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Abstract

Groundwater is a common-pool resource essential for agricultural production. When
farmers extract a marginal unit of groundwater, this lowers nearby groundwater lev-
els and increases their neighbors’ groundwater pumping costs. This paper estimates
farmers’ elasticity of demand for groundwater, in order to empirically investigate the
magnitude of this spatial “pumping cost” externality. We assemble a novel dataset that
combines (i) detailed microdata on farmers’ electricity consumption, (ii) rich data from
technical audits of these farmers’ pump efficiencies, and (iii) publicly available mea-
surements of groundwater depths in California aquifers. Using exogenous variation in
electricity prices, we estimate farmers’ price elasticities of demand for both electricity
(−1.17) and groundwater (−1.12) to be much larger than previous estimates in the lit-
erature. We then calculate the extent to which each farm lowers its neighbors’ economic
surplus by removing water from their shared aquifer. Our preliminary results suggest
that the magnitude of the “pumping cost” externality is likely smaller than farmers’
private costs of groundwater pumping.
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1 Introduction

Groundwater is a classic example of a common-pool resource (Ostrom (1990)). When agent

i makes a private decision to extract water from an underground aquifer, this lowers the

depth of the water below the surface. If many agents share the same aquifer, then agent

i’s decision to extract imposes an externality on all other agents—who must now expend

more energy to extract groundwater from greater depths. In theory, a social planner could

increase welfare by taxing agent i’s marginal unit of groundwater extraction, where the size

of the tax would be calibrated to the marginal decrease in surplus summed across all other

agents.

In this paper, we investigate the size of this pumping cost externality for California

farmers. California produces 17 percent of U.S. crop value, and farmers rely heavily on

groundwater for irrigation. With thousands of farmers extracting water from a few large

aquifers, an individual farmer’s extraction likely increases pumping costs for thousands of

other farmers. Moreover, groundwater pumping is largely unregulated in California, and

most farmers face no meaningful restrictions on the intensive margin of pumping. Hence,

these farmers have little incentive to internalize the open-access externality, whereby their

own marginal pumping decisions reduce their neighbors’ economic surplus from groundwater

consumption.

Estimating the size of this externality requires estimating the price elasticity of demand

for agricultural groundwater. This has proven difficult, in part because groundwater use

is typically neither priced nor measured. However, we leverage the fact that electricity

is the main variable input in groundwater extraction. Given data on electricity prices and

quantities, the relationship between energy use and water use for each farm, and groundwater

levels, we are able to construct accurate measures of groundwater prices and quantities. We

assemble to a novel dataset that combines (i) confidential electricity consumption data for the

universe of agricultural customers served by Pacific Gas & Electric (PGE), California’s largest

electric utility; (ii) technical pump efficiency audits for nearly 12,000 individual groundwater

extraction points; and (iii) publicly available measurements of groundwater depths over

time for all major California aquifers. By leveraging exogenous variation in both electricity
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prices—coming from changes in PGE’s tariffs schedules—and average groundwater levels,

we causally estimate farmers’ elasticities of demand for both electricity and groundwater.

We first estimate the price elasticity of demand for electricity in the agricultural sec-

tor. We find an elasticity estimate of −1.17, which is much larger than prior estimates of

the price elasticity of electricity demand in both the residential and commercial/industrial

sectors. Next, we estimate the price elasticity of demand for groundwater, where we sepa-

rately identify the effect of changes to farmers’ (effective) price of groundwater coming from

variation in electricity prices vs. variation in groundwater depths. We recover nearly iden-

tical groundwater demand elasticity estimates: −1.39 for electricity-induced price changes,

and −1.37 for depth-induced price changes. These statistically indistinguishable estimates

suggest that farmers are equally attentive and responsive to either source of variation in

groundwater pumping costs, consistent with the predictions of standard Neoclassical theory.

We also estimate a single elasticity for demand for groundwater of −1.12, identified using

only changes in PGE’s agricultural electricity tariffs. These estimates are again much larger

than most groundwater demand elasticities from the existing literature, which may reflect

farmers’ ability to substitute between groundwater and surface water.1

Armed with these estimates of groundwater demand elasticities, we quantify deadweight

loss from the pumping cost externality. Deadweight loss only exists if farm i earns less eco-

nomic surplus from pumping a marginal unit of groundwater than the total economic surplus

lost by i’s neighbors due to their marginally higher pumping costs. We parameterize con-

stant elasticity demand curves for every farm in our sample, in order to calculate farm i’s

loss in surplus from consuming 1 acre-foot less. We then calculate the marginal increase in

groundwater levels for all neighboring farms, resulting from farm i having extracted less.2

Translating groundwater level increases into pumping cost decreases, we sum the marginal

consumer surplus gained by each of farm i’s neighbors—equivalent to farm i’s short-run

pumping cost externality. Our preliminary results suggest that the magnitude of this ex-

ternality is relatively small (roughly $2 per acre-foot on average) relative to these farms’

1. In ongoing work, we are incorporating data on farmers’ surface water availability in order to estimate
the elasticity of substitution between these two water sources.

2. In this draft, we simplify the hydrology and calculate effects in concentric circles around each extraction
point. Future versions of this analysis will incorporate more realistic and sophisticated hydrogeological
assumptions.
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pumping costs (averaging $40 per acre-foot in our sample). We also find substantial varia-

tion both within and between California’s groundwater basins. In fact, many farms in our

sample likely contribute no deadweight loss, as their own marginal surplus loss is greater

than the sum of their neighbors’ marginal surplus gains. Our results suggest that a rela-

tively small tax on groundwater extraction has the potential to eliminate millions of dollars

of deadweight loss annually for California farmers.

This paper makes three main contributions. First, we provide the first large-scale esti-

mates of the price elasticity of electricity demand in a major energy-using sector: agriculture

in California, one of the most important agricultural sectors in the world. While many studies

estimate the relationship between electricity prices and consumption in the residential sector

(Alberini and Filippini (2011), Fell, Li, and Paul (2014), Ito (2014), Deryugina, MacKay,

and Reif (2018)), far fewer studies focus on commercial and industrial electricity consump-

tion (Paul, Myers, and Palmer (2009), Jessoe and Rapson (2015), Blonz (2016)). To the

best of our knowledge, there exist no previous estimates of the price elasticity of electricity

demand in the agricultural sector. By leveraging microdata from the universe of agricultural

consumers in PGE’s service territory, along with plausibly exogenous changes in farmers’

marginal electricity price, we identify California farmers as relatively elastic electricity con-

sumers.

Second, we estimate the price elasticity of groundwater demand for California farmers—

a policy-relevant elasticity that has proven difficult to estimate due to both data and iden-

tification challenges. We overcome these challenges by combining comprehensive electricity

consumption data with technical audits of groundwater pumps, and by leveraging exogenous

variation in electricity prices (a major component of pumping costs) to credibly identify

changes in farmers’ effective price of groundwater. Many previous studies have estimated

the price elasticity of water demand outside the agricultural sector (Hewitt and Hanemann

(1995), Renwick and Green (2000), Olmstead, Hanemann, and Stavins (2007)), while others

have focused specifically on groundwater demand in agriculture (Hendricks and Peterson

(2012), Pfeiffer and Lin (2014), Badiani and Jessoe (2015), Mieno and Brozovic (2017)).

Relative to this existing literature, we contribute well-identified groundwater demand esti-

mates, for thousands of farms from one the most important agricultural regions in the world:
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California’s Central Valley. Our empirical strategy addresses a number of measurement and

identification issues from the existing literature (noted in Mieno and Brozovic (2017)), by

leveraging exogenous variation in pumping costs across time and space, in conjunction with

novel data on electricity use, agricultural pump specifications, and groundwater levels.

Third, we use these groundwater elasticity estimates to compute the pumping cost

externality for each farm in our sample, whereby farmers fail to internalize the effect of their

own extraction on their neighbors’ extraction costs. Because groundwater is a common-pool

resource, it is associated with two important externalities: a “stock externality”, as farmers

do not fully internalize the full continuation value of the resource and extract too quickly,

resulting in a “race to the bottom”; and a “pumping cost externality”, in which farmer do

not internalize how their own extraction lowers groundwater levels, thereby increasing the

costs of extraction for neighboring farmers. We focus exclusively on the latter, an important

externality that is often highlighted in theoretical work (Ostrom (1990), Provencher and Burt

(1993)), but seldom estimated empirically. We leverage our quasi-experimental variation in

electricity prices to estimate the “pumping cost” externality in California. Our preliminary

results suggest that while the magnitude of the marginal external costs is likely small relative

to the private costs of extracting groundwater, a small corrective tax could yield large welfare

gains for Calfornia farmers.

This paper proceeds as follows. Section 2 provides background on groundwater pump-

ing, California agriculture, and energy use in farming. Sections 3 and 4 describe our data

and empirical strategy. In Section 5, we present results for our demand elasticity estimates,

which we translate into deadweight loss calculations in Section 6. Section 7 concludes.

