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Abstract

This paper studies information sharing in a duopoly product market in which

firms learn information from asset prices. By disclosing information, a firm

incurs a proprietary cost of losing competitive advantage to its rival firm but

benefits from learning from a more informative asset market. Learning from

asset prices can dramatically change firms’disclosure behaviors: without learn-

ing from prices, firms do not disclose at all; but with learning from prices, firms

can fully disclose their information. Firms’ disclosure decisions can exhibit

strategic complementarity, which leads to both a disclosure equilibrium and a

nondisclosure equilibrium.
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1. Introduction

I examine the incentives for information sharing among oligopoly firms when they

can learn information from a financial market. My analysis builds on the classic

information-sharing duopoly setting with demand uncertainty and Cournot compe-

tition (e.g., Vives, 1984; Gal-Or, 1985; Darrough, 1993). In such a setting, disclo-

sure incurs a cost, which is often labeled as “proprietary cost”(Darrough, 1993) or

“competitive disadvantage cost”/“loss of competitive advantage”(Bhattacharya and

Ritter, 1983; Foster, 1986): disclosure reveals strategic information to competitors

and reduces the disclosing firm’s competitive advantage.1 For instance, high demand

of the disclosing firm may be indicative of high demand for competitors (i.e., “a rising

tide lifts all boats”), which encourages competitors to expand their production, erod-

ing the disclosing firm’s profits. The literature shows that proprietary cost concerns

make oligopoly firms choose to withhold information in equilibrium (see the excellent

survey paper by Vives (2008)).

The new feature of my analysis is that firms learn new information from a finan-

cial market and use this information to guide their production decisions. Going back

at least to Hayek (1945), researchers argue that asset prices are a useful source of

information for real decisions. Asset prices aggregate myriad pieces of information

from various traders who trade in financial markets;2 in turn, firms have an incentive

to use this price information, in addition to other sources of information, in making

their production decisions. This effect is known as the “feedback effect”from finan-

1Survey evidence indicates that proprietary cost is indeed one major barrier to voluntary disclo-
sure of real companies (Graham, Harvey, and Rajgopal, 2005).

2The archetypal examples of financial markets include the stock market and the commodity
futures market. For instance, Fama and Miller (1972, p. 335) note: “at any point in time mar-
ket prices of securities provide accurate signals for resource allocation; that is, firms can make
production-investment decisions....” Black (1976, p. 174—176) writes: “futures prices provide a
wealth of valuable information for those who produce, store, and use commodities. Looking at fu-
tures prices for various transaction months, participants in this market can decide on the best times
to plant, harvest, buy for storage, sell from storage, or process the commodity...The big benefit
from futures markets is the side effect: the fact that participants in the futures markets can make
production, storage, and processing decisions by looking at the pattern of futures prices, even if they
don’t take positions in that market.”
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cial markets to the real economy, and has received extensive empirical support.3 I

incorporate this feedback effect by introducing a futures market. The futures contract

is on the commodity produced by the two competing firms. Financial speculators,

such as hedge funds or commodity index traders, trade the futures contracts (against

liquidity traders) based on their private information about the later product demand,

and their trading injects new information into the futures price.

One might be tempted to conjecture that adding the element of learning from asset

prices does not change the nondisclosure equilibrium identified in the information-

sharing literature (e.g., Vives (2008)). Intuitively, the asset price is effectively a

public signal shared by both firms and so its main role may be simply changing the

firms’prior distribution about the product demand, which should not affect firms’

incentives to share their private information. This conjecture is only partially correct.

What it misses is that the informational content of the asset price is endogenous and

that firms can employ disclosure to affect the informativeness of the price. This

creates a benefit for firms to share their private information.

