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We develop a framework for analyzing how banks can be incentivized to

make contributions to a voluntary bail-in and ascertaining the kinds of inter-

bank linkages that are most conducive to a bail-in. A bail-in is possible only

when the regulator’s threat to not bail out insolvent banks is credible. Incen-

tives to join a rescue consortium are stronger in networks where banks have

a high exposure to default contagion, and weaker if banks realize that a large

fraction of the benefits resulting from their contributions accrue to others. Our

results reverse existing presumptions about the relative merits of different net-

work topologies for moderately large shock sizes: while diversification effects

reduce welfare losses in models without intervention, they inhibit the forma-

tion of bail-ins by introducing incentives for free-riding. We provide a nuanced

understanding of why certain network structures are preferable, identifying the

impact of the network structure on the credibility of bail-in proposals.

Financial institutions are linked to each other via bilateral contractual obliga-

tions and are thus exposed to counterparty risk of their obligors. If one institution

is in distress, it will default on its agreements, thereby affecting the solvency of

its creditors. Since the creditors are also borrowers, they may not be able to re-

pay what they owe and default themselves—problems in one financial institution

spread to others in what is called financial contagion. Large shocks can trigger a

cascade of defaults with potentially devastating effects for the economy. The gov-

ernment is thus forced to intervene in some way and stop the cascade to reduce the
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negative externalities imposed on the economy. The extent of these cascades—the

magnitude of the systemic risk—depends on the nature of the linkages, i.e., the

topology of the financial system. In the 2008 crisis, it became apparent that the

financial system had evolved in a way which enhanced its ability to absorb small

shocks but made it more fragile in the face of a large shock. While a few studies

called attention to these issues before the crisis, it was only after the crisis that

the impact of the network structure on systemic risk became a major object of

analysis.1 Most of the existing studies analyze the systemic risk implications of a

default cascade, taking into account the network topology, asset liquidation costs,

and different forms of inefficiencies that arise at default. Many of these models, how-

ever, do not account for the possibility of intervention to stop the cascade. There

is either no rescue of insolvent banks or the regulator (or central bank or other

government institution) intervenes by following an exogenously specified protocol.

The goal of our paper is to endogenize the intervention mechanism as the outcome

of the strategic interaction between regulator and financial institutions.

The most common default resolution procedure is the bailout, in which the gov-

ernment injects liquidity to help distressed banks servicing their debt. For example,

during the global financial crisis, capital was injected into banks to prevent fire sale

losses, including the intervention of the Bank of England and the U.S. Treasury

Department’s Asset Relief Program (TARP); see also Duffie (2010) for a related

discussion.2 Since the East Asia crisis, critics of bailouts have suggested bail-ins

as an alternative, which are financed through voluntary contributions by the banks

within the network.3 Bail-ins allow creditor banks to participate in losses by effec-

tively swapping their non-performing interbank claims for equity in the distressed

banks. Creditors save some of their investment and the distressed banks remain

solvent, with the burden of losses placed on creditors as opposed to taxpayers. A

prominent example of a bail-in is the consortium organized by the Federal Reserve

1Most notably, Allen and Gale (2000) and Greenwald and Stiglitz (2003). See also Boissay (2006),
Castiglionesi (2007), May, Levin and Sugihara (2008), and Nier et al. (2007). One of the reasons for the
limited study is the scarce availability of data on interbank linkages. An early construction of Japan’s
interbank network, done before the crisis but published afterwards, is De Masi et al. (2011). With the
exception of Haldane at the Bank of England, remarkably, central bankers paid little attention to the
interplay of systemic risk and network topology; see Haldane (2009).

2The Bush administration bailed out large financial institutions (AIG insurance, Bank of America and
Citigroup) and government sponsored entities (Fannie Mae, Freddie Mac) at the heart of the crisis. The
European Commission intervened to bail out financial institutions in Greece and Spain. It is widely believed
that the AIG bailout was an indirect bailout of Goldman Sachs.

3Several attempted bail-ins failed, simply because the threat of not undertaking a bail-out was not
credible. See Stiglitz (2002). In the aftermath of these failures, there have been proposals for bonds that
would automatically convert into equity in the event of a crisis.
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Bank of New York to rescue the hedge fund Long-Term Capital Management.4 As a

third default resolution procedure we consider assisted bail-ins, where the regulator

provides some liquidity assistance to incentivize the formation of bail-in consor-

tia. Such a strategy strikes a balance between the contributions of creditors and

taxpayers. Assisted bail-ins have been used in the recent financial crisis.5

We investigate the structure of default resolution plans that arise in equilibrium,

when the regulator cannot credibly commit to an ex-post suboptimal resolution pol-

icy. Moral hazard may prevent constrained efficient bail-ins from being implemented:

if creditor banks anticipate a bailout by the government, they have no incentive to

participate in a bail-in. Therefore, the government’s ability to engineer a bail-in

crucially depends on the credibility of its no-bailout threat. We show how the net-

work structure affects the regulator’s negotiation power and the banks’ incentives

to participate in a rescue.

We model the provision of liquidity assistance as a sequential game between

regulator and banks that consists of three stages. At the beginning of the game,

banks have already observed the realization of asset returns. In the first stage, the

regulator proposes an assisted bail-in allocation policy, specifying the contributions

by each solvent bank, as well as the additional liquidity injections (subsidies) that

he will provide to each bank. In the second stage, each bank decides whether or

not to accept the regulator’s proposal. If all banks accept, the game ends with

the proposed rescue consortium and financial contagion is stopped; otherwise we

move to the third stage where the regulator has three options: (i) contribute the

amount that was supposed to be covered by the banks which rejected the proposal,

(ii) abandon the bail-in coordination and resort to a public bailout, or (iii) avoid

any rescue and let the default cascade occur. After transfers are made, liabilities of

banks are cleared simultaneously in the spirit of Eisenberg and Noe (2001). Unlike

their paper, however, but as in Rogers and Veraart (2013) and Battiston et al.

4Long-Term Capital Portfolio collapsed in the late 1990s. On September 23, 1998, a recapitalization plan
of $3.6 billion was coordinated under the supervision of the Federal Reserve Bank of New York. A total
of sixteen banks, including Bankers Trust, Barclays, Chase, Credit Suisse, Deutsche Bank, Goldman Sachs,
Merrill Lynch, Morgan Stanley, Salomon Smith Barney, UBS, Société Général, Paribas, Crédit Agricole,
Bear Stearns, and Lehman Brothers originally agreed to participate. However, Bear Stearns and Lehman
Brothers later declined to participate and their agreed-upon contributions was instead provided by the
remaining fourteen banks.

5A noticeable example of an assisted bail-in is Bear Stearns. JPMorgan Chase and the New York Federal
Reserve stepped in with an emergency cash bailout in March, 2008. The provision of liquidity by the
Federal Reserve was taken to avoid a potential fire sale of nearly U.S. $210 billion of Bear Stearns’ assets.
The Chairman of the Fed, Ben Bernanke, defended the bail-in by stating that Bear Stearns’ bankruptcy
would have affected the economy, causing a “chaotic unwinding” of investments across the U.S. markets and
a further devaluation of other securities across the banking system.
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(2016), bankruptcies are costly. When there are no bankruptcy costs, the system

is “conservative” and the clearing of liabilities simply reduces to a redistribution of

wealth in the network. In the presence of bankruptcy costs, there are real losses that

propagate through the financial system if banks cannot fully honor their liabilities.

These losses are amplified through self-reinforcing feedback loops among defaulting

banks and the size of the amplification depends crucially on the network structure.

The regulator’s option of standing idly by in the last stage is what we call the

regulator’s threat of no intervention. The threat, however, may not be credible if

walking away from the proposal decreases the regulator’s welfare function. In that

case, the regulator cannot incentivize any bank to participate in a bail-in consor-

tium because all banks are aware that without their participation, the regulator will

resort to a public bailout. If the threat is credible, a bail-in can be organized. Our

first result characterizes the assisted bail-in that arises as the generically unique

equilibrium outcome. Our subsequent results explore properties of the equilibrium

outcome. We show that the credibility of the regulator’s threat is tightly linked

to the topology of the financial system. The threat is credible if and only if the

amplification of the shock through the network does not exceed a certain threshold.

This means that for moderately large shock sizes, the no-intervention threat may

not be credible in networks where interbank liabilities are well diversified because

a high degree of interconnectedness between defaulting banks increases the ampli-

fication of the shock through the network. High amplification leads to large social

losses, which make the threat non-credible and leave a public bailout as the only

possible rescue option. If, by contrast, the shock’s amplification is small as in the

case of concentrated networks, where financial contagion can be quarantined to a

specific area, the regulator’s threat is credible. This permits constrained efficient

assisted bail-ins to be coordinated for shock sizes and recovery rates where more

dense networks would require a more costly bailout.

We demonstrate that a bank is willing to contribute a larger amount to a bail-

in if the losses in absence of intervention are more concentrated. This loosening

of the banks’ participation constraints allows the government to shift the burden

of losses away from taxpayers towards creditors of failing banks. The intuition

underlying this result is that more concentrated networks allow bail-in plans with

benefits more targeted to the bail-in contributors. This implies the existence of a

network multiplier : the total contribution from banks required to stop the initial

shortfall caused by fundamentally defaulting banks is lower than the aggregate losses
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Figure 1: The figure compares equilibrium welfare losses in a diversified (blue) and a concentrated
network (red) in the presence (solid lines) and absence (dashed lines) of intervention.6 When the
no-intervention losses exceed the costs of a public bailout (black dashed line), the government’s
threat to not intervene is not credible and a public bailout is the only possible equilibrium rescue.
In the absence of intervention, a diversified network is better for small shocks, while a concentrated
network is preferred for large shocks. There will be a public bailout for diversified networks if
the shock is large, and for concentrated networks if the shock is small. When a public bailout is
not credible, then a bail-in becomes feasible, lowering overall welfare costs discontinuously. This
increases the range of shocks over which a concentrated network is desirable.

in the system if no intervention arises. These gains from a rescue, however, accrue

to the entire financial sector. An individual bank is willing to contribute if and only

if the share of these gains accrued to the contributing bank itself is at least one

(conditional on every other bank’s contribution decision). Hence, the same exact

force that creates an absorption mechanism for losses in a diversified network (see

Allen and Gale (2000) and Acemoglu, Ozdaglar and Tahbaz-Salehi (2015a)) leads to

free-riding when the banks are faced with the decision of how much to contribute to

a bail-in. The impacts of these forces on equilibrium welfare losses are illustrated in

Figure 1. Once the possibility (desirability) of government intervention to prevent

systemic collapse is taken into account, the relative desirability of different network

typologies is reversed, at least for some shock sizes.

Our analysis indicates that the regulator’s threat of inaction is less credible

if the costs of inefficient asset liquidation are higher. This result contributes to

explain some of the decisions made by the sovereign authorities during distress

scenarios. For instance, a private bail-in was coordinated to rescue the Long-Term

Capital Management hedge fund in 1998. In contrast, the government of the United

States rescued Citigroup through a public bailout in November 2008. Compared to

the period when Long-Term Capital Management was rescued, at the time when

Citigroup entered into distress the capitalization of the entire financial system was

6The figure displays our results in the stylized case of a continuum of banks to highlight the key differences
between welfare losses in a ring and a complete network. In our model, the financial network consists of a
finite number of banks, which leads to additional discontinuities in welfare losses. We refer to Section 4.2
for a numerical example consisting of a finite number of banks.
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much lower (i.e., its leverage was much higher).7 Because the amplification of a

shock is high in a lowly capitalized network, this suggests that the no-intervention

threat may not have been credible.8

The remainder of the paper is organized as follows. In Section 1, we position

our work relative to the existing literature. We develop the model in Section 2. We

characterize the optimal bail-in plan and the equilibrium outcome for any financial

network in Section 3. We analyze the relation between the credibility of the reg-

ulator’s threat and welfare losses in Section 4. Section 5 concludes. Appendix A

generalizes the results of Section 3. Proofs are delegated to appendices B and C.

1 Literature Review

Our paper is related to a vast branch of literature on financial contagion in interbank

networks.9 Pioneering works include Allen and Gale (2000) and Eisenberg and Noe

(2001), and further developments were made in more recent years by Acemoglu,

Ozdaglar and Tahbaz-Salehi (2015a), Elliott, Golub and Jackson (2014), Gai, Hal-

dane and Kapadia (2011), Glasserman and Young (2015), and Capponi, Chen and

Yao (2016). We refer to Glasserman and Young (2016) for a thorough survey on

financial contagion.10 These works study how an initial shock is amplified through

the interbank network based on the network topology, the inefficient liquidation of

non-interbank assets, the trade-off between diversification and integration on the

level of interbank exposures, and the complexity of the network. Different from our

study, in these models agents execute exogenously specified contractual agreements

but do not take any strategic action to resolve distress in the network. A different

branch of the literature has focused on the coordinating role of the central bank in

7Prior to its needing a bail-out, seven major credit events occurred in the month of September 2008
alone, involving Fannie Mae, Freddie Mac, Lehman Brothers, Washington Mutual, Landsbanki, Glitnir and
Kaupthing.