2 Background

2.1 Groundwater as a common-pool resource

Groundwater is a classic example of a common-pool (or open access) resource (Ostrom

(1990)). Typical underground aquifers are large enough that excluding consumers is ex-

tremely costly. There are two main externalities that pertain to groundwater extraction,
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commonly known as the “stock externality” and the “pumping cost externality” (Provencher

and Burt (1993)). The stock externality refers to the notion that the groundwater stock is

finite, and as a result, when farmer i extracts from the aquifer in period t, this constrains

other users in t + 1. While this is likely an important externality in practice, we do not

address it in this paper because we lack the empirical machinery to do so.

The pumping cost externality, which is the focus of this paper, refers to the fact that

when farmer i extracts an acre-foot of water from the aquifer, the water level in the aquifer

drops. This, in turn, raises the cost of water extraction for other users of the aquifer.

While farmer i will internalize the impact of his own extraction on his own costs of future

extraction, he will not internalize the impacts of his extraction on the costs of his neighbors.

This generates a classic externality, which is the focus of this paper. In particular, we aim

to quantify the magnitude of the pumping cost externality – and the associated corrective

Pigouvian tax – in the context of California agriculture.

2.2 Agriculture in California

California is a key player in global agricultural production. 17 percent of total U.S. crop

value was produced in California in 2016 (Johnson and Cody (2015)). California farmers

produce over 400 commodities, including close to half of all fruits, nuts, and vegetables

grown in the United States, and there are may products for which California is the sole U.S.

producer, such as almonds, artichokes, olives, and walnuts (California Department of Food

and Agriculture (2011)). These goods are produced by over 77,000 farms in California.

Water is particularly important to California agriculture. Close to 80 percent of all of

the state’s water use each year takes place in the agricultural sector. Much of this water goes

to crops. California has nearly 8.3 million harvested acres, 7.9 million of which were irrigated

(Johnson and Cody (2015)). Farmers can either access surface water or groundwater. While

these ultimately come from the same watershed, the rules governing use water differs.

Water use in California is governed by a complex system of rights.3 Surface water rights

fall into several categories, but all surface rights are heavily regulated; farmers using more

water than allowed by their rights are subject to severe fines.

3. See Sawyers (2007) for more details.
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By contrast, most agricultural groundwater rights are much more vague. The typical

groundwater right in California is “overlying,” meaning that landowners whose property sits

above an aquifer hav the right to extract the underlying groundwater.4 The vast majority

of groundwater use is unmetered, and users face no marginal costs of extraction beyond the

energy costs of pumping (Bruno and Jessoe (2018)). This means that, so long as a farmer

has property rights over land which sits above an aquifer, he can extract as much ground-

water as he chooses. In the midst of the 2014 drought, in order to combat overextraction,

California lawmakers passed the Sustainable Groundwater Management Act. This major

piece of legislation, the first statewide regulatory scheme governing the extraction and use

of groundwater, is aimed at enabling sustainable groundwater management via a series of

local groundwater sustainability plans. However, these plans will not be finalized until 2020

at the earliest, leaving farmers free to extract at will.

2.3 Electricity for Pumping

Electricity is essential to modern groundwater extraction. The California Energy Commis-

sion reports that water use accounts for 19 percent of California’s electricity consumption,

and close to 8 percent of the state’s energy is used on farms (California Energy Commission

(2005)). The state’s investor-owned utilities spend nearly $50 million annually to improve

energy efficiency in the agricultural sector. This makes water, and agricultural water use in

particular, a major end-use of electricity in the state.

Our goal is to quantify the size of the pumping externality that farm i imposes on his

neighbors. To do this, we exploit the fact that electricity is a major determinant of the cost of

groundwater pumping to estimate farms’ price elasticity of demand for groundwater. Several

previous papers have tried to estimate the price elasticity of groundwater demand using

variation in energy costs (Hendricks and Peterson (2012), Pfeiffer and Lin (2014), Badiani and

Jessoe (2015), and Mieno and Brozovic (2017)). However, Mieno and Brozovic (2017) point

out that these papers may suffer from (non-classical) measurement error and identification

4. There are also “appropriative” groundwater rights, for users who do not own land above the aquifer,
but these rights are lower-priority than the overlying rights. This means that users with appropriative water
rights can only exercise these rights in the case of a surplus.
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concerns which have the potential to bias the resulting estimates. Furthermore, the most

detailed of these papers focus on small geographic locations where data were available; this

increases the internal validity of these studies while reducing their external validity.

In contrast, we estimate the price elasticity of demand for agricultural groundwater

throughout California’s Central Valley, one of the most important agricultural regions in

the world. We use a multi-step estimation process. We begin by using plausibly exogenous

variation in energy pricing, both in the cross-section and over time to calculate the price

elasticity of electricity consumption. We then combine this with detailed (time-varying)

data on farm-specific pump characteristics and spatially explicit information on groundwater

levels. With these additional data, we can estimate the price elasticity of groundwater

demand with respect to (1) electricity prices, (2) groundwater levels, and finally, (3) water

costs.

3 Data

3.1 Electricity Data

We begin by estimating how farmers’ electricity consumption for groundwater pumping re-

sponds to changes in electricity price. To do this, we use confidential customer-level electric-

ity datasets, which PGE’s data management team prepared for us under a non-disclosure

agreement. These data comprise the universe of agricultural electric consumers in PGE’s

service territory, and we observe each customer’s monthly billing data at the service account

level from 2008–2017. We aggregate service accounts up to 108,172 unique service points (i.e.

the physical location of an electricity meter), allowing us to construct “monthified” panel of

electricity consumption (in kWh) at the service point (SP) level.5 We also observe several

key covariates for each service point, including its latitude and longitude; an indicator for ac-

counts with solar panels on net-energy metering (NEM), which we drop from our estimation

sample; and an identifier to link service point locations to physical electricity meters.

5. PGE’s monthly bill cycles are customer-specific, and billing periods typically do not end at the end of
a calendar month. We “monthify” billed kWh for each service point by splitting/weight-averaging multiple
bills in a single calendar month, in order to create a service point by month panel.
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PGE’s offers 23 distinct agricultural tariffs, and our billing data report the particular

tariff associated with each monthly bill. Prices on each tariff update multiple times per year,

and historic prices are publicly available, along with information on tariff-specific rules and

eligibility criteria. This allows us to construct a 10-year panel of hourly volumetric (marginal)

electricity prices, which we collapse to the monthly level by taking an unweighted average

across hours. Then, we assign each service point a monthly average marginal electricity price

in $/kWh.

Table 1 describes each agricultural tariff in detail. Importantly, PGE classifies all agri-

cultural consumers into 5 categories, based on their physical capital (i.e. pump size; internal

combustion engine) and their type of electricity meter (i.e. conventional vs. smart meters).6

While farmers may switch tariffs within categories, they may not switch tariffs across cat-

egories. This restriction lets us identify price elasticities of demand by instrumenting for

farm i’s marginal price with the marginal price of its within-category default tariff. Figure

1 plots time series of monthly average marginal prices for 3 of the most common tariffs in

our estimation sample. Our identifying variation in electricity prices comes from (i) these

time series not moving in parallel, and (ii) across-category tariff switching induced by PGE’s

smart meter rollout.

3.2 Pump Data

To complement our electricity data, we have rich data on agricultural groundwater pumps

collected by PGE’s Advanced Pumping Efficiency Program (APEP). These data include the

universe of APEP-subsidized pump tests from 2011–2017, and we observe detailed measure-

ments and technical specifications for 21,851 unique tests at 17,107 unique pump locations.

Importantly, we also observe identifiers for the electricity meter associated with each pump

test. This allows us to match pump tests to electricity service points, thereby isolating a

sample of 11,851 service points for which agricultural groundwater pumping is confirmed to

6. Conventional meters record electricity consumption using an analog dial, whereas smart meters can
digitally store the full time profile of consumption. During our sample period, PGE gradually phased out
conventional meters, replacing them with smart meters capable of supporting time-varying electricity pricing.

8



be a major end-use.7 We restrict our empirical analysis to this 11 percent subset of agricul-

tural service points, in order to best isolate groundwater pumpers and avoid incorporating

other agricultural electricity end-uses.8

Table 2 reports summary statistics for this subset of agricultural service points (in the

right column). Compared to the full set of PGE’s agricultural customers, APEP-matched

service points tend to consume nearly twice as much electricity, and tend to pay lower

marginal prices. Only 24 percent of service points shift across tariff categories, and the

vast majority of switches are triggered by PGE’s smart meter rollout. Figure 2 reveals that

APEP-matched service points are heavily concentrated in California’s Central Valley, and

appear to be a geographically representative subset of PGE’s agricultural customers.

Besides helping us identify a subset of agricultural consumers who pump groundwa-

ter, APEP data allow us to characterize pump-specific groundwater production functions.