Specifically, in my setting with a feedback effect, firms face the following trade-off

in deciding on their disclosure policies. The negative effect of disclosure is the pro-

prietary cost identified in the literature (e.g., Vives, 1984; Gal-Or, 1985; Darrough,

1993). The positive effect of disclosure comes from a more informative asset price

that improves firms’learning quality. Specifically, the payoff on the futures contract

is driven by different pieces of demand shocks, which are observed respectively by

the two firms and financial speculators. So, publicly releasing the private informa-

tion of firms reduces the uncertainty faced by financial speculators.4 This encourages

3See Bond, Edmans, and Goldstein (2012) for a survey on the feedback effect. For empirical
evidence, see, for example, Luo (2005), Chen, Goldstein, and Jiang (2007), Bakke and Whited
(2010), Foucault and Frésard (2012). In particular, Ozoguz and Rebello (2013), Foucault and Frésard
(2014), and Dessaint, Foucault, Frésard, and Matray (2018) provide evidence on firms learning from
the stock price of their product-market peers.

4There exists evidence suggesting that company managers indeed use disclosure to reduce uncer-
tainty faced by investors. For instance, Bochkay, Chychyla, and Nanda (2016) show that “new CEOs
use disclosure to cut uncertainty and boost their careers” (Columbia Law School Blue Sky Blog,
August 29, 2016). Graham, Harvey, and Rajgopal (2005) provide survey evidence that managers
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risk-averse speculators to trade more aggressively on their private information. In

consequence, the futures price will aggregate more of speculators’private informa-

tion, benefiting firms’learning from the asset price. Each firm weighs this benefit of

improved learning from the asset price against the proprietary cost to determine its

optimal disclosure policy.

There are three types of equilibrium: a nondisclosure equilibrium, in which firms

do not disclose any information; a full disclosure equilibrium, in which firms disclose

their private information perfectly; and a partial disclosure equilibrium, in which firms

voluntarily disclose their private information with added noises. This result runs in

sharp contrast to the information-sharing literature which shows that firms never

disclose their private information about market demand in Cournot settings (e.g.,

Gal-Or, 1985; Darrough, 1993). In my setting, the nondisclosure equilibrium is more

likely to prevail as the unique equilibrium only when financial speculators know less

information and when the financial market features less noise trading. This is because

under both conditions, firms have a weaker incentive to learn from the financial

market. First, when speculators know little information, firms do not have much to

learn from speculators via the asset price. Second, when there is little noise trading in

the financial market, the asset price has already aggregated speculators’information

very well and thus, the scope to improve price informativeness via disclosure is small.

I show that firms’disclosure decisions can be a strategic complement. Comple-

mentarity arises when there is a lot noise trading in the financial market. If this

complementarity is suffi ciently strong, both a partial/full disclosure equilibrium and

a nondisclosure equilibrium can be supported. This multiplicity result also runs in

sharp contrast to the information-sharing literature which shows that there always

exists a unique equilibrium. When multiplicity arises, both firms are better off on the

disclosure equilibrium than on the nondisclosure equilibrium for two reasons. First,

disclosure of each firm directly benefits its rival by releasing new information about

make voluntary disclosures to reduce information risk faced by investors.
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product demand. Second, disclosure of both firms reduces the uncertainty faced by

speculators who in turn trade more aggressively on their information. This makes

the asset price more informative, thereby benefiting both firms. Taken together, it is

in the firms’interests to coordinate on the disclosure equilibrium.

My analysis reveals that adding a feedback effect can dramatically change firms’

equilibrium disclosure behavior. Specifically, as mentioned before, in a standard set-

ting without learning from prices, firms do not disclose at all. That is, the equilibrium

level of disclosure precision is zero in a setting in which the size of noise trading is

infinity. Now consider a setting with learning from prices and suppose that there is

a lot noise trading so that multiple equilibria arise. As argued above, firms prefer

to coordinate on a partial/full disclosure equilibrium. It can be shown that as the

size of noise trading diverges to infinity, firms’disclosure precision level also diverges

to infinity. Thus, there is a discontinuity of disclosure policy at infinitely large noise

trading. Intuitively, when the noise trading at the financial market is infinity, firms

cannot at all learn from the asset price and so the benefit of disclosure disappears,

leading to the nondisclosure equilibrium. However, when the noise trading is finite

(although large) so that firms can learn from the asset price, they coordinate on a

very aggressive disclosure equilibrium to improve the informativeness of asset prices,

which is beneficial for both firms.