8This may not be the only explanation: politics may play more than a little role.
9There is, in addition, a closely related literature on financial contagion in intercountry and real produc-

tion networks. See Battiston et al. (2007) and Acemoglu et al. (2012). These literatures have largely grown
up independently, with little cross-references to each other. Even within the financial networks literature,
there are two different strands which have developed relatively independently, one, as here, exploring conta-
gion through network models using matrix analysis, the other (such as Battiston et al. (2007) and Battiston
et al. (2012)) exploring the consequences of interlinkages on the dynamics of default cascades.

10Other related contributions include Gai and Kapadia (2010), which analyze how knock-on effects of
distress can lead to write down the value of institutional assets; Cifuentes, Ferrucci and Shin (2005), which
analyze the impact of fire sales on financial network contagion; Cabrales, Gottardi and Vega-Redondo
(2017), which study the trade-off between the risk-sharing generated by more dense interconnection and the
greater potential for default cascades; Battiston et al. (2012), which demonstrate that systemic risk does not
necessarily decrease if the connectivity of the underlying financial network increases; and Elsinger, Lehar
and Summer (2006), which study transmission of contagion in the Austrian banking system;
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stopping financial contagion through provision of liquidity (Freixas, Parigi and Ro-

chet (2000) and Gorton (2010)). These studies, however, do not consider resolution

strategies where the government provides assistance that goes beyond the simple

provision of liquidity (to financial institutions that are supposed to be solvent), but

at the same time feature the involvement of the private sector, such as the bail-ins

considered in our paper. The presence of this default resolution option questions the

credibility of the no-intervention commitment by the government, which we show

to be tightly linked to the network structure and the size of the initial shock.

Our paper contributes to the debate about bail-ins and bailouts, and the roles

played by moral hazard and government credibility. Cooper and Nikolov (2017)

analyze the relation between the government choice to bail out banks and the in-

centives for banks to self-insure through equity buffers. In their analysis, moral

hazard arises because the incentive for banks to hold government debt without eq-

uity buffers depends on the anticipated bailout choice of the government. While

their focus is on fragility of the sovereign debt market, our study targets the design

of optimal resolution policies for the interbank debt market. Keister (2016) studies

the interaction between a government’s bailout policy during a crisis and banks’

willingness to bail-in their investors. Similar to our study, banks may not go along

with a bail-in if they anticipate being bailed out. Different from their study, our

focus is on the interplay between the optimal sustainable resolution policy and the

topology of the financial network.

In our model, the regulator determines the optimal rescue plan after the banks

have already decided on the amount of risk undertaken, and shocks to outside assets

have occurred. We do not consider here the moral hazard problem of banks taking

excessive risks, knowing that they will be rescued if the market moves against them.

Moral hazard problems arising in this context have been thoroughly investigated

in the literature, but our model, like the rest of the literature, does not account

for the endogenous structure of the interbank network (the exception is a recent

study by Erol (2016), which develops an endogenous network formation model in

which the government can intervene to stop contagion). Important contributions

include Gale and Freixas (2002), who argue that a bailout is optimal ex post, but ex

ante it should be limited to control moral hazard; Acharya and Yorulmazer (2007),

who show that banks may find it optimal to invest in highly correlated assets in

anticipation of a bailout triggered by the occurrence of many simultaneous failures;

Farhi and Tirole (2012), who support Acharya and Yorulmazer (2007)’s findings
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by showing that safety nets can provide perverse incentives and induce correlated

behavior that increases systemic risk; Chari and Kehoe (2016), who show that if the

regulator cannot commit to avoid bailouts ex post, then banks may overborrow ex

ante; and Keister (2016), who finds that prohibiting bailouts may lead intermediaries

to invest into too liquid assets which lower aggregate welfare. In contrast with these

studies, in our model banks do not strategically decide on interbank or outside

asset investments. The channel of contagion comes from the propagation of shocks

through the exogenous network of liabilities.11

Related to our model is the study by Rogers and Veraart (2013), who analyze

situations in which banks can stop the insolvency from spreading by stabilizing the

financial system through mergers. In their paper, however, the question of whether

such a merger is incentive compatible for the shareholders of an individual bank

is not addressed and the government does not take an active role. By contrast,

our model focuses on the credibility of the regulator’s actions and the free-riding

problem that arises because the stability of the financial system is to the benefit of

every participant.

2 Model

We consider an interbank network with simultaneous clearing in the spirit of Eisen-

berg and Noe (2001). Banks i = 1, . . . , n are connected through interbank liabilities

L = (Lij)i,j=1,...,n, where Lij denotes the liability of bank j to bank i. We de-

note by Lj :=
∑n

i=1 L
ij the total liability of bank j to other banks in the network.

Define the relative liability matrix π = (πij) by setting πij = Lij/Lj if Lj 6= 0

and πij = 0 otherwise. Our framework can accommodate lending from the private

sector by adding a “sink node” that has only interbank assets but no interbank

liabilities. Banks have investments in outside assets with values e = (e1, . . . , en),

cash holdings ch = (c1
h, . . . , c

n
h) and financial commitments cf = (c1

f , . . . , c
n
f ) with a

higher seniority than the interbank liabilities. These commitments include deposits,

wages and other operating expenses. If a bank i is not able to meet its liabilities

out of current income, it will liquidate a part `i ∈ [0, ei] of its outside investments,

but will recover only a fraction α ∈ (0, 1] of the value of those investments.12 If a

11In the presence of bail-ins, banks bear the costs of their excessive risk taking in more states of the nature
than in a model with bailouts only. This reduces the extent of moral hazard.

12In reality, recovery rates are asset-specific and some assets may directly be transferred to the creditors
of defaulting institutions without liquidation. The parameter α is to be understood as an average recovery
rate across all assets. It is equal to 1 if all assets are transferred to the creditors.
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bank i cannot meet its liabilities even after liquidating all of its outside assets, it will

default. As in Rogers and Veraart (2013) and Battiston et al. (2016), the default of

a bank is costly and only a fraction β ∈ (0, 1] of the defaulting bank’s value is paid

to creditors. Because the financial commitments cf have higher seniority than the

interbank liabilities, many parts of the model will depend cf and ch only through

the difference c = ch − cf , which can be viewed as a net cash balance.

We denote by (L, π, ch, cf , e) the financial system after risks have been taken

and after an exogenous shock has hit the system. The shock may lower the value

of banks’ outside assets or the net cash holdings of the banks. This may result in a

negative net cash balance if, for example, a bank intended to use the returns from

an investment to cover the operating expenses, but the returns turned out to be

lower than expected.

We refer to the defaults that occur as an immediate consequence of the shock as

fundamental defaults and denote their index set by F :=
{
i
∣∣ Li > ci + αei + (πL)i

}
,

where (πL)i =
∑n

j=1 π
ijLj is the book value of bank i’s interbank assets. Funda-

mentally defaulting banks cannot meet their obligations even if every other bank

repays its liabilities in full. Because fundamentally defaulting banks are able to

only partially repay their creditors, their defaults may lead to additional defaults

in the system, resulting in a default cascade. If, however, banks in F receive a

liquidity injection so that they can meet their obligations, the financial system is

stabilized. In this section, we first characterize the outcome of a default cascade and

then elaborate on the different types of rescues.

2.1 Default cascade

A defaulting bank will recall its assets and repay its creditors according to their

seniority. Depositors are the most senior creditors, hence they are given priority

over lenders from the interbank network and the private sector, to whom we refer as

junior creditors. Creditors with the same seniority are repaid proportionally to their

claim sizes. How much a bank is able to recall from its interbank assets depends on

the solvency of the other banks in the system. A clearing payment vector is a set

of repayments, simultaneously executed by all banks, for which every solvent bank

repays its liabilities in full and every insolvent bank pays its entire value (net of

costs from asset liquidation and bankruptcy) to its creditors.13

13In practice, liabilities may be cleared sequentially rather than simultaneously and the order of clearing
may impact the outcome. This method of simultaneous clearing is standard in the literature and may
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Definition 2.1. A clearing payment vector p = (p1, . . . , pn) for a financial system

(L, π, ch, cf , e) is a fixed point of

pi =

 Li if ci + αei +
∑n

j=1 π
ijpj ≥ Li,(

β
(
cih + αei +

∑n
j=1 π

ijpj
)
− cif

)+
otherwise,

where we denote by x+ = max(x, 0) the positive part of x.

For a clearing payment vector p, we denote by D(p) :=
{
i
∣∣ pi < Li

}
the set of

defaulting banks. Each bank i liquidates a nominal amount equal to

`i(p) = min

 1

α

(
Li − ci −

n∑
j=1

πijpj
)+

, ei

,
that is, each solvent bank liquidates just enough to remain solvent and each de-

faulting bank liquidates the outside assets in their entirety. A defaulting bank pays

its entire value to its creditors. If the payment pi is positive, it is divided pro-rata

among bank i’s junior creditors and the senior creditors are paid in full. If pi = 0,

the junior creditors do not receive anything and the senior creditors suffer a loss of

δi(p) :=

(
cif − β

(
cih + αei +

n∑
j=1

πijpj
))+

.

Our notion of clearing payment vectors extends the corresponding notion in Rogers

and Veraart (2013), by allowing banks to partially liquidate their outside assets,

and the corresponding notion in Acemoglu, Ozdaglar and Tahbaz-Salehi (2015a) by

incorporating bankruptcy costs. The value of bank i’s equity after liabilities are

cleared with the clearing payment vector p is equal to

V i(p) := (πp+ c+ e− (1− α)`(p)− p)i1{pi=Li}, (1)

where 1{pi=Li} is the indicator function, taking the value 1 if pi = Li and 0 otherwise.

Welfare losses wλ(p) are defined as weighted sum of losses due to default costs, i.e.,

wλ(p) := (1− α)

n∑
i=1

`i(p) + (1− β)
∑
i∈D(p)

(
cih + αei +

∑
j π

ijpj
)

+ λ
∑
i∈D(p)

δi(p). (2)

represent the fact that clearing of liabilities occurs on a smaller time scale than the formation of bail-ins.
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The first two terms in (2) are deadweight losses due to inefficient asset liquidation

and bankruptcy costs: If bank i liquidates a nominal amount `i(p), only α`i(p) is

recovered and (1 − α)`i(p) is lost. A defaulting bank i recovers a fraction β of its

assets and a fraction (1− β) is lost. The last term in (2) are losses borne by senior

creditors, weighted by a constant λ ≥ 0. The weight λ captures the importance

that the regulator assigns to the senior creditors’ losses relative to the deadweight

losses from asset liquidation and bankruptcy proceedings. The regulator’s goal is to

minimize welfare losses and the parameter λ captures his priorities in doing so. A

regulator with λ = 0 views the senior creditors’ losses merely as transfers of wealth

and not as losses to the economy. A higher value of λ indicates a higher priority to

the welfare of the economy exclusive of the banking sector. The coefficient λ may

also be interpreted as a measure of political pressure on the regulator since a haircut

on deposits is likely to result in unhappy voters. We obtain the following existence

result for clearing payment vectors in analogy with Rogers and Veraart (2013).

Lemma 2.1. For any financial system (L, π, ch, cf , e), there exist a greatest and

a lowest clearing payment vector p̄ and p, respectively, with p̄i ≥ pi ≥ pi for any

clearing payment vector p and any bank i. Moreover, p̄ is Pareto dominant, i.e.,

V i(p̄) ≥ V i(p) for every bank i and wλ(p̄) ≤ wλ(p) for any λ > 0.

As is standard in the literature, liabilities are cleared with the Pareto-dominant

clearing payment vector p̄.

2.2 Coordination of rescues

Definition 2.2. An assisted bail-in (b, s) specifies for each bank i = 1, . . . , n the

transfer bi of bank i to fundamentally defaulting banks as well as the size si of the

subsidy bank i receives. The government’s contribution to the bail-in is
∑n

i=1(si−bi),
which is imposed to be non-negative.

An assisted bail-in is a set of centralized transfers. The government allocates the

contributions received by the participating banks, with bank i receiving subsidy si.

Remark 2.1. Assisted bail-ins contain public bailouts and privately backed bail-

ins as special cases. A public bailout is an assisted bail-in, in which the banks’

contributions are equal to 0, that is, b = 0. In a private bail-in, the government

contributions are 0, i.e.,
∑n

i=1 b
i =

∑n
i=1 s

i.
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In addition to contributing to a bail-in financially, the regulator also serves to

coordinate among different bail-ins. Specifically, the regulator may propose a bail-in

allocation, but cannot force banks to participate.14

Organization of a rescue.

