223) \\ (0.00244) \\ (0.00184) \\ (0.001885) \\ (0.120) \\ (0.0389) \\ (0.0410) \\ (0.145) \\ (0.0808) \\ (0.0789) \\ (0.0413) \\ (0.0808) \\ (0.0789) \\ (0.0413) \\ (0.0413) \\ (0.0453) \\ (0.0454) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{tabular}{ c c c c } \hline All countr \\ All countr \\ Partial \\ \hline Partial \\ \hline 0.0640 \\ 0.000198 \\ 0.00230 \\ 0.0121^{***} \\ -0.153^{***} \\ -0.06112 \\ 0.0606 \\ -0.0181 \\ 0.190 \\ -0.0262 \\ -0.145^{**} \\ -0.0879 \\ 0.00637 \\ -0.0659 \\ 0.0362 \\ -0.124^{**} \\ 0.0362 \\ -0.145^{***} \\ \hline \\ \hline \\ 4968 \\ -4062.9836 \\ \hline \\ 0.0351 \\ 0.429 \\ \hline \\ 0.429 \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ies, males<br>marginal effect<br>lying<br>(0.0550)<br>(0.00244)<br>(0.00247)<br>(0.00193)<br>(0.0462)<br>(0.0874)<br>(0.0380)<br>(0.190)<br>(0.107)<br>(0.0601)<br>(0.0643)<br>(0.0372)<br>(0.0417)<br>(0.0312)<br>(0.0501)<br>(0.0774)<br>(0.0376)                                                                                                                                                        | $\begin{tabular}{ c c c c c } \hline Hone \\ \hline & -0.209^{***} \\ & -0.00221 \\ & 0.00164 \\ & -0.00479^{***} \\ & -0.0863 \\ & 0.256^{***} \\ & 0.00827 \\ & -0.00726 \\ & 0.0126 \\ & 0.0245 \\ & 0.0245 \\ & 0.0245 \\ & 0.0245 \\ & 0.0245 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 $ | $\begin{array}{c} \text{ist} \\ (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0371) \\ (0.168) \\ (0.109) \\ (0.0857) \\ (0.0828) \\ (0.0380) \\ (0.0857) \\ (0.0380) \\ (0.0352) \\ (0.0380) \\ (0.0576) \\ (0.0281) \\ (0.0855) \\ (0.0454) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | All cour           Part           0.147           0.0118**           0.00102           0.0118**           -0.00555           0.375           0.375           0.0158           0.0179           -0.0406           -0.312*           -0.122           -0.0690           -0.0758           0.0155           0.0758           0.0155           0.0758           0.0150           0.190           -0.00571           0.286           791           0.1318           0.660           0.926           0.00747                                         | $\begin{array}{c} \mbox{tries, males} \\ \mbox{OLS} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%<br>Deduction 30%<br>Deduction 50%<br>Deduction 50%<br>Deduction 50%<br>Deadweight loss<br>Redistribution<br>Russia<br>UK<br>Shock, yes<br>Status<br>Status, 200 ECU<br>Non-fixed<br>Constant<br>Observations<br>Log pseudolikelihood<br>R <sup>2</sup><br>D20=D30<br>D20=D50<br>D30=D40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{r} & Maxima \\ \hline & 0.273^{***} \\ 0.00201 \\ -0.00394 \\ 0.0169^{***} \\ 0.239^{***} \\ -0.250^{**} \\ -0.0688^{*} \\ 0.0253 \\ -0.0259 \\ 0.00178 \\ -0.0580 \\ 0.0753 \\ 0.133^{***} \\ 0.00513 \\ 0.00470 \\ 0.122^{**} \\ -0.0905 \\ 0.0884^{*} \\ \hline & 4968 \\ -4062.9836 \\ 0.0253 \\ 0.335 \\ 0.335 \\ 0.446 \\ 0.111 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 1\\ lying\\ (0.0553)\\ (0.00223)\\ (0.00244)\\ (0.00184)\\ (0.00185)\\ (0.120)\\ (0.0389)\\ (0.0410)\\ (0.145)\\ (0.0892)\\ (0.0789)\\ (0.0789)\\ (0.0789)\\ (0.0428)\\ (0.0789)\\ (0.0428)\\ (0.0789)\\ (0.0428)\\ (0.0428)\\ (0.0454)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{tabular}{ c c c c } \hline All countr \\ All countr \\ Partial \\ \hline Partial \\ \hline Partial \\ \hline 0.0640 \\ 0.000198 \\ 0.00230 \\ -0.0121^{***} \\ -0.153^{***} \\ -0.06612 \\ 0.0606 \\ -0.0181 \\ 0.190 \\ -0.0262 \\ -0.145^{**} \\ -0.0879 \\ 0.00637 \\ -0.0262 \\ -0.145^{**} \\ -0.0659 \\ 0.0382 \\ -0.124^{**} \\ 0.0362 \\ -0.145^{***} \\ \hline 4968 \\ -4062.9836 \\ \hline 0.0351 \\ 0.429 \\ 0.429 \\ 0.429 \\ 0.271 \\ \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ies, males<br>marginal effect<br>lying<br>(0.0550)<br>(0.00244)<br>(0.00227)<br>(0.00193)<br>(0.0462)<br>(0.0874)<br>(0.0380)<br>(0.0363)<br>(0.190)<br>(0.107)<br>(0.0601)<br>(0.0643)<br>(0.0384)<br>(0.0384)<br>(0.0372)<br>(0.0417)<br>(0.0312)<br>(0.0501)<br>(0.0774)<br>(0.0376)                                                                                                                    | $\begin{tabular}{ c c c c c c } \hline Hone \\ \hline & -0.209^{***} \\ & -0.00221 \\ & 0.00164 \\ & -0.00479^{***} \\ & -0.0863 \\ & 0.256^{***} \\ & 0.00827 \\ & -0.00726 \\ & 0.0126 \\ & 0.0126 \\ & 0.0245 \\ & 0.0245 \\ & 0.0245 \\ & 0.0245 \\ & 0.0245 \\ & 0.0245 \\ & 0.0245 \\ & 0.0245 \\ & 0.00726 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.0126 \\ & 0.00167 \\ & 0.0543 \\ & 0.0567 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \text{ist} \\ (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0368) \\ (0.0368) \\ (0.0368) \\ (0.0362) \\ (0.0362) \\ (0.0352) \\ (0.0352) \\ (0.0352) \\ (0.0352) \\ (0.0352) \\ (0.0355) \\ (0.0281) \\ (0.0855) \\ (0.0454) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | All cour           Part           0.0118**           0.00102           -0.0104***           -0.00555           0.375           -0.0158           0.0179           -0.0406           -0.374**           -0.122           -0.0690           -0.0758           0.0155           0.00571           0.286           791           0.1318           0.660           0.926           0.00747           0.819                                                                                                                                          | $\begin{array}{c} \mbox{tries, males} \\ \mbox{OLS} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} \text{RET rank} \\ \text{RET deviation} \\ \text{Age} \\ \text{Period} \\ \text{DG=0} \\ \text{DG frac} \\ \text{Deduction 20\%} \\ \text{Deduction 30\%} \\ \text{Deduction 50\%} \\ \text{Shock} \\ \text{Shoch} \\ \text{Shoch}$ | $\begin{array}{c} \mbox{Maxima}\\ 0.273^{***}\\ 0.00201\\ -0.00394\\ 0.0169^{***}\\ 0.239^{***}\\ -0.250^{**}\\ -0.0688^{*}\\ 0.0253\\ -0.209\\ 0.00178\\ -0.0580\\ 0.0753\\ 0.133^{***}\\ 0.00513\\ 0.133^{***}\\ 0.00513\\ 0.00470\\ 0.122^{**}\\ -0.0905\\ 0.0884^{*}\\ \hline \\ 4968\\ -4062.9836\\ 0.0253\\ 0.335\\ 0.446\\ 0.111\\ 0.795\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 1 \\ lying \\ (0.0553) \\ (0.00223) \\ (0.00244) \\ (0.0088) \\ (0.0685) \\ (0.120) \\ (0.0389) \\ (0.0410) \\ (0.145) \\ (0.0892) \\ (0.0410) \\ (0.0413) \\ (0.0789) \\ (0.0428) \\ (0.0789) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0428) \\ (0.0454) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{tabular}{ c c c c } \hline All countr \\ All countr \\ Partial \\ \hline Partia \\ \hline Partial \\ \hline Partial \\ \hline Partial \\ $ | ies, males<br>marginal effe-<br>lying<br>(0.0550)<br>(0.00244)<br>(0.00227)<br>(0.00193)<br>(0.0462)<br>(0.0874)<br>(0.0380)<br>(0.107)<br>(0.0601)<br>(0.0643)<br>(0.0384)<br>(0.0384)<br>(0.0372)<br>(0.0417)<br>(0.0312)<br>(0.0501)<br>(0.0774)<br>(0.0376)                                                                                                                                            | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \text{ist} \\ (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0368) \\ (0.0368) \\ (0.0368) \\ (0.0361) \\ (0.0887) \\ (0.0857) \\ (0.0828) \\ (0.0352) \\ (0.0352) \\ (0.0352) \\ (0.0355) \\ (0.0281) \\ (0.0555) \\ (0.0454) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | All cour           Part           0.0118**           0.00102           -0.0104***           -0.00555           0.375           -0.0158           0.0179           -0.0406           -0.374**           -0.122           -0.0690           -0.0758           0.0155           0.0758           0.0155           0.0758           0.0155           0.0704           -0.150           0.190           -0.00571           0.286           791           0.1318           0.660           0.926           0.00747           0.819           0.0120  | $\begin{array}{c} \mbox{tries, males} \\ \mbox{OLS} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RET rank<br>RET deviation<br>Age<br>Period<br>DG=0<br>DG frac<br>Deduction 20%<br>Deduction 30%<br>Deduction 50%<br>Deadweight loss<br>Redistribution<br>Russia<br>UK<br>Shock<br>Shock<br>Shock<br>Status, 200 ECU<br>Non-fixed<br>Constant<br>Observations<br>Log pseudolikelihood<br>R <sup>2</sup><br>D20=D30<br>D20=D40<br>D20=D50<br>D30=D50<br>D40=D50<br>D40=D50<br>D40=D50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} & Maxima \\ \hline & 0.273^{***} \\ 0.00201 \\ -0.00394 \\ 0.0169^{***} \\ 0.239^{***} \\ -0.250^{**} \\ -0.0688^{*} \\ 0.0253 \\ -0.209 \\ 0.00178 \\ -0.0580 \\ 0.0753 \\ 0.133^{***} \\ 0.379^{***} \\ 0.379^{***} \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.00513 \\ 0.0$ | $\begin{array}{c} 1\\ lying\\ (0.0553)\\ (0.00223)\\ (0.00244)\\ (0.00184)\\ (0.00185)\\ (0.120)\\ (0.0389)\\ (0.0410)\\ (0.145)\\ (0.0892)\\ (0.0808)\\ (0.0789)\\ (0.0413)\\ (0.0413)\\ (0.0413)\\ (0.0413)\\ (0.0413)\\ (0.0413)\\ (0.0413)\\ (0.0454)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | All countr<br>All countr<br>Partial<br>-0.0640<br>0.000198<br>0.00230<br>-0.0121***<br>-0.153***<br>-0.0661<br>0.00612<br>-0.045**<br>-0.0879<br>0.00637<br>-0.2662<br>-0.145**<br>-0.0659<br>0.0382<br>-0.124**<br>-0.0659<br>0.0382<br>-0.124**<br>4968<br>-4062.9836<br>0.0351<br>0.489<br>0.429<br>0.271<br>0.940<br>0.305<br>-0.305<br>-0.305<br>-0.305<br>-0.489<br>-0.227<br>-0.227<br>-0.227<br>-0.227<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.227<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.226<br>-0.227<br>-0.226<br>-0.2271<br>-0.305<br>-0.305<br>-0.325<br>-0.325<br>-0.325<br>-0.325<br>-0.325<br>-0.325<br>-0.325<br>-0.325<br>-0.325<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.355<br>-0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ies, males           marginal effect           lying           (0.0550)           (0.0550)           (0.00241)           (0.00227)           (0.0193)           (0.0363)           (0.190)           (0.0462)           (0.0383)           (0.190)           (0.0363)           (0.197)           (0.0601)           (0.0372)           (0.0372)           (0.0372)           (0.0372)           (0.0376)  | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \text{ist} \\ (0.0551) \\ (0.00217) \\ (0.00226) \\ (0.00165) \\ (0.0549) \\ (0.0368) \\ (0.0368) \\ (0.0371) \\ (0.168) \\ (0.109) \\ (0.0887) \\ (0.0382) \\ (0.0382) \\ (0.0382) \\ (0.0380) \\ (0.0576) \\ (0.0281) \\ (0.0585) \\ (0.0454) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | All cour           Part           0.147           0.0118**           0.00102           -0.0104***           -0.00555           0.375           -0.0158           0.0179           -0.0406           -0.374**           -0.312*           -0.0690           -0.0758           0.0155           -0.0758           0.0155           -0.0704           -0.150           0.190           -0.00571           0.286           791           0.1318           0.660           0.926           0.00747           0.819           0.0120           0.292 | $\begin{array}{c} \mbox{tries, males} \\ \hline \mbox{OLS} \\ \hline \mbox{ial lying} \\ \hline \mbox{(}0.126\mbox) \\ (0.00512\mbox) \\ (0.00485\mbox) \\ (0.00349\mbox) \\ (0.102\mbox) \\ (0.122\mbox) \\ (0.226\mbox) \\ (0.0254\mbox) \\ (0.254\mbox) \\ (0.254\mbox) \\ (0.254\mbox) \\ (0.254\mbox) \\ (0.286\mbox) \\ (0.286\mbox) \\ (0.286\mbox) \\ (0.286\mbox) \\ (0.286\mbox) \\ (0.0659\mbox) \\ (0.162\mbox) \\ (0.286\mbox) \\ (0.0803\mbox) \\ (0.0803\mbox) \\ (0.0487\mbox) \\ (0.146\mbox) \\ (0.146\mbox) \\ (0.0939\mbox) \\ (0.204\mbox) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Table C6: Determinants of lying in each period, by gender