At a broad level, my analysis is aligned with the recent evidence that volun-

tary disclosure is an important tool in companies’arsenal to shape their information

environments. For instance, Graham, Harvey, and Rajgopal (2005, p. 4) provide

survey evidence that “managers make voluntary disclosures to reduce information

risk and boost stock price.”Anantharaman and Zhang (2011, p. 1851) show that

“managers increase the volume of public financial guidance in response to decreases

in analyst coverage of their firms”to “recoup analysts.”Balakrishnan, Billings, Kelly,

and Ljungqvist (2014, p. 2237) find that “(f)irms respond to an exogenous loss of

public information by providing more timely and informative earnings guidance”to
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“improve liquidity.”In my setting, in response to an increase in noise trading in the

futures market, firms can voluntarily disclose more information to improve asset price

informativeness that benefits firms’real investment decisions.

1.1. Related Literature

This paper contributes to two different strands of research. First, it advances the

classic literature on information sharing of firms in oligopoly settings (e.g., Gal-Or,

1986; Darrough, 1993; Raith, 1996; Vives, 1984, 2008; Bagnoli and Watts, 2015;

Arya, Mittendorf, and Yoon, 2016). This literature shows whether firms want to

voluntarily disclose information depends upon the nature of competition (Cournot or

Bertrand) and the nature of information (common value or private value). Common-

value information represents shocks affecting all firms (e.g., a common demand shock),

while private-value information represents shocks affecting each firm separately (e.g.,

idiosyncratic cost shocks). The literature finds that firms choose to withhold in-

formation in settings of Cournot/common-value and Bertrand/private-value, while

they choose to share information completely in settings of Cournot/private-value and

Bertrand/common-value.

My paper builds on a Cournot/common-value setting which features the propri-

etary cost. My analysis extends the canon of existing studies to include the realistic

feature that firms learn information from asset prices. This extension generates two

novel insights. First, firms either choose not to disclose information at all, or to dis-

close information to the public fully or partially. This differs from the literature which

finds that firms do not disclose in a Cournot/common-value setting. Second, in the

presence of learning from asset prices, firms’disclosure decisions can be a strategic

complement, which gives rise to multiple equilibria. This also differs from the unique

nondisclosure equilibrium identified in the standard setting.

The second related strand of literature is the literature on the feedback effect of a

financial market, as reviewed by Bond, Edmans, and Goldstein (2012). A few recent
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papers study the effect of disclosure in contexts that feature a feedback effect. In

Gao and Liang (2013), disclosure crowds out private-information production, which

reduces price informativeness and harms managers’ learning and investments. In

Banerjee, Davis, and Gondhi (2018), public information can lower price effi ciency by

encouraging traders choose to acquire non-fundamental information exclusively. In

Han, Tang, and Yang (2016), disclosure attracts noise trading that harms managers’

learning quality. In Amador and Weill (2010), disclosure about monetary and/or

productivity shocks can reduce welfare through reducing the informational effi ciency

of the good price system. In Goldstein and Yang (2018), disclosure can be either good

or bad, depending on whether disclosure is about the dimension about which the firm

already knows. In contrast, in my paper, disclosure benefits rather than harms firms

via the feedback effect, and the cost of disclosure is endogenously generated from

losing a competitive advantage that is unique to the oligopoly setting.

The positive effect of disclosure in my paper is related to the “residual risk effect”

in Bond and Goldstein (2015) and the “uncertainty reduction effect” in Goldstein

and Yang (2015). Releasing information about shocks that are unknown to traders

reduces the uncertainty faced by traders. Since traders are risk averse, the reduction

in risk incentivizes them to trade more on their information. In consequence, the price

will aggregate more of traders’private information, benefiting the firms’learning from

the asset price.

In a contemporaneous paper, Schneemeier (2018) also studies firms’optimal disclo-

sure policies in the presence of a feedback effect, albeit in a very different framework.