1. The regulator proposes an assisted bail-in (b, s).

2. Each bank i from
{
j ∈ Fc

∣∣ bj > 0
}

chooses a binary action ai ∈ {0, 1}, indi-

cating whether or not it agrees to contribute bi.15

3. The regulator has the following three options:

(i) a0 = “bail-in”: Proceed with the planned subsidies s without the con-

tributions of banks which rejected the proposal and make up for those

contributions using taxpayer money. Bank i’s cash holdings and its fi-

nancial commitments in the rescue are cih(s) := cih + si and cif (b, a) :=

cif − bi1{ai=1}, respectively. Let p̄(b, s, a) denote the Pareto-dominant

clearing payment vector in the financial system
(
L, π, ch(s), cf (b, a), e

)
.

The value of bank i after the rescue is

V i(b, s, a) := V i
(
p̄(b, s, a)

)
.

Welfare losses in the presence of intervention are a straightforward mod-

ification of (2), where we additionally account for the social costs of

government subsidies:

wλ(b, s, a) := wλ
(
p̄(b, s, a)

)
+ λ

n∑
i=1

(si − bi1{ai=1}).
16 (3)

14Duffie and Wang (2017) consider bail-in strategies which are done contractually, rather than by a central
planner. In their model, prioritization of bail-ins is based on the type of the instrument and not based
on mitigating failure contagion through the network. Under strong axioms and assumptions on bilateral
bargaining conditions, they show that the efficient choice of bail-in arrangements is made voluntarily.

15For a set of banks X , we denote by X c := {1, . . . , N}\X the complement with respect to {1, . . . , N}. A
bank i with bi = si = 0, is not expected to make a contribution to the bail-in, nor does it receive a subsidy.
We assume that such a bank has no power to reject the proposal because it is simply not involved in the
discussion. Similarly, a fundamentally defaulting bank cannot afford to reject a bail-in proposal. For ease
of notation, these banks have only the singleton {1} available to choose from in stage 2.

16In reality, the regulator may assign a weight λ1 to depositor’s losses and a different weight λ2 to taxpayer
contributions. In many situations, λ1 > λ2 so that the depositors are bailed out. However, the crises in
Cyprus and Iceland have shown that this is not always the case. Our results do not crucially depend on the
assumption that λ1 = λ2 and we make it for notational convenience.
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(ii) a0 = “bailout”: Resort to a public bailout (0, s̃) with subsidies s̃ decided

by the regulator. After accounting for the subsidies, the cash holdings of

bank i is equal to cih(s̃) = cih+ s̃i. We denote by p̄(s̃) the greatest clearing

payment vector in (L, π, ch(s̃), cf , e). The banks’ values and welfare losses

are defined analogously to (i).

(iii) a0 = “no intervention”: Abandon the rescue, which results in a default

cascade as in Section 2.1. We denote the welfare losses in a default

cascade by wN := wλ(p̄(0, 0, 0)) for the sake of brevity.

Definition 2.3. A bail-in (b, s) is feasible if it does not require any contributions of

fundamentally defaulting banks and each non-fundamentally defaulting bank i can

afford to contribute bi, given the vector s of subsidies. More precisely, bi = 0 for

any i ∈ F and Li + cif + bi ≤ cih + si +αei +
(
πp̄(b, s, 1)

)i
for i 6∈ F . A bail-in is thus

feasible if it can be accepted by all banks.

The goal of the next section is to characterize all subgame perfect equilibria of

this game when the regulator is restricted to propose feasible bail-ins. The notion

of subgame perfection is closely related to the government’s lack of commitment:

it eliminates the non-credible threat of the regulator to abandon the rescue in the

third stage when, in fact, he prefers a public bailout over a default cascade. The

regulator cannot incentivize any bank i to participate in a bail-in if welfare losses

are lowest in a bailout that protects bank i. Indeed, knowing that the regulator

will inevitably resort to a public bailout after a rejection of his proposal, bank i

has no punishments to fear for not cooperating. In reality, the coordination of a

bail-in might involve more than one round of negotiation between regulator and

banks. Some banks might reject the regulator’s initial proposal, after which the

regulator revises his proposal to accommodate the banks.17 In a game-theoretic

model with complete information, the regulator can anticipate the banks’ responses

and need not make a proposal that is not incentive compatible. The negotiation is

thus collapsed into a single stage. To maintain the dynamic flavor of a negotiation,

we require that the banks’ response to a proposal be renegotiation proof in the sense

of Farrell and Maskin (1989).

17The original proposal made by the Federal Reserve Bank of New York for the rescue of Long Term
Capital Management involved a total of 16 of LTCM’s creditors. However, Bear Stearns and Lehman
Brothers later declined to participate. Upon the rejection of these two banks, the Fed adjusted its proposal
so that the contributions of Bear Stearns and Lehman Brothers was covered by the remaining 14 banks.
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Definition 2.4. At any time t, let At(ht) denote the set of players who are still

active after history ht has occurred.18 A subgame-perfect equilibrium (SPE) σ is

weakly renegotiation proof if after every history ht, there exists no continuation SPE

σt such that the outcome of σt for players in At Pareto-dominates the outcome of

the continuation profile σ|ht for those players.

This concept is a suitable equilibrium selection criterion in our setting because

the coordination of a bail-in is precisely a negotiation: during the bail-in of Long

Term Capital Management, Peter Fisher of the Federal Reserve Bank of New York

sat down with representatives of LTCM’s creditors to find an appropriate solution;

and it is implausible that they would have ever agreed on a bail-in plan that is

Pareto-dominated.

3 Characterization of equilibria

In this section, we characterize the set of equilibria via backward induction. In the

main body of the paper, we focus on the case of all-or-nothing interventions, where

the regulator considers only rescues in which every bank of the system is saved.

The more general case, where the regulator can propose interventions that rescue

some banks but not others, is treated in Appendix A. As the intuition is largely the

same for complete and general rescues, this allows us to present the economic forces

behind the formation of bail-ins without the added mathematical complexity and

the notational overhead of general rescues.

In complete rescues, the network’s structure affects the coordination of bail-ins

only through the credibility of the regulator’s threat, which stands at the heart of

this analysis. The payoffs in a rescue, however, decouple from the network structure

because in a complete rescue, every bank recovers the nominal value of its assets. If

general rescues are allowed, the regulator performs an additional minimization step

in the first stage, optimizing proposals over rescues of all possible subsets of banks.

However, for each subset considered, the formation of bail-ins works analogously to

a complete bail-in.

3.1 Public bailout

In a complete bailout, the regulator provides a subsidy to every distressed bank.

For a fundamentally defaulting bank i, there are two potentially sensible choices for

18A player is active at time t, if he/she faces at least one non-trivial decision after time t.
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the size of the subsidy si. The regulator can either give a subsidy that is just large

enough so that bank i does not have to liquidate any of its investments or he can

give a subsidy that is just large enough to prevent bank i from defaulting, but that

requires bank i to liquidate its projects. Which of the two choices minimizes the

welfare losses depends on the the values of λ and α: if taxpayer money is expensive

relative to liquidation costs (λα ≥ 1−α), the regulator prefers that banks liquidate

their outside assets to contribute a larger amount, whereas if taxpayer money is

considered cheap (λα < 1− α), the regulator prefers to contribute a larger amount

himself so as to avoid the liquidation of banks’ outside assets.

Lemma 3.1. The welfare-maximizing complete bailout sP is given by

siP =


(
Li − ci − (πL)i

)+
if λα < 1− α,(

Li − ci − αei − (πL)i
)+

if λα ≥ 1− α.

We denote the resulting welfare losses by wP = wλ(0, sP , 1).

Corollary 3.2. Let (b, s) be the proposed bail-in with response vector a of the banks.

In any sequential equilibrium,

a0(b, s, a) =


“bail-in” if wλ(b, s, a) < min(wN , wP ),

“no intervention” if wN ≤ min(wλ(b, s, a), wP ),

“bailout” otherwise.

It is clear that the regulator will choose whichever action minimizes his wel-

fare losses if the minimizer is unique. To see why ties are broken according to

“no intervention” � “bailout” � “bail-in”, observe that banks have no incentive to

contribute to a bail-in if they anticipate a public bailout. Thus, if the regulator

commits to choosing “no intervention” over “bailout” when wN = wP , he is able to

incentivize banks to contribute without violating sequential rationality. Similarly,

by giving least priority to “bail-in” the regulator is able to deter unilateral deviations

of banks in Stage 2 of the game; see Lemma 3.5 and Footnote 21 below for details.

3.2 Equilibrium response of banks

For any given feasible bail-in proposal, there may be many equilibrium responses

by the banks. Suppose that the regulator proposes a bail-in, which requires the
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participation of at least 5 banks for it to be preferable over the alternatives of

a default cascade or a public bailout. Then any response with at most 3 banks

accepting the proposal is trivially an equilibrium because a deviation of a single

bank is not going to change the outcome. More interesting is the multiplicity among

equilibria where the regulator proceeds with the bail-in because there may be several

coalitions of banks, with which the regulator is happy to coordinate an intervention.

A crucial separation among continuation equilibria is whether or not the banks’

responses trigger the regulator’s decision to proceed with the bail-in according to

Corollary 3.2.

Definition 3.1. Given a bail-in proposal (b, s), an equilibrium response a by the

banks is called an accepting equilibrium if a0(b, s, a) = “bail-in” and it is called a

rejecting equilibrium otherwise. Two equilibria (b, s, a) and (b̃, s̃, ã) are equivalent

if they demand the same net contribution bi − si = b̃i − s̃i from each bank i and

a = ã.19

Remark 3.1. Note that the banks’ responses do not have to be unanimous in an

accepting/rejecting equilibrium. Some banks may reject the proposal in an accepting

equilibrium and vice versa. However, a sufficient proportion of banks accepts/rejects

the proposal in an accepting/rejecting for the regulator to proceed with/abandon

the bail-in.

Our first result in this section shows that most rejecting equilibria are indeed

trivial equilibria that arise from a miscoordination. The requirement that equilibria

be weakly renegotiation proof eliminates precisely these equilibria.

Lemma 3.3. Suppose that a complete bail-in proposal (b, s) admits at least one

accepting continuation equilibrium. Then every accepting continuation equilibrium is

weakly renegotiation proof. Moreover, a rejecting continuation equilibrium is weakly

renegotiation proof only if (b, s) = (0, sP ).

Lemma 3.3 shows that banks do not reject a bail-in proposal that can also be

accepted in equilibrium. However, two accepting equilibria may not be Pareto-

comparable, which raises the question of how banks coordinate their responses. The

following result shows that the regulator can preempt the coordination problem by

altering his proposed bail-in so that it is incentive compatible only for one coalition

to accept the proposal.

19Because net contributions are identical it follows that also a0(b, s, a) = a0(b̃, s̃, ã).
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Lemma 3.4. Let (b, s) be a proposed bail-in plan with accepting equilibrium re-

sponses {a1, . . . , am}. For any ak, k = 1, . . . ,m, there exists a proposal (b̃, s̃), to

which ak is the unique accepting equilibrium response (up to equivalence). More-

over, ak is the Pareto-dominant equilibrium response to (b̃, s̃).

Our final result of this section characterizes the banks’ incentive compatible

responses in an accepting equilibrium.

Lemma 3.5. Let (b, s) be a feasible proposal of a complete bail-in. In an accepting

equilibrium a, bank i with bi > 0 accepts if and only if:20

1. wλ(b, s, (0, a−i)) ≥ min(wN , wP ), and

2. bi − si ≤


∑n

j=1 π
ij(Lj − pjN ) if wN ≤ wP ,

−siP if wP < wN .

Let us break down the intuition behind this result. If wN ≤ wP , then the

regulator prefers a default cascade over a bailout. The first condition thus states

that there is no possibility for free-riding: if bank i were to reject the proposed

bail-in, the regulator is not going to make up for i’s contribution and lets a default

cascade occur instead.21 The second condition states how much bank i is willing to

contribute to prevent a default cascade. Bank i is willing to make a net contribution

to the bail-in up to the amount the bank would lose in a default cascade. If wN > wP ,

the two conditions state that the regulator’s threat to not bail out the banks is not

credible. Because a rejection of bank i leads to a bailout by Condition 1, bank i

accepts only bail-ins that are a greater net subsidy then the bailout by Condition 2.

If wN > wP , the regulator can thus do no better than resorting to a public bailout.

3.3 Optimal proposal of the regulator

If a proposal admits a unique accepting equilibrium, its acceptance is the unique

weakly renegotiation proof continuation by Lemma 3.3. For such a proposal, the

regulator can anticipate the banks’ responses and what the resulting welfare losses

will be. It is thus suboptimal for the regulator to make a proposal that admits more

than one accepting equilibrium: according to Lemma 3.4, the regulator could have

20We use the standard notation in game theory and denote by (0, a−i) the action profile where bank i
rejects the proposal and each other player’s action (including the regulator’s) is the same as in action
profile a.

21This explains why the regulator gives least preference to continuation a0 = “bail-in” in Corollary A.2.
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revised his proposal to select his preferred response unambiguously. Among those

proposals that admit only one accepting equilibrium, the regulator will thus propose

the bail-in that minimizes welfare losses, subject to the conditions of Lemma 3.5.