|                      |                    |                                    | Base             | line                   |                |                        | Ba          | seline                 |
|----------------------|--------------------|------------------------------------|------------------|------------------------|----------------|------------------------|-------------|------------------------|
|                      |                    | 1, 1, 1                            | Mlogit, average  | marginal effec         | ets            |                        |             | DLS                    |
| BET rank             | Maxima<br>0.343*** | $\frac{1 \text{ lying}}{(0.0815)}$ | Partial<br>0.143 | lying<br>(0.0034)      | Hone           | $\frac{1}{(0.0808)}$   | Part:       | (0.150)                |
| RET deviation        | -0.00452           | (0.00364)                          | $0.00779^*$      | (0.00334)<br>(0.00425) | -0.00326       | (0.00362)              | -0.000131   | (0.130)<br>(0.00431)   |
| Male                 | -0.0325            | (0.0460)                           | 0.0161           | (0.0517)               | 0.0164         | (0.0423)               | 0.0554      | (0.0649)               |
| Age                  | -0.00576           | (0.00465)                          | 0.00417          | (0.00479)              | 0.00159        | (0.00297)              | -0.0242***  | (0.00867)              |
| Period               | 0.0172***          | (0.00301)                          | -0.0155***       | (0.00319)              | -0.00176       | (0.00265)              | -0.0195***  | (0.00345)              |
| DG=0                 | 0.317***           | (0.116)                            | -0.204*          | (0.105)                | -0.113         | (0.0689)               | -0.166      | (0.107)                |
| Deduction 20%        | -0.176***          | (0.220)<br>(0.0590)                | -0.0180          | (0.200)                | 0.101          | (0.149)<br>(0.0611)    | -0.0460     | (0.200)<br>(0.0725)    |
| Deduction 30%        | -0.0140            | (0.0390)<br>(0.0780)               | 0.0558           | (0.0013)<br>(0.0811)   | -0.0419        | (0.0532)               | -0.0261     | (0.0723)<br>(0.0949)   |
| Deduction 50%        | -0.0178            | (0.0916)                           | 0.112            | (0.118)                | -0.0947        | (0.0686)               | -0.629***   | (0.104)                |
| Russia               | 0.225***           | (0.0593)                           | 0.0916           | (0.0729)               | -0.317***      | (0.0554)               | 0.0197      | (0.0780)               |
| UK                   | $0.492^{***}$      | (0.0854)                           | $-0.349^{***}$   | (0.0883)               | -0.143***      | (0.0537)               | 0.334***    | (0.113)                |
| Constant             | 2020               |                                    | 2020             |                        | 2020           |                        | 0.823       | (0.265)                |
| Log pseudolikelihood | -1557 6086         |                                    | -1557 6086       |                        | -1557 6086     |                        | 010         |                        |
| $R^2$                | 100110000          |                                    | 100110000        |                        | 100110000      |                        | 0.2292      |                        |
| D20=D30              | 0.0594             |                                    | 0.427            |                        | 0.167          |                        | 0.807       |                        |
| D20=D50              | 0.121              |                                    | 0.903            |                        | 0.108          |                        | 0.00000727  |                        |
| D30=D50              | 0.961              |                                    | 0.606            |                        | 0.477          |                        | 0.00000102  |                        |
| Russia=UK            | 0.000216           |                                    | 1.47e-08         |                        | 0.00261        |                        | 0.00673     |                        |
|                      |                    | ,                                  | Sta              | tus                    |                |                        | St          | tatus                  |
|                      | Maxima             | l lving                            | est              | Parti                  | ial lving      |                        |             |                        |
| RET rank             | 0.169**            | (0.0782)                           | 0.0778           | (0.0952)               | -0.247**       | (0.0977)               | 0.0947      | (0.123)                |
| RET deviation        | 0.00306            | (0.00358)                          | 0.000836         | (0.00441)              | -0.00390       | (0.00362)              | 0.00944     | (0.00629)              |
| Male                 | 0.121**            | (0.0528)                           | $-0.155^{***}$   | (0.0546)               | 0.0336         | (0.0503)               | -0.0141     | (0.0922)               |
| Age                  | -0.00324           | (0.00285)                          | 0.000354         | (0.00540)              | 0.00288        | (0.00453)              | 0.00657     | (0.0192)               |
| Period<br>DC-0       | 0.0130***          | (0.00302)                          | -0.00981***      | (0.00325)              | -0.00322       | (0.00290)              | -0.0151***  | (0.00525)              |
| DG=0<br>DG frac      | -0.0492            | (0.0998)<br>(0.155)                | -0.310           | (0.0051)<br>(0.175)    | -0.0741        | (0.0853)<br>(0.175)    | 0.144       | (0.0941)<br>(0.246)    |
| Deduction 20%        | -0.0506            | (0.100)                            | -0.0111          | (0.0669)               | 0.0617         | (0.0642)               | -0.163**    | (0.0688)               |
| Deduction 30%        | 0.0120             | (0.0579)                           | -0.0396          | (0.0636)               | 0.0276         | (0.0625)               | -0.164**    | (0.0787)               |
| Status, 200 ECU      | -0.0624            | (0.0496)                           | -0.0209          | (0.0523)               | $0.0833^{*}$   | (0.0502)               | 0.100       | (0.0633)               |
| Russia               | 0.131**            | (0.0667)                           | 0.0435           | (0.0661)               | -0.174***      | (0.0538)               | 0.0107      | (0.0913)               |
| UK<br>Constant       | 0.427***           | (0.0700)                           | -0.251***        | (0.0602)               | -0.176***      | (0.0580)               | -0.0709     | (0.0853)<br>(0.518)    |
| Observations         | 1680               |                                    | 1680             |                        | 1680           |                        | 410         | (0.518)                |
| Log pseudolikelihood | -1250.743          |                                    | -1250.743        |                        | -1250.743      |                        |             |                        |
| $\mathbb{R}^2$       |                    |                                    |                  |                        |                |                        | 0.1857      |                        |
| D20=D30              | 0.274              |                                    | 0.627            |                        | 0.551          |                        | 0.993       |                        |
| Russia=UK            | 0.0000197          |                                    | 0.0000162        | •                      | 0.984          |                        | 0.367       |                        |
|                      |                    | 1                                  | Mlogit average   | ock<br>marginal effe   | -te            |                        | 5           | DLS                    |
|                      | Maxima             | l lying                            | Partial          | lying                  | Hone           | est                    | Parti       | ial lying              |
| RET rank             | 0.275**            | (0.117)                            | 0.0694           | (0.125)                | $-0.344^{***}$ | (0.128)                | 0.0881      | (0.116)                |
| RET deviation        | 0.00570            | (0.00431)                          | 0.000496         | (0.00442)              | -0.00620       | (0.00386)              | 0.00949     | (0.00714)              |
| Male                 | 0.0376             | (0.0562)                           | -0.116**         | (0.0587)               | 0.0782         | (0.0563)               | 0.0482      | (0.0818)               |
| Age<br>Period        | -0.00195           | (0.00391)<br>(0.00399)             | -0.0132***       | (0.00420)<br>(0.00396) | -0.00387       | (0.00454)<br>(0.00279) | -0.0128**   | (0.00429)<br>(0.00551) |
| DG=0                 | 0.386***           | (0.107)                            | -0.385***        | (0.00390)<br>(0.0577)  | -0.00135       | (0.103)                | -0.00325    | (0.000001)             |
| DG frac              | -0.0691            | (0.170)                            | -0.508***        | (0.152)                | $0.577^{***}$  | (0.172)                | $0.487^{*}$ | (0.254)                |
| Deduction 20%        | -0.187***          | (0.0631)                           | 0.0882           | (0.0699)               | 0.0987         | (0.0676)               | 0.0946      | (0.0892)               |
| Deduction 30%        | -0.000775          | (0.0593)                           | 0.0183           | (0.0682)               | -0.0175        | (0.0656)               | 0.0179      | (0.0748)               |
| Snock, yes<br>Bussia | -0.0153            | (0.0220)<br>(0.0611)               | 0.0360           | (0.0260)<br>(0.0675)   | -0.0207        | (0.0225)<br>(0.0510)   | -0.157*     | (0.0308)<br>(0.0828)   |
| UK                   | 0.345***           | (0.0743)                           | -0.235***        | (0.0701)               | -0.111*        | (0.0620)               | -0.302***   | (0.0820)<br>(0.0861)   |
| Constant             |                    | ()                                 |                  | ()                     |                | ()                     | 0.226       | (0.175)                |
| Observations         | 1480               |                                    | 1480             |                        | 1480           |                        | 378         |                        |
| Log pseudolikelihood | -1172.2173         |                                    | -1172.2173       |                        | -1172.2173     |                        | 0.0015      |                        |
| R-<br>D20-D30        | 0.00149            |                                    | 0.313            |                        | 0.0695         |                        | 0.3317      |                        |
| Russia=UK            | 0.00427            |                                    | 0.0000108        |                        | 0.228          |                        | 0.0111      |                        |
|                      |                    |                                    | Non-             | fixed                  |                |                        | Noi         | n-fixed                |
|                      |                    | 1                                  | Mlogit, average  | marginal effec         | cts            |                        | (           | OLS                    |
|                      | Maxima             | l lying                            | Partial          | lying                  | Hone           | est                    | Parti       | ial lying              |
| RET rank             | 0.246***           | (0.0651)                           | -0.165**         | (0.0716)               | -0.0814        | (0.0799)               | 0.136       | (0.154)                |
| Male                 | -0.00593           | (0.00264)<br>(0.0395)              | 0.006777         | (0.00359)<br>(0.0418)  | -0.000845      | (0.00321)<br>(0.0460)  | 0.0122      | (0.00669)              |
| Age                  | -0.00959**         | (0.00390)                          | -0.00272         | (0.00451)              | 0.0123**       | (0.00507)              | -0.00899    | (0.0000)<br>(0.0116)   |
| Period               | $0.0145^{***}$     | (0.00213)                          | -0.00525**       | (0.00259)              | -0.00923***    | (0.00238)              | -0.0130***  | (0.00421)              |
| DG=0                 | 0.233**            | (0.110)                            | -0.175**         | (0.0687)               | -0.0580        | (0.105)                | $0.321^{*}$ | (0.192)                |
| DG frac              | -0.411***          | (0.136)                            | 0.0670           | (0.118)                | 0.344**        | (0.142)                | 0.261       | (0.304)                |
| Deduction 20%        | -0.0396            | (0.0425)<br>(0.0470)               | -0.0537          | (0.0461)<br>(0.0425)   | 0.0933         | (0.0497)<br>(0.0540)   | 0.0139      | (0.0825)               |
| Russia               | 0.0466             | (0.0479)<br>(0.0652)               | 0.174***         | (0.0435)<br>(0.0656)   | -0.221***      | (0.0549)<br>(0.0569)   | -0.0795     | (0.101)                |
| UK                   | 0.199***           | (0.0469)                           | -0.0152          | (0.0435)               | -0.184***      | (0.0465)               | -0.0257     | (0.0976)               |
| Constant             |                    | . /                                |                  | - /                    |                | . ,                    | 0.495*      | (0.258)                |
| Observations         | 3159               |                                    | 3159             |                        | 3159           |                        | 640         |                        |
| Log pseudolikelihood | -2831.0427         |                                    | -2831.0427       |                        | -2831.0427     |                        | 0.0671      |                        |
| $D_{20}=D_{30}$      | 0.240              |                                    | 0.432            |                        | 0.742          |                        | 0.399       |                        |
| Russia=UK            | 0.0311             |                                    | 0.00519          |                        | 0.583          |                        | 0.637       |                        |
|                      |                    |                                    |                  |                        |                |                        | •           |                        |