Groundwater extracted is Leontief in electricity (for pumps with electric motors), and 1

kWh of electricity in will yield a particular volume of groundwater out (measured in acre-

feet (AF)). This kWh per AF relationship is governed by physics:

kWh
AF

= kW÷ AF
hour

=
[Lift (feet)]× [Flow (gallon/minute)]

[Operating pump efficiency (%)]× [Constant]
÷ AF

hour
(1)

The power (kW) required to pump 1 acre-foot is directly proportionate to both the vertical

distance the water must travel to the surface (i.e. lift) and the speed at which the water

travels (i.e. flow). It is inversely proportionate to rate at which the pump converts electric

energy into the movement of water (i.e. operating pump efficiency). We can simplify (1) by

converting from gallons to acre-feet:

⇒ kWh
AF

=
[Lift (feet)]× [Constant]

Operating pump efficiency (%)
(2)

7. Pumping is likely the only end-use at most matched service points, as PGE typically installs a dedicated
meters for each pump.

8. We are currently working on using satellite images to predict whether service points outside the APEP-
matched sample are also groundwater pumpers. We hope to incorporate these farms into future analysis, as
there are likely many groundwater pumps that never received an APEP-subsidized pump test.
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For each APEP pump test, we observe measurements of kWh/AF, operating pump efficiency,

flow, and lift. We also observe the standing water level, or the baseline depth of water in the

absence of pumping. Because pumping lowers the water level at a given location, standing

water levels help us more accurately calibrate how changes in aquifer depth impact lift for

each pump.9

3.3 California Water Data

While a given farm’s pumping technology is relatively constant in the short run, its kWh/AF

conversion factor is sensitive to short-run changes in standing water levels. In order to

capture these short-run shocks in pumping costs, we use publicly available groundwater data

from California’s Department of Water Resources collected under the California Statewide

Groundwater Elevation Monitoring (CASGEM) Program.10 These data report depth below

the surface at 16,015 unique monitoring stations during our 2008–2017 sample period, with

an average of 25 measurements at each location at different points in time. We rasterize

all measurements within each month (and quarter), using inverse distance weighting to

interpolate a two-dimensional surface of average depth at each point in space. This allows

us to construct a monthly (and quarterly) panel of estimated groundwater depths at each

service point in our APEP-matched sample.

We assign each service point to both a groundwater basin and a water district, using

publicly available shapefiles maintained by the California Department of Water Resources.11

Groundwater basins are broadly defined by stratigraphic barriers through which water does

not travel horizontally. We control for annual changes in water levels that impact all farms

within the same water basin. Water districts are administrative entities that govern farmers’

9. Lift is (approximately) the sum of the standing water level, drawdown (i.e., how much pump i impacts
its own depth), and other pump-specific factors (e.g., discharge pressure, gauge corrections, height of the
pump above the surface). Drawdown depends on rate of extraction (i.e. flow) and the physical properties of
the substrata. Greater flow increases drawdown, as water levels fall with faster extraction. More transmissive
(or porous) rock formations have lower drawdown, because water levels are able to reequilibrate horizontally
more quickly.
10. These data are available at: https://water.ca.gov/Programs/Groundwater-Management/

Groundwater-Elevation-Monitoring--CASGEM
11. Water basin shapefiles are available at https://water.ca.gov/Programs/Groundwater-Management/

Bulletin-118. Water district shapefiles are available at https://data.cnra.ca.gov/dataset/
water-districts.
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annual allocations of surface water. Because groundwater and surface water are obvious

substitutes, we control for annual shocks to farms’ surface water allocations at the water

district level. This helps to isolate variation in pumping behavior driven by variation in

pumping costs, rather than variation in the availability of groundwater substitutes.12

3.4 Groundwater Prices and Quantities

We combine the above data sources into a panel of groundwater prices and quantities, at the

service point by month level. To convert from electricity (kWh or $/kWh) to groundwater

(AF or $/AF), we simply need to populate a kWh/AF conversion factor for every panel

observation. We construct estimates for kWh/AF by parameterizing Equation (2) using (i)

monthly (or quarterly) rasters of groundwater depths at each service point; (ii) pump-specific

conversions between standing water level and lift, as calculated from APEP pump tests; and

(iii) APEP-measured operating pump efficiencies. We take unweighted averages of APEP

variables across multiple pumps within a single service point; we also extrapolate each service

point’s first pump test backwards, extrapolate its last pump test forwards, and interpolate

between multiple pump tests using a triangular kernel in time.

Table 3 reports summary statistics for this merged panel dataset. We observe 3.45

unique pump tests for the average APEP-matched service point, and APEP data reveal

substantial (cross-sectional) variation in operating pump efficiencies and kWh/AF conversion

factors. Our constructed kWh/AF estimates tend to moderate extremely values, which

compresses the right tail kWh/AF values (while also slightly shifting this distribution left).

Interestingly, implied marginal groundwater prices exhibit far less seasonal variation than

marginal electricity prices. This is because groundwater levels tend to be relatively higher in

summer months (compared to winter months), which tends to reduce (estimated) kWh/AF

in months when electricity prices are highest.

12. We are currently working to incorporate additional spatial data products, including (i) shapefiles of
common land units, which correspond to agricultural fields; (ii) shapefiles of parcels, which roughly corre-
spond to farms; and (iii) the USDA Cropland Data Layer, which uses satellite imagery to classify fields by
crop type. Together, these data will enable us to aggregate up from service points to farms, and to build a
panel of crop choice at the farm-year level.
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4 Empirical Strategy

This section outlines our empirical strategy for estimating farmers’ demand for ground-

water pumping. First, we estimate price elasticities of demand for electricity, for the full

sample of agricultural consumers where we can match an electricity meter to a groundwa-

ter pump. Next, we estimate price elasticities of demand for groundwater, by translating

prices/quantities of electricity into prices/quantitites of water using data on (i) technical

pumping production functions and (ii) groundwater depths across space and time.

4.1 Electricity Demand

We estimate monthly electricity demand using the following specification:

sinh−1 (Qelec
it ) = β log (P elec

it ) + γi + δt + εit (3)

The dependent variable is kWh consumed at electricity service point i in month t, trans-

formed using the inverse hyperbolic sine function (which closely approximates the natural log

transformation but includes zero in its support).13 P elec
it is unit i’s marginal electricity price

(in $/kWh), averaged across all hours in month t. We include unit by month-of-year fixed

effects (γi), in order to control for within-pump/month average consumption (e.g., service

point i in March). We also include month-of-sample fixed effects (δt) to control for trends

in both electricity prices (which rise over time) and pumping behavior. Alternative specifi-

cations include groundwater basin by year fixed effects (to control for annual between-basin

variation in groundwater depth), water district by year fixed effects (to control for annual

shocks to surface water allocations), and unit-specific linear time trends. We two-way cluster

standard errors by service point and month-of-sample, which accommodates both arbitrary

within-unit serial correlations and arbitrary spatial correlations with each monthly cross-

section.

In order to identify the demand elasticity in Equation (3), we must purge any endoge-

nous variation in unit i’s marginal electricity price. PGE’s agricultural tariff schedules are

13. Since 15 percent of observations in this panel are zeroes, we apply the inverse hyperbolic sine transfor-
mation to avoid dropping months where farms consume zero kWh for groundwater pumping.
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the outcome by statewide regulatory proceedings, and marginal prices are linear in kWh con-

sumed.14 While an individual farmer cannot plausibly influence how PGE sets prices, most

farmers may select between alternative tariff schedules—effectively choosing which marginal

electricity price they face. PGE restricts this choice to be within 5 tariff categories defined

by farmers’ physical capital (e.g. pump size and type) and type of electric meter (i.e. con-

ventional vs. “smart” meters). We instrument for unit i’s marginal price with the marginal

price on the default tariff within unit i’s category (i.e. bolded tariffs in Table 1), which elim-

inates selection bias from a high-volume pumper choosing a tariff with advantageously low

volumetric prices.

Farmers may also shift across tariff categories, which could similarly bias our elastic-

ity estimates. If such a shift reflects a change in physical pumping capital—for example,

upgrading from a < 35 hp pump to a ≥ 35 hp pump—then a change in marginal price (or

within-category marginal default price) would coincide with a mechanical increase in elec-

tricity consumption. We control for such endogenous changes in price by interacting unit

fixed effects with a categorical variable for the 3 types physical capital that define PGE

tariff categories: small pumps, large pumps, and internal combustion engines. On the other

hand, if unit i shifted across categories because PGE replaced its conventional meter with

a smart meter, we would not expect such a shift to coincide with any other changes to

unit i’s pumping behavior.15 Hence, meter-induced shifts in tariff categories are unlikely to

lead to endogenous changes in unit i marginal electricity price. We also instrument with

lagged default prices to purge potential endogeneity in the timing of unit i’s smart meter

installation.