Consider a feasible bail-in proposal (b, s) with accepting equilibrium a. Because

every bank is rescued, each bank recovers its interbank assets in full. The nominal

amount that any bank i has to liquidate to retrieve its net contribution bi1{ai=1}−si

thus decouples from the contributions of others and hence the decisions of the other

banks. Specifically, bank i has to liquidate an amount `ic(b
i1{ai=1} − si), where

`ic(x) = min

(
1

α

(
Li + x− ci − (πL)i

)+
, ei
)

(4)

is the nominal amount that has to be liquidated by bank i to recover the cash

amount x, conditional on a complete rescue taking place (hence the subscript c).

Bank i’s contribution to the bail-in reduces welfare losses by

f i(b, s, a) := λbi1{ai=1} − (1− α)
(
`ic(b

i1{ai=1} − si)− `ic(−si)
)
.

It lowers taxpayer losses by bi, but will create deadweight losses if the bank needs to

liquidate part of its outside assets to retrieve the contributed amount. The “no free-

riding” condition of Lemma 3.5 implies that the welfare losses after the proposal’s re-

jection by any net contributor i ∈ R(b, s, a) :=
{
i
∣∣ bi − si > 0, ai = 1

}
are bounded

from below by wN . Therefore, welfare losses in (b, s, a) admit the lower bound

wλ(b, s, a) ≥ wN − min
i∈R(b,s,a)

f i(b, s, a). (5)

The regulator thus strives to include banks in the bail-in which offer a high con-

tribution to the rescue consortium and generate low deadweight losses when they

liquidate their outside assets to retrieve the contributed amount. Which choice of

b is optimal for the regulator depends on the values of λ and α: if taxpayer money

is expensive relative to liquidation costs (λα ≥ 1 − α), the regulator prefers that

banks liquidate their outside assets to contribute a larger amount, whereas if tax-

payer money is cheap (λα < 1 − α), the regulator prefers to contribute a larger

amount himself. We are now ready to state the main result for complete rescues,

which characterizes the proposals and the associated welfare losses that arise in any

weakly renegotiation proof equilibrium.
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Theorem 3.6. Let i1, . . . , i|Fc| be a non-increasing ordering of banks according to

νi := ληi − (1− α)
(
`ic(η

i − siP )− `ic(−siP )
)
, where sP is defined in Lemma 3.1 and

ηi :=


min

(∑n
j=1 π

ij(Lj − pjN ), (ci + αei + (πL)i − Li)+
)

if λα ≥ 1− α,

min
(∑n

j=1 π
ij(Lj − pjN ), (ci + (πL)i − Li)+

)
if λα < 1− α.

Let m := min
(
k
∣∣∣ wP −∑k

j=1 ν
ij < wN

)
.

Welfare losses: If wP < wN , then the unique equilibrium outcome is the public

bailout sP by the regulator. If wN ≤ wP , then the welfare losses in any weakly

renegotiation proof equilibrium are equal to

w∗ = min

wP − m∑
j=1

νij , wN − νim+1

.
Bail-in proposal: If w∗ = wP −

∑m
j=1 ν

ij , there exists a unique weakly rene-

gotiation proof equilibrium with proposal (b∗, s∗), where banks j = i1, . . . , im each

contribute ηj and subsidies are given by s∗ = sP . If w∗ = wN − νim+1, any proposal

(b∗, s∗) made in a weakly renegotiation proof equilibrium satisfies:

1. s∗ ≥ sP ,

2. ηim+1 ≤ bj∗ − sj∗ ≤ ηj for any j = i1, . . . , im+1, and

3.
∑n

i=1(si∗ − siP ) = 1
λ

(
wN +

∑m
j=1 ν

ij − wP
)

.

As highlighted before, the equilibrium outcome depends crucially on whether or

not the regulator’s threat is credible. Note here that the credibility of the threat

is a function of exogenous variables: the welfare losses wP in the optimal bailout is

the result of a minimization problem solved by the regulator in the last stage of the

game to find the optimal subset of bailed out banks, and wN are the welfare losses

in absence of any action. We discuss how the credibility of the regulator’s threat

is affected by the network topology and the regulator’s preference parameter in the

next section. If the no-intervention threat of the regulator fails to be credible, then

the unique equilibrium outcome is the public bailout characterized in Lemma 3.1.

Because banks are aware that a default cascade is too costly for the regulator, they

know that without their cooperation the regulator will resort to a public bailout,
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which is the preferred outcome by the banks. If the no-intervention threat is credible,

a bail-in will be organized in equilibrium.

The quantity ηi is the welfare-maximizing incentive-compatible contribution of

bank i. There may be a cost associated with retrieving the amount ηi if taxpayer

money is deemed expensive (λα ≥ 1−α) and bank i is forced to liquidate its outside

assets. The welfare impact of bank i’s contribution is thus equal to νi. It captures

the trade-off between willingness of bank i to contribute and marginal liquidation

losses caused by asset liquidation. A bank’s contributions to a rescue consortium

benefits other banks in the system because it enhances the stability of the financial

network. As such, the coordination of bail-ins has an inherent free-riding problem,

where each bank prefers to let others contribute in its stead. By adding banks

to the rescue consortium in the decreasing order i1, i2, . . ., the regulator first asks

for contributions of banks, which get the largest benefit from the rescue. Note

that the absolute benefit determines the order—because the regulator cares only

about welfare losses—and not the cost-to-benefit ratio, which might be the case in a

privately organized bail-in. To avoid incentives for free-riding among contributors,

the regulator includes only the m (or m + 1) largest benefactors into the rescue.

If the regulator decides to include bank im+1 into the bail-in consortium, he must

“burn” an amount equal to 1
λ

(
wN +

∑m
j=1 ν

ij − wP
)

by giving it away as subsidies.

These subsidies can be distributed arbitrarily among banks as long as the smallest

net contribution is equal to ηim+1 . This latter condition ensures that there is no free-

riding among the net contributors because the rejection by one contributor would

trigger the regulator’s decision to let a default cascade occur.

Remark 3.2. If the regulator had the power to commit to playing N in the third

stage, the equilibrium outcome would improve to w∗ even if wP < wN . Commitment

power would thus improve social welfare by (wP − w∗)1{wP<wN}.

Theorem 3.6 characterizes the equilibrium outcome of the game up to the cred-

ibility of the no-intervention threat. Next, we show how the credibility of the reg-

ulator’s threat can be completely characterized in terms of the model primitives.

As we demonstrate next, it critically depends on the relation between the am-

plification of the shock through the network, the asset liquidation costs, and the

regulator’s trade-off between senior creditors’ losses and inefficiencies arising at de-

fault. The main component of welfare losses in a public bailout is the aggregate

shortfall
∑n

i=1

(
Li− ci−αei− (πL)i

)+
of fundamentally defaulting banks. This can

be understood as a measure of the size of the exogenous shock hitting the financial

20



system. The welfare losses triggered by a default cascade, on the other hand, are a

measure of the shock size after the shock propagates through the financial system.

Because senior creditors absorb a part of the losses, the portion of the shortfall that

is amplified through the system is

χ0 :=
n∑
i=1

(
Li − ci − αei − (πL)i

)+ − ∑
i∈D(pN )

δi(pN ). (6)

The losses accruing to the financial system after the shock has spread through the

network are equal to

χN :=
∑
i∈F

(1− α)ei +
∑
i 6∈F

(
ci + ei + (πL)i − Li − V i(pN )

)
. (7)

Our result states that the regulator’s threat is credible if and only if the amplification

χN−χ0 of losses through the financial system in the absence of intervention is smaller

than a certain threshold.

Lemma 3.7. The regulator’s threat is credible if and only if

χN − χ0 ≤ λχ0 + min(λα, 1− α)
n∑
i=1

`ic(0). (8)

Lemma 3.7 establishes a link between the credibility of the no-intervention threat

and the existing literature on financial networks without intervention, which often

ranks the social desirability of network topologies according to the welfare loss cri-

terion χN −χ0. In conjunction with results from this literature (e.g. Allen and Gale

(2000) and Acemoglu, Ozdaglar and Tahbaz-Salehi (2015a)), our result indicates

that for large shock sizes and low recovery rates, dense interconnections between

defaulting banks are detrimental to the formation of bail-ins because they serve as

an amplifier of the shock.

Both the left and right hand sides of (8) depend only on exogenous variables.

Notice that the amplification of losses χN−χ0 depends on the clearing payment vec-

tor pN , that is the fixed point of a function whose arguments are the model primitive

parameters. Moreover, the left-hand side of (8) is independent of the regulator’s

preference parameter λ. An immediate consequence is that the regulator’s threat

becomes more credible if he assigns a larger weight to taxpayers’ and senior credi-

tors’ money. This is because a bailout is perceived to be more costly if λ increases,

making the threat of no bailout more credible.
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4 Credibility of the regulator’s threat

In this section, we study how the credibility of the regulator’s threat and the network

topology affect equilibrium welfare losses. Section 4.1 investigates this relation in

detail. Section 4.2 develops a supporting parametric example featuring two topolo-

gies, the ring and the complete network, respectively representing a concentrated

and a more diversified pattern of interbank liabilities.

4.1 Welfare losses and loss concentration

In this section, we compare equilibrium welfare losses between two arbitrary network

topologies. It is clear from our Theorem 3.6 that the credibility of the regulator’s

no-intervention threat plays a major role. Our first result states that if the threat

is credible in one network but not the other, equilibrium welfare losses are lower in

the network with the credible threat.

Lemma 4.1. For fixed L, ch, cf , e, α, β, the equilibrium welfare losses after interven-

tion are smaller in network π1 than in network π2 if the regulator’s threat is credible

in network π1 but not in network π2.

Lemma 4.1 is intuitive. Because the regulator’s threat is credible in network π1

but not in network π2, Theorem 3.6 implies that w∗(π
1) < wN (π1) ≤ wP = w∗(π

2).

If the threat fails to be credible in both networks, the only available option for the

regulator in either network is a public bailout. Therefore, equilibrium welfare losses

are identical in both networks.

Lastly, consider the situation where the threat is credible in both networks.

Then the socially preferable network crucially depends on the relation between the

topologies of the interbank liability matrices. This is because the liability matrix of

a network determines how losses in the absence of intervention are concentrated.22

There are two counteracting economic forces that determine the relative merits of

one network topology over the other. On the one hand, contributions are larger

in a network where no-intervention losses are concentrated on a smaller number

of banks, leading to a higher reduction of equilibrium welfare losses. On the other

hand, because welfare losses without intervention are larger in the more concentrated

22If interbank liabilities (Lij)ij are more concentrated in network π1 than in network π2, then first-order
interbank losses are more concentrated in π1 than in π2. Higher-order losses, however, that arise as a result
of the amplification of losses through the network, may not preserve this monotonicity. This is why we state
Proposition 4.2 in terms of concentration of interbank losses rather than interbank exposures.
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network, the no free-riding condition of Lemma A.3 implies that fewer banks can be

included into the bail-in consortium, thereby leading to an increase in welfare losses.

Which force dominates the other depends on the precise structure of the network.

In the remainder of the section, we study the conditions under which the network

topology with more concentrated losses is socially preferable.

Because the dependence of equilibrium welfare losses on the network topology is

highly non-linear, we need to impose additional regularity assumptions on the net-

work to obtain more quantitative comparisons between different topologies. Follow-

ing Acemoglu, Ozdaglar and Tahbaz-Salehi (2015a), we say that a financial system

(L, π, ch, cf , e) is regular if Li = Lj for every pair of banks i, j and L = πL. Because

each bank’s interbank claims are equal to its interbank liabilities, the set of funda-

mentally defaulting banks in a regular financial system is F :=
{
i
∣∣ ci + αei < 0

}
.

Note that for regular networks, the set of fundamentally defaulting banks does not

depend on the precise structure of the interbank network other than the relation

L = πL. Thus, for any other network topology π′ with π′L = L, the system

(L, π′, ch, cf , e) is regular and has the same set of fundamentally defaulting banks.

A regular financial system has homogeneous cash holdings if cih = cjh and cif = cjf
for every pair of banks i, j ∈ F and every pair of banks i, j 6∈ F . A regular financial

system with homogeneous cash holdings would arise, for example, if all banks have

homogeneous cash holdings ex ante, but some banks are hit by a shock of identical

size causing them to fundamentally default. Considering regular financial systems

with homogeneous cash holdings guarantees that differences in equilibrium welfare

losses between two networks stem only from differences in their topologies. We do

not impose any restriction on the banks’ holdings of outside assets.

We next introduce a notion of concentration that will allows us to compare

networks, and establish the merit of one topology over the other.

Definition 4.1. Consider two financial systems (L, π, ch, cf , e) (L, π′, ch, cf , e). For

any k < n, interbank losses are strongly k-more concentrated in network π than in π′

if η(i)(π) ≥ η(i)(π′) for every i ≤ k, where x(i) is the ith-largest entry of vector x.