Table C7: Determinants of lying in each period, by treatment

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    |                             | Ch                        | ile                     |                         |                         | C          | Chile                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------|-----------------------------|---------------------------|-------------------------|-------------------------|-------------------------|------------|-------------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | Marina             | lluing                      | Mlogit, average           | marginal effect         | ets                     | host                    | (<br>Post  | OLS                     |
| RET existion         -0.0129         0.00429         0.00420         0.00517         -0.00231         0.00405         0.0077         -0.00231           Period         -0.00167         0.00162         0.00177         -0.00289***         (0.00177)         -0.00289         (0.00279)           Period         -0.00167         (0.00219)         -0.00189***         (0.00219)         0.00029***         (0.00177)         -0.00289***         (0.00177)         0.00289         (0.00219)           Definition 2006         -0.00129**         (0.0117)         -0.00129**         (0.0119)         0.00298**         (0.01178)         0.00129**         (0.01197)           Detection 3006         -0.00129**         (0.0119**)         0.0017**         (0.0119**)         0.00129**         (0.0119**)         0.0017**         (0.0119**)         0.0017**         (0.0119**)         0.0017**         (0.0119**)         0.0017**         (0.0119**)         0.0117**         0.0018**         (0.0119**)         0.0118**         0.0118**         0.0118**         0.0118**         0.0118**         0.0118**         0.0118**         0.0118**         0.0118**         0.0118**         0.0118**         0.0118**         0.0118**         0.0118**         0.0118**         0.0118**         0.0118**         0.0118**         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RET rank                           | 0.0381**           | $\frac{(0.0167)}{(0.0167)}$ | -0.0412                   | $\frac{1}{(0.0282)}$    | 0.00317                 | (0.0265)                | -0.000701  | (0.0459)                |
| Made<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>Denoted<br>De | RET deviation                      | -0.00139           | (0.00285)                   | 0.00482                   | (0.00471)               | -0.00343                | (0.00405)               | 0.00920    | (0.00675)               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Male                               | $0.0177^{*}$       | (0.00940)                   | 0.00452                   | (0.0157)                | -0.0222                 | (0.0151)                | 0.0345     | (0.0229)                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Age                                | -0.0000183         | (0.000749)                  | -0.00180                  | (0.00142)               | 0.00182                 | (0.00134)               | 0.00180    | (0.00209)               |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DG=0                               | 0.0598**           | (0.00120)<br>(0.0297)       | -0.0549                   | (0.00190)<br>(0.0559)   | -0.00488                | (0.00177)<br>(0.0544)   | 0.0130     | (0.00240)<br>(0.0403)   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DG frac                            | -0.0256            | (0.0283)                    | -0.0611                   | (0.0509)                | $0.0867^{*}$            | (0.0506)                | 0.0500     | (0.0774)                |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Deduction 20%                      | -0.0214*           | (0.0112)                    | -0.0196                   | (0.0187)                | $0.0410^{**}$           | (0.0180)                | 0.00274    | (0.0250)                |
| Since, yee         0.00001         (0.222)1         0.00391         (0.0392)         0.03331         (0.0392)         0.03331         (0.0392)         0.03331         (0.0392)         0.03331         (0.0392)         0.03331         (0.0392)         0.03331         (0.0333)         (0.0333)         0.04143         (0.0392)         0.03331         (0.0417)         (0.0417)           L.Deckned 1090         0.04147**         (0.0304)         0.0322**         (0.0154)         -0.441**         (0.0637)           L.Deckned 1090         0.0112**         (0.0224)         -0.822***         (0.0154)         -0.441***         (0.0637)           L.Deckned 1090         -0.0122*         (0.0203)         -0.0122***         (0.0437)         -0.0141**         (0.0637)           Constant         -0.0122*         (0.0203)         -0.0124**         -0.121***         0.141         -0.221***         (0.0411)           Constant         -121.0994         -121.0994         -121.0994         -0.0374         0.0233         0.0144         -0.0324**         0.0144         -0.0324**         0.0144         -0.0324**         0.0144         -0.0324**         0.0144         -0.0145**         -0.0144         -0.0145**         -0.0144         -0.0145***         -0.0144         -0.0145****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Deduction 30%                      | 0.00815            | (0.0106)                    | -0.0379**                 | (0.0184)                | 0.0297*                 | (0.0173)                | 0.00844    | (0.0288)                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Shock, ves                         | 0.00501            | (0.0233)                    | 0.0393                    | (0.0330)<br>(0.0397)    | -0.0443                 | (0.0340)<br>(0.0392)    | -0.0456    | (0.0437)<br>(0.0357)    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Status                             | 0.0373             | (0.0313)                    | 0.00390                   | (0.0354)                | -0.0412                 | (0.0345)                | 0.0123     | (0.0414)                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Status, 200 ECU                    | -0.0222            | (0.0208)                    | -0.0139                   | (0.0347)                | 0.0361                  | (0.0358)                | 0.0362     | (0.0427)                |
| $ \begin{array}{c} \label{eq:constraints} 1: 007 \\ \mbox{L-Decine of Log 0.0610} & 0.0610 \\ \mbox{L-Dec: others, 1000} & 0.06109 & 0.06291 & 0.06291 & -0.0221 & (0.0041) & -0.463^{***} & (0.0333) \\ \mbox{L-Dec: others, 1000} & 0.00192 & (0.0330) & 0.000194 & (0.0390) & -0.0212 & (0.00441) & -0.768^{***} & (0.0441) \\ \mbox{L-Dec: others, 1000} & -0.0192 & (0.0330) & 0.000194 & (0.0390) & -0.0212 & (0.00457) & 0.00057 & (0.00789) \\ \mbox{L-Dec: others, 1000} & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -1.281.6994 & -0.0172 & -0.0172 & -0.0172 & -0.0172 & -0.0172 & -0.0114 & -0.0114 & -0.0119 & -0.0114 & -0.0119 & -0.0114 & -0.0119 & -0.0114 & -0.0119 & -0.0114 & -0.0119 & -0.0114 & -0.0119 & -0.0114 & -0.0119 & -0.0114 & -0.0117 & -0.0112 & -0.0112 & -0.0114 & -0.0117 & -0.0116 & -0.0117 & -0.0117 & -0.0112 & -0.0112 & -0.0117 & -0.0112 & -0.0112 & -0.0112 & -0.0112 & -0.0112 & -0.0112 & -0.0112 & -0.0112 & -0.0112 & -0.0112 & -0.0112 & -0.0112 & -0.011$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-fixed                          | 0.0490**           | (0.0223)                    | -0.0382                   | (0.0246)                | -0.0108                 | (0.0212)                | 0.0296     | (0.0358)                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L.Declared 1-99%                   | 0.0610***          | (0.0398)<br>(0.0160)        | 0.621***                  | (0.0329)<br>(0.0224)    | -0.682***               | (0.0173)<br>(0.0154)    | -0.443***  | (0.0533)                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L.Partial cheat                    | -0.122***          | (0.0263)                    | -0.0990**                 | (0.0399)                | $0.221^{***}$           | (0.0414)                | 0.768***   | (0.0441)                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L.Dec. others, 1000                | 0.00192            | (0.00300)                   | 0.000194                  | (0.00561)               | -0.00212                | (0.00547)               | 0.00815    | (0.00789)               |
| $ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Observations                       | 2771               |                             | 2771                      |                         | 9771                    |                         | 659        | (0.0853)                |
| $\begin{split} \begin{split} \label{eq:22-32}   1.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, 23-4.5, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Log pseudolikelihood               | -1281.6994         |                             | -1281.6994                |                         | -1281.6994              |                         | 055        |                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $R^2$                              |                    |                             |                           |                         |                         |                         | 0.5985     |                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D20=D30                            | 0.0108             |                             | 0.345                     |                         | 0.534                   |                         | 0.824      |                         |
| $ \begin{array}{ c c c c c } \hline Hasimal   ling = margin matrix  ling = margin = margin = matrix  ling = margin = matrix  ling = margin = matrix  ling = margin = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    |                             | Ru                        | ssia                    |                         |                         | R          | ussia                   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | Maxim              | al lying                    | Mlogit, average<br>Partia | marginal effect         | ets<br>Hor              | hest                    | (<br>Part  | JLS<br>ial lying        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RET rank                           | 0.0468*            | (0.0265)                    | -0.00937                  | (0.0299)                | -0.0374                 | (0.0233)                | 0.0515*    | (0.0275)                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RET deviation                      | -0.00471           | (0.00407)                   | 0.00955**                 | (0.00431)               | -0.00484                | (0.00329)               | -0.000422  | (0.00404)               |
| $ \begin{array}{cccccc} & Age & & -0.0339 & (0.00335) & 0.00430 & (0.00346) & -0.000405 & (0.00123) & 0.000835 & (0.00116) \\ Period & & 0.00173 & -0.00173 & -0.00179 & (0.0023) & 0.0744 & (0.0123) & 0.00114 & (0.00181) \\ DG frae & & -0.0757 & (0.0184) & 0.0329 & (0.0023) & 0.0744 & (0.0147) & 0.0160 & (0.0155) \\ Deduction 20% & -0.0138 & (0.0160 & 0.0332' & (0.0186) & -0.0138 & (0.0166) & -0.0322 & (0.0198) \\ Redistribution & -0.00143 & (0.0244) & -0.00816 & (0.0223) & -0.0103 & (0.0166) & -0.0322 & (0.0183) \\ Sheck & & & 0.0117 & (0.0228) & -0.0213 & (0.0366) & 0.0186 & (0.0239) & -0.0322 & (0.0413) \\ Sheck & & & 0.0107 & (0.0229) & -0.0104 & (0.0397) & 0.0322 & (0.0198) \\ Shack & & & 0.00080 & (0.0229) & -0.0104 & (0.0396) & 0.0186 & (0.0223) & -0.0120 & (0.0233) & -0.0120 & (0.0233) & -0.0120 & (0.0233) & -0.0120 & (0.0233) & -0.0120 & (0.0233) & -0.0171 & (0.0241) \\ Shack & & & 0.00080 & (0.0229) & -0.0194 & (0.0396) & -0.0264 & (0.0202) & -0.0171 & (0.0241) \\ L.Declared 19% & -0.00237 & (0.0427) & -0.0147 & (0.0330) & -0.414*** & (0.0887) \\ L.Declared 199% & -0.00258 & (0.0229) & -0.0159 & -0.0197 & (0.0343) & -0.414*** & (0.0887) \\ L.Declared 199% & -0.00537 & 0.045^{***} & (0.0529) & -0.0139 & -0.0128 & (-0.0733) & 0.778 & (-0.0847) \\ R^2 & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Male                               | 0.0168             | (0.0147)                    | -0.0649***                | (0.0178)                | $0.0480^{***}$          | (0.0144)                | -0.000816  | (0.0149)                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Age                                | -0.00390           | (0.00353)                   | 0.00430                   | (0.00346)               | -0.000405               | (0.00228)               | 0.000835   | (0.00105)               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DG=0                               | 0.000305           | (0.00172)<br>(0.0299)       | -0.107***                 | (0.00182)<br>(0.0396)   | 0.00101                 | (0.00124)<br>(0.0328)   | -0.0114    | (0.00191)<br>(0.0234)   |
| Deduction 20%         -0.0183         (0.0160)         0.0332*         (0.0186)         -0.0148         (0.0147)         -0.0140         (0.0155)           Redistribution         -0.00143         (0.0284)         -0.0232         -0.0103         (0.0167)         0.0222         (0.0137)           Sheck         0.0107         (0.0284)         -0.0243         (0.0397)         0.0222         (0.0139)           Sheck         -0.0143         (0.0376)         0.0422         (0.0384)         -0.01789         (0.0224)         -0.0160         (0.0302)           Sheck         -0.016966         (0.0209)         -0.0414         (0.0396)         -0.00289         (0.0224)         -0.0171         (0.0241)           Non-Fard         0.0696*         (0.0209)         -0.047**         (0.0339)         -0.414***         (0.0234)         -0.0171         (0.0241)           L.Declared 19%         -0.0695*         (0.0289)         -0.214***         (0.0339)         -0.424***         (0.0234)         -0.0171***         (0.0241)           L.Declared 19%         -0.0695**         (0.0495)         -0.224***         (0.0275)         -0.310***         (0.0372)           L.Declared 19%         -0.0695**         (0.0185)         -0.0695         (0.0174)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DG frac                            | -0.107**           | (0.0484)                    | 0.0329                    | (0.0523)                | $0.0744^{*}$            | (0.0448)                | 0.0576     | (0.0518)                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Deduction 20%                      | -0.0183            | (0.0160)                    | $0.0332^{*}$              | (0.0186)                | -0.0148                 | (0.0147)                | -0.0140    | (0.0155)                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Deduction 30%                      | -0.00757           | (0.0187)                    | 0.0179                    | (0.0223)                | -0.0103                 | (0.0166)                | -0.0205    | (0.0198)                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Shock                              | -0.00143           | (0.0294)<br>(0.0298)        | -0.00816                  | (0.0425)<br>(0.0306)    | 0.00960                 | (0.0397)<br>(0.0259)    | -0.0219    | (0.0413)<br>(0.0199)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shock, yes                         | -0.0343            | (0.0376)                    | 0.0422                    | (0.0354)                | -0.00789                | (0.0244)                | -0.0160    | (0.0302)                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Status                             | -0.00280           | (0.0259)                    | -0.0102                   | (0.0320)                | 0.0130                  | (0.0215)                | -0.0220    | (0.0167)                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Status, 200 ECU                    | -0.00696           | (0.0325)                    | -0.0194                   | (0.0396)                | 0.0264                  | (0.0295)                | 0.00988    | (0.0203)                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L Declared 0%                      | 0.0190             | (0.0209)<br>(0.0629)        | -0.241***                 | (0.0242)<br>(0.0529)    | -0.359***               | (0.0202)<br>(0.0276)    | -0.310***  | (0.0241)<br>(0.0887)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L.Declared 1-99%                   | -0.00935           | (0.0287)                    | 0.495***                  | (0.0339)                | -0.486***               | (0.0234)                | -0.414***  | (0.0753)                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L.Partial cheat                    | -0.165***          | (0.0432)                    | 0.0165                    | (0.0441)                | $0.149^{***}$           | (0.0337)                | 0.778***   | (0.0395)                |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L.Dec. others, 1000                | -0.0294***         | (0.00695)                   | 0.0259***                 | (0.00695)               | 0.00344                 | (0.00438)               | 0.0125**   | (0.00545)               |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observations                       | 2304               |                             | 2304                      |                         | 2304                    |                         | 912        | (0.0871)                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Log pseudolikelihood               | -998.6708          |                             | -998.6708                 |                         | -998.6708               |                         |            |                         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\mathbb{R}^2$                     |                    |                             |                           |                         |                         |                         | 0.6443     |                         |
| $\begin{tabular}{ c c c c c c } \hline UK & UK & UK \\ \hline Mlogit, average marginal effects & Partial lying & Partial$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D20=D30                            | 0.588              |                             | 0.516                     |                         | 0.805                   |                         | 0.758      |                         |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |                    | 1                           | U<br>Mlogit average       | K<br>marginal effec     | rte                     |                         |            |                         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | Maxima             | al lying                    | Partia                    | l lying                 | Hor                     | nest                    | Part       | ial lying               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RET rank                           | 0.0525***          | (0.0130)                    | -0.00963                  | (0.0170)                | -0.0428***              | (0.0154)                | 0.0164     | (0.0275)                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RET deviation                      | -0.00306           | (0.00208)                   | 0.00126                   | (0.00274)               | 0.00180                 | (0.00227)               | 0.00152    | (0.00594)               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Male                               | 0.0136*            | (0.00732)                   | -0.0311                   | (0.00985)               | 0.0175**                | (0.00844)               | -0.00442   | (0.0147)                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Period                             | -0.00240**         | (0.000048)<br>(0.00101)     | 0.000674                  | (0.000073)<br>(0.00114) | 0.000803<br>$0.00173^*$ | (0.000323)<br>(0.00100) | 0.00250    | (0.000983)<br>(0.00159) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DG=0                               | $0.0611^{***}$     | (0.0184)                    | $-0.0529^{***}$           | (0.0198)                | -0.00828                | (0.0168)                | 0.00923    | (0.0233)                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DG frac                            | -0.0137            | (0.0226)                    | -0.0582**                 | (0.0275)                | 0.0719***               | (0.0269)                | 0.107*     | (0.0613)                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Deduction 20%                      | 0.00449            | (0.00882)<br>(0.00997)      | -0.000395                 | (0.0118)<br>(0.0126)    | -0.00409<br>0.00517     | (0.01000)<br>(0.0109)   | -0.00433   | (0.0188)<br>(0.0248)    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Deduction 40%                      | 0.00232            | (0.0135)                    | 0.0143                    | (0.0120)<br>(0.0194)    | -0.0166                 | (0.0166)                | -0.00144   | (0.0311)                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Deduction 50%                      | 0.0326             | (0.0217)                    | -0.00660                  | (0.0276)                | -0.0260                 | (0.0219)                | -0.0742*** | (0.0274)                |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Deadweight loss                    | -0.0154            | (0.0136)                    | -0.00792                  | (0.0184)                | 0.0234                  | (0.0144)                | -0.0240    | (0.0305)                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Shock                              | -0.00357           | (0.0113)<br>(0.0139)        | -0.0138                   | (0.0160)<br>(0.0227)    | 0.00220                 | (0.0140)<br>(0.0205)    | -0.00523   | (0.0249)<br>(0.0196)    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Shock, yes                         | -0.0210            | (0.0174)                    | 0.0591                    | (0.0391)                | -0.0380                 | (0.0200)<br>(0.0319)    | -0.0117    | (0.0158)                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Status                             | 0.0229             | (0.0173)                    | -0.0157                   | (0.0234)                | -0.00720                | (0.0215)                | -0.00206   | (0.0293)                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Status, 200 ECU                    | -0.0298            | (0.0182)                    | 0.00699                   | (0.0273)                | 0.0228                  | (0.0247)                | -0.0286    | (0.0368)                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Non-fixed                          | -0.00201           | (0.0106)<br>(0.0243)        | 0.00583                   | (0.0140)<br>(0.0194)    | -0.00382                | (0.0121)<br>(0.0227)    | -0.0155    | (0.0242)<br>(0.0765)    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L.Declared 1-99%                   | 0.0182             | (0.0138)                    | 0.312***                  | (0.0165)                | -0.330***               | (0.00958)               | -0.656***  | (0.0578)                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L.Partial cheat                    | -0.0744***         | (0.0216)                    | -0.0620***                | (0.0239)                | $0.136^{***}$           | (0.0211)                | 0.803***   | (0.0416)                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L.Dec. others, 1000                | -0.00539**         | (0.00245)                   | $0.00567^{*}$             | (0.00303)               | -0.000274               | (0.00250)               | 0.00591    | (0.00582)               |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observations                       | 4579               |                             | 4579                      |                         | 4579                    |                         | 0.624      | (0.0645)                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Log pseudolikelihood               | 4372<br>-1417.4159 |                             | 4072<br>-1417.4159        |                         | 4372<br>-1417.4159      |                         | 002        |                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $R^2$                              |                    |                             |                           |                         |                         |                         | 0.7286     |                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D20=D30                            | 0.144              |                             | 0.0746                    |                         | 0.437                   |                         | 0.832      |                         |
| D30=D40         0.266         0.613         0.317         0.0191           D30=D50         0.226         0.0493         0.211         0.970           D30=D50         0.521         0.534         0.180         0.0355           D40=D50         0.155         0.466         0.692         0.0407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D20=D40                            | 0.866              |                             | 0.429                     |                         | 0.449                   |                         | 0.924      |                         |
| D30=D50         0.521         0.534         0.180         0.0355           D40=D50         0.155         0.466         0.692         0.0407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $D_{20}=D_{50}$<br>$D_{30}=D_{40}$ | 0.183              |                             | 0.818                     |                         | 0.317                   |                         | 0.0191     |                         |
| D40=D50 0.155 0.466 0.692 0.0407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D30=D50                            | 0.521              |                             | 0.534                     |                         | 0.180                   |                         | 0.0355     |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D40=D50                            | 0.155              |                             | 0.466                     |                         | 0.692                   |                         | 0.0407     |                         |