14. By contrast, PGE’s residential electricity tariffs use increasing block pricing, where a household’s
marginal price is endogenous to its own consumption (Ito (2014)). Linear marginal prices simplify our
estimation of agricultural electricity demand, because farm i’s marginal price is determined solely by its
tariff schedule.
15. During our 2008–2017 sample period, PGE gradually installed smart meters for the vast majority of its

customers. The timing of PGE’s smart meter rollout was determined by institutional and geographic factors,
which were outside of customers’ control. Previous research has established that PGE did not specify the
rollout to target customers with specific usage patterns (Blonz (2016)).
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4.2 Groundwater Demand

We seek to estimate the causal effect of groundwater price on groundwater consumption,

and this demand elasticity is linearly approximated by the coefficient β:

log (Qwater
it ) = β log (Pwater

it ) (4)

We construct Qwater
it and Pwater

it using the estimated conversion factor k̂Wh
AF it

, which has mea-

surement error and is also potentially endogenous. Hence, the same measurement error and

endogeneity is present on both the left-hand side and the right-hand side of Equation (4).

We can rewrite this expression decomposing k̂Wh
AF it

on both sides:

log (Qelec
it )− log

(
k̂Wh
AF it

)
= β

[
log (P elec

it ) + log
(
k̂Wh
AF it

)]
(5)

Rearranging:

log (Qelec
it ) = β log (P elec

it ) + (β + 1) log
(
k̂Wh
AF it

)
(6)

This expression is algebraically equivalent to Equation (4), but it isolates the endogenous

estimated conversion factor in one right-hand-side variable. We estimate an analogous re-

gression specification:

sinh−1 (Qelec
it ) = βe log (P elec

it ) + (βw + 1) log
(
k̂Wh
AF it

)
+ γi + δt + εit (7)

This specification is similar to Equation (3), except that we can now interpret βe and βw as

the price elasticity of demand for groundwater. We allow this elasticity to vary depending

on the source of variation in pumping costs—groundwater depths may be more salient to

farmers than electricity prices, or vice versa.16 As in the electricity regressions, we purge

electricity price endogeneity by instrumenting P elec
it with within-category default prices (see

description above).

To identify βw, we must overcome three potential sources of bias. First, farmers may

choose to alter their pumping technologies in order to change k̂Wh
AF it

, and such changes are

16. A strict Neoclassical interpretation would assume βe = βw, as the optimizing farmer should respond to
all short-run changes in Pwater

it identically.
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likely correlated with Qelec
it . Second, k̂Wh

AF it
is a function of unit i’s groundwater depth, which

is mechanically linked to Qelec
it —when unit i consumes electricity to extract groundwater,

its localized groundwater level falls, thereby increasing k̂Wh
AF it

. Third, k̂Wh
AF it

incorporates

measurement error both from interpolating rasterized groundwater depths across space and

from interpolating/extrapolating unit i’s APEP measurements across time.

We instrument for log ( k̂Wh
AF it

) using logged groundwater depth averaged across unit i’s

full groundwater basin.17 This purges potential endogeneity driven by changes in pumping

technologies, and eliminates bias induced by measurement error in unit i’s pump specifi-

cations in month t. It also breaks the mechanical relationship between k̂Wh
AF it

and Qelec
it , as

farm i’s extraction should have a negligible contemporaneous effect on average groundwater

levels across the whole basin. Finally, instrumenting with basin-wide average depth miti-

gates measurement error from having spatially interpolated groundwater measurements into

a (potentially overfit) gridded raster.

While Equation (7) isolates the shared endogenous component of Qwater and Pwater on

the right-hand side, a more standard approach would be to estimate:

sinh−1 (Qwater
it ) = β log (Pwater

it ) + γi + δt + εit (8)

We also estimate Equation (8), instrumenting for log (Pwater
it ) using the logged average

marginal electricity price of unit i’s within-category default tariff. This instrument isolates

changes in the effective price of groundwater driven only by plausibly exogenous changes in

the marginal electricity price. It also removes measurement in k̂Wh
AF it

from the right-hand side,

which prevents measurement error on the left-hand side from biasing our point estimates.18

17. We instrument with groundwater depth in logs (rather than levels) because logging both sides of
Equation (2) implies that log (kWh/AFit) is linear in log (lift), and a percentage change in depth should
yield a similar percentage change in lift.
18. In most cases, classical measurement error on the left-hand side does not bias point estimates. However,

consider the regression (Yi + ηi) = β(Xi +ωi) + ε, where ηi and ωi each denote classical measurement error,
and where Cov(ηi, ωi) 6= 0. After conditioning on (Xi + ωi), the remaining measurement error on the left-
hand side is no longer (conditionally) classical, and could bias β̂. In Equation (8), measurement error from
̂kWh/AFit enters directly on the right-hand side and inversely on the left-hand side. Instrumenting with

default electricity prices removes this correlation between left-hand- vs. right-hand-side measurement error.

15



5 Results

5.1 Electricity Demand

Table 4 reports results from estimating Equation 3. Column (1) does not instrument for

marginal electricity price, yielding an unidentified point estimate for β̂. Column (2) in-

struments using unit i’s within-category default marginal price, which eliminates bias from

farmers choosing their own electricity tariffs. The direction of this bias is not obvious ex

ante, because farmers are choosing between tariffs with both volumetric ($/kWh) and fixed

($/kW) price components.19 Comparing Columns (1) vs. (2), we see that on average, farmers

with higher electricity consumption tend to choose tariffs with relatively lower fixed charges

per kW and relatively higher prices per kWh.

Column (3) eliminates the other source of price endogeneity, by interacting unit fixed

effects with indicators for (i) small pumps (< 35 hp), (ii) large pumps (≥ 35 hp), and

(iii) auxiliary internal combustion engines. While only 5 percent of units shift across tariff

categories due to changes in their physical capital, the resulting simultaneous changes in

Qelec
it and P elec

it induce substantial bias in Column (2) point estimate. Column (3) reports

our preferred estimate of −1.17, after having purged both sources of price endogeneity.

The magnitude of this elasticity estimate is surprisingly large, considering that electric-

ity demand tends to be extremely inelastic in other contexts. The literature on electricity

demand has focused heavily on the residential sector, and recent estimates have found elas-

ticities of −0.08 to −0.48 in the short run (Reiss and White (2005); Alberini and Filippini

(2011); Fell, Li, and Paul (2014)) and −0.09 to −0.73 in the medium to long run (Alberini

and Filippini (2011); Ito (2014); Deryugina, MacKay, and Reif (2018)).20 Fewer estimates

exist for commercial or industrial electricity demand. Paul, Myers, and Palmer (2009) es-

19. PGE tariffs with relatively high volumetric (i.e. marginal) prices tend to have relatively low fixed prices,
and vice versa. Two farmers with the same average electricity consumption may optimally choose different
tariffs. Suppose farmer A operates a 300 hp pump for 50 hours per month, while farmer B operates 50 hp
pump for 300 hours per month. Farmer A should prefer a low fixed price and a high volumetric price, while
farmer B should prefer a high fixed price and a low marginal price.
20. These estimates uses monthly or annual variation in electricity prices, which aligns with our empirical

strategy. Other studies leverage hourly variation in electricity prices have estimated electricity demand
elasticities ranging from −0.03 to −0.25 (Wolak (2011); Jessoe and Rapson (2014); Fowlie et al. (2018); Ito,
Ida, and Tanaka (2018)).
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timate commercial/industrial elasticities of −0.11 to −0.16 in the short run, and −0.29 to

−0.40 in the long run. Jessoe and Rapson (2015) find no demand response to dynamic

pricing in these sectors, while Blonz (2016) estimates elasticities of −0.08 to −0.22 using

hourly price variation for PGE’s small commercial/industrial customers. To our knowledge,

we provide the first large-scale estimates of electricity demand elasticities in the agricultural

sector.

Columns (4)–(6) report three additional elasticity estimates, each intended to assuage

any remaining concerns over price endogeneity. Column (4) includes separate year fixed

effects for each water basin and each water district, to control for potential time-varying

confounders related to water depth or surface water availability. The resulting point estimate

of −1.02 is quite similar, albeit slightly attenuated. Column (5) instruments with the 6-

and 12-month lags of the default price (rather than the contemporaneous default price), to

account for potential endogeneity in the timing of PGE’s smart meter rollout.21 This yields

a nearly identical point estimate, implying that farmers’ electricity consumption did not

meaningfully change in anticipation of a smart meter installation. Finally, Column (6) adds

11,175 unit-specific linear time trends, to confirm that we are not identifying β̂ solely off of

monotonic trends in price and quantity. The resulting point estimate of −0.76 is attenuated,

as linear trends remove much of the (good) variation in electricity prices over time. Even

so, we still find a tightly estimated elasticity that is substantially larger than virtually all

previous estimates for the elasticity of electricity demand.

5.2 Groundwater Demand

Table 5 presents our results for estimating farmers’ groundwater demand. Each column

estimates Equation (7) using our preferred strategy for identifying the elasticity with respect

to electricity price: instrumenting for log (P elec
it ) with within-category default prices, and

interacting unit fixed effects with indicators for each category of physical pumping capital.

Note that we report β̂e and β̂w, where the latter subtracts 1 from the regression coefficient

on log ( k̂Wh
AF it

). We interpret each coefficient as the elasticity of demand for groundwater

21. Recall that farmers may shift across tariff categories (inducing changes to their within-category default
price) due to either changes in their physical capital or the installation of a smart meter.
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with respect to one component of the price of groundwater, holding the other component

constant.