The two papers explore very different channels that can be relevant to different sce-

narios. In Schneemeier’s setting, the key trade-off of disclosure is a combination of

Gao and Liang (2013) and Dow, Goldstein, and Guembel (2017): on the one hand, as

in Gao and Liang (2013), disclosure crowds out speculators’information production

because it reduces the speculators’information advantage; on the other hand, disclo-

sure can attract information production if it can credibly convey to the market when
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the firm makes information-sensitive investment, which raises the profitability of in-

formation acquisition (in a similar spirit as Dow, Goldstein, and Guembel (2017)). In

contrast, in my analysis, the cost of disclosure arises from the proprietary cost of leak-

ing information to competing companies. Disclosure in my setting crowds in, instead

of crowds out, speculators’information in the price, because information disclosed by

firms reduces the risk perceived by risk-averse speculators. The different trade-offs

lead to different theory insights; for instance, in my setting, disclosure decisions can

exhibit complementarity, leading to multiple equilibria.

2. The Model

I consider a standard information-sharing duopoly setting (e.g., Vives, 1984; Gal-Or,

1985; Darrough, 1993), which is extended with a financial market, or more specifically,

with a futures market on the commodity produced by two competitive firms. There

are three dates, t = 0, 1, and 2. The order of events is described in Figure 1. On date

0, two competing firms, firm A and firm B, simultaneously decide on their disclosure

policies. On date 1, financial speculators and liquidity traders trade commodity

futures. Financial speculators are endowed with private information about the later

demand for the firms’ products, which is aggregated into the equilibrium futures

price. Firms make inference on this information from the futures price to guide their

production decisions (the feedback effect). On date 2, the product market opens and

the product price is determined.

2.1. Demand for Products

The date-2 demand for firms’products is generated by a representative consumer who

maximizes consumer surplus,

C (Q, θA, θB, δ, ε) = U (Q, θA, θB, δ, ε)− pQ, (1)
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Figure 1: Model Timeline

where Q is the amount of products purchased from the firms and p is the product

price. In equation (1), U (Q, θA, θB, δ, ε) captures the consumer’s intrinsic utility from

consuming the products, while the term pQ is the cost of purchasing the products.

Following the literature (e.g., Singh and Vives, 1984), I specify a quasi-linear intrinsic

utility function as follows:

U (Q, θA, θB, δ, ε) = (m+ θA + θB + δ + ε)Q− Q2

2
. (2)

Parameter m is a positive constant that captures the size of the product market.

Variables θA, θB, δ, and ε are mutually independent demand shocks that are normally

distributed; that is, θA ∼ N
(
0, τ−1

θ

)
, θB ∼ N

(
0, τ−1

θ

)
, δ ∼ N

(
0, τ−1

δ

)
, and ε ∼

N (0, τ−1
ε ) (with τ θ > 0, τ δ > 0, and τ ε > 0). The demand shocks (θA, θB, δ) are

observed by firm A, firm B, and financial speculators, respectively, while the demand

shock ε reflects the residual uncertainty that is hard to predict by firms and financial

speculators.

The representative consumer knows her preference shocks and chooses product

quantity Q to maximize her preference (1) taking the product price p as given. This

maximization problem leads to the following standard linear inverse demand function

for firms’products:

p = (m+ θA + θB + δ + ε)−Q. (3)

For the sake of simplicity, I have assumed that both firms produce identical products.
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Alternatively, I can assume that firms produce differentiated products and the results

do not change under this alternative assumption.

2.2. Information Disclosure and Commodity Production

The two firms make two decisions in the economy, a disclosure-policy decision on

date 0 and a commodity-production decision on date 1. Their production decisions

determine the supply of products in the product market. Following Darrough (1993),

I assume that on date 0, firms A and B respectively observe demand shocks θA and

θB. Firms precommit themselves in advance to a particular disclosure policy ex ante

before they receive their private information. Such a commitment may be coordinated

and enforced by trade associations or regulatory agencies such as the FASB or the

SEC. Firm A discloses a noisier version of θA to the public in the form of

x = θA + η,

where η ∼ N
(
0, τ−1

η

)
(with τ η ∈ [0,∞]) and η is independent of all other shocks.

Similarly, firm B discloses a nosier version of θB in the form of

y = θB + ξ,

where ξ ∼ N
(
0, τ−1

ξ

)
(with τ ξ ∈ [0,∞]) and ξ is independent of all other shocks.