Table C8: Determinants of lying in periods 2-10, previous action, by country

|                      |               |                      | Cl              | nile                 |             |                       |               | Chile                |
|----------------------|---------------|----------------------|-----------------|----------------------|-------------|-----------------------|---------------|----------------------|
|                      |               | Μ                    | logit, average  | marginal effe        | ects        |                       |               | OLS                  |
|                      | Maxima        | al lying             | Partia          | l lying              | Hon         | nest                  |               | Partial lying        |
| RET rank             | $0.159^{***}$ | (0.0609)             | -0.0790         | (0.100)              | -0.0801     | (0.106)               | 0.00259       | (0.165)              |
| RET deviation        | 0.0133        | (0.0105)             | -0.0163         | (0.0161)             | 0.00304     | (0.0180)              | $-0.0565^{*}$ | (0.0326)             |
| Male                 | 0.00247       | (0.0321)             | -0.0400         | (0.0576)             | 0.0376      | (0.0599)              | -0.0235       | (0.0785)             |
| Age                  | 0.00405       | (0.00288)            | -0.00270        | (0.00506)            | -0.00135    | (0.00590)             | -0.00766      | (0.00596)            |
| DG=0                 | 0.656***      | (0.120)              | -0.213***       | (0.0705)             | -0.444***   | (0.109)               | -0.205        | (0.194)              |
| DG frac              | 0.224*        | (0.119)              | -0.255          | (0.174)              | 0.0308      | (0.187)               | 0.446         | (0.329)              |
| Deduction 20%        | -0.0146       | (0.0356)             | -0.0767         | (0.0602)             | 0.0913      | (0.0657)              | -0.0912       | (0.102)              |
| Deduction 30%        | 0.0279        | (0.0365)             | -0.0107         | (0.0603)             | -0.0172     | (0.0651)              | 0.180         | (0.104)              |
| Shock<br>Shock you   | -0.149        | (0.0152)<br>(0.0157) | 0.112           | (0.122)<br>(0.0216)  | 0.0304      | (0.122)               | 0.153         | (0.0964)             |
| Shock, yes           | 0.107         | (0.0157)             | -0.200          | (0.0310)             | -0.552      | (0.0332)<br>(0.165)   | 0.0435        | (0.147)<br>(0.131)   |
| Status 200 ECU       | 0.000515      | (0.173)<br>(0.0783)  | 0.0535          | (0.103)<br>(0.128)   | 0.0634      | (0.105)<br>(0.141)    | 0.417***      | (0.151)              |
| Non-fixed            | 0.0794        | (0.0733)             | -0.122          | (0.120)<br>(0.0848)  | 0.0427      | (0.141)<br>(0.0936)   | 0.0813        | (0.102)<br>(0.106)   |
| Constant             | 0.0101        | (010111)             | 0.122           | (0.0010)             | 010121      | (0.0000)              | 0.343         | (0.240)              |
| Observations         | 307           |                      | 307             |                      | 307         |                       | 59            | (0.210)              |
| Log pseudolikelihood | -242.7904     |                      | -242.7904       |                      | -242.7904   |                       |               |                      |
| $R^2$                |               |                      |                 |                      |             |                       | 0.2649        |                      |
| $D_{20}=D_{30}$      | 0.307         |                      | 0.314           |                      | 0.132       |                       | 0.00571       |                      |
|                      | 0.001         |                      | D               |                      |             |                       | 0.000.1       | Decesie              |
|                      |               | м                    | Ru              | ssia<br>marginal off | oota        |                       |               | Aussia               |
|                      | Mawimu        | al luing             | Donting Donting | marginai en          | u an        | oct                   |               | DL5<br>Partial lying |
| BET rank             | 0.147*        | (0.0866)             | 0.156           | $\frac{1}{(0.0971)}$ | 0.00006     | (0.0652)              | 0.231*        | (0.121)              |
| RET deviation        | 0.147         | (0.0800)<br>(0.0143) | -0.130          | (0.0971)<br>(0.0155) | 0.00900     | (0.0032)              | 0.00487       | (0.121)<br>(0.0172)  |
| Male                 | 0.0120        | (0.0143)<br>(0.0517) | -0.0371         | (0.0155)<br>(0.0568) | 0.0100      | (0.00347)<br>(0.0383) | 0.00437       | (0.0112)<br>(0.0701) |
| Age                  | -0.00628      | (0.0011)             | 0.00376         | (0.0000)             | 0.0100      | (0.0000)              | -0.00611      | (0.00792)            |
| DG=0                 | 0.383***      | (0.130)              | -0.375***       | (0.00020)<br>(0.117) | -0.00802    | (0.00001)<br>(0.0576) | -0.0537       | (0.131)              |
| DG frac              | -0.0834       | (0.233)              | -0.0132         | (0.220)              | 0.0965      | (0.102)               | 0.233         | (0.194)              |
| Deduction 20%        | -0.0935*      | (0.0540)             | 0.0744          | (0.0619)             | 0.0191      | (0.0404)              | 0.0536        | (0.0673)             |
| Deduction 30%        | -0.0810       | (0.0611)             | 0.0922          | (0.0706)             | -0.0112     | (0.0423)              | -0.0313       | (0.0921)             |
| Redistribution       | -0.0245       | (0.109)              | 0.113           | (0.109)              | -0.0880***  | (0.0175)              | -0.111        | (0.0920)             |
| Shock                | 0.0784        | (0.0940)             | -0.188*         | (0.106)              | 0.110       | (0.0967)              | -0.0865       | (0.0966)             |
| Shock, yes           | 0.00283       | (0.0978)             | -0.000858       | (0.111)              | -0.00197    | (0.0645)              | 0.190         | (0.125)              |
| Status               | -0.0196       | (0.0840)             | -0.0952         | (0.107)              | 0.115       | (0.0958)              | -0.0478       | (0.0970)             |
| Status, 200 ECU      | 0.0519        | (0.110)              | -0.0561         | (0.121)              | 0.00417     | (0.0702)              | 0.0477        | (0.150)              |
| Non-fixed            | 0.0297        | (0.0838)             | -0.117          | (0.0919)             | 0.0869      | (0.0753)              | 0.0470        | (0.108)              |
| Constant             |               |                      |                 |                      |             |                       | $0.432^{**}$  | (0.182)              |
| Observations         | 256           |                      | 256             |                      | 256         |                       | 100           |                      |
| Log pseudolikelihood | -183.4509     |                      | -183.4509       |                      | -183.4509   |                       |               |                      |
| $R^2$                |               |                      |                 |                      |             |                       | 0.1168        |                      |
| D20=D30              | 0.845         |                      | 0.805           |                      | 0.468       |                       | 0.351         |                      |
|                      |               |                      | U               | ΓK                   |             |                       |               | UK                   |
|                      |               | M                    | logit, average  | marginal eff         | ects        |                       |               | OLS                  |
|                      | Maxima        | al lying             | Partia          | l lying              | Hon         | nest                  |               | Partial lying        |
| RET rank             | $0.331^{***}$ | (0.0593)             | 0.0419          | (0.0661)             | -0.373***   | (0.0627)              | 0.0385        | (0.194)              |
| RET deviation        | 0.00752       | (0.0106)             | 0.0179          | (0.0110)             | -0.0255**   | (0.0107)              | -0.0381       | (0.0347)             |
| Male                 | 0.117***      | (0.0381)             | -0.115***       | (0.0382)             | -0.00142    | (0.0371)              | 0.0170        | (0.116)              |
| Age                  | -0.00497      | (0.00342)            | 0.00528         | (0.00338)            | -0.000313   | (0.00292)             | -0.000703     | (0.00725)            |
| DG=0                 | 0.394         | (0.0705)             | -0.285          | (0.0482)             | -0.109      | (0.0633)              | -0.135        | (0.150)              |
| De Irac              | -0.0045       | (0.127)              | -0.270          | (0.133)              | 0.333       | (0.123)               | 0.300         | (0.320)              |
| Deduction 20%        | -0.00400      | (0.0484)<br>(0.0512) | 0.107           | (0.0502)             | -0.105      | (0.0403)<br>(0.0435)  | 0.0802        | (0.110)              |
| Deduction 40%        | 0.0544        | (0.0512)<br>(0.0794) | 0.140*          | (0.0333)<br>(0.0881) | 0.0024      | (0.0455)<br>(0.0657)  | 0.407***      | (0.135)              |
| Deduction 50%        | -0.0344       | (0.0734)<br>(0.0848) | 0.143           | (0.103)              | -0.137**    | (0.0057)<br>(0.0667)  | -0.0565       | (0.206)              |
| Deadweight loss      | -0.101        | (0.0040)<br>(0.0747) | -0.00887        | (0.100)              | 0 110       | (0.0001)<br>(0.0773)  | 0.0445        | (0.200)              |
| Redistribution       | -0.00450      | (0.0605)             | 0.0757          | (0.0660)             | -0.0712     | (0.0549)              | -0.214        | (0.142)              |
| Shock                | -0.0145       | (0.0955)             | -0.00985        | (0.0959)             | 0.0244      | (0.0796)              | -0.0768       | (0.152)              |
| Shock, ves           | -0.0322       | (0.118)              | 0.0492          | (0.127)              | -0.0170     | (0.0956)              | -0.113        | (0.129)              |
| Status               | 0.110         | (0.0903)             | 0.00272         | (0.0919)             | -0.113      | (0.0726)              | -0.0628       | (0.259)              |
| Status, 200 ECU      | -0.0791       | (0.0982)             | $-0.137^{*}$    | (0.0811)             | $0.216^{*}$ | (0.127)               | 0.0177        | (0.268)              |
| Non-fixed            | -0.0648       | (0.0553)             | 0.0939          | (0.0611)             | -0.0291     | (0.0492)              | 0.0348        | (0.144)              |
| Constant             |               |                      |                 |                      |             |                       | 0.232         | (0.230)              |
| Observations         | 508           |                      | 508             |                      | 508         |                       | 59            |                      |
| Log pseudolikelihood | -432.2628     |                      | -432.2628       |                      | -432.2628   |                       |               |                      |
| $\mathbb{R}^2$       |               |                      |                 |                      |             |                       | 0.3263        |                      |
| D20=D30              | 0.466         |                      | 0.158           |                      | 0.397       |                       | 0.943         |                      |
| D20 = D40            | 0.547         |                      | 0.630           |                      | 0.912       |                       | 0.00189       |                      |
| D20=D50              | 0.774         |                      | 0.571           |                      | 0.638       |                       | 0.528         |                      |
| D30=D40              | 0.283         |                      | 0.180           |                      | 0.648       |                       | 0.0111        |                      |
| D30=D50              | 0.469         |                      | 0.197           |                      | 0.315       |                       | 0.568         |                      |
| D40=D50              | 0.811         |                      | 0.885           |                      | 0.632       |                       | 0.0117        |                      |