Column (2) reports our preferred estimates of β̂e and β̂w, where we instrument for

log ( k̂Wh
AF it

) with logged groundwater depth in month t averaged across unit i’s full ground-

water basin. Comparing β̂w in Columns (2) vs. (1), instrumenting with average depth ap-

pears to alleviate bias due to measurement error in log ( k̂Wh
AF it

).22 The exclusion restriction

requires that unit i’s pumping behavior have no contemporaneous impact on basin-wide av-

erage groundwater depths. Such feedback effects between the dependent variable and the

instrument would be extremely unlikely for three reasons: (i) unit i is small relative to

the geographic footprint of its groundwater basin; (ii) thousands of other pumpers are also

extracting from the same basin; (iii) basin-wide average groundwater levels do not instanta-

neously reequilibrate after extraction at one point in space. Column (3) restricts the sample

to the 3 largest groundwater basins, each of which has over 1,000 units in our estimation

sample.23 The resulting β̂w estimate is quite similar, which should assuage concerns that the

instrument is invalid due to a few large farms located in very small groundwater basins.

The magnitudes of our β̂e estimates are quite similar to results from the electricity-only

regressions, especially comparing β̂e = −1.21 from Column (1) of Table 5 the analogous

estimate of β̂ = −1.17 from Column (3) of Table 4. Perhaps surprisingly, β̂e is also nearly

identical to our instrumented β̂w estimates. This implies that a 1 percent change in the

effective price of groundwater has the same effect on farmers’ pumping behavior, whether

that change comes via their marginal electricity price or via their pump’s kWh/AF conversion

factor. It also suggests that farmers are quite attentive to their true costs of pumping, and

that they reoptimize their pumping behavior identically in response to either type of price

variation—as Neoclassical theory would predict.

Similar to our elasticity estimates for electricity, our groundwater elasticity estimates

are also quite large relative to most previous estimates. Recent studies have also exploited

22. We discuss three potential sources of bias in βw in Section 4.2 — (i) endogenous changes to pumping
technologies, (ii) the mechanical relationship between extraction and depth at a given location, and (iii)
measurement error. Bias from (i) or (ii) appears unlikely, as they should bias our βw away from zero, rather
than towards zero.
23. These basins are the San Joaquin Valley, the Sacramento Valley, and the Salinas Valley. The number

of agricultural groundwater pumpers in each basin is likely much larger, as our estimation sample comprises
only the subset of PGE customers that we can confident match to an APEP-subsidized pump test.
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variation in energy prices, but yielding far smaller magnitudes: Hendricks and Peterson

(2012) find an elasticity of −0.10, and Pfeiffer and Lin (2014) find an elasticity of −0.27

(both for agricultural groundwater in Kansas). Bruno and Jessoe (2018) estimate demand

elasticities of −0.17 to −0.22 within the Coachella Valley of California, which is a unique

setting where groundwater extraction is directly priced. Previous studies have also esti-

mated farmers’ elasticity of demand for surface water, most notably Hagerty (2018), who

finds an elasticity of −0.23 for surface water in California agriculture. While estimates of

surface water demand often range as high as −0.8 in specific locations (Schoengold, Sunding,

and Moreno (2014); Hagerty (2018)), we find agricultural groundwater demand to be much

more elastic.24 Substitution between groundwater and surface water is likely a major factor

explaining the large magnitudes of our elasticities estimates.

Columns (4)–(6) report three alternate versions of our preferred estimates in Column

(2). First, to account for the inherent tradeoff between spatial density vs. temporal fre-

quency of groundwater measurements, Column (4) re-estimates Equation (7) using ground-

water data rasterized at the quarterly (rather than monthly) level. Whereas our preferred

monthly rasters are able to capture groundwater measurements at greater temporal fre-

quency, quarterly rasters have greater accuracy in the cross-section by incorporating more

distinct measurement sites. The resulting β̂w estimate increases in magnitude, however the

average depth instrument has less predictive power at the (coarser) quarterly level. Column

(5) includes water basin by year and water district by year fixed effects, yielding only slightly

attenuated point estimates despite eliminating much of the variation in the average depth

instrument. In Column (6), we instrument with 6- and 12-month lags of average depth

(rather than contemporaneous depth), as it is possible (albeit unlikely) that farmers pump

less in months with lower groundwater levels for some reason other than pumping costs.

These lagged instruments substantially increase β̂e and β̂w; however, the small first stage

F -statistic indicates a weak instrument, and we interpret these results with caution.

Table 6 reports results from estimating Equation (8), with groundwater quantity as

the dependent variable, and instrumenting for the composite groundwater price with default

24. Estimates for urban water demand have found similar elasticities, ranging from −0.10 to −0.76 (Nataraj
(2011); Ito (2013); Baerenklau, Schwabe, and Dinar (2014); Wichman (2014);Buck et al. (2016); Wichman,
Taylor, and Haefen (2016); Hagerty (2018)).
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electricity prices. While these estimates identify β̂ using only variation in default electricity

prices, we demonstrate above that farmers respond almost identically to variation in either

component of their effective groundwater price. The resulting point estimates are quite sim-

ilar to, but slightly smaller than, our electricity demand estimates. Interestingly, combining

Pwater
it into a single regressor removes much of the variation used to estimate separate coef-

ficients in Table 5. This is because electricity prices and groundwater depths are seasonally

correlated—groundwater levels are lowest (making pumping more expensive) in the winter

months, when electricity prices are also low. This likely explains why β̂ estimates in Table

6 are smaller than β̂e and β̂w estimates in Table 5.

6 Open-Access Externality

We use our elasticity estimates to calculate the “pumping cost” externality for each farm

in our sample. This calculates the deadweight loss created when farm i fails to internalize

how its own groundwater extraction increases its neighbors’ costs of extraction. Importantly,

farm i only creates deadweight loss if its own surplus gained from pumping a marginal acre-

foot is less than the sum of surplus lost by all neighboring farms due to marginally lower

groundwater levels. We focus exclusively on the (more static) “pumping cost” externality,

where marginal changes in farm i’s extraction induce marginal changes neighboring farms’

groundwater levels and pumping costs. We do not investigate the (more dynamic) “stock

externality,” where farmers’ failure to internalize the full continuation value of groundwater

stocks causes them to deplete the stock too quickly.

Figure 3 illustrates our conceptual framework for the simplified case where four farms

share a single aquifer. Each farm has a unique groundwater demand curve, which governs

the amount of groundwater it extracts (Qi) at a given marginal pumping cost (Pi). If Farm

1 extracts less groundwater, it incurs a loss in consumer surplus (i.e., the red triangle). How-

ever, this has the effect of increasing groundwater levels for Farms 2, 3, and 4—which leads

to farm-specific decreases in their marginal pumping costs (since the translation from depth
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to $/AF depends on each farm’s unique electricity price and pumping technology).25 At

lower pumping costs, Farms 2, 3, and 4 increase extraction and capture additional consumer

surplus (i.e., the green trapezoids). If the sum of surplus gained by Farms 2, 3, and 4 is

greater than the surplus lost by Farm 1, then Farm 1’s open-access extraction is creating

deadweight loss.

We require two inputs to operationalize Figure 3 and calculate the open-access external-

ity for each farm i. First, we must parameterize i-specific groundwater demand curves. To

do this, we assume constant elasticity of demand, with a homogeneous elasticity of ε = −1.12

(based on our preferred estimate from Table 6). Each demand curve is simply Q = AiP
ε,

where Ai is calibrated to unit i’s groundwater price and quantity. For this exercise, we focus

on June–July of 2016, the two months with the greatest groundwater extraction in our last

complete year of data.

Second, we must characterize how a marginal decrease in farm i’s groundwater extrac-

tion affects groundwater levels at each neighboring farm j. The requires assumptions for

both the spatial patterns of how groundwater moves horizontally through the substrata (i.e.

at what distance from farm i do groundwater levels respond to i’s extraction) and the speed

at which groundwater levels reequilibrate (i.e. how quickly does farm i’s extraction impact

farm j’s groundwater levels). We make two crude assumptions for the sake of tractability:

(i) when farm i extracts 1 acre-foot less, this causes groundwater levels to increase equally at

all points within a radius of r miles, where the increase is equal to 1 foot divided by the area

(in acres) of the r-mile circle;26 (ii) when farm i extracts 1 acre-foot less in June, ground-

water levels throughout the r-mile circle fully reequilibrate by July. We acknowledge that

these assumptions are not ideal, and future versions of this analysis will incorporate more

realistic assumptions based on detailed hydrogeological models of California’s groundwater

basins (Sunding, Zilberman, and Brozovic (2010)).

Table 7 reports deadweight loss calculations for each farm (i.e. service point) in the

three most common groundwater basins in our sample: the Sacramento Valley (641 APEP-

25. The increase in groundwater levels may also vary across farms sharing an aquifer, as hydrogeological
factors govern the speed that groundwater flows both horizontally and vertically through the substrata.
26. Aquifers are not bathtubs, and groundwater levels can vary substantially within a given r-mile circle.