The random variables η and ξ are the noises added respectively by the two firms

in their disclosed signals. The precision levels τ η and τ ξ are chosen by the firms at

the beginning of date 0 to maximize their unconditional expected profits. A higher

value of τ η and τ ξ signifies that x and y are more informative about θA and θB,

respectively, which can be achieved by making more frequent announcements (e.g.,

through press releases, conference calls, monthly newsletters) and/or by releasing

more accurate data (e.g., by adding an extra line in financial statements to separate

core from non-core items).5 In particular, I allow τ η and τ ξ to take values of 0 and

∞, which correspond respectively to the case in which the firms do not disclose (i.e.,
5For instance, on November 1, 2018, Apple announced that it will stop reporting unit sales figures

for its three most recognizable brands, the iPhone, iPad and Mac, in the future reports starting from
the next quarter. This corresponds to a decrease in τη.

9



disclose with infinite noise) and to the case in which the firms disclose their private

information perfectly (i.e., disclose without noise). In the literature, these two values

are the only possible equilibrium choices (see the survey by Vives (2008)). As I will

show shortly, in the presence of learning from asset prices, firms can choose to disclose

their information imperfectly (i.e., τ η ∈ (0,∞) and τ ξ ∈ (0,∞)).

On date 1, firms make production decisions to maximize profits based on private

and public information. Firm A’s private information is θA and firm B’s private

information is θB. There are three pieces of public information: public disclosure

x released by firm A, public disclosure y released by firm B, and the price f of a

financial asset. The innovation of this paper is that firms extract information from

the asset price f to guide their production decisions, which is the feedback effect.

I normalize the marginal cost of production as 0. As known in the literature, this

normalization does not affect the results. Under this normalization, firm i’s profit is

Πi (qi, qj, θA, θB, δ, ε) = pqi = (m+ θA + θB + δ + ε− qj) qi − q2
i , (4)

for i, j ∈ {A,B} and i 6= j. Variables qi and qj are respectively the amount of

products produced by the firm i and firm j. The second equality in (4) follows from

the inverse demand function (3) and Q = qA + qB. The optimal date-1 production q∗i

of firm i is determined by

max
qi

E
[
Πi

(
qi, q

∗
j , θA, θB, δ, ε

)∣∣ θi, x, y, f] ,
where E [ ·| θi, x, y, f ] is the conditional expectation operator and q∗j refers to firm j’s

optimal production, which is taken as given in firm i’s production decision problem.

The optimal date-0 disclosure decision τ ∗η of firm A is determined by

max
τη

E [ΠA (q∗A, q
∗
B, θA, θB, δ, ε)] .

Similarly, the optimal date-0 disclosure decision τ ∗ξ of firm B is determined by

max
τξ

E [ΠB (q∗A, q
∗
B, θA, θB, δ, ε)] .

When making the disclosure policy choice, each firm takes the other firm’s disclosure

policy as given and also takes into account how its own disclosure affects the optimal

production decisions of both firms in the product market.
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2.3. Financial Market

The financial market opens on date 1. There are two tradable assets: a futures

contract and a risk-free asset. I normalize the net risk-free rate as 0. The payoff on

the futures contract is the date-2 product spot price p. Each unit of futures contract

is traded at an endogenous price f . The total supply of futures contracts is 0.

There are two groups of market participants: financial speculators and liquidity

traders. Liquidity traders represent random transient demands in the futures market

and they as a group demand u units of the commodity futures, where u ∼ N (0, τ−1
u )

with τu ∈ (0,∞). As usual, liquidity traders, also known as “noise traders,”provide

the randomness (noise) necessary to make the rational expectations equilibrium par-

tially revealing. I do not endogenize the behavior of liquidity traders; rather, I view

them as individuals who are trading to invest new cash flows or to liquidate assets to

meet unexpected consumption needs.

There is a continuum [0, 1] of financial speculators who derive expected utility only

from their date-2 wealth. They have constant absolute risk aversion (CARA) utility

functions with a common coeffi cient of risk aversion γ > 0. Speculators are endowed

with cash only, and for simplicity I suppose that their endowment is 0. These traders

can be interpreted as hedge funds or commodity index traders.6 Financial speculators

privately observe demand shock δ and thus their trading injects this information into

the futures price f .