Table C9: Determinants of lying in period 1, by country

|                                        |                |           | All co          | untries       |                |           | All c           | countries |
|----------------------------------------|----------------|-----------|-----------------|---------------|----------------|-----------|-----------------|-----------|
|                                        |                | N         | flogit, average | marginal effe | cts            |           |                 | OLS       |
|                                        | Maxima         | d lying   | Partial         | lying         | Hon            | est       | Part            | ial lying |
| RET rank                               | $0.262^{***}$  | (0.0410)  | -0.0716         | (0.0439)      | $-0.190^{***}$ | (0.0425)  | $0.157^{**}$    | (0.0711)  |
| RET deviation                          | -0.0000298     | (0.00177) | 0.00268         | (0.00212)     | -0.00265       | (0.00177) | $0.00527^{*}$   | (0.00311) |
| Male                                   | $0.0687^{***}$ | (0.0240)  | -0.0866***      | (0.0256)      | 0.0179         | (0.0242)  | 0.0452          | (0.0407)  |
| Age                                    | -0.00519**     | (0.00204) | 0.00330         | (0.00211)     | 0.00189        | (0.00192) | $0.00630^{*}$   | (0.00324) |
| Period                                 | $0.0173^{***}$ | (0.00149) | $-0.0122^{***}$ | (0.00165)     | -0.00506***    | (0.00134) | $-0.0152^{***}$ | (0.00232) |
| DG=0                                   | $0.293^{***}$  | (0.0564)  | $-0.264^{***}$  | (0.0354)      | -0.0289        | (0.0501)  | -0.104          | (0.0768)  |
| DG frac                                | -0.190**       | (0.0898)  | -0.0883         | (0.0806)      | $0.278^{***}$  | (0.0759)  | $0.322^{***}$   | (0.116)   |
| Civicness                              | $0.0315^{***}$ | (0.0120)  | -0.00298        | (0.0132)      | $-0.0285^{**}$ | (0.0141)  | 0.00367         | (0.0198)  |
| Trust                                  | -0.00341       | (0.0241)  | -0.0113         | (0.0257)      | 0.0147         | (0.0242)  | -0.0530         | (0.0397)  |
| SafeChoices                            | 0.00590        | (0.00651) | 0.000147        | (0.00664)     | -0.00604       | (0.00637) | -0.0000930      | (0.00899) |
| Ideology                               | 0.00804        | (0.00542) | -0.00282        | (0.00566)     | -0.00522       | (0.00585) | $-0.0264^{***}$ | (0.00817) |
| Income                                 | $0.124^{***}$  | (0.0422)  | -0.0510         | (0.0465)      | $-0.0735^{*}$  | (0.0422)  | 0.0350          | (0.0932)  |
| Deduction 20%                          | -0.0666**      | (0.0277)  | 0.0373          | (0.0303)      | 0.0293         | (0.0280)  | -0.0256         | (0.0386)  |
| Deduction 30%                          | 0.0126         | (0.0304)  | -0.0301         | (0.0307)      | 0.0175         | (0.0293)  | -0.0234         | (0.0461)  |
| Deduction 40%                          | -0.106         | (0.0896)  | 0.00906         | (0.113)       | 0.0967         | (0.119)   | 0.193           | (0.231)   |
| Deduction 50%                          | 0.161          | (0.0997)  | -0.0366         | (0.103)       | $-0.124^{*}$   | (0.0721)  | -0.356***       | (0.0810)  |
| Deadweight loss                        | -0.0564        | (0.0632)  | -0.0474         | (0.0693)      | 0.104          | (0.0710)  | -0.107          | (0.152)   |
| Redistribution                         | $0.104^{*}$    | (0.0561)  | -0.0229         | (0.0534)      | -0.0808        | (0.0510)  | 0.0400          | (0.0897)  |
| Russia                                 | $0.112^{***}$  | (0.0343)  | $0.120^{***}$   | (0.0386)      | -0.232***      | (0.0293)  | 0.0241          | (0.0537)  |
| UK                                     | $0.353^{***}$  | (0.0362)  | $-0.153^{***}$  | (0.0378)      | -0.200***      | (0.0330)  | -0.0129         | (0.0820)  |
| Shock                                  | 0.0445         | (0.0423)  | -0.0139         | (0.0430)      | -0.0306        | (0.0428)  | -0.0427         | (0.0492)  |
| Shock, yes                             | -0.0175        | (0.0223)  | 0.0354          | (0.0273)      | -0.0179        | (0.0246)  | -0.0181         | (0.0358)  |
| Status                                 | 0.0784         | (0.0484)  | -0.00212        | (0.0520)      | $-0.0762^{*}$  | (0.0431)  | -0.0649         | (0.0572)  |
| Status, 200 ECU                        | -0.0833        | (0.0521)  | -0.0539         | (0.0574)      | $0.137^{**}$   | (0.0676)  | 0.0463          | (0.0758)  |
| Non-fixed                              | 0.0255         | (0.0351)  | -0.0461         | (0.0373)      | 0.0206         | (0.0353)  | 0.0171          | (0.0560)  |
| Constant                               |                | ( )       |                 | . ,           |                | . ,       | $0.245^{*}$     | (0.145)   |
| Observations                           | 8218           |           | 8218            |               | 8218           |           | 1971            | . ,       |
| Log pseudolikelihood                   | -6751.8285     |           | -6751.8285      |               | -6751.8285     |           |                 |           |
| $\mathbf{R}^2$                         |                |           |                 |               |                |           | 0.1426          |           |
| $D_{20}=D_{30}$                        | 0.00883        |           | 0.0329          |               | 0.697          |           | 0.961           |           |
| $D_{20} = D_{40}$                      | 0.660          |           | 0.800           |               | 0.567          |           | 0.340           |           |
| $D_{20} = D_{10}$<br>$D_{20} = D_{50}$ | 0.0232         |           | 0.480           |               | 0.0409         |           | 0.0000227       |           |
| D30 = D40                              | 0.193          |           | 0.728           |               | 0.499          |           | 0.347           |           |
| $D_{30} = D_{50}$                      | 0 143          |           | 0.951           |               | 0.0570         |           | 0.0000533       |           |
| D40 = D50                              | 0.0420         |           | 0.759           |               | 0.102          |           | 0.0166          |           |
| Bussia=UK                              | 1 17e-11       |           | 1 27e-14        |               | 0.339          |           | 0.585           |           |
| 1100010-011                            | 1.1.6-11       |           | 1.210-14        |               | 0.009          |           | 0.000           |           |

# Table C10: Determinants of lying, periods 1-10, more controls

|                                        |                                 | N                      |                            | Chile<br>OLS             |                              |                        |                        |                               |
|----------------------------------------|---------------------------------|------------------------|----------------------------|--------------------------|------------------------------|------------------------|------------------------|-------------------------------|
|                                        | Maxima                          | l lying                | Partial                    | l lying                  | Hon                          | est                    | Par                    | tial lying                    |
| RET rank<br>RET deviation              | $0.211^{}$                      | (0.0742)<br>(0.00304)  | -0.0797<br>0.000656        | (0.0914)<br>(0.00412)    | -0.131<br>0.000322           | (0.0988)<br>(0.00393)  | $0.103 \\ 0.0171^{**}$ | (0.171)<br>(0.00743)          |
| Male                                   | 0.0728*                         | (0.0418)               | 0.0131                     | (0.0584)                 | -0.0860                      | (0.0603)               | 0.102                  | (0.0667)                      |
| Age<br>Period                          | 0.00138<br>$0.00919^{***}$      | (0.00284)<br>(0.00208) | -0.00635<br>0.0000963      | (0.00432)<br>(0.00314)   | -0.00497<br>$-0.00928^{***}$ | (0.00476)<br>(0.00304) | -0.00129               | (0.00561)<br>(0.00468)        |
| DG=0                                   | 0.245                           | (0.154)                | -0.266***                  | (0.0651)                 | 0.0210                       | (0.168)                |                        | ()                            |
| DG frac                                | -0.109                          | (0.129)                | -0.224                     | (0.154)                  | 0.333*                       | (0.175)                | 0.521**                | (0.254)                       |
| Trust                                  | 0.0197                          | (0.0249)<br>(0.0400)   | -0.00937                   | (0.0520)<br>(0.0547)     | -0.0103                      | (0.0500)               | -0.105                 | (0.0412)<br>(0.0696)          |
| SafeChoices                            | 0.00774                         | (0.0110)               | -0.00502                   | (0.0139)                 | -0.00272                     | (0.0153)               | -0.0360*               | (0.0180)                      |
| Ideology<br>Income                     | 0.00426<br>$0.198^{***}$        | (0.00884)<br>(0.0760)  | -0.00702                   | (0.0130)<br>(0.0958)     | $-0.182^{*}$                 | (0.0133)<br>(0.105)    | -0.470***              | (0.0129)<br>(0.139)           |
| Deduction 20%                          | -0.0971**                       | (0.0395)               | -0.0542                    | (0.0604)                 | $0.151^{**}$                 | (0.0649)               | 0.0458                 | (0.0849)                      |
| Deduction 30%<br>Shock                 | 0.0187                          | (0.0446)<br>(0.155)    | -0.107**                   | (0.0545)<br>(0.115)      | 0.0885                       | (0.0621)<br>(0.0918)   | 0.135                  | (0.0899)<br>(0.0919)          |
| Shock, yes                             | -0.00141                        | (0.0238)               | 0.000342                   | (0.0478)                 | 0.00107                      | (0.0436)               | 0.00665                | (0.0674)                      |
| Status<br>Status 200 ECU               | 0.349**                         | (0.159)                | -0.0627                    | (0.118)                  | -0.286***                    | (0.0907)               | -0.0975                | (0.135)<br>(0.158)            |
| Non-fixed                              | 0.255***                        | (0.0003) $(0.0936)$    | -0.103                     | (0.0871)                 | $-0.152^*$                   | (0.0834)               | 0.135                  | (0.121)                       |
| Constant                               | 0220                            |                        | 0220                       |                          | 0220                         |                        | 0.224                  | (0.223)                       |
| Log pseudolikelihood                   | -2093.0449                      |                        | -2093.0449                 |                          | -2093.0449                   |                        | 501                    |                               |
| $R^2$<br>D20=D30                       | 0.0153                          |                        | 0.398                      |                          | 0.361                        |                        | 0.2215<br>0.228        |                               |
|                                        |                                 |                        | Rus                        | ssia                     |                              |                        | F                      | lussia                        |
|                                        | Maxima                          | ıl lying               | Partial                    | l lying                  | Hone                         | est                    | Par                    | tial lying                    |
| RET rank<br>RET deviation              | $0.214^{***}$                   | (0.0748)               | -0.118                     | (0.0799)                 | -0.0958                      | $(0.0\overline{621})$  | 0.209**                | (0.0901)<br>(0.00377)         |
| Male                                   | 0.0166                          | (0.00300)<br>(0.0454)  | -0.120**                   | (0.00384)<br>(0.0478)    | 0.104***                     | (0.00297)<br>(0.0334)  | 0.0229                 | (0.0478)                      |
| Age                                    | -0.0200                         | (0.0129)               | 0.0184*                    | (0.0107)                 | 0.00160                      | (0.00478)              | 0.00630                | (0.00416)                     |
| Period<br>DG=0                         | $0.0189^{***}$<br>$0.315^{***}$ | (0.00288)<br>(0.0995)  | -0.0225                    | (0.00295)<br>(0.0749)    | $0.00362^{-1}$<br>0.0555     | (0.00205)<br>(0.0723)  | -0.0236                | (0.00303)<br>(0.0789)         |
| DG frac                                | -0.187                          | (0.182)                | -0.00970                   | (0.160)                  | $0.197^{*}$                  | (0.102)                | $0.229^{*}$            | (0.130)                       |
| Civicness<br>Trust                     | $0.0404^{*}$<br>0.0447          | (0.0211)<br>(0.0473)   | -0.0347<br>-0.0817*        | (0.0213)<br>(0.0483)     | -0.00575<br>0.0370           | (0.0126)<br>(0.0344)   | -0.00851               | (0.0258)<br>(0.0549)          |
| SafeChoices                            | -0.00469                        | (0.0473)<br>(0.0120)   | 0.00703                    | (0.0403)<br>(0.0119)     | -0.00234                     | (0.00344)<br>(0.00871) | -0.00110               | (0.0123)                      |
| Ideology                               | 0.0192*                         | (0.0109)               | -0.00523                   | (0.0108)                 | -0.0140                      | (0.00925)              | -0.0280**              | (0.0114)                      |
| Income<br>Deduction 20%                | -0.0767                         | (0.102)<br>(0.0506)    | 0.110**                    | (0.105)<br>(0.0522)      | -0.0934                      | (0.0680)<br>(0.0340)   | 0.209                  | (0.130)<br>(0.0501)           |
| Deduction 30%                          | 0.00109                         | (0.0639)               | 0.0298                     | (0.0642)                 | -0.0309                      | (0.0387)               | -0.0638                | (0.0613)                      |
| Redistribution<br>Shock                | 0.0136                          | (0.0828)<br>(0.0762)   | 0.0157                     | (0.0902)<br>(0.0653)     | -0.0293<br>0.0343            | (0.0773)<br>(0.0624)   | 0.0468                 | (0.124)<br>(0.0510)           |
| Shock, yes                             | -0.0118                         | (0.0464)               | 0.0288                     | (0.0420)                 | -0.0169                      | (0.0336)               | 0.000906               | (0.0450)                      |
| Status<br>Status 200 ECU               | -0.000330                       | (0.0900)               | -0.0370                    | (0.0951)                 | 0.0373                       | (0.0672)               | -0.0514                | (0.0576)                      |
| Non-fixed                              | 0.0197                          | (0.105)<br>(0.0665)    | -0.105                     | (0.0649)                 | 0.0854                       | (0.0539)               | -0.000397              | (0.0812)                      |
| Constant                               | 2560                            |                        | 2560                       |                          | 2560                         |                        | 0.266*                 | (0.146)                       |
| Log pseudolikelihood                   | -2051.9321                      |                        | -2051.9321                 |                          | -2051.9321                   |                        | 1012                   |                               |
| $R^2$<br>D20=D30                       | 0.211                           |                        | 0.212                      |                          | 0.963                        |                        | $0.2027 \\ 0.296$      |                               |
|                                        |                                 |                        | U                          | К                        |                              |                        |                        | UK                            |
|                                        | Maxima                          | l lying                | llogit, average<br>Partial | marginal effe<br>l lying | cts<br>Hone                  | est                    | Par                    | OLS<br>tial lying             |
| RET rank                               | 0.315***                        | (0.0654)               | 0.0130                     | (0.0571)                 | -0.328***                    | (0.0668)               | 0.333**                | (0.159)                       |
| Male                                   | 0.101***                        | (0.00259)<br>(0.0383)  | -0.140***                  | (0.00312)<br>(0.0333)    | 0.0390                       | (0.00233)<br>(0.0352)  | -0.156                 | (0.00550)<br>(0.125)          |
| Age                                    | -0.00555**                      | (0.00243)              | 0.00540**                  | (0.00226)                | 0.000140                     | (0.00224)              | 0.00580                | (0.00453)                     |
| DG=0                                   | 0.300***                        | (0.00254)<br>(0.0654)  | -0.192***                  | (0.00251)<br>(0.0453)    | -0.10871***                  | (0.00190)<br>(0.0501)  | -0.0145****            | (0.00386)<br>(0.215)          |
| DG frac                                | -0.215                          | (0.131)                | -0.0322                    | (0.113)                  | $0.247^{**}$                 | (0.107)                | $0.663^{**}$           | (0.308)                       |
| Civicness<br>Trust                     | 0.0117                          | (0.0208)<br>(0.0369)   | 0.0161<br>$0.0548^*$       | (0.0190)<br>(0.0328)     | -0.0278<br>0.00704           | (0.0200)<br>(0.0327)   | 0.0350                 | (0.0532)<br>(0.102)           |
| SafeChoices                            | 0.0176                          | (0.0110)               | -0.00545                   | (0.0020) $(0.0020)$      | -0.0122                      | (0.00923)              | 0.00749                | (0.0102) $(0.0172)$           |
| Ideology                               | -0.00527                        | (0.00807)              | 0.0127*                    | (0.00706)                | -0.00748                     | (0.00696)              | -0.0937***             | (0.0253)                      |
| Deduction 20%                          | -0.0188                         | (0.0803)<br>(0.0469)   | 0.0561                     | (0.0340)<br>(0.0431)     | -0.0373                      | (0.0318)<br>(0.0387)   | -0.169                 | (0.132)<br>(0.0895)           |
| Deduction 30%                          | 0.0373                          | (0.0465)               | -0.0421                    | (0.0399)                 | 0.00482                      | (0.0415)               | 0.0591                 | (0.116)                       |
| Deduction 40%<br>Deduction 50%         | -0.0843                         | (0.122)<br>(0.104)     | -0.0170                    | (0.109)<br>(0.0960)      | $-0.107^*$                   | (0.110)<br>(0.0598)    | -0.665***              | (0.175)<br>(0.155)            |
| Deadweight loss                        | -0.125                          | (0.0921)               | -0.0247                    | (0.0835)                 | 0.150                        | (0.0929)               | -0.696**               | (0.268)                       |
| Redistribution                         | 0.0621                          | (0.0819)               | -0.0319                    | (0.0734)                 | -0.0302                      | (0.0713)               | -0.455**               | (0.179)<br>(0.205)            |
| Shock, yes                             | -0.0697*                        | (0.0798)<br>(0.0399)   | 0.108**                    | (0.0737)<br>(0.0509)     | -0.0384                      | (0.0335)               | -0.0926**              | (0.203)<br>(0.0446)           |
| Status                                 | 0.0919                          | (0.0868)               | 0.0108                     | (0.0888)                 | -0.103                       | (0.0684)               | -0.690***              | (0.230)                       |
| Non-fixed                              | -0.0686                         | (0.106)<br>(0.0707)    | 0.0580                     | (0.0638)<br>(0.0764)     | 0.262                        | (0.131)<br>(0.0630)    | -0.595***<br>0.025***  | (0.143)<br>(0.190)<br>(0.245) |
| Observations                           | 3320                            |                        | 3320                       |                          | 3320                         |                        | 398                    | (0.345)                       |
| Log pseudolikelihood<br>B <sup>2</sup> | -2307.1901                      |                        | -2307.1901                 |                          | -2307.1901                   |                        | 0 5304                 |                               |
| D20=D30                                | 0.289                           |                        | 0.0316                     |                          | 0.368                        |                        | 0.336                  |                               |
| D20=D40                                | 0.590                           |                        | 0.781                      |                          | 0.379                        |                        | 0.000214               |                               |
| D30=D40                                | 0.323                           |                        | 0.538                      |                          | 0.606                        |                        | 0.000178               |                               |
| D30=D50<br>D40=D50                     | 0.403                           |                        | 0.793                      |                          | 0.0938                       |                        | 0.000398               |                               |
| D40-D90                                | 0.184                           |                        | 0.705                      |                          | 0.179                        |                        | J.12e-08               |                               |