For this simple exercise, we assume that groundwater levels increase in parallel throughout the circle. This
preserves baseline heterogeneity in groundwater levels across space.
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matched service points actively pumping in June 2016), the Salinas Valley (941), and the

San Joaquín Valley (5,325). In each basin, the median farm would have lost about $0.50 in

consumer surplus from pumping 1 AF less in June 2016 (i.e. the red triangle from Figure 3).

This consumer surplus loss varies substantially, as the 1st-quartile farm would have lost up

to $1.96, while the 3rd-quartile farm would have lost as little as $0.16.27 The bottom three

panels calculate the total change in consumer surplus, including both farm i’s lost surplus

and the surplus gained by all neighboring farms j within an r-mile radius. We present two

calculations for each groundwater basin and radius: (i) “APEP” columns calculate
∑

j ∆CSj

for all neighboring service points in our APEP-matched estimation sample; (ii) “Scaled”

columns inflate the number of neighbors by the proportion of unmatched PGE service points

on agricultural tariffs.28 Bolded numbers indicate positive welfare changes from reducing

deadweight loss—where farm i’s marginal open-access externality is greater than its own

private marginal surplus.

Four notable patterns emerge from the distributions of changes in deadweight loss.

First, greater spatial density of groundwater pumping increases the magnitude of the open-

access externality, as
∑

j ∆CSj sums across a greater number of neighbors. This is not

surprising, yet Table 7 highlights stark differences across basins and between “APEP” vs.

“Scaled” calculations. The static pumping externality is largest in the San Joaquín Valley,

which contains the majority of all PGE agricultural customers. Accounting for unmatched

groundwater pumpers is also important, as the APEP matched sample dramatically under-

counts the number of neighbors impacted by farm i’s extraction.

Second, increasing the size of the radius r has an ambiguous effect on the size of the

externality: larger circles include more neighbors but spread the additional 1 AF of ground-

water across a greater area, yielding smaller cost reductions for each neighbor. Table 7 revels

that larger cirlces tend to yield more positive welfare changes, especially in the San Joaquín

27. This variation in ∆CSi reflects baseline differences in Pi and Qi, which we use to parameterize each
i-specific demand curve.
28. Our econometric analysis only includes PGE service points that we can directly match to an APEP

pump test. However, this sample represents a relatively small subset of PGE agricultural customers—most
of whom are also groundwater pumpers (groundwater pumping is the leading agricultural energy end-use in
California). PGE’s agricultural tariffs are typically more expensive than its non-agricultural tariffs, hence
farmers have little incentive to pay agricultural tariffs for non-agricultural end uses.
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Valley. Where pumping is the most geographically dense, the number of farm i’s neighbors

increases fast enough with r to offset increasingly marginal changes in groundwater depth.

Third, we observe a substantial amount of variation in deadweight loss within each

groundwater basin, radius, and sample. While the 3rd quartile of deadweight loss is positive

for all nine “Scaled” calculations, the 1st quartile is almost always negative. This implies

that over 25 percent of farms in each groundwater basin are likely contributing deadweight

loss on the margin, but a different 25 percent of farms are likely not contributing any

marginal deadweight loss. An optimal price- or quantity-based policy would need to account

for variation in the open-access externality imposed by each farm i, though there is less

cross-sectional variation in the marginal externality itself (
∑

j ∆CSj) than in the marginal

deadweight loss (∆CSi +
∑

j ∆CSj).

Fourth, the magnitudes of our deadweight loss calculations are small relative to farmers’

marginal pumping costs. For the 5,325 farmers in the San Joaquín Valley, their average

marginal cost of groundwater pumping in June 2016 was $60 per AF. Our largest estimates

of the marginal deadweight loss are an order of magnitude smaller. At the same time, these

5,325 farmers extracted nearly 400,000 AF of groundwater in June 2016 alone. This suggests

that due to farmers’ relatively elastic demand for groundwater, a proportionately small tax

to internalize the (static) open-access externality could have eliminated nearly $1 million

in deadweight loss, for just one summer month. Also, Table 7 likely understates the true

magnitudes of deadweight loss by only considering ∆CSj for July 2016. In reality, if farm

i pumps 1 AF less in June, neighboring farms should continue to accrue marginal increases

in consumer surplus after July.

These calculations are preliminary, and we interpret them with caution. Once we

incorporate more sophisticated hydrogeological assumptions, we plan to (i) replace simple

radii with more spatially nuanced representations of each farm’s neighbors; (ii) relax our

assumption of a parallel increase in depth for all neighboring farms, to allow for groundwater

equilibration to occur at different speeds for different neighbors; and (iii) relax our crude

treatment of the timing, to allow neighbors to accrue losses in surplus for as many months

as the short-run change in depth is likely to persist. We also plan to apply machine learning

techniques to predict which unmatched farms are groundwater pumpers, rather than simply
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scaling by the rate of unmatched service points. As an input to this prediction exercise, we

will assign all service points to polygons for Common Land Units (i.e. agricultural fields) and

parcels (i.e. contiguous farms under common ownership), to remove the subset of unmatched

services points located far from agricultural crop lands.

Assigning services points to polygons will also let us aggregate up to the more natural

cross-sectional unit—the farm. The will prevent us from mistaking multiple pumps on the

same farm for neighbors. We also plan to overlay the USDA’s Cropland Data Layer, in

order to assign a specific crop (or set of crops) to each farm. This will allow us to estimate

heterogeneous demand elasticities by crop type. While our current calculations are driven

entirely by differences in Ai and variation in the spatial density of i’s neighbors, incorporating

heterogeneous εi will allow us to capture differences between annuals vs. perennials, crops

with high vs. low water intensity, and high- vs. low-value crops. For example, almond farmers

(perennial, high water intensity, high value) are likely much more inelastic groundwater users

than alfalfa farmers (perennial, high water intensity, low value), due to almonds’ higher

marginal value product per acre-foot. It follows that alfalfa farmers are more likely to

impose large pumping externalities on almond farmers than vice versa.

7 Conclusion

This paper estimates the price elasticities of demand both for agricultural electricity con-

sumption (for groundwater pumping) and for agricultural groundwater consumption. We

overcome common data challenges by linking customer-specific electricity consumption data

with data from in-person pump efficiency audits, in order construct accurate measures for

farmers’ groundwater consumption and pumping costs. We credibly identify our elasticity

estimates using exogenous variation in agricultural electricity tariffs, and our results reveal

farmers to be much more elastic groundwater pumpers than previously thought. Using these

elasticity estimates, we quantify the “pumping cost” externality—or the extent to which farm

i increases its neighbors’ groundwater extraction costs by removing a marginal unit of water

from their shared aquifer. Our preliminary results suggest that the magnitude of this exter-
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nality is likely small relative to the private costs of groundwater pumping, and that a small

corrective tax could yield substantial welfare gains for California farmers.

These results are still preliminary, and future versions of this paper will incorporate

more sophisticated hydrogeological assumptions to more accurately characterize the spatial

nature of the pumping cost externality. We also plan to use detailed geospatial data in order

to aggregate up from electricity service points to farms, as well as high-resolution satellite

imagery to classify farms by crop type. This will allow us to estimate heterogeneous elas-

ticities by crop type, and to incorporate these heterogeneous elasticities into our externality

calculations. A richer version of Table 7 will differentiate between annuals vs. perennials,

crops with high vs. low water intensity, and high- vs. low-value crops. This will allow us to

evaluate the extent to which the pumping cost externality contributes to misallocation in

crop choice. We also plan to use quasi-experimental variation in farmers’ pumping capital

to estimate the long-run elasticity of demand for groundwater.
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Tables and Figures

Figure 1: Average Marginal Electricity Prices
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Notes: This figure reports the times series of monthly average marginal electricity prices
($/kWh) for three of the most common agricultural tariffs. Prices are systematically higher
during summer months (May–October). Much of our identifying variation in monthly elec-
tricity prices comes from these monthly price times series not rising perfectly in parallel.
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Figure 2: PGE Agricultural Customers

Notes: This figure maps the locations of all agricultural service points served by PGE. Dark
blue dots indicate the 11,851 service point that we can match directly to an APEP pump
test. Light blue dots indicate unmatched agricultural service points. The light grey outline
is the geographic boundary of PGE’s service territory.
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Figure 3: Framework for Calculating the Open-Access Externality

Notes: This figure illustrates how we conceptualize and calculate the open access pumping externality that
farm i imposes on its neighbors—by not internalizing how its own groundwater extraction increases extraction
costs for other nearby farms. In example, Farm 1 has three neighbors (Farms 2, 3, and 4), and all four farms
have distinct demand curves for groundwater. If Farm 1 pumps less than its desired quantity of groundwater,
its consumer surplus falls (illustrated by the red triangle). However, when Farm 1 extracts less groundwater,
this slightly increases groundwater levels for neighboring Farms 2, 3, and 4. Because Farms 2, 3, and 4
have distinct pumping technologies and electricity prices, a parallel increase in groundwater levels leads to
idiosyncratic decreases in their effective prices of groundwater. Farms 2, 3, and 4 respond to these price
decreases by slightly increasing groundwater extraction, leading to increased consumer surplus (illustrated
by the green trapezoids). If the sum of the (green) surplus gains for all of Farm 1’s neighbors is greater than
Farm 1’s own (red) surplus loss, then the Social Planner can increase welfare by taxing Farm 1’s groundwater
extraction.
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Table 1: PGE Agricultural Tariffs
Category Tariff Description Percent