Remark 1. (Comments on Assumptions) First, for the sake of tractability, I have

assumed that speculators’private information δ is independent of firms’private infor-

mation θA and θB. This assumption is not crucial for driving the qualitative results.

What matters is that speculators as a group own some information which is new to

firms, so that firms learn some information from the asset price (which is the key

feature in the literature on feedback effects). Second, I have assumed that speculators

6According to Cheng and Xiong (2014, p. 424), “(o)ver the past decade, there has been a large
inflow of investment capital from a class of investors, so-called commodity index traders (CITs), also
known as index speculators.”
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observe identical information. A more realistic view is that they own disperse infor-

mation (potentially very coarse) which is aggregated into the price, leading to a very

valuable signal to firms (e.g., Hayek (1945)). I do not take this alternative view to

keep the model tractable;7 the current setup is suffi cient for modeling the feature that

firms learn from asset prices. Third, firms do not participate in the futures market,

which allows me to isolate the informational role of asset prices in driving the results.

3. Equilibrium Characterization

Definition 1. An equilibrium consists of date-0 disclosure policies of firms
(
τ ∗η, τ

∗
ξ

)
,

date-1 production policies of firms qA (θA, x, y, f) and qB (θB, x, y, f), a date-1 trading

strategy of speculators D (δ, x, y, f), a date-1 futures price function f (δ, x, y, u), and

a date-2 spot price function p (θA, θB, δ, x, y, f, ε), such that:

(a) Disclosure policies
(
τ ∗η, τ

∗
ξ

)
form a Nash equilibrium, i.e.,

τ ∗η = arg max
τη

E [ΠA (qA (θA, x, y, f) , qB (θB, x, y, f) , θA, θB, δ, ε)] ,

τ ∗ξ = arg max
τξ

E [ΠB (qA (θA, x, y, f) , qB (θB, x, y, f) , θA, θB, δ, ε)] ;

(b) Trading strategy D (δ, x, y, f) and futures price function f (δ, x, y, u) form a noisy

rational expectations equilibrium (noisy-REE) in the financial market, i.e.,

D (δ, x, y, f) = arg max
D

E
[
−e−γD[p(θA,θB ,δ,x,y,f,ε)−f(δ,x,y,u)]

∣∣ δ, x, y, f] ,
D (δ, x, y, f) + u = 0;

(c) Production policies qA (θA, x, y, f) and qB (θB, x, y, f) form a Bayesian-Nash equi-

librium in the product market, i.e.,

qA (θA, x, y, f) = arg max
qA

E [ΠA (qA, qB (θB, x, y, f) , θA, θB, δ, ε)| θA, x, y, f ] ,

qB (θB, x, y, f) = arg max
qB

E [ΠB (qA (θA, x, y, f) , qB, θA, θB, δ, ε)| θB, x, y, f ] ; and

7Specifically, the current setup allows me to first analytically compute the product market equilib-
rium, which is then inserted into the speculators’demand function and the market-clearing condition
to compute the financial market equilibrium. By contrast, in a setting with diverse signals, I have
to simultaneously solve the product market equilibrium and the financial market equilibrium.
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(d) The spot price p (θA, θB, δ, x, y, f, ε) clears the product market, i.e.,

qA (θA, x, y, f) + qB (θB, x, y, f) = (m+ θA + θB + δ + ε)− p (θA, θB, δ, x, y, f, ε) .

A linear equilibrium is an equilibrium in which policy functions and price functions

are linear.

Following the literature, I consider symmetric equilibrium in which both firms

choose the same disclosure policy (i.e., τ ∗η = τ ∗ξ).
8 There are three types of symmetric

equilibrium as defined below.

Definition 2. If τ ∗η = τ ∗ξ = 0, then the equilibrium is referred to as the “nondisclosure

equilibrium.”If τ ∗η = τ ∗ξ =∞, then the equilibrium is referred to as the “full disclosure

equilibrium.” If τ ∗η = τ ∗ξ ∈ (0,∞), then the equilibrium is referred to as a “partial

disclosure equilibrium.”Either the full disclosure equilibrium or a partial disclosure

equilibrium is referred to as a disclosure equilibrium.