Table C11: Determinants of lying , periods 1-10, more controls, by countries

|                         |                |                      |                             | Chile                |                      |                      |              |                      |
|-------------------------|----------------|----------------------|-----------------------------|----------------------|----------------------|----------------------|--------------|----------------------|
|                         |                | Ml                   | ogit, average n             | narginal effec       | ts                   |                      | OI           | LS                   |
|                         | Maxima         | l lving              | Partial                     | lving                | Hon                  | est                  | Partia       | living               |
| Test period performance | 0.0154**       | (0.00730)            | -0.00975                    | (0.00915)            | -0.00566             | (0.0102)             | -0.00613     | (0.0174)             |
| Male                    | 0.0738*        | (0.0389)             | -0.0260                     | (0.0463)             | -0.0479              | (0.0510)             | 0.126*       | (0.0651)             |
| Age                     | 0.000609       | (0.00244)            | -0.00606                    | (0.00393)            | 0.00545              | (0.00445)            | 0.00150      | (0.00547)            |
| Period                  | 0.00928***     | (0.00184)            | 0.000936                    | (0.00258)            | -0.0102***           | (0.00262)            | -0.00269     | (0.00399)            |
| DG=0                    | 0.421***       | (0.147)              | -0.217**                    | (0.0864)             | -0.204               | (0.142)              | -0.00455     | (0.107)              |
| DG frac                 | 0.0765         | (0.127)              | 0.260**                     | (0.133)              | 0.346**              | (0.142)<br>(0.150)   | 0.242        | (0.212)              |
| Deduction 20%           | 0.0770**       | (0.127)<br>(0.0376)  | 0.0825                      | (0.133)              | 0.160***             | (0.155)              | 0.0170       | (0.212)<br>(0.0682)  |
| Deduction 20%           | -0.01152       | (0.0310)             | 0.0870*                     | (0.0310)             | 0.100                | (0.0550)             | 0.0710       | (0.0002)<br>(0.0721) |
| Shock                   | 0.0133         | (0.0404)             | -0.0879                     | (0.0481)             | 0.0725               | (0.0333)             | 0.0719       | (0.0721)             |
| Shock Shock             | 0.119          | (0.130)              | 0.0308                      | (0.102)              | -0.130               | (0.0930)             | 0.100        | (0.0943)             |
| Shock, yes              | 0.0105         | (0.0292)             | 0.00303                     | (0.0447)             | -0.0135              | (0.0421)             | -0.00800     | (0.0010)             |
| Status                  | 0.203          | (0.155)              | -0.00940                    | (0.110)              | -0.194               | (0.108)              | 0.0249       | (0.116)              |
| Status, 200 ECU         | -0.0790        | (0.0591)             | -0.0726                     | (0.0920)             | 0.152                | (0.108)              | 0.132        | (0.120)              |
| Non-fixed               | 0.168***       | (0.0783)             | -0.139*                     | (0.0771)             | -0.0293              | (0.0764)             | 0.143        | (0.0938)             |
| Constant                |                |                      |                             |                      |                      |                      | 0.130        | (0.221)              |
| Observations            | 3078           |                      | 3078                        |                      | 3078                 |                      | 718          |                      |
| Log pseudolikelihood    | -2857.486      |                      | -2857.486                   |                      | -2857.486            |                      |              |                      |
| $\mathbb{R}^2$          |                |                      |                             |                      |                      |                      | 0.0864       |                      |
| D20=D30                 | 0.0330         |                      | 0.922                       |                      | 0.159                |                      | 0.190        |                      |
|                         |                |                      | Bue                         | sia                  |                      |                      | Bu           | ein                  |
|                         |                | MI                   | ogit overege r              | narginal offor       | to.                  |                      |              | SIA C                |
|                         | Maxima         | llving               | Digit, average i<br>Partial | living               | Hon                  | ost                  | Partial      | <br>Llwing           |
|                         | 0.0102**       | (0.00770)            | 0.0105                      | (0.00704)            | 0.00574              | (0.00(04)            | r ai tia     | (0.0104)             |
| lest period performance | 0.0183         | (0.00770)            | -0.0125                     | (0.00794)            | -0.00574             | (0.00624)            | -0.00485     | (0.0104)             |
| Male                    | 0.0441         | (0.0453)             | -0.147                      | (0.0473)             | 0.103                | (0.0346)             | 0.0523       | (0.0515)             |
| Age                     | -0.0184        | (0.0130)             | 0.0160                      | (0.0106)             | 0.00241              | (0.00502)            | 0.0000855    | (0.00392)            |
| Period                  | 0.0189***      | (0.00288)            | $-0.0225^{+++}$             | (0.00295)            | 0.00364 <sup>*</sup> | (0.00205)            | -0.0235***   | (0.00305)            |
| DG=0                    | 0.312***       | (0.104)              | -0.361***                   | (0.0751)             | 0.0484               | (0.0766)             | -0.0513      | (0.0847)             |
| DG frac                 | -0.278         | (0.185)              | 0.0502                      | (0.154)              | $0.228^{**}$         | (0.106)              | 0.210        | (0.152)              |
| Deduction 20%           | -0.0769        | (0.0513)             | $0.111^{**}$                | (0.0531)             | -0.0345              | (0.0350)             | 0.000568     | (0.0561)             |
| Deduction 30%           | -0.00105       | (0.0634)             | 0.0336                      | (0.0634)             | -0.0326              | (0.0385)             | -0.0610      | (0.0649)             |
| Redistribution          | 0.00917        | (0.0802)             | 0.0140                      | (0.0907)             | -0.0232              | (0.0811)             | 0.0263       | (0.117)              |
| Shock                   | 0.00563        | (0.0748)             | -0.0559                     | (0.0652)             | 0.0502               | (0.0633)             | -0.0665      | (0.0658)             |
| Shock, yes              | -0.0169        | (0.0435)             | 0.0317                      | (0.0410)             | -0.0147              | (0.0339)             | 0.00729      | (0.0449)             |
| Status                  | -0.0255        | (0.0854)             | -0.0260                     | (0.0955)             | 0.0514               | (0.0704)             | 0.00201      | (0.0681)             |
| Status, 200 ECU         | 0.0204         | (0.101)              | -0.0588                     | (0.110)              | 0.0384               | (0.0916)             | -0.0307      | (0.0852)             |
| Non-fixed               | 0.0441         | (0.0727)             | $-0.130^{*}$                | (0.0673)             | 0.0860               | (0.0556)             | 0.0267       | (0.0921)             |
| Constant                |                | · · · ·              |                             | · · · ·              |                      | ( )                  | 0.438***     | (0.126)              |
| Observations            | 2560           |                      | 2560                        |                      | 2560                 |                      | 1012         | ( )                  |
| Log pseudolikelihood    | -2105 6811     |                      | -2105 6811                  |                      | -2105 6811           |                      |              |                      |
| B <sup>2</sup>          | 2100.0011      |                      | 2100.0011                   |                      | 210010011            |                      | 0.1007       |                      |
| D20-D20                 | 0.222          |                      | 0.220                       |                      | 0.065                |                      | 0.220        |                      |
| D20=D30                 | 0.200          |                      | 0.220                       |                      | 0.305                |                      | 0.555        |                      |
|                         |                |                      | UI                          | < c                  |                      |                      | U            | K                    |
|                         |                | Ml                   | ogit, average r             | narginal effec       | ts                   |                      | OI           | LS                   |
|                         | Maxima         | l lying              | Partial                     | lying                | Hon                  | est                  | Partia       | l lying              |
| Test period performance | $0.0271^{***}$ | (0.00508)            | -0.00452                    | (0.00440)            | -0.0226***           | (0.00500)            | 0.0139       | (0.0108)             |
| Male                    | $0.104^{***}$  | (0.0322)             | $-0.125^{***}$              | (0.0274)             | 0.0207               | (0.0288)             | -0.0373      | (0.0669)             |
| Age                     | -0.00769***    | (0.00233)            | $0.00485^{**}$              | (0.00207)            | 0.00285              | (0.00216)            | 0.00205      | (0.00414)            |
| Period                  | $0.0210^{***}$ | (0.00206)            | -0.0106***                  | (0.00195)            | $-0.0104^{***}$      | (0.00162)            | -0.0154***   | (0.00323)            |
| DG=0                    | $0.348^{***}$  | (0.0518)             | -0.232***                   | (0.0334)             | $-0.117^{***}$       | (0.0430)             | -0.00644     | (0.117)              |
| DG frac                 | -0.186*        | (0.104)              | -0.197**                    | (0.0890)             | $0.382^{***}$        | (0.0996)             | 0.515**      | (0.241)              |
| Deduction 20%           | 0.0148         | (0.0400)             | 0.0306                      | (0.0355)             | -0.0455              | (0.0316)             | 0.0709       | (0.0768)             |
| Deduction 30%           | $0.0743^{*}$   | (0.0411)             | -0.0477                     | (0.0344)             | -0.0266              | (0.0354)             | 0.0921       | (0.0991)             |
| Deduction 40%           | 0.0214         | (0.0670)             | 0.0577                      | (0.0602)             | -0.0791*             | (0.0441)             | $0.236^{**}$ | (0.104)              |
| Deduction 50%           | 0.124*         | (0.0731)             | 0.000215                    | (0.0715)             | -0.124***            | (0.0413)             | -0.312***    | (0.102)              |
| Deadweight loss         | -0.122*        | (0.0644)             | 0.00688                     | (0.0571)             | 0.115*               | (0.0639)             | -0.153       | (0.141)              |
| Bedistribution          | 0.0588         | (0.0538)             | -0.0152                     | (0.0439)             | -0.0436              | (0.0000)             | -0.145       | (0.105)              |
| Shock                   | -0.00709       | (0.0600)             | -0.0236                     | (0.0405)             | 0.0307               | (0.0400)<br>(0.0575) | -0.249**     | (0.100)              |
| Shock yes               | -0.00703       | (0.0000)             | 0.0206*                     | (0.0343)             | 0.0514*              | (0.0373)             | 0.0225       | (0.0335)             |
| Shock, yes              | -0.0291        | (0.0311)<br>(0.0649) | 0.0800                      | (0.0443)<br>(0.0610) | -0.0314              | (0.0272)<br>(0.0521) | 0.126        | (0.0190)             |
| Status 200 ECU          | 0.159*         | (0.0042)             | -0.0000                     | (0.0010)             | -0.103               | (0.0321)             | 0.0247       | (0.134)              |
| Neg Gued                | -0.103         | (0.0821)             | -0.00296                    | (0.0949)             | 0.130                | (0.110)              | -0.0347      | (0.138)              |
| INON-FIXED              | -0.0400        | (0.0474)             | 0.0579                      | (0.0437)             | -0.0179              | (0.0389)             | -0.0455      | (0.109)              |
| Constant                | <b>K</b> 000   |                      | F000                        |                      | F000                 |                      | 0.117        | (0.148)              |
| Observations            | 5080           |                      | 5080                        |                      | 5080                 |                      | 661          |                      |
| Log pseudolikelihood    | -3856.4259     |                      | -3856.4259                  |                      | -3856.4259           |                      |              |                      |
| $\mathbb{R}^2$          |                |                      |                             |                      |                      |                      | 0.2029       |                      |
| D20=D30                 | 0.174          |                      | 0.0362                      |                      | 0.628                |                      | 0.791        |                      |
| D20=D40                 | 0.924          |                      | 0.642                       |                      | 0.469                |                      | 0.0939       |                      |
| D20=D50                 | 0.147          |                      | 0.668                       |                      | 0.0907               |                      | 0.000351     |                      |
| D30=D40                 | 0.443          |                      | 0.0823                      |                      | 0.274                |                      | 0.233        |                      |
| D30=D50                 | 0.510          |                      | 0.512                       |                      | 0.0513               |                      | 0.00165      |                      |
| D40=D50                 | 0.226          |                      | 0.468                       |                      | 0.389                |                      | 0.000000519  |                      |
|                         |                |                      |                             |                      |                      |                      |              |                      |