Small pumps, conventional meters
single motor < 35 hp, or

multiple motors summing to < 15 hp
1A High price per kWh (not time-varying),

fixed charge per hp connected 3.0

Large pumps, conventional meters
single motor ≥ 35 hp, or

multiple motors summing to ≥ 15 hp,
or single overloaded motor ≥ 15 hp

1B High price per kWh (not time-varying),
fixed charge per max kW consumed 8.1

Small pumps, smart meters
single motor < 35 hp, or

multiple motors summing to < 15 hp

4A (4D)
High prices per kWh (higher in peak hours),

fixed charges per hp connected,
very high peak prices on 14 summer Event Days

7.2

5A (5D)
Lower prices per kWh (peak & offpeak),

no Event Day price increases,
higher fixed charges per hp

2.7

RA (RD)

Lower peak prices per kWh,
higher off-peak prices per kWh,
no Event Day price increases,

choice between MTW or WTF peak days

1.2

VA (VD)

Lower peak prices per kWh,
higher off-peak prices per kWh,
no Event Day price increases,

choice of 3 shorter 4-hour peak periods

0.9

Large pumps, smart meters
single motor ≥ 35 hp, or

multiple motors summing to ≥ 15 hp,
or single overloaded motor ≥ 15 hp

4B (4E) High prices per kWh (higher in peak hours),
fixed charges per max kW consumed 20.1

5B (5E) Much lower prices per kWh (peak & offpeak),
higher fixed charge per max kW 37.8

4C (4F)
Slightly lower prices per kWh (peak & offpeak),
higher fixed charges per kW shifted to peak,

very high peak prices on 14 summer Event Days
2.4

5C (5F)
Much lower prices per kWh (peak & offpeak),
higher fixed charges per kW shifted to peak,

very high peak prices on 14 summer Event Days
7.8

RB (RE)
Higher prices per kWh (peak & off-peak),
choice between MTW or WTF peak days,

lower fixed charges per max kW (in summer)
1.5

VB (VF)
Higher prices per kWh (peak & off-peak),
choice of 3 shorter 4-hour peak periods,

lower fixed charges per max kW (in summer)
0.6

Customers transitioning off
internal combustion engines ICE Very low price per kWh (high in peak hours),

fixed charge per max kW consumed 6.8

Notes: This table provides a rough summary of PGE’s 23 electricity tariffs for agricultural customers. The first column lists the 5 disjoint
categories of customers, defined (primarily) by physical pumping capital and electricity meters. Effective default tarrifs within each group
are in bold, and farmers may switch tariffs within a category (but not across categories). All tariffs have fixed ($/kW) and volumetric
($/kWh) prices that vary by summer vs. winter. All time-of-use tariffs (i.e. all but 1A and 1B) also vary between peak (12:00pm–6:00pm
on summer weekdays), partial peak (8:30am–9:30pm on weekends), and off-peak periods. DEF tariffs are functionally equivalent to their
ABC analogs, and are holdovers for the earliest customers to adopt time-of-use pricing. Actual tariffs are far more complex, and tariff
documents are available at https://www.pge.com/tariffs/index.page. The right-most column reports the percent of observations in our
main estimation sample on each tariff.
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Table 2: Summary Statistics – Electricity Data

All Ag
Customers

Matched
to Pumps

Service point-month observations 9,991,458 1,168,553
Unique service points (SPs) 108,172 11,851
SPs that switch tariff categories 44,414 2,844
SPs that switch categories (pumping capital) 3,454 561
SPs that switch categories (smart meters) 43,045 2,553
Share of SP-months on time-varying tariffs 0.702 0.886
Share of SP-months on peak-day tariffs 0.295 0.152

Monthly electricity consumption (kWh) 6080.9 12055.7
(39783.1) (25075.1)

Monthly electricity consumption (kWh), summer 8249.6 17589.1
(45660.8) (29818.5)

Monthly electricity consumption (kWh), winter 3849.7 6362.8
(32498.8) (17232.5)

Average marginal electricity price ($/kWh) 0.148 0.113
(0.050) (0.042)

Average marginal electricity price ($/kWh), summer 0.171 0.130
(0.051) (0.044)

Average marginal electricity price ($/kWh), winter 0.126 0.096
(0.037) (0.032)

Average monthly bill ($, non-zero bills) 936.66 1814.15
(4662.71) (3285.26)

Average monthly bill ($, non-zero bills), summer 1398.90 2821.16
(5847.34) (4020.99)

Average monthly bill ($, non-zero bills), winter 456.17 764.99
(2888.86) (1742.21)

Notes: The left column reports summary statistics for the universe of agricultural electricity customers in PGE service territory,
from 2008–2017. The right column includes the subset of agricultural customers that we successfully match to a groundwater
pump in the APEP pump test dataset—i.e., our main estimation sample. “Pumping capital” denotes tariff category switches
driven by shifts between small pumps (< 35 hp) and large pumps (≥ 35 hp), or adding/removing an auxiliary internal combustion
engine. Most tariff category switches were driven by PGE’s smart meter rollout. Time-varying tariffs (i.e. all except 1A and 1B)
have higher marginal prices during peak demand hours. Peak-day tariffs (i.e. 4A, 4D, 4C, 4F, 5C, 5F) have very high marginal
prices during peak hours on the 14 highest-demand summer days. Monthly bills include both volumetric ($/kWh) and fixed
charges ($/kW, $/hp, and $/day). Summer months are May–October. Standard deviations of sample means in parentheses.
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Table 3: Summary Statistics – Pump Tests and Groundwater Consumption

Matched to Pumps

Service point-month observations 1,168,553
Unique service points (SPs) 11,851

Matched APEP points per SP 3.45
(8.80)

Operating pump efficiency (%) 54.46
(11.52)

kWh per AF conversion factor (APEP measured) 430.30
(254.21)

kWh per AF conversion factor (constructed) 346.94
(206.03)

Monthly groundwater consumption (AF) 49.0
(151.7)

Monthly groundwater consumption (AF), summer 74.0
(191.9)

Monthly groundwater consumption (AF), winter 23.4
(86.6)

Average marginal groundwater price ($/AF) 39.91
(29.63)

Average marginal groundwater price ($/AF), summer 41.76
(31.34)

Average marginal groundwater price ($/AF), winter 38.01
(27.63)

Notes: These summary stats are from the merged panel of groundwater prices and quantities, which combines electricity
data, pump test data, and groundwater data. We observe 3.45 unique APEP pump tests for the average matched service
point, although 37 percent of service points match to only a single APEP test. Our constructed kWh per AF conversion
factor (i.e. ̂kWh/AFit) uses monthly groundwater rasters to capture changes in (measured) kWh per AF over time, and
estimation error compresses the right tail of distribution of measured kWh per AF. Monthly groundwater consumption
divides electricity consumption (kWh) by ̂kWh/AFit. Grounwater prices multiply marignal electricity prices ($/kWh)
by ̂kWh/AFit. Summer months are May–October. Standard deviations of sample means in parentheses.
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Table 4: Estimated Demand Elasticities – Electricity

(1) (2) (3) (4) (5) (6)
OLS IV IV IV IV IV

log (P elec
it ) −1.31∗∗∗ −1.58∗∗∗ −1.17∗∗∗ −1.02∗∗∗ −1.18∗∗∗ −0.76∗∗∗

(0.11) (0.17) (0.16) (0.14) (0.21) (0.17)

Instrument(s):
Default log (P elec

it ) Yes Yes Yes Yes
Default log (P elec

it ), lagged Yes

Fixed effects:
Unit × month-of-year Yes Yes Yes Yes Yes Yes
Month-of-sample Yes Yes Yes Yes Yes Yes
Unit × physical capital Yes Yes Yes Yes
Water basin × year Yes
Water district × year Yes
Unit-specific linear time trends Yes

Service point units 11,175 11,175 11,175 11,121 10,924 11,175
Months 117 117 117 117 105 117
Observations 1.05M 1.05M 1.05M 1.04M 0.91M 1.05M
First stage F -statistic 4136 7382 7508 757 4776

Notes: Each regression estimates Equation (3) at the service point by month level, where the dependent variable is the inverse
hyperbolic sine transformation of electricity consumed by service point i in month t. We estimate IV specifications via two-stage
least squares, instrumenting with either unit i’s within-category default logged electricity price in month t or the 6- and 12-
month lags of this variable. “Physical capital” is a categorical variable for (i) small pumps, (ii) large pumps, and (iii) internal
combustion engines, and unit × physical capital fixed effects control for shifts in tariff category triggered by the installation of
new pumping equipment. Water basin × year fixed effects control for broad geographic trends in groundwater depth. Water
district × year fixed effects control for annual variation in surface water allocations. All regressions drop solar NEM customers,
customers with bad geocodes, and months with irregular electricity bills (e.g. first/last bills, bills longer/shorter than 1 month,
overlapping bills for a single account). Standard errors (in parentheses) are clustered by service point and by month-of-sample.
Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table 5: Estimated Demand Elasticities – Groundwater