Observe that the welfare losses in a network π equal the sum of the banks’

incentive compatible contributions, i.e., wN (π) =
∑n

i=1 η
i(π). The above notion of

strongly k-more concentrated losses implies that the largest k losses in network π

are higher than the corresponding losses incurred by banks in the network π′. If

wN (π) = wN (π′), then the total losses would be identical in both networks but the
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losses would be more evenly distributed in network π′ than in network π.

Proposition 4.2. Suppose that (L, π, ch, cf , e) and (L, π′, ch, cf , e) are two regular

financial systems with homogeneous cash holdings. If interbank losses are strongly

m(π) + 1-more concentrated in network π than in π′ and

wN (π) ≤ wN (π′) + νim(π)+1(π)(π)− νimin(m(π),m(π′))+1(π′)
(π′) (9)

holds, then equilibrium welfare losses are lower in π than in π′.

We show in the proof in Appendix C that m(π) ≤ m(π′) if wN (π) ≥ wN (π′).

Because the interbank losses are strongly m(π) + 1-more concentrated in network

π than in π′, this implies that the right-hand side of (9) is greater than or equal

to wN (π′). Therefore, Proposition 4.2 implies that even if welfare losses without

intervention are larger in the network with strongly more concentrated losses, then

– as long as the losses are not too much larger – equilibrium welfare losses will

be lower in the more concentrated network. We present a numerical example to

illustrate this fact in Section 4.2.

Overall, our analysis shows that the presence of intervention enlarges the range

of shock sizes for which networks with a higher concentration of losses are socially

preferable. Prior studies have shown that, in the absence of government intervention,

dense interconnections between defaulting banks may amplify rather than absorb

initial losses (e.g. Acemoglu, Ozdaglar and Tahbaz-Salehi (2015a) and Haldane

(2009)). Our results suggest that this phenomenon is strengthened in the presence

of intervention for two fundamental reasons. First, in a more concentrated network,

bail-ins can be tailored in a way that the benefits accrue more strongly to the

contributors, which increases the sizes of a bank’s incentive compatible contribution

(Proposition 4.2). Second, because the amplification of a large shock is expected to

be smaller in the network with a higher liability concentration, the government can

credibly stand by idly in this network but may not be able to do so in the more

diversified network (Lemma 3.7). As a result, the coordination of a bail-in plan in

the more concentrated network would lead to lower welfare losses (Lemma 4.1).

4.2 Comparison between ring and complete network

In this section we illustrate the general results from the previous sections on stylized

network topologies. We consider the ring network as a representative structure of a
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(b) The ring network.

Figure 2: We compare equilibrium welfare lsses in the highly concentrated ring network (b) to
the diversified complete network (a).

concentrated network, and the complete network as a representative structure of a

diversified network. We consider a regular financial system of n = 6 banks in which

we normalize interbank liabilities to 1. The relative liability matrices in the ring

and complete network are given by πR and πC , respectively, with πijR = 1 if and

only if i = j + 1 (modulo n) and πijC = 1
n−1 = 0.2 for every i 6= j. We provide a

graphical representation of the two networks in Figure 2. We choose λ = 1 and fix

the recovery rates to α = 0.75, β = 0.85. We consider an ex-post scenario where an

exogenous shock has rendered bank 1 insolvent. The vector of net cash balances is

given by c = (−1, 0.05, 0.05, 0.05, 0.05, 0.05) and the nominal value of outside assets

are approximately equal to e = (0.5, 0.5, 0.4, 0.7, 0.2, 0.1) so that wN (πR) = 0.652

and wN (πC) = 0.611. Since wP = 0.75, the regulator’s threat is credible in both

networks, hence an equilibrium bail-in can be organized.

In the complete network, the shock is spread evenly among banks in absence of

intervention, resulting in the contagious defaults of the banks with the lowest level

of capitalization, namely banks 5 and 6. In the ring network, banks 2 and 3 default

as a result of financial contagion because these are the closest to the fundamentally

defaulting bank in the chain of creditors. Clearing payment vectors as well as the

vectors of interbank losses and maximal welfare impact are summarized in Table 1.

Note that m(πR) = 1 as wP −ν(1)(πR) < wN (πR). Since interbank losses of banks 2

and 3 in the ring network are larger than interbank losses of any two banks in

the complete network, losses are strongly more concentrated in the ring network,

guaranteeing that welfare losses in the equilibrium bail-in plan are lower in the ring

network by Proposition 4.2.

We conclude this section by illustrating numerically how equilibrium welfare

losses change with sizes of the initial shock c1 and recovery rate α of the outside

assets, keeping other parameters as in the previous example. The equilibrium wel-
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Network πR πC

pN (π) (0.225, 0.616, 0.874, 1, 1, 1) (0.198, 1, 1, 1, 1, 0.839)

η(π) (0.425, 0.35, 0.126, 0, 0) (0.193, 0.193, 0.193, 0.193, 0.125)

ν(π) (0.3, 0.25, 0.1, 0, 0) (0.145, 0.145, 0.145, 0.145, 0.1)

Table 1: Shown are the clearing payment vectors pN (π), the vector η(π) of interbank losses to
banks 2, . . . , 5, and the vector ν(π) of maximal welfare impact of an incentive-compatible contribu-
tion by banks 2, . . . , 5 for the two networks π ∈ {πR, πC}.

fare losses in the two networks are shown in Figure 3. The vertical steps indicate

the welfare impacts that contributions of the banks have when they join/leave the

equilibrium bail-in consortium. The continuous changes in welfare losses are due

to reduced/increased liquidation losses as well as generally lower/larger shock sizes.

At the “top of the stairs”, where no bank makes a contribution, the equilibrium

intervention is a public bailout. Thus, the corresponding area in the (c1, α)-plane is

the region where the no-intervention threat fails to be credible. We observe that the

threat is not credible in the ring network but credible in the complete network only

for a small set of parameters where the shock size is small and recovery rates are

large. For low recovery rates or large shocks, the threat is more credible in the ring

network. We also observe that welfare losses are lower for almost every pair (c1, α),

where the threat is credible in the ring network. This is due to the larger size of

incentive-compatible contributions in the ring network, which is visually confirmed

by the larger size of the vertical steps in Figure 3. Note that equilibrium welfare

losses are 0 for some pairs (c1, α), where a bail-in can be financed completely by the

private sector. Nevertheless, the regulator plays an important role in the coordina-

tion of the private rescue.

5 Concluding Remarks

Government support of financial institutions designated to be too big or too impor-

tant to fail is costly. Various initiatives have been undertaken by central governments

and monetary authorities, especially after the global financial crisis, to expand res-

olution plans and tools, including voluntary bail-in consortia, in which creditors of

distressed banks make contributions. The central questions studied in this paper

are: do credible bail-in strategies actually exist? What is the structure of optimal

bailouts and bail-ins? How do they depend on the network structure and how does

the possibility of strategic intervention affect the desirability of different network
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w∗

Figure 3: Equilibrium welfare losses are shown in the complete network (blue) and the ring
network (red). The network with lower welfare losses is socially preferable. The vertical “steps”
illustrate the welfare impacts when banks join/leave the equilibrium bail-in consortium. If, for a
pair (c1, α), the equilibrium bail-in plan does not involve contributions by any banks (at the “top of
the stairs” so to speak), the regulator’s no-intervention threat fails to be credible and equilibrium
welfare losses are equal to the welfare costs of a public bailout. If equilibrium welfare losses are 0,
a privately backed bail-in is incentive compatible.

structures? We have shown that the existence of credible bail-ins is tightly linked to

the amplification of initial shocks through the network. If shocks are strongly ampli-

fied by inefficient asset liquidation, bankruptcy costs, and negative feedback effects

between interconnected banks in distress, the regulator cannot credibly threaten the

banks to not intervene himself. This leaves a public bailout as the only incentive-

compatible rescue option. If shocks are only moderately amplified and the threat is

credible, the creditors of the defaulting banks can be incentivized to contribute to

a rescue in order to avoid a default cascade.

Our analysis shows that the option to implement bail-in strategies strongly af-

fects the socially desirable network structure. While in network models without

intervention, dense interconnections create a mechanism for the absorption of a

shock and, as a result, enhance welfare, this is no longer desirable if banks and the

regulator can strategically coordinate a default resolution plan. Sparser networks

enlarge the range of shocks for which a credible bail-in strategy exists; and banks

are willing to make larger contributions to a rescue consortium because they recoup

a larger fraction of their social contributions.

Our paper makes a first step towards a systematic analysis of the incentives

to which alternative resolution plans give rise. In an extension to the model pre-

sented here, banks would anticipate which bail-in consortia are credible for which
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network structures, and hence choose their counterparties so to take into account

their ex-ante expected contributions to the equilibrium bail-in plan. While the

current analysis indicates that, regardless of the network structure, the threat of

non-intervention is credible if recovery rates on external and interbanking assets are

high enough, the network structure may play an important role if recovery rates are

low. To prevent banks constructing (either in a coordinated or in a non-coordinated

way) on a network configuration under which the regulator’s threat fails to be cred-

ible, the regulator may decide to impose structural policies which restrict the class

of allowable network configurations. Examples of these policies include limiting the

size of exposures toward individual counterparties, such as the “Large exposures”

framework put forward by the Basel Committee.23 Such an endogenous network

formation model adds an additional dimension to the moral hazard literature: be-

sides maximizing the value of their bailout option through excessive risk taking as

in Farhi and Tirole (2012), banks can control the likelihood of a public bailout

when social losses are high through interbank linkages.Accounting for the network

formation incentives driven by strategic intervention would also complement and

extend the existing literature on endogenous network formation. Existing stud-

ies (see, for instance, Farboodi (2014) and Acemoglu, Ozdaglar and Tahbaz-Salehi

(2015b)) highlight the inefficiencies arising from the overexposure to counterparty

risk by banks which make risky investment.24 However, they do not account for the

influence that bailout strategies plans may have on banks’ contractual decisions.

In this study, we have positioned ourselves in an ex-post scenario, i.e., after

the realization of asset value shocks. In a future work, it would be desirable to

account for the (ex-ante) risk taking decisions by banks, which choose their outside

investments to maximize shareholder value, while accounting for counterparty risk

created by the network. Accounting for ex-ante risk taking behavior will lead to

a comprehensive framework for the analysis of welfare maximizing rescue policies.

Such a framework would extend existing literature (e.g., Acharya and Yorulmazer

(2007) and Acharya, Shin and Yorulmazer (2011)), which has primarily focused

on endogenous (non-interbank) asset correlation and risks of liquidity arising when

banks make their investment decisions in anticipation of a bailout.

23Under this framework, which is expected to be fully implemented by January 1, 2019, the set of accept-
able exposures is computed so as to guarantee that the maximum possible loss incurred by any bank would
not be high enough to induce its own default.

24These inefficiencies are, in fact, just another manifestation of the general market inefficiencies which
arise in the presence of incomplete markets and imperfect information; see Greenwald and Stiglitz (1986)
and Geanakoplos and Polemarchakis (1986).
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A General interventions

In this appendix, we characterize the optimal intervention plan if the government

is not bound to propose complete rescues, i.e., the government may propose bail-

ins or conduct bailouts that rescue only a subset of banks. We also refer to these

interventions as partial interventions.

A.1 Public bailout

When the regulator is not forced to rescue every bank, he will essentially minimize

the welfare losses over all possible sets of banks that he could bail out. The first

lemma describes this minimization procedure.

Lemma A.1. Fix a set of banks B ⊆ {1, . . . , N}. The welfare-maximizing bailout

sP (B) that ensures solvency of all banks in B is computed as follows:

1. Let p(B) be the greatest fixed-point of

pi =


Li if i ∈ B or ci + αei +

∑
j π

ijpj ≥ Li,(
β
(
cih + αei + (πp)i

)
− cif

)+
otherwise,

and set

si(B) :=

Li − ci − αei1{λα>1−α} −
n∑
j=1

πijpj(B)

+

1{i∈B}. (10)

2. The welfare-maximizing bailout that guarantees solvency of banks in B is sP (B) =

s(χ(B)), where

χ(B) := arg min
B′⊇B

wλ(s(B′)). (11)

In words, s(B) is the welfare-maximizing bailout among all bailouts that rescue B
by giving direct subsidies only to banks in B. The welfare-maximizing bailout sP (B)
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among all bailouts that rescue B may involve indirect subsidies to rescue banks in

Bc so that banks in B remain solvent because they are sufficiently insulated form

losses propagating through Bc. The welfare-maximizing partial bailout is thus sP (∅),
where the government is not committed to saving any specific bank. This includes

the possibility of not saving any banks at all, i.e., χ(∅) = ∅, if it is optimal to let

the default cascade play out in full.