Table C12: Determinants of lying in each period, by country. Performance data from training period



Figure C3: Predicted and actual behavior in Period 10.

| Questions                                                     |       |
|---------------------------------------------------------------|-------|
| Avoid paying a fee on public transport                        | 0.340 |
| Cheating on taxes if you have a chance                        | 0.373 |
| Driving faster then the speed limit                           | 0.226 |
| Keeping money you found on the street                         | 0.260 |
| Lying in your own interests                                   | 0.308 |
| Not reporting accidental damage you have done to a parked car | 0.330 |
| Throwing away litter in a public place                        | 0.298 |
| Driving under the influence of alcohol                        | 0.303 |
| Making up a job application                                   | 0.325 |
| Buying something you know is stolen                           | 0.370 |

The civicness index is calculated as the normalized first principle component of 10 questions of the following form: "Please consider the following and indicate if you think they are justified or not. [...] Never (4)/Rarely (3)/Sometimes (2)/Always justified (1)." The first principle component explained 28% of variation.





Figure C4: Lying and the digital die roll result.

|                                                               | Maximal lie | Partial lie | Honest | Total |
|---------------------------------------------------------------|-------------|-------------|--------|-------|
| Always declare 0%                                             | 25          | 4           | 26     | 55    |
| Declare 0% in at least 8 periods                              | 28          | 7           | 43     | 78    |
| Always declare above 0%, but below 100%                       | 1           | 0           | 24     | 25    |
| Declare above $0\%$ , but below $100\%$ in at least 8 periods | 7           | 8           | 50     | 65    |
| Always declare 100%                                           | 2           | 5           | 33     | 40    |
| Declare $100\%$ in a least 8 periods                          | 7           | 5           | 44     | 56    |

The table shows the frequency actions on the digital die task when 1, 2, 3, or 4 was rolled, depending on the individual's behavior in the main part of the experiment.

Table C14: Lying on the digital die task



Figure C5: Distribution of reaction time by country. Figures present the cumulative distributions functions of TR for different decisions

### Questions

"How often do you lend money to your friends. 0 - More often than once a week, 1 0.626 - Approximately once a week, 2 - Approximately once a month, 3 - Once a year or less often."

"How often do you lend your belongings to your friends. 0 - More often than once a 0.671 week, 1 - Approximately once a week, 2 - Approximately once a month, 3 - Once a year or less often."

"How often do you leave your door open. 0 - Very often, 1 - Often, 3 - Sometimes, 0.396 4 - Rarely, 5 - Never."

The trusting behavior index is calculated as the normalized first principle component of 3 questions. The first principle component explained 44% of variation.

Table C15: Components of the trusting behavior index.

|                         | Ave           | rage       |               | Per round  |
|-------------------------|---------------|------------|---------------|------------|
| Male                    | 1.411***      | (0.313)    | $1.428^{***}$ | (0.306)    |
| Age                     | -0.0289       | (0.0416)   | -0.0281       | (0.0430)   |
| Period                  |               |            | $0.165^{***}$ | (0.0165)   |
| DG=0                    | 0.216         | (0.464)    | 0.245         | (0.452)    |
| DG above 0              | -0.00230**    | (0.000942) | -0.00235**    | (0.000924) |
| Deduction 20%           | 0.423         | (0.335)    | 0.495         | (0.330)    |
| Deduction 30%           | 0.00765       | (0.468)    | -0.0486       | (0.454)    |
| Shock                   | 0.339         | (0.456)    | 0.514         | (0.481)    |
| L.Shock=Yes             |               |            | -0.411        | (0.265)    |
| Status                  | 0.716         | (0.602)    | 0.799         | (0.570)    |
| Status, 200 ECU         | -0.0496       | (0.798)    | -0.143        | (0.770)    |
| Non-fixed               | $1.184^{***}$ | (0.435)    | $1.238^{***}$ | (0.427)    |
| Redistribution          | 0.183         | (0.786)    | -0.0186       | (0.742)    |
| L.Dec. others, 1000     |               |            | $-0.191^{*}$  | (0.113)    |
| Civicness               | -0.245        | (0.149)    | $-0.255^{*}$  | (0.145)    |
| Trusting behavior index | 0.0804        | (0.165)    | 0.0828        | (0.160)    |
| SafeChoices             | 0.0750        | (0.0844)   | 0.0605        | (0.0811)   |
| Ideology                | -0.0968       | (0.0770)   | -0.0842       | (0.0736)   |
| Income                  | -0.559        | (0.808)    | -0.644        | (0.788)    |
| Constant                | $11.55^{***}$ | (1.227)    | $11.00^{***}$ | (1.232)    |
| Observations            | 256           |            | 2304          |            |
| $R^2$                   | 0.172         |            | 0.153         |            |

OLS regressions. Dependent variable is average performance over 10 rounds in the first model, and performance in a round for the second model. Robust standard errors for first model, standard errors clustered by subject for the second model. DG frac is the fraction of the 1000 ECU donated in the dictator game. Norms is the social norms index (see Table C13). SafeChoices if the number (0-10) of safe choices on the lottery task. Trusting behavior is the trusting behavior index (see Table C15). Income is the number of the individual's income bracket, rescaled between 0 and 1 (for Chile and the UK), and the individual's perceived income decile, rescaled between 0 and 1 (for Russia). \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

Table C16: Determinants of subject's performance, Russia.

|                                              |                 | 1.4       |                | 1.1.2     |                |  |
|----------------------------------------------|-----------------|-----------|----------------|-----------|----------------|--|
|                                              | Mod             | el 1      | Moc            | lel 2     |                |  |
| RET rank                                     | -0.500***       | (0.0579)  | $-0.314^{***}$ | (0.0497)  | -0.308***      |  |
| RET deviation                                | $0.0279^{***}$  | (0.00432) | $0.0258^{***}$ | (0.00428) | $0.0277^{***}$ |  |
| Male                                         | 0.0189          | (0.0323)  | $0.0831^{***}$ | (0.0263)  | $0.0788^{***}$ |  |
| Age                                          | $0.00772^{***}$ | (0.00268) | $0.00421^{*}$  | (0.00250) | 0.00406        |  |
| Period                                       | $-0.158^{***}$  | (0.00278) | $-0.146^{***}$ | (0.00275) | -0.0954***     |  |
| DG=0                                         | $-0.276^{***}$  | (0.0552)  | -0.00103       | (0.0441)  | 0.0300         |  |
| DG frac                                      | $0.207^{*}$     | (0.111)   | $0.166^{*}$    | (0.0865)  | $0.183^{**}$   |  |
| Deduction 20%                                | $0.101^{***}$   | (0.0376)  | $0.0739^{**}$  | (0.0311)  | $0.0743^{**}$  |  |
| Deduction 30%                                | -0.0583         | (0.0395)  | -0.0271        | (0.0325)  | -0.0280        |  |
| Deduction 40%                                | $0.237^{**}$    | (0.102)   | $0.215^{***}$  | (0.0760)  | $0.207^{***}$  |  |
| Deduction 50%                                | -0.146          | (0.0981)  | -0.0884        | (0.0828)  | -0.100         |  |
| Redistribution                               | -0.0120         | (0.0638)  | 0.0326         | (0.0508)  | 0.0278         |  |
| Shock                                        | $0.155^{***}$   | (0.0570)  | $0.162^{***}$  | (0.0482)  | $0.150^{***}$  |  |
| Shock, yes                                   | $0.354^{***}$   | (0.0461)  | $0.336^{***}$  | (0.0441)  | $0.349^{***}$  |  |
| Status                                       | -0.113          | (0.0685)  | -0.0744        | (0.0539)  | -0.0795        |  |
| Status, 200 ECU                              | 0.127           | (0.0851)  | 0.103          | (0.0670)  | $0.114^{*}$    |  |
| Non-fixed                                    | $0.0913^{**}$   | (0.0428)  | $0.118^{***}$  | (0.0354)  | $0.117^{***}$  |  |
| Russia                                       | $-0.123^{**}$   | (0.0493)  | $-0.134^{***}$ | (0.0418)  | -0.151***      |  |
| UK                                           | -0.498***       | (0.0413)  | -0.323***      | (0.0357)  | -0.318***      |  |
| Maximal lie this period                      |                 | · /       | $0.486^{***}$  | (0.0351)  |                |  |
| Partial lie this period                      |                 |           | $0.835^{***}$  | (0.0334)  |                |  |
| Maximal lie in period 1                      |                 |           |                | · · · ·   | $0.407^{***}$  |  |
| Partial lie in period 1                      |                 |           |                |           | $1.277^{***}$  |  |
| Honest in period 1                           |                 |           |                |           | $0.979^{***}$  |  |
| Max. lie this and previous period            |                 |           |                |           | -0.463***      |  |
| Max. lie prev. period, part. lie this period |                 |           |                |           | $0.512^{***}$  |  |
| Max. lie prev. period, honest this period    |                 |           |                |           | $0.409^{***}$  |  |
| Part. lie prev. period, max. lie this period |                 |           |                |           | -0.0139        |  |
| Part. lie this and previous period           |                 |           |                |           | $0.403^{***}$  |  |
| Part. lie prev. period, honest this period   |                 |           |                |           | $0.350^{***}$  |  |
| Honest prev. period, max, lie this period    |                 |           |                |           | -0.0430        |  |
| Honest prev. period, part, lie this period   |                 |           |                |           | 0.500***       |  |
| Constant                                     | $2.667^{***}$   | (0.102)   | $2.015^{***}$  | (0.0945)  | 2.070***       |  |
| Observations                                 | 10714           | (0.10-)   | 10714          | (0.00 10) | 10714          |  |
| $B^2$                                        | 0.3580          |           | 0.4506         |           | 0.5089         |  |
| 10                                           | 0.0000          |           | 0.1000         |           | 0.0000         |  |

OLS regression. Dependent variable is log reaction time. Standard errors are clustered by subject. Baseline category for subject p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