(1) (2) (3) (4) (5) (6)
IV IV IV IV IV IV

log (P elec
it ): β̂e −1.21∗∗∗ −1.39∗∗∗ −1.38∗∗∗ −1.26∗∗∗ −1.23∗∗∗ −1.68∗∗∗

(0.17) (0.18) (0.19) (0.17) (0.16) (0.21)

log
(
k̂Wh
AF it

)
: β̂w −0.92∗∗∗ −1.37∗∗∗ −1.32∗∗∗ −1.72∗∗∗ −1.24∗∗∗ −2.04∗∗∗

(0.11) (0.25) (0.28) (0.30) (0.24) (0.45)

Instrument(s):
Default log (P elec

it ) Yes Yes Yes Yes Yes Yes
log (Avg depth in basin) Yes Yes Yes Yes
log (Avg depth in basin), lagged Yes

Fixed effects:
Unit × month-of-year Yes Yes Yes Yes Yes Yes
Month-of-sample Yes Yes Yes Yes Yes Yes
Unit × physical capital Yes Yes Yes Yes Yes Yes
Water basin × year Yes
Water district × year Yes

Groundwater time step Month Month Month Quarter Month Month
Only basins with > 1000 SPs Yes

Service point units 10,159 10,121 9,324 10,134 10,086 9,890
Months 117 116 116 117 116 105
Observations 0.93M 0.83M 0.80M 0.89M 0.83M 0.70M
First stage F -statistic 6932 129 144 61 69 20

Notes: Each regression estimates Equation (7) at the service point by month level, where the dependent variable is the inverse
hyperbolic sine transformation of electricity consumed by service point i in month t. We report estimates for β̂e and β̂w,
where the latter subtracts 1 from the estimated coefficient on log ( ̂kWh/AFit). We estimate IV specifications via two-stage
least squares, and all regressions instrument for P elec

it with unit i’s within-category default logged electricity price in month
t (consistent with our preferred specification from Table 4). We instrument for log ( ̂kWh/AFit) with either logged average
groundwater depth across unit i’s basin, or the 6- and 12-month lags of this variable. “Physical capital” is a categorical
variable for (i) small pumps, (ii) large pumps, and (iii) internal combustion engines, and unit × physical capital fixed effects
control for shifts in tariff category triggered by the installation of new pumping equipment. Water basin × year fixed effects
control for broad geographic trends in groundwater depth. Water district × year fixed effects control for annual variation in
surface water allocations. Column (3) restricts the sample to only the three most common water basins (San Joaquin Valley,
Sacramento Valley, and Salinas Valley), each of which contains over 1000 unique SPs in our estimation sample. Column (4)
uses a quarterly panel of groundwater depths to construct log ( ̂kWh/AFit) and the instrument, rather than a monthly panel.
All regressions drop solar NEM customers, customers with bad geocodes, months with irregular electricity bills (e.g. first/last
bills, bills longer/shorter than 1 month, overlapping bills for a single account), and pumps with implausible test measurements.
Standard errors (in parentheses) are clustered by service point and by month-of-sample. Significance: *** p < 0.01, ** p < 0.05,
* p < 0.10.
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Table 6: Estimated Demand Elasticities – Groundwater

(1) (2) (3) (4) (5) (6)
OLS IV IV IV IV IV

log (Pwater
it ) −0.81∗∗∗ −1.12∗∗∗ −1.16∗∗∗ −1.12∗∗∗ −0.97∗∗∗ −1.14∗∗∗

(0.09) (0.15) (0.17) (0.15) (0.14) (0.21)

Instrument(s):
Default log (P elec

it ) Yes Yes Yes Yes
Default log (P elec

it ), lagged Yes

Fixed effects:
Unit × month-of-year Yes Yes Yes Yes Yes Yes
Month-of-sample Yes Yes Yes Yes Yes Yes
Unit × physical capital Yes Yes Yes Yes Yes Yes
Water basin × year Yes
Water district × year Yes

Groundwater time step Month Month Month Quarter Month Month
Only basins with > 1000 SPs Yes

Service point units 10,159 10,159 9,342 10,159 10,118 9,926
Months 117 117 117 117 117 105
Observations 0.93M 0.93M 0.85M 0.93M 0.93M 0.82M
First stage F -statistic 2835 2735 2846 4633 486

Notes: Each regression estimates Equation (8) at the service point by month level, where the dependent variable is the inverse
hyperbolic sine transformation of groudnwater consumed by service point i in month t. We estimate IV specifications via
two-stage least squares, and Columns (2)–(5) instrument for Pwater

it with unit i’s within-category default logged electricity
price. Column (6) instruments with the 6- and 12- month lags of this variable. “Physical capital” is a categorical variable for
(i) small pumps, (ii) large pumps, and (iii) internal combustion engines, and unit × physical capital fixed effects control for
shifts in tariff category triggered by the installation of new pumping equipment. Water basin × year fixed effects control for
broad geographic trends in groundwater depth. Water district × year fixed effects control for annual variation in surface water
allocations. Column (3) restricts the sample to only the three most common water basins (San Joaquin Valley, Sacramento
Valley, and Salinas Valley), each of which contains over 1000 unique SPs in our estimation sample. Column (4) uses a quarterly
panel of groundwater depths to construct both Qwater

it and Pwater
it , rather than a monthly panel. All regressions drop solar

NEM customers, customers with bad geocodes, months with irregular electricity bills (e.g. first/last bills, bills longer/shorter
than 1 month, overlapping bills for a single account), and pumps with implausible test measurements. Standard errors (in
parentheses) are clustered by service point and by month-of-sample. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table 7: Deadweight Loss Calculations for June 2016

Sacramento Valley Salinas Valley San Joaquín Valley
APEP units (i) 641 964 5,325

∆CSi from 1 AF less
25th percentile −1.05 −1.61 −1.96

50th percentile −0.45 −0.59 −0.56

75th percentile −0.16 −0.28 −0.22

10-mile radius APEP Scaled APEP Scaled APEP Scaled

Mean # of neighbors (j) 112 2,235 257 950 363 2,581

∆CSi +
∑

j ∆CSj
25th percentile −1.03 −0.67 −1.54 −1.35 −1.86 −1.27

50th percentile −0.43 −0.08 −0.50 −0.30 −0.45 0.10

75th percentile −0.14 0.15 −0.18 0.08 −0.10 0.66

20-mile radius APEP Scaled APEP Scaled APEP Scaled

Mean # of neighbors (j) 236 4,729 498 1,842 1,047 7,430

∆CSi +
∑

j ∆CSj
25th percentile −1.02 −0.36 −1.51 −1.18 −1.67 −0.31

50th percentile −0.42 0.14 −0.45 −0.13 −0.28 1.25

75th percentile −0.13 0.46 −0.12 0.31 0.07 2.09

30-mile radius APEP Scaled APEP Scaled APEP Scaled

Mean # of neighbors (j) 339 6,775 710 2,625 1,736 12,322

∆CSi +
∑

j ∆CSj
25th percentile −1.01 −0.07 −1.45 −1.02 −1.47 0.42

50th percentile −0.41 0.39 −0.41 0.04 −0.11 2.59

75th percentile −0.12 0.74 −0.07 0.51 0.27 3.68

Notes: This table reports calculations for the open-access externality, for service point i in our main estimation sample located
in the three largest groundwater basins (Sacramento Valley, Salinas Valley, and San Joaquín Valley). This simple exercise
includes only service points with positive groundwater extraction in June 2016, with counts reported in the top row. For each
unit i, we calculate their private decrease in consumer surplus from pumping 1 AF less in June, 2016 (reported in the top panel).
Next, we translate unit i’s 1-AF lower extraction in June into the corresponding marginal increase in groundwater levels in July
across i-centered circles of radius r. For neighboring units j within each circle, this marginal increase in groundwater levels
translates to a marginal decrease in j’s effective price of groundwater. The bottom three panels report the net effect on total
consumer surplus, subtracting i’s lost consumer surplus in June from increased consumer surplus in July summed across all units
j. Bolded numbers indicate positive welfare changes, consistent with unit i imposing a negative open-access externality greater
than its own private benefit. “APEP” columns include only neighbors in our APEP-matched estimation sample, which almost
certainly understates the magnitude of

∑
j ∆CSj (by summing over only a subset of nearby agricultural groundwater pumpers).

“Scaled” columns inflate the number of i’s neighbors based on the ratio of match-to-unmatched PGE agricultural service points
in each groundwater basin. We calculate all changes in consumer surplus by parameterizing unit-specific groundwater demand
curves, imposing a homogeneous and constant elasticity of ε = −1.12 (based on our estimate from Table 6, Column (2)). All
units are in $/AF.
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