Proof of Lemma A.1. Let s be any set of subsidies that rescues banks in B by award-

ing direct subsidies only to banks in B. For any such vector of subsidies, the greatest

clearing payment vector is given by p̄(s) = p(B). Indeed, for any such vector of

subsidies, banks in B are able to repay their liabilities in full. Contingent on full

repayment by banks in B, banks in Bc are not affected by the subsidies as they are

awarded only to banks in B, hence p̄(s) = p(B). The welfare-maximizing vector

of direct subsidies that banks i ∈ B require to afford payment Li is thus given by

(a) the shortfall
(
Li − ci − (πp(B))i

)+
before liquidation if λα ≤ 1− α and (b) the

shortfall
(
Li − ci − αei − (πp(B))i

)+
after liquidation if λα > 1− α.

To see that that it is optimal to give direct subsidies to banks in χ(B), observe

that it is clearly optimal to give direct subsidies to the set

χ′(B) := arg min
B′ : S(B′)⊇B

wλ(s(B′)), (12)

where S(B′) denotes the set of all banks that are solvent if the regulator provides

subsidies s(B′). By definition, s(S(B′)) = s(B′), hence any set of subsidies that is

taken into account in the minimization (12) is also taken into account in (11). In

particular, s(χ′(B)) = s(S(χ′(B))) = s(χ(B)), which establishes the claim.

Corollary A.2. Let (b, s) be the proposed bail-in with response vector a of the

banks. In the last stage, the regulator chooses to implement sP (∅) if and only if

wλ(sP (∅)) ≤ wλ(b, s, a). We denote by p∗ = p(sP (∅)) the clearing payment vector

in the optimal bailout (which may involve no subsidies at all).

A.2 Equilibrium response of banks

The following lemma is the analogue to Lemma 3.5, characterizing the banks’ max-

imal incentive-compatible contributions in an accepting equilibrium.

Lemma A.3. Let (b, s) be a feasible bail-in proposal. In an accepting equilibrium a,

bank i with bi > 0 accepts if and only if the following conditions hold:
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1. wλ(b, s, (0, a−i)) ≥ wλ(sP (∅)),

2. bi − si ≤
∑n

j=1 π
ij
(
p̄j(b, s, (1, a−i))− pj∗

)
− siP (∅).

The presentation of Lemma A.3 differs slightly from Lemma 3.5 because sP (∅)
may be the default cascade or a non-trivial bailout. Nevertheless, the intuition

behind the result is the same: Condition 1 states that no contributing bank has an

incentive to free-ride and Condition 2 states that the maximal incentive-compatible

net contribution of a bank is equal to the excess losses it experiences in the optimal

bailout over the losses in the bail-in (b, s).

Similarly to the case of complete rescues, the regulator can select among different

accepting equilibria by modifying his proposal. The following result is the analogue

to Lemma 3.4.

Lemma A.4. Let (b, s) be a bail-in proposal with accepting equilibrium responses

{a1, . . . , am}. For any ak, k = 1, . . . ,m, there exists a proposal (b̃, s̃), to which ak is

the unique accepting equilibrium response (up to equivalence).

Differently from the case of complete rescues, accepting equilibria do not neces-

sarily Pareto-dominate rejecting equilibria. A bank which is not being rescued in

the proposed bail-in might be worse off than under the optimal bailout. In a rea-

sonable proposal, however, every bank that is involved in the bail-in coordination is

better off in an accepting equilibrium than in any rejecting equilibrium as we will

see shortly.

A.3 Optimal proposal of the regulator

To incentivize banks to contribute to a bail-in, the regulator would like to threaten

the banks that he will let a default cascade occur if they reject the proposal. This

threat may not be credible, however, if doing so leads to higher welfare losses. For

a given proposal (b, s), the maximal incentive-compatible net contribution of bank i

is ti(b, s) =
(∑

j π
ij(p̄j(b, s, 1)− pj∗)− siP (∅)

)+
by Lemma A.3. We say that the

threat towards bank i is credible if ti(b, s) > 0.

Similarly to the optimal bailout, the regulator will minimize welfare losses among

possible subsets of banks that can be rescued. For a fixed set of banks B ⊆ {1, . . . , n},
we introduce the auxiliary game, where the regulator can propose only feasible bail-

ins from the set

Ξ(B) :=
{

(b, s)
∣∣ si = 0 for i 6∈ B and B ⊆ S(s(B))

}
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of bail-ins, whose subsidies guarantee solvency of banks in B by awarding direct sub-

sidies only to banks in B. Bailouts, however, can target any set of banks. As argued

in the proof of Lemma A.1, the clearing payment vector after any such proposal is

equal to p(B) if the proposal is accepted. Thus, in an accepting equilibrium of any

proposal from Ξ(B), any bank’s maximal incentive-compatible contribution, the as-

sociated welfare impact, and the necessary liquidation amount disentangle from the

other banks’ responses. The maximal incentive-compatible contribution of bank i

is equal to

ti(B) :=

∑
j

πij(p̄j(B)− pj∗)− siP (∅)

+

. (13)

In the following definition, we describe the set Ξ∗(B) of bail-ins that will be proposed

by the regulator in equilibrium; see Theorem A.6 below. We isolate the definition of

Ξ∗(B) from the main result of this appendix because we wish to present the analogue

to Lemma 3.3 before our main result of this appendix.

Definition A.1. For a set of banks B, define

ηi(B) :=


min

(
ti(B),

(
ci + αei + (πp(B))i − Li

)+)
if λα ≥ 1− α,

min
(
ti(B),

(
ci + (πp(B))i − Li)+

)
if λα < 1− α,

(14)

and set νi(B) := ληi(B) + (1− α)
(
`iB(−si(B))− `iB(ηi(B)− si(B))

)
, where

`B(x) = min

(
1

α

(
L+ x− c− πp(B)

)+
, e

)
(15)

and the minimum is taken componentwise. Let i1, . . . , i|Fc| be a non-increasing order

of non-fundamentally defaulting banks according to νi(B) and set

m(B) := min

k
∣∣∣∣∣∣ wλ(s(B))−

k∑
j=1

νij (B) < wλ(sP (∅))

. (16)

Let b(B), defined by bj(B) := ηj(B) for j = i1, . . . , im(B) and bj(B) = 0 otherwise.

Let Ξ∗(B) denote the set of proposals (b, s) such that:

1. b= b(B) and s= s(B) if wλ(s(B))−
∑m(B)

j=1 νij (B)<wλ(sP (∅))− νim(B)+1(B).

2. If wλ(s(B))−
∑m(B)

j=1 νij (B) ≥ wλ(sP (∅))− νim(B)+1(B), then
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(a) s ≥ s(B),

(b) ηj(B) ≥ bj − sj ≥ ηim(B)+1(B) for every bank j with bj > 0, and

(c)
∑n

i=1

(
si − si(B)

)
= 1

λ

(
wλ(sP (∅)) +

∑m(B)
j=1 νij (B)− wλ(s(B))

)
.

Observe that Ξ∗(B) ⊆ Ξ(B) since s ≥ s(B) guarantees that all banks in B remain

solvent. The meaning of the variables will be analogous to the main body: ηi(B) is

the welfare-maximizing contribution of bank i towards a bail-in in Ξ(B), which has

a welfare impact of νi(B).

Lemma A.5. Let (b, s) ∈ Ξ∗(B) be a partial bail-in proposal that admits at least

one accepting equilibrium. Then every accepting equilibrium is weakly renegotiation

proof. Moreover, a rejecting equilibrium is weakly renegotiation proof only if (b, s) =

(0, sP (∅)).

In the auxiliary game, where a fixed set of banks B has to be rescued in any

proposed bail-in, all weakly renegotiation proof equilibria involve a bail-in proposal

from Ξ∗(B) as stated by the following result.

Theorem A.6. Using the terminology of Definition A.1, let

wλ(B) := min

wλ(s(B))−
m(B)∑
j=1

νij (B), wλ(sP (∅))− νim(B)+1(B)

. (17)

If wλ(B) > wλ(sP (∅)), then the unique equilibrium outcome in the auxiliary game

is the public bailout sP (∅). If wλ(B) ≤ wλ(sP (∅)), then welfare losses in any weakly

renegotiation proof equilibrium of the auxiliary game are equal to wλ(B). Moreover,

(b, s) ∈ Ξ∗(B) is proposed and accepted by all banks.

The intuition behind Theorem A.6 is exactly the same as in Theorem 3.6. The

regulator can include banks into the bail-in only if the threat towards that bank

is credible. Moreover, the regulator will first include banks that have the largest

exposure to contagion, hence the least incentive for free-riding. The regulator can

include only the first m(B) or m(B) + 1 banks into the bail-in because of the “no

free-riding” condition of Lemma A.3. Observe that Theorem 3.6 is recovered as a

special case of Theorem A.6 by setting B = {1, . . . , N}. The following corollary

characterizes all weakly renegotiation proof equilibria of the original game with

partial bail-ins.
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Corollary A.7. Let ψ(B) := arg minB′⊇B wλ(B′). If wλ(ψ(∅)) > wλ(sP (∅)), then

the unique sequential equilibrium outcome is the public bailout sP (∅). If wλ(ψ(∅)) ≤
wλ(sP (∅)), then welfare losses in any weakly renegotiation proof equilibrium are

equal to wλ(ψ(∅)). Moreover, in any weakly renegotiation proof equilibrium, a bail-

in from Ξ∗(ψ(∅)) is proposed and accepted by all banks.

Proof. Corollary A.7 follows from Theorem A.6 with a similar argument as in the

proof of Lemma A.1. A bail-in proposal (b, s) ∈ Ξ∗(B) for any B admits a unique

weakly renegotation proof continuation, in which the proposal is accepted by all

banks. While (b, s) ∈ Ξ∗(B) minimizes welfare losses among all bail-ins that rescue

B by giving direct subsidies only to banks in B, a bail-in (b, s) ∈ Ξ∗(ψ(B)) minimizes

welfare losses among all bail-ins that rescue the banks in B. The welfare-minimizing

assisted bail-in proposal is thus (b, s) ∈ Ξ∗(ψ(∅)). Note that it admits a unique

weakly renegotiation proof equilibrium continuation by Theorem A.6.

B Proof of Theorems 3.6 and A.6

We begin by proving the results in Section 3 and Appendix A building up to Theo-

rems 3.6 and A.6, respectively. Because the results in Appendix A are generalizations

of the results in the main body of the paper, we give only the proofs to the results

from Appendix A unless the corresponding statements in the main body contain a

refinement that does not translate to the more general setting.

Proof of Lemma A.3. Fix a feasible proposal (b, s) with accepting equilibrium re-

sponse a and fix a bank i with bi > 0. We first show necessity of the stated condi-

tions. To this end, we suppose towards a contradiction that ai = 1. Consider first

the case where Condition 1 is violated. Then the regulator proceeds with a bail-in

even if bank i rejects the proposal. Therefore, the resulting subsidies are the same

under a and (0, a−i), the only difference being that bi is paid for by bank i in the

former and by the regulator in the latter case. Since bi > 0, bank i is strictly better

off under (0, a−i), contradicting the assumption that a is an equilibrium. Consider

now the case where Condition 2 is violated. Because (b, s) is feasible, bank i can

afford to pay its liabilities Li and the bail-in contribution bi by liquidating at most

ei, i.e.,

`i
(
p̄(b, s, a)

)
=

1

α

Li − ci − si + bi −
∑
j

πij p̄j(b, s, a)

+

. (18)
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Because Condition 2 is violated, the right-hand side of (18) is strictly larger than

`i(p∗), that is, bank i has to liquidate a larger amount of assets in the bail-in

than in the bailout. Because the negation of Condition 2 also implies that bank i

receives a larger sum of repayments and subsidies in sP (∅) than in (b, s), we obtain

V i(p̄(b, s, a)) < V i(p∗). This is again a contradiction.

For sufficiency, observe that Condition 1 implies that a rejection will provoke the

regulator to resort to a public bailout and Condition 2 implies that such an outcome

makes bank i worse off in the same way as in the previous paragraph. It is thus

optimal for bank i to accept the proposal.

Observe that Lemma 3.5 is just a special case of Lemma A.3, using that p̄(b, s, a) =

L in any accepting equilibrium response a of a complete bail-in proposal (b, s). In-

deed, because sP is the welfare-maximizing complete bailout, wλ(sP (∅)) is precisely

equal to the minimum of the welfare losses wP in sP and the welfare losses wN

in a default cascade. Condition 1 of Lemma A.3 thus reduces to Condition 1 of

Lemma 3.5. For Condition 2, we distinguish whether the threat is credible or not.

If wP < wN , then p∗ = L because sP is a complete rescue, hence Condition 2 re-

duces to bi − si ≤ −siP . If wP ≥ wN , then sP (∅) = 0, hence Condition 2 reduces to

bi − si ≤
∑n

j=1 π
ij(Lj − pjN ).

Proof of Lemma A.4. Fix ak and set B :=
{
i
∣∣ aik = 1

}
for the sake of brevity. Let

b̃i = bi1{i∈B} and s̃i = si for i = 1, . . . , n. Because ak is an accepting equilibrium

response to (b, s), Conditions 1 and 2 of Lemma A.3 are satisfied for any i ∈ B.