Before formally characterizing the equilibrium, I first analyze a benchmark setting

in which firms do not learn from a financial market.

3.1. A Benchmark Setting without Feedback Effects

If I shut down the feature that firms learn information from the asset price f , the

model degenerates to a standard information-sharing setting with demand shocks and

Cournot competition. As well-known in the literature (e.g., Gal-Or, 1985; Darrough,

1993), concealing information is a dominant strategy, so that both firms choose not to

disclose information in equilibrium. This is because disclosure reveals strategic infor-

mation to competitors, thereby reducing the disclosing firm’s competitive advantage.

I summarize the equilibrium of this benchmark setting in the following proposition,

where I label variables with superscript “∅”to indicate that in this setting, firms do

not extract information from an asset price. The proof is standard and hence omitted.

8As Gal-Or (1985, p. 330) argued, “(s)ymmetric equilibrium is a reasonable solution concept for
this model since all firms face the same technology and observe signals of the same precision.”
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Proposition 1. (No Learning from Asset Prices) In a setting where firms do not

learn information from a financial market, there exists a unique linear Bayesian-Nash

equilibrium in the product market for given disclosure policies (τ η, τ ξ), in which

q∅A =
m

3
+

1

2
θA −

τ η
6 (τ θ + τ η)

x+
τ ξ

3 (τ θ + τ ξ)
y,

q∅B =
m

3
+

1

2
θB +

τ η
3 (τ θ + τ η)

x− τ ξ
6 (τ θ + τ ξ)

y,

and on date 0, no firm chooses to disclose information, i.e., τ∅η = τ∅ξ = 0.

In the following two subsections, I will derive the equilibrium in a setting where

firms learn information from the financial market. There will be two main results that

differ from Proposition 1. First, firms may choose to disclose information on date 0,

i.e., τ ∗η = τ ∗ξ > 0 for some parameters. Second, there may exist multiple equilibria due

to the coordination motives across firms, that is, it is possible that both τ ∗η = τ ∗ξ = 0

and τ ∗η = τ ∗ξ > 0 can be supported as an equilibrium.

3.2. Product Market Equilibrium and Financial Market Equi-

librium

Following the literature (e.g., Gal-Or, 1985; Darrough, 1993), I consider linear Bayesian-

Nash equilibria in the product market. That is, the production policies of firms A

and B are linear in their information variables as follows:

q∗A = a0 + aθθA + axx+ ayy + aff, (5)

q∗B = b0 + bθθB + bxx+ byy + bff, (6)

where the a-coeffi cients and the b-coeffi cients are endogenous constants.

The optimal productions q∗A and q
∗
B are determined respectively by the follow-

ing first-order conditions (FOCs) of the profit-maximization problems in Part (c) of

Definition 1 (the second-order conditions (SOCs) are always satisfied):

q∗A =
1

2
E (m+ θA + θB + δ + ε− q∗B|θA, x, y, f) , (7)

q∗B =
1

2
E (m+ θA + θB + δ + ε− q∗A|θB, x, y, f) . (8)
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A Bayesian-Nash equilibrium requires that the above implied policy functions (7) and

(8) agree with the conjectured policy functions (5) and (6). In doing so, one needs to

express out the conditional moments in (7) and (8), namely to figure out how each

firm uses both private and public information (in particular, the asset price f) to

forecast later demand shocks and its opponent’s production.

Take firm A as an example. Inserting the conjectured production policy (6) of

firm B into the FOC (7) of firm A’s profit-maximization problem yields

q∗A =
1

2

 m+ θA − (b0 + bxx+ byy + bff)

+E (δ|θA, x, y, f) + (1− bθ)E (θB|θA, x, y, f)

 . (9)

So, firm A needs to forecast two variables, θB and δ. The idea is that the public signal

y disclosed by firm B is useful for predicting θB, while the asset price f , together with

public disclosure x and y, is useful for predicting δ, because the trading of speculators

injects information δ into the futures price f . I now turn to the futures market to

figure out how firms extract information from the asset price f .