### Table C17: Determinants of reaction time

|                                              | ٦ ٢ ١          | -1 1      | ٦.٢.١          | -1.0      | Madal 2        |           |  |
|----------------------------------------------|----------------|-----------|----------------|-----------|----------------|-----------|--|
|                                              | Mod            | el 1      | Mod            | el 2      | Mod            | el 3      |  |
| RET rank                                     | 0.372***       | (0.0727)  | 0.245***       | (0.0656)  | 0.270***       | (0.0652)  |  |
| RET deviation                                | -0.0298***     | (0.00780) | -0.0269***     | (0.00786) | -0.0270***     | (0.00686) |  |
| Male                                         | -0.0565        | (0.0404)  | -0.0980***     | (0.0347)  | $-0.106^{***}$ | (0.0337)  |  |
| Age                                          | -0.00654*      | (0.00340) | -0.00467       | (0.00302) | -0.00384       | (0.00326) |  |
| Period                                       | $0.184^{***}$  | (0.00402) | $0.174^{***}$  | (0.00407) | $0.101^{***}$  | (0.00420) |  |
| DG=0                                         | $0.305^{***}$  | (0.0763)  | -0.0259        | (0.0616)  | -0.0862        | (0.0610)  |  |
| DG frac                                      | -0.145         | (0.146)   | -0.164         | (0.120)   | $-0.212^{*}$   | (0.118)   |  |
| Deduction 20%                                | $-0.128^{***}$ | (0.0479)  | $-0.111^{***}$ | (0.0413)  | $-0.113^{***}$ | (0.0396)  |  |
| Deduction 30%                                | 0.0375         | (0.0497)  | 0.00904        | (0.0420)  | -0.0151        | (0.0421)  |  |
| Deduction 40%                                | $-0.392^{***}$ | (0.148)   | $-0.288^{**}$  | (0.112)   | $-0.304^{***}$ | (0.112)   |  |
| Deduction 50%                                | 0.104          | (0.114)   | 0.0469         | (0.101)   | 0.0961         | (0.0894)  |  |
| Redistribution                               | 0.0183         | (0.0853)  | -0.00992       | (0.0680)  | 0.0116         | (0.0658)  |  |
| Shock                                        | -0.0935        | (0.0722)  | -0.118*        | (0.0645)  | $-0.124^{**}$  | (0.0617)  |  |
| Shock, yes                                   | $-0.361^{***}$ | (0.0592)  | -0.337***      | (0.0596)  | -0.336***      | (0.0532)  |  |
| Status                                       | 0.119          | (0.0890)  | 0.0991         | (0.0672)  | 0.101          | (0.0659)  |  |
| Status, 200 ECU                              | -0.159         | (0.106)   | -0.135         | (0.0862)  | $-0.136^{*}$   | (0.0819)  |  |
| Non-fixed                                    | -0.0875        | (0.0541)  | $-0.119^{***}$ | (0.0450)  | $-0.116^{***}$ | (0.0442)  |  |
| Russia                                       | $0.280^{***}$  | (0.0589)  | $0.326^{***}$  | (0.0521)  | $0.293^{***}$  | (0.0515)  |  |
| UK                                           | $0.646^{***}$  | (0.0512)  | $0.515^{***}$  | (0.0463)  | $0.452^{***}$  | (0.0470)  |  |
| Maximal lie this period                      |                |           | $-0.494^{***}$ | (0.0493)  |                |           |  |
| Partial lie this period                      |                |           | -0.841***      | (0.0445)  |                |           |  |
| Maximal lie in period 1                      |                |           |                | ( )       | -0.618***      | (0.0839)  |  |
| Partial lie in period 1                      |                |           |                |           | $-1.408^{***}$ | (0.0594)  |  |
| Honest in period 1                           |                |           |                |           | -1.266***      | (0.0802)  |  |
| Max. lie this and previous period            |                |           |                |           | 0.481***       | (0.0566)  |  |
| Max, lie prev, period, part, lie this period |                |           |                |           | -0.504***      | (0.0743)  |  |
| Max, lie prev, period, honest this period    |                |           |                |           | -0.465***      | (0.147)   |  |
| Part, lie prev, period, max, lie this period |                |           |                |           | -0.0941        | (0.0769)  |  |
| Part, lie this and previous period           |                |           |                |           | -0.457***      | (0.0464)  |  |
| Part lie prev period honest this period      |                |           |                |           | -0.377***      | (0.0600)  |  |
| Honest prev period max lie this period       |                |           |                |           | -0.00740       | (0.112)   |  |
| Honest prev period part lie this period      |                |           |                |           | -0.580***      | (0.0632)  |  |
| Constant                                     | -3.164***      | (0.131)   | -2.473***      | (0.121)   | -2.289***      | (0.124)   |  |
| Observations                                 | 0.101          | (0.101)   | 2.110          | (0.121)   | 2.200          | (0.121)   |  |
|                                              | 10392          |           | 10392          |           | 10392          |           |  |

Exponential distribution survival time model. Standard errors are clustered by subject. Baseline category for subject decision in Model 2 is honest behavior in this period. Baseline category for subject decision in Model 3 is honest behavior in this and previous period. \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

Table C18: Parametric estimation of hazard rate, exponential distribution of reaction time

|                                              | Mod            | el 1      | Mod             | el 2      | Mod             | lel 3     |
|----------------------------------------------|----------------|-----------|-----------------|-----------|-----------------|-----------|
| RET rank                                     | $0.391^{***}$  | (0.0806)  | $0.269^{***}$   | (0.0782)  | $0.332^{***}$   | (0.0853)  |
| RET deviation                                | -0.0322***     | (0.00893) | $-0.0301^{***}$ | (0.00992) | $-0.0313^{***}$ | (0.00996) |
| Male                                         | -0.0628        | (0.0446)  | $-0.109^{***}$  | (0.0414)  | $-0.130^{***}$  | (0.0442)  |
| Age                                          | $-0.00684^{*}$ | (0.00376) | -0.00517        | (0.00352) | -0.00420        | (0.00419) |
| Period                                       | $0.201^{***}$  | (0.00503) | $0.201^{***}$   | (0.00548) | $0.124^{***}$   | (0.00619) |
| DG=0                                         | $0.327^{***}$  | (0.0856)  | -0.0350         | (0.0745)  | -0.123          | (0.0822)  |
| DG frac                                      | -0.150         | (0.162)   | -0.181          | (0.144)   | $-0.265^{*}$    | (0.155)   |
| Deduction $20\%$                             | $-0.141^{***}$ | (0.0532)  | $-0.134^{***}$  | (0.0489)  | $-0.152^{***}$  | (0.0513)  |
| Deduction 30%                                | 0.0427         | (0.0550)  | 0.0127          | (0.0500)  | -0.0260         | (0.0559)  |
| Deduction $40\%$                             | $-0.442^{***}$ | (0.165)   | $-0.345^{**}$   | (0.135)   | $-0.416^{***}$  | (0.151)   |
| Deduction $50\%$                             | 0.109          | (0.126)   | 0.0445          | (0.121)   | 0.122           | (0.117)   |
| Redistribution                               | 0.0196         | (0.0944)  | -0.00930        | (0.0807)  | 0.0236          | (0.0864)  |
| Shock                                        | -0.0957        | (0.0795)  | $-0.128^{*}$    | (0.0771)  | $-0.150^{*}$    | (0.0820)  |
| Shock, yes                                   | -0.390***      | (0.0661)  | $-0.377^{***}$  | (0.0726)  | -0.393***       | (0.0739)  |
| Status                                       | 0.134          | (0.0991)  | 0.125           | (0.0795)  | 0.140           | (0.0867)  |
| Status, 200 ECU                              | -0.179         | (0.117)   | -0.166          | (0.103)   | -0.186*         | (0.108)   |
| Non-fixed                                    | -0.0965        | (0.0599)  | $-0.136^{**}$   | (0.0533)  | $-0.142^{**}$   | (0.0577)  |
| Russia                                       | $0.323^{***}$  | (0.0642)  | $0.405^{***}$   | (0.0609)  | $0.400^{***}$   | (0.0661)  |
| UK                                           | $0.715^{***}$  | (0.0571)  | $0.621^{***}$   | (0.0538)  | $0.594^{***}$   | (0.0607)  |
| Maximal lie this period                      |                |           | $-0.556^{***}$  | (0.0596)  |                 |           |
| Partial lie this period                      |                |           | $-0.937^{***}$  | (0.0555)  |                 |           |
| Maximal lie in period 1                      |                |           |                 |           | $-0.786^{***}$  | (0.109)   |
| Partial lie in period 1                      |                |           |                 |           | $-1.706^{***}$  | (0.0817)  |
| Honest in period 1                           |                |           |                 |           | $-1.590^{***}$  | (0.109)   |
| Max. lie this and previous period            |                |           |                 |           | $0.585^{***}$   | (0.0779)  |
| Max. lie prev. period, part. lie this period |                |           |                 |           | $-0.587^{***}$  | (0.0944)  |
| Max. lie prev. period, honest this period    |                |           |                 |           | $-0.572^{***}$  | (0.192)   |
| Part. lie prev. period, max. lie this period |                |           |                 |           | -0.138          | (0.101)   |
| Part. lie this and previous period           |                |           |                 |           | $-0.548^{***}$  | (0.0606)  |
| Part. lie prev. period, honest this period   |                |           |                 |           | $-0.441^{***}$  | (0.0773)  |
| Honest prev. period, max. lie this period    |                |           |                 |           | -0.0287         | (0.150)   |
| Honest prev. period, part. lie this period   |                |           |                 |           | -0.693***       | (0.0820)  |
| Constant                                     | -3.493***      | (0.143)   | $-2.924^{***}$  | (0.139)   | $-2.930^{***}$  | (0.161)   |
| $\ln_p$                                      |                |           |                 |           |                 |           |
| Constant                                     | 0.0816***      | (0.0125)  | 0.129***        | (0.0134)  | 0.201***        | (0.0146)  |
| Observations                                 | 10392          |           | 10392           |           | 10392           |           |
| L                                            | -14533.5       |           | -13922.9        |           | -13189.3        |           |

Weibull distribution survival time model. Standard errors are clustered by subject. Baseline category for subject decision in Model 2 is honest behavior in this period. Baseline category for subject decision in Model 3 is honest behavior in this and previous period. \* p < 0.10, \*\* p < 0.05, \*\*\*\* p < 0.01

Table C19: Parametric estimation of hazard rate, Weibull distribution of reaction time

|        |      | 1-1 ECU  | 1-10 ECU | 1-20 ECU | 1-30 ECU | 1-40 ECU | 1-50 ECU | 1-60 ECU | 1-70 ECU | 1-80 ECU | 1-90 ECU |
|--------|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|        | Low  | 0.013636 | 0.029870 | 0.034416 | 0.042208 | 0.045455 | 0.061688 | 0.070779 | 0.070779 | 0.074675 | 0.076623 |
| Chile  | High | 0.006494 | 0.023377 | 0.024026 | 0.025325 | 0.025974 | 0.033117 | 0.033766 | 0.034416 | 0.037013 | 0.038312 |
|        | р    | 0.069348 | 0.313751 | 0.108061 | 0.012285 | 0.004657 | 0.000242 | 0.000005 | 0.000007 | 0.000006 | 0.000006 |
|        | Low  | 0.014844 | 0.063281 | 0.078906 | 0.082812 | 0.084375 | 0.115625 | 0.120313 | 0.121875 | 0.123438 | 0.126562 |
| Russia | High | 0.005469 | 0.027344 | 0.031250 | 0.032031 | 0.032031 | 0.049219 | 0.049219 | 0.049219 | 0.049219 | 0.049219 |
|        | р    | 0.028163 | 0.000015 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
|        | Low  | 0.008268 | 0.037008 | 0.050394 | 0.056693 | 0.058268 | 0.070472 | 0.071260 | 0.071654 | 0.072441 | 0.073622 |
| UK     | High | 0.009449 | 0.029134 | 0.036614 | 0.040157 | 0.042520 | 0.045669 | 0.046063 | 0.046063 | 0.046457 | 0.046457 |
|        | р    | 0.764972 | 0.135809 | 0.019173 | 0.007255 | 0.012237 | 0.000190 | 0.000161 | 0.000129 | 0.000109 | 0.000056 |

For each country, the first two rows report the frequencies of declarations for two groups of subjects. The third row reports the p-value for Fisher's exact test comparing these two frequencies.

Table C20: Near-maximal cheating depending on performance (p-values for two-sided Fisher's exact test).

|        |        | 1-1 ECU  | 1-10 ECU | 1-20 ECU | 1-30 ECU | 1-40 ECU | 1-50 ECU | 1-60 ECU | 1-70 ECU | 1-80 ECU | 1-90 ECU |
|--------|--------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|        | Female | 0.010256 | 0.030128 | 0.032692 | 0.039103 | 0.042308 | 0.058974 | 0.067308 | 0.067308 | 0.069872 | 0.070513 |
| Chile  | Male   | 0.009868 | 0.023026 | 0.025658 | 0.028289 | 0.028947 | 0.035526 | 0.036842 | 0.037500 | 0.041447 | 0.044079 |
|        | р      | 1.000000 | 0.262871 | 0.284682 | 0.110243 | 0.051868 | 0.002229 | 0.000179 | 0.000259 | 0.000700 | 0.001885 |
|        | Female | 0.013821 | 0.061789 | 0.079675 | 0.083740 | 0.083740 | 0.113008 | 0.113008 | 0.114634 | 0.116260 | 0.117886 |
| Russia | Male   | 0.006767 | 0.030075 | 0.032331 | 0.033083 | 0.034586 | 0.054135 | 0.058647 | 0.058647 | 0.058647 | 0.060150 |
|        | р      | 0.079462 | 0.000127 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000001 | 0.000000 | 0.000000 | 0.000000 |
|        | Female | 0.009465 | 0.038683 | 0.053909 | 0.062963 | 0.064198 | 0.076543 | 0.076955 | 0.076955 | 0.077778 | 0.078189 |
| UK     | Male   | 0.008302 | 0.027925 | 0.033962 | 0.035094 | 0.037736 | 0.041132 | 0.041887 | 0.042264 | 0.042642 | 0.043396 |
|        | р      | 0.764755 | 0.033986 | 0.000555 | 0.000004 | 0.000021 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |

| Table C21: | Near-maximal | cheating | depending | on gender | (p-values | for two-sided | Fisher's exac | t |
|------------|--------------|----------|-----------|-----------|-----------|---------------|---------------|---|
| test).     |              |          |           |           |           |               |               |   |

|        |      | 1-1 ECU  | 1-10 ECU | 1-20 ECU | 1-30 ECU | 1-40 ECU | 1-50 ECU | 1-60 ECU | 1-70 ECU | 1-80 ECU | 1-90 ECU |
|--------|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Chile  | DG>0 | 0.010544 | 0.027211 | 0.029932 | 0.034694 | 0.036735 | 0.048980 | 0.054082 | 0.054422 | 0.057823 | 0.059524 |
|        | DG=0 | 0.000000 | 0.014286 | 0.014286 | 0.014286 | 0.014286 | 0.014286 | 0.014286 | 0.014286 | 0.014286 | 0.014286 |
|        | р    | 0.399202 | 0.586206 | 0.437506 | 0.330682 | 0.238977 | 0.064292 | 0.032065 | 0.032060 | 0.022563 | 0.023279 |
| Russia | DG>0 | 0.013333 | 0.053333 | 0.065641 | 0.068205 | 0.068718 | 0.098462 | 0.101538 | 0.102564 | 0.103590 | 0.105641 |
|        | DG=0 | 0.000000 | 0.019672 | 0.021311 | 0.022951 | 0.024590 | 0.031148 | 0.031148 | 0.031148 | 0.031148 | 0.031148 |
|        | р    | 0.001678 | 0.000212 | 0.000009 | 0.000009 | 0.000016 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| UK     | DG>0 | 0.010315 | 0.041547 | 0.055874 | 0.062751 | 0.065616 | 0.076218 | 0.077077 | 0.077364 | 0.078223 | 0.079083 |
|        | DG=0 | 0.005660 | 0.014465 | 0.016352 | 0.016981 | 0.016981 | 0.018239 | 0.018239 | 0.018239 | 0.018239 | 0.018239 |
|        | р    | 0.108379 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |

For each country, the first two rows report the frequencies of declarations for two groups of subjects. The third row reports the p-value for Fisher's exact test comparing these two frequencies.

Table C22: Near-maximal cheating depending on DG donation (*p*-values for two-sided Fisher's exact test).