It follows again from Lemma A.3 that ak is also an accepting equilibrium response

to (b̃, s̃) because each bank makes exactly the same contributions in (b̃, s̃, ak) as in

(b, s, ak). To show uniqueness, observe that responses by banks in Bc have no effect

on the outcome because they make no contributions to (b̃, s̃). Due to Condition 1 of

Lemma A.3, the regulator will not proceed with the bail-in if only a proper subset

of B accepts the proposal. Therefore, ak is the unique accepting equilibrium (up to

equivalence).

Proof of Lemma 3.4. Fix an accepting equilibrium ak and set B =
{
i
∣∣ aik = 1

}
.

The proof of the first statement is analogous to the proof of Lemma A.4: ak is

the unique accepting equilibrium to (b̃, s), where b̃i = bi1{i∈B} for i = 1, . . . , n. For

Pareto-dominance, note that Condition 2 of Lemma 3.5 states that the contributions

of a bank i ∈ B to a bail-in are at most as large as the losses in a rejecting equilibrium.
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Therefore, any i ∈ B weakly prefers ak over any rejecting equilibrium. Similarly,

any i 6∈ B prefers ak weakly over any rejecting equilibrium because i recovers its

assets in full without making any contributions. Finally, the regulator prefers an

accepting equilibrium over a rejecting equilibrium by definition.

Next, we proceed with the proofs of Lemmas 3.3 and A.5, showing that accepting

equilibria are weakly renegotiation proof. Because the statement of Lemma 3.3 in

the main text is stronger, asserting that accepting equilibria after every proposal

are weakly renegotiation proof, we present here its proof in full length and show

only afterwards how Lemma A.5 is derived.

Proof of Lemma 3.3. Fix a complete bail-in proposal (b, s) with accepting equilib-

rium a. For a bank i that makes a positive net contribution to the bail-in, Lemma 3.5

implies that V i(sP ) ≤ V i(b, s, a) as otherwise bank i would have not accepted the

proposal. For any other bank i, it follows immediately that V i(sP ) ≤ V i(b, s, a)

since everybody is rescued in a complete rescue (b, s, a) and hence bank i can re-

claim the full value of its interbank assets. Finally, the regulator is weakly better

off in a than in any rejecting equilibrium by definition of an accepting equilibrium.

This shows that no rejecting equilibrium can Pareto-dominate a. It also implies the

second statement of the lemma because a rejecting equilibrium is weakly renego-

tiation proof only if it is equivalent to (b, s, a). Since there are only two possible

outcomes in a rejecting equilibrium (public bailout and no rescue), the complete

bail-in proposal (b, s) has to coincide with the public bailout as, by definition, it

rescues every bank in the system.

The first statement will follow once we show that any two accepting equilibria

are Pareto-incomparable. Let ã be an accepting equilibrium that is not equivalent

to a. Let A :=
{
i
∣∣ ai = 1, bi > 0

}
and Ã =

{
i
∣∣ ãi = 1, bi > 0

}
denote the set of

banks that make a positive contribution in a and in ã, respectively. By Condition 1

of Lemma A.3, the regulator rejects the bail-in if only a strict subset of either A or Ã
accepts the proposal. This shows that A\Ã 6= ∅ and Ã \A 6= ∅. Since the subsidies

and hence the clearing payment vector are identical in any accepting equilibrium,

every bank in A\ Ã is strictly better off under ã and every bank in Ã \A is strictly

better off under a, showing that neither Pareto-dominates the other.

Proof of Lemma A.5. Fix (b, s) ∈ Ξ∗(B) with accepting equilibrium a, which is the

unique accepting equilibrium by Lemma B.2. It is thus sufficient to show that (b, s, a)
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is not dominated by any rejecting equilibrium. Let A :=
{
i ∈ Fc

∣∣ si 6= 0 or bi 6= 0
}

denote the set of banks facing a non-trivial decision in Stage 2. If bi > 0 for some

bank i ∈ A, then Lemma A.3 implies bi − si ≤
∑n

j=1 π
ij
(
p̄j(b, s, a)− pj∗

)
− siP (∅).

Therefore, i is better off in a than in any rejecting equilibrium. If bi = 0 for i ∈ A,

then si > 0 as otherwise bank i would not be included in the bail-in coordina-

tion. Because any proposal (b, s) prescribes subsidies only to banks in B that need

rescuing, it follows that

V i(sP (∅)) ≤ ei1{λα≤1−α} = V i(s(B)) ≤ V i(b, s, a). (19)

The central equality in (19) holds since ei1{λα≤1−α} is the value of a bank i that is

rescued by the subsidies s(B′) for any B′ 3 i. Since s(B′) are the welfare-maximizing

direct subsidies that rescue B′, the regulator covers the shortfall after banks liquidate

their outside assets if λα > 1− α and prior to the assets’ liquidation if λα ≤ 1− α.

In the latter case, bank i is left precisely with its outside assets. The first inequality

in (19) holds since

V i(sP (∅)) = V i(s(χ(∅)) = ei1{λα≤1−α}1{i∈χ(∅)}.

The last inequality in (19) holds because si(B) is the subsidy provided to bank i

under the welfare-maximizing bailout guaranteeing solvency of banks in B, thus

si ≥ si(B) and hence p̄(b, s, a) ≥ p̄(B). Finally, the regulator is weakly better off

in a than in any rejecting equilibrium by definition of an accepting equilibrium.

This shows that no rejecting equilibrium dominates a for the regulator and the

banks facing a non-trivial decision. It also implies the second statement of the

lemma by showing that a rejecting equilibrium is weakly renegotiation proof only if

it is equivalent to (b, s, a).

Next, we proceed with the proof of Theorem A.6. We start by giving four

precursory lemmas, which will be invoked in the proof of the theorem.

Lemma B.1. Let (b, s) ∈ Ξ(B). For any response a with a0(b, s, a) = “bail-in”,

welfare losses are equal to

wλ(b, s, a) = wλ(s)−
n∑
i=1

(
λbi + (1− α)

(
`iB(−s)− `iB(b− s)

))
1{ai=1}.

Proof. Fix (b, s) ∈ Ξ(B) and a with a0(b, s, a) = “bail-in”. It follows in the same way
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as in the proof of Lemma A.1 that p̄(b, s, a) = p(B). Thus, the clearing payment

vector does not depend on the particular choice of (b, s) and hence each bank i

liquidates a nominal amount `iB(b1{a=1} − s), where `B is given in (15). Welfare

losses in the public bailout s are equal to

wλ(s) =

n∑
i=1

(1− α)`iB(−s) + λsi +
∑

i∈D(B)

(1− β)
(
cih + αei + (πp(B))i

)
+ λδi(p(B))

= wλ(b, s, a) +

n∑
i=1

(
λbi + (1− α)

(
`iB(−s)− `iB(b− s)

))
1{ai=1},

where we have used equations (2) and (3) in the last equality.

Lemma B.2. Any (b, s) ∈ Ξ∗(B) admits a unique accepting continuation equilib-

rium a with ai = 1 for every bank i and wλ(b, s, a) = wλ(B).

Proof. Let (b, s) ∈ Ξ∗(B) and let a with ai = 1 for every bank i and a0 =“bail-in”.

If wλ(B) = wλ(s(B))−
∑m(B)

j=1 νij (B), then the definition of Ξ∗(B) in Definition A.1

imposes that bi = ηi(B) for any bank i ∈
{
i1, . . . , im(B)

}
. The participation of

any such bank i in the bail-in thus lowers welfare losses by νi(B) as argued in

Definition A.1. This readily implies wλ(b, s, a) = wλ(B). If wλ(B) = wλ(sP (∅)) −
νim(B)+1(B) instead, then by Lemma B.1 we obtain

wλ(b, s, a) = wλ(s)−
m(B)+1∑
j=1

νij (B)

= wλ(s(B)) + λ

n∑
i=1

(
si − si(B)

)
−
m(B)+1∑
j=1

νij (B)

= wλ(sP (∅))− νim(B)+1(B),

where we have used property 2.(c) of a bail-in in Ξ∗(B); see Definition A.1.

To see that a is indeed a continuation equilibrium, we verify the necessary and

sufficient conditions given in Lemma A.3. By definition of Ξ∗(B), any bank i’s net

contribution bi − si is smaller than its maximal incentive-compatible contribution

ti(B) given in (13). Therefore, the second condition in Lemma A.3 is satisfied for

every bank. If wλ(B) = wλ(s(B)) −
∑m(B)

j=1 νij (B), then Lemma B.1 together with

the fact that bj = ηj(B) for (b, s) ∈ Ξ∗(B) and j ∈
{
i1, . . . , im(B)

}
implies that a
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deviation by bank ik with k = 1, . . . ,m(B) would lead to welfare losses of

wλ(b, s, (0, a−ik)) = wλ(b, s, a) + νik(B) ≥ wλ(b, s, a) + νim(B)(B) ≥ wλ(sP (∅)),

where the first inequality holds because i1, . . . , im(B) is a decreasing order of νj(B)

and the second inequality holds by definition of m(B) given in (16). This shows

that Condition 1 in Lemma A.3 is satisfied and hence a is indeed an equilibrium

response. It also implies that the regulator will not agree to proceed with the

bail-in if only a subset of banks accepts, thereby showing uniqueness. If wλ(B) =

wλ(sP (∅))− νim(B)+1(B) holds instead, then the argument works analogously, where

now νim(B)+1(B) is the smallest welfare impact of a contribution by a bank in the

consortium.

Lemma B.3. For any proposed bail-in (b, s) with accepting equilibrium response a,

there exists a proposal (b̃, s̃) with accepting continuation equilibrium ã with b̃is̃i = 0

and ãi = 1 for every bank i such that w
(
b̃, s̃, ã

)
= w(b, s, a).

Proof. Fix a bail-in proposal (b, s) with equilibrium response a. Define the proposal(
b̃, s̃
)

by setting b̃i = (bi1{ai=1} − si)+ and s̃i = (si − bi1{ai=1})
+, and let ã be

the response vector of unanimous acceptance, i.e., ãi = 1 for every bank i. Then

b̃i1{ãi=1}− s̃i = bi1{ai=1}− si for any bank i and hence each bank’s net contribution

remains unchanged. It follows that p̄(b̃, s̃, ã) = p̄(b, s, a), hence the definition of

welfare losses in (3) yields

wλ
(
b̃, s̃, ã

)
= wλ

(
p̄(b̃, s̃, ã)

)
+ λ

n∑
i=1

(
s̃i − b̃i1{ãi=1}

)
= wλ

(
p̄(b, s, a)

)
+ λ

n∑
i=1

(
si − bi1{ai=1}

)
= wλ(b, s, a).

It remains to check that ã is an equilibrium response. It follows from the definition

of b̃ that only banks in R =
{
bi − si > 0, ai = 1

}
make a positive net contribution

to (b̃, s̃). Lemma A.3 implies that for every i ∈ R,

b̃i − s̃i = bi − si ≤
n∑
j=1

πij
(
p̄j(b, s, a)− pj∗

)
− siP (∅).

Because p̄(b̃, s̃, ã) = p̄(b, s, a), this shows that (b̃, s̃, ã) satisfies Condition 2 of Lemma A.3.
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Let B be the set S(s̃) of banks that are solvent if banks receive subsidies s̃. Note

that S(s̃) = S(s) and recall that `i(b̃, s̃, ã) = `iB(b̃1{ã=1} − s̃) and `i(b, s, a) =

`iB(b1{a=1}−s), where `B is defined in (15). To verify that Condition 1 of Lemma A.3

is satisfied for any i ∈ R, observe that s̃ ≤ s implies `iB(−s̃) ≥ `iB(−s). Equation (3)

thus yields the bound

w
(
b̃, s̃, (0, ã−i)

)
= w

(
b̃, s̃, ã

)
+ λ

(
b̃i − s̃i

)
− (1− α)

(
`iB(b̃− s̃)− `iB(−s̃)

)
≥ w(b, s, a) + λ(bi − si)− (1− α)

(
`iB(b− s)− `iB(−s)

)
= w

(
b, s, (0, a−i)

)
.

Since a is an equilibrium response to (b, s), it follows from Lemma A.3 that wλ(sP (∅)) ≤
w
(
b, s, (0, a−i)

)
≤ w

(
b̃, s̃, (0, ã−i)

)
, hence (b̃, s̃, ã) satisfies Condition 1 of Lemma A.3.

Therefore, ã is an equilibrium response to (b̃, s̃) by yet another application of

Lemma A.3.

Lemma B.4. In any equilibrium response a to (b, s) ∈ Ξ(B), welfare losses are

bounded from below by wλ(B). Moreover, if wλ(b, s, a) = wλ(B), then (b, s) ∈ Ξ∗(B).

Proof. Fix a proposal (b, s) ∈ Ξ(B) with continuation equilibrium a. If a is a reject-

ing equilibrium, then wλ(b, s, a) = wλ(sP (∅)). It follows straight from the definitions

of m(B) and wλ(B) in (16) and (17), respectively, that wλ(b, s, a) is bounded from

below by wλ(B). Suppose, therefore, that a is an accepting continuation equilib-

rium. Due to Lemma B.3, we may assume that si = 0 for any bank i that makes

a positive net contribution by passing to an equivalent equilibrium. It follows from

Lemma B.1 that the contribution of a bank i ∈ R :=
{
j
∣∣ bj > 0, aj = 1

}
reduces

welfare losses by

f i(b, a) =
(
λbi + (1− α)

(
`iB(0)− `iB(b)

))
1{ai=1}.

Lemma A.3 yields that wλ(b, s, a)+f i(b, a) = wλ
(
b, s, (0, a−i)

)
≥ wλ(sP (∅)), showing

that welfare losses in the continuation equilibrium a are bounded by

wλ(b, s, a) ≥ wλ(sP (∅))− f i(b, a) (20)

for any bank i ∈ R. Welfare losses in an accepting equilibrium thus cannot be

lowered from wλ(sP (∅)) by more than the contribution of any participating bank in

the rescue.
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Next, we show that the welfare impact of bank i’s contribution is maximized by

ηi(B) as defined in (14). Since (b, s) is feasible, bank i’s budget constraint implies

that i’s contribution of bi is bounded above by Bi =
(
ci + αei + (πp(B))i − Li

)+
.

Moreover, Lemma A.3 shows that incentive-compatible contributions are bounded

above by ti(B), hence bi ≤ min
(
ti(B), Bi

)
. For contributions xi ≤ Bi that satisfy

the budget constraint, it holds that `iB(x) = 1
α

(
Li+x−ci− (πp(B))i

)+
. The welfare

impact f i(b, a) is thus non-decreasing in bi if λα ≥ 1−α and it attains its maximum

where Li+bi−ci−(πp(B))i = 0 if λα < 1−α. Therefore, the welfare impact among

incentive-compatible contributions is maximized by a contribution of size ηi(B).

We will conclude the proof of the first statement by distinguishing cases accord-

ing to the number |R| of contributing banks. Observe first that |R| ≥ m(B) by the

definition of m(B) in (16). Indeed, if |R| < m(B), then

wλ(b, s, a) ≥ wλ(s(B))−
m(B)−1∑
k=1

νik(B) > wλ(sP (∅))

because η(B) is the vector of welfare maximizing contributions whose welfare impacts

ν(B) are non-increasingly ordered according to i1, . . . , i|Fc|. This contradicts the

fact that a is an accepting equilibrium by Corollary A.2. Suppose next that |R| =
m(B). Because s(B) vector of direct subsidies to B with the smallest sum among

subsidies that guarantee solvency of banks in B by Lemma A.1, it follows that

wλ(s) ≥ wλ(s(B)). Because the welfare impacts of the banks’ contributions are

non-increasingly ordered according to i1, . . . , i|Fc|, we obtain

wλ(b, s, a) ≥ wλ(s(B))−
∑
i∈R

f i(b, a) ≥ wλ(s(B))−
m(B)∑
k=1

νik(B) ≥ wλ(B), (21)

where the last inequality follows directly from (17). Finally, suppose that |R| ≥
m(B) + 1. Because i1, . . . , i|Fc| is a non-increasing ordering of the welfare impacts

of the banks’ contributions, it follows that there is at least one bank j ∈ R with

f j(b, a) ≤ νim(B)+1(B). It thus follows from (20) that

wλ(b, s, a)≥wλ(sP (∅))−min
i∈R

f i(b, a) ≥ wλ(sP (∅))− νim(B)+1(B)≥wλ(B). (22)

The second statement follows along the lines of the previous paragraph. Consider

first the case where wλ(s(B)) −
∑m(B)

k=1 νik(B)<wλ(sP (∅)) − νim(B)+1(B). Then any
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(b, s) with |R| ≥ m(B)+1 does not attain wλ(B) by (22). Thus |R| = m(B) and the

statement follows because (21) holds with equality if and only if (b, s) = (b(B), s(B)).

If wλ(s(B))−
∑m(B)

k=1 νik(B) ≥ wλ(sP (∅))− νim(B)+1(B), then the bound wλ(sP (∅))−
νim(B)+1(B) can be attained. It follows from (22) that the bound is attained by any

(b, s) with mini∈R b
i ≥ νim(B)+1(B) and wλ(b, s, a) = wλ(sP (∅)) − mini∈R b

i. The

latter condition is equivalent to property 2 of Ξ∗(B) in Definition A.1, proving that

(b, s) ∈ Ξ∗(B).

Proof of Theorem A.6. Lemma B.2 shows that any (b, s) ∈ Ξ∗(B) has a unique ac-

cepting equilibrium with welfare losses equal to wλ(B). By Lemma A.5, this accept-

ing equilibrium is the unique weakly renegotiation proof continuation equilibrium.

The regulator is thus aware that any bail-in from Ξ∗(B) that he proposes in the first

stage will be implemented in equilibrium. Moreover, an accepted bail-in proposal

from Ξ∗(B) is strictly preferred by the regulator over any other accepted proposal

(b′, s′) 6∈ Ξ∗(B) by Lemma B.4. Therefore, if wλ(B) ≤ wλ(sP (∅)), the regulator’s

only rational choice in stage 1 is to propose a bail-in from Ξ∗(B). If, on the other

hand, wλ(B) > wλ(sP (∅)), then regulator will implement the public bailout sP (∅)
from Lemma A.1 either by proposing it in the first stage or by choosing it in the

third stage after an arbitrary proposal in the first stage.

Theorem 3.6 follows from Theorem A.6 by setting B = {1, . . . , n} and considering

that in the case of all-or-nothing interventions, the subsidies sP (∅) of Corollary A.2

are either given by the complete bailout from Lemma 3.1 or they are the vector of

zero subsidies, which results in a default cascade.

Proof of Theorem 3.6. Let B = {1, . . . , n}. If wP < wN , then sP (∅) is the complete

bailout of Lemma 3.1. Therefore, ti(B) = 0 for every bank i, hence also ηi(B) =

0, showing that no contributions are incentive-compatible. The unique sequential

equilibrium outcome is thus the complete bailout sP . If wP ≥ wN , then sP (∅)
corresponds to the no-intervention outcome, where siP (∅) = 0. Therefore, ti(B) =∑n

j=1 π
ij(Lj − piN ), where we have used that p(B) = L in a complete rescue. It

follows from Theorem A.6 that welfare losses and proposed bail-ins in an accepting

equilibrium are of the desired form, and it follows form Lemma 3.3 that all accepting

equilibria are precisely the weakly renegotiation proof equilibria.
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C Proofs of additional results

Lemma 2.1 follows as a consequence of the following result, which is a straightfor-

ward adaptation of Theorem 1 in Rogers and Veraart (2013) to our setting.

Lemma C.1. Let ϕ(k) denote the k-fold application of the operator

ϕi(p) :=


Li if ci + αei + (πp)i ≥ Li,(
β
(
ch + αe+ πp

)i − cif)+
otherwise.

Then p̄ = limk→∞ ϕ
(k)(L).

Proofs of Lemma 2.1 and C.1. Any clearing payment vector p is a fixed point of ϕ

because a bank i defaults if and only if it cannot repay its liabilities after liquidating

its assets. Since ϕ is a monotone operator, Tarski’s fixed-point theorem implies that

there exists a smallest and a greatest fixed point p and p̄, respectively. Because any

fixed point of ϕ is bounded above by L, it follows that p̄ = limk→∞ ϕ
(k)(L). The

final statement of Lemma 2.1 follows from the monotonicity of the banks’ value of

equity and of the welfare losses in the clearing payment vector p.

Proof of Lemma 3.7. We begin by showing the identity

wN =
n∑
i=1

(
ci + ei − V i(pN )

)
+ (1 + λ)

∑
i∈D(pN )

δi(pN ), (23)

where we denote by pN the greatest clearing vector in absence of intervention. It

follows from Definition 2.1 that the clearing payment vector pN satisfies the relation

β
(
cih + αei + (πpN )i

)
= piN + cif − δi(pN ) for any defaulting bank i ∈ D(pN ), where

(πx)i =
∑n

j=1 π
ijxj for any vector x. Using equations (1) and (2), we obtain

n∑
i=1

V i(pN ) =
∑

i 6∈D(pN )

(
ci + ei − (1− α)`i(pN ) + (πpN )i − piN

)
=

n∑
i=1

(
ci + ei − (1−α)`i(pN )

)
−
∑

i∈D(pN )

(
(1−β)

(
cih + αei + (πp)i

)
− δi(pN )

)
=

n∑
i=1

(ci + ei) + (1 + λ)
∑

i∈D(pN )

δi(pN )− wN ,
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where we have used that
∑n

i=1(πx)i =
∑n

i=1 x
i for any vector x because π is a

stochastic matrix. This readily implies (23). Together with the definitions of χ0

and χN in (6) and (7), respectively, it follows that

χN =
∑
i∈F

(
−ci − αei − (πL)i + Li

)
+

n∑
i=1

(
ci + ei − V i(pN )

)
= χ0 + wN − λ

∑
i∈D(pN )

δi(pN ). (24)

The characterization of the complete bailout in Lemma 3.1 and the definition of χ0

imply that wP = λχ0 + λ
∑

i∈D(pN ) δ
i(pN ) + min(λα, 1− α)

∑n
i=1 `

i
c(0). Therefore,

solving (24) for wN and subtracting wP , we obtain

wN − wP = χN − (1 + λ)χ0 −min(λα, 1− α)

n∑
i=1

`ic(0),

which establishes the claim.

Proof of Proposition 4.2. We start by showing that in any regular financial system

with homogeneous cash holdings, νi(π) is a monotonically increasing transformation

of ηi(π) that is independent of the precise form of π or the identity of the bank i,

i.e., νi(π1) = f
(
ηi(π1)

)
and νj(π2) = f

(
ηj(π2)

)
for the same function f . First,

due to Lemma B.3 we can assume that banks make contributions only if they do

not receive a subsidy, that is, siP = 0 for any contributing bank i and therefore

νi(π) = ληi(π)− (1− α)
(
`ic(η

i(π))− `ic(0)
)
. Because banks have homogeneous cash

holdings, there exists c such that ci = c for every non-fundamentally defaulting

bank i. Regularity of a financial system π then implies that

`ic(x) = min

(
1

α

(
x− c)+, ei

)
.

We distinguish two cases: If λα ≥ 1 − α, the definition of νi(π) in Theorem 3.6

and the regularity of the financial system imply that
(
ηi(π) − c

)+ ≤ αei, hence

`ic
(
ηi(π)

)
= 1

α

(
ηi(π)− c)+. Therefore, νi(π) = ληi(π)− 1−α

α

(
ηi(π)− c

)+
is indeed a

monotonically increasing transformation of ηi(π) that does not depend on the precise

form of π and the identity of bank i. If λα < 1 − α, note that c ≤ 0 implies that

ηi(π) = 0 for any bank i and hence νi(π) = 0 is trivially an increasing transformation

of ηi(π). If c > 0, then `ic = 0 for any bank i and hence νi(π) = ληi(π) is an

46



increasing function of ηi(π) independent of π and i.

Because ν is a monotonic transformation of η independent of the network, the

assumption that interbank losses are strongly m(π)+1-more concentrated in π than

in π′ implies that νik(π)(π) ≥ νik(π′)(π′) for every k ≤ m(π) + 1, where ik(π) and

ik(π
′) are non-increasing orders of νi(π) and νi(π′), respectively, as in Theorem 3.6.

Observe that the subsidies sP in the public bailout of Lemma 3.1 do not depend

on the particular network structure, given that the network is regular. Therefore,

wP (π) = wλ(0, sP , 1) = wP (π′). The assumption that interbank losses are strongly

m(π) + 1-more concentrated in π than in π′ thus implies that

wP −
k∑
j=1

νij(π)(π) ≤ wP −
k∑
j=1

νij(π
′)(π′) (25)

for any value of k ≤ m(π) + 1.

Consider first the case where w∗(π
′) = wP −

∑m(π′)
j=1 νij(π

′)(π′). For the sake of

brevity, write m = m(π) and m′ = m(π′). If m′ ≤ m, then the statement follows

immediately from (25). If m′ ≥ m+ 1, then the definition of m′ implies that

w∗(π
′) ≥ wN (π′)− νim′ (π′)(π′) ≥ wN (π′)− νim+1(π′)(π′).

It now follows from (9) that w∗(π
′) ≥ wN (π) − νim(π)+1(π) ≥ w∗(π) as desired. If

w∗(π
′) = wN (π′) − νim′+1(π′)(π′), then it follows straight from (9) that w∗(π

′) ≥
wN (π)− νim(π)+1(π) ≥ w∗(π), thereby concluding the proof.
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