Solving the speculators’utility-maximization problem in Part (b) of Definition 1

gives rise to their demand function under CARA preference,

D (δ, x, y, f) =
E (p|δ, x, y, f)− f
γV ar (p|δ, x, y, f)

, (10)

where E ( ·| δ, x, y, f) and V ar ( ·| δ, x, y, f) are the conditional expectation and vari-

ance, respectively. Inserting the conjectured policy functions (5) and (6) into the

market-clearing condition of product market in Part (d) of Definition 1 yields

p = (1− aθ) θA + (1− bθ) θB + ε

+ (m− a0 − b0) + δ − (ax + bx)x− (ay + by) y − (af + bf ) f. (11)

Since speculators observe {δ, x, y, f}, they only need to forecast (1− aθ) θA+(1− bθ) θB
in the above expression of p. In doing so, speculators use public information x to pre-

dict θA and public information y to predict θB. Applying Bayes’ rule to compute

E (p|δ, x, y, f) and V ar (p|δ, x, y, f), which are in turn inserted into demand function

(10) and the market-clearing condition of the futures market, D (δ, x, y, f) + u = 0, I
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derive the futures price function as follows:

f =
m− a0 − b0

af + bf + 1
+

δ

af + bf + 1

+

(1−aθ)τη
τθ+τη

− (ax + bx)

af + bf + 1
x+

(1−bθ)τξ
τθ+τξ

− (ay + by)

af + bf + 1
y

+
γ
[

(1−aθ)2

τθ+τη
+ (1−bθ)2

τθ+τξ
+ 1

τε

]
af + bf + 1

u. (12)

Thus, to firm A, the futures price f is equivalent to the following signal in pre-

dicting demand shock δ:

s ≡ (af + bf + 1) f − (m− a0 − b0)

−
[

(1− aθ) τ η
τ θ + τ η

− (ax + bx)

]
x−

[
(1− bθ) τ ξ
τ θ + τ ξ

− (ay + by)

]
y

= δ + γ

[
(1− aθ)2

τ θ + τ η
+

(1− bθ)2

τ θ + τ ξ
+

1

τ ε

]
u, (13)

which has an endogenous precision level of

τ s =
τu

γ2
[

(1−aθ)2

τθ+τη
+ (1−bθ)2

τθ+τξ
+ 1

τε

]2 . (14)

The signal s formalizes the fact that firms learn information about δ from the asset

price f , and its precision τ s captures the informational content in the asset price. I

follow the literature and refer to variable τ s as “price informativeness.”

Firm A’s information set {θA, x, y, f} is equivalent to {θA, x, y, s}, among which

y and s are respectively useful for predicting demand shocks θB and δ. Applying

Bayes’rule to compute E (δ|θA, x, y, f) = E (δ|s) and E (θB|θA, x, y, f) = E (θB|y)

and combining with the expression of s in (13), I can express q∗A in (9) as a function of

(θA, x, y, f). Comparing this expression with the conjectured policy in (5), I can form

five conditions in terms of the unknown a-coeffi cients and b-coeffi cients. Conducting

a similar analysis for firm B leads to another five conditions in terms of a’s and b’s.

Solving this system of ten equations yields the values of a’s and b’s. Finally, inserting

the values of a’s and b’s into equations (11) and (12) gives rise to the spot price

function and the futures price function, respectively.
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Proposition 2. (Product and Futures Markets) For any disclosure polices (τ η, τ ξ),

there exists a unique linear Bayesian-Nash equilibrium in the product market, in which

q∗A = a0 + aθθA + axx+ ayy + aff,

q∗B = b0 + bθθB + bxx+ byy + bff,

where

a0 = b0 =
τ δ

τ s + 3τ δ
m, aθ = bθ =

1

2
,

ax = − τ s + τ δ
2 (τ s + 3τ δ)

τ η
τ θ + τ η

, bx =
τ δ

τ s + 3τ δ

τ η
τ θ + τ η

,

ay =
τ δ

τ s + 3τ δ

τ ξ
τ θ + τ ξ

, by = − τ s + τ δ
2 (τ s + 3τ δ)

τ ξ
τ θ + τ ξ

,

af = bf =
τ s

τ s + 3τ δ
,

and

τ s =
τu

γ2

[
1

4(τθ+τη)
+ 1

4(τθ+τξ)
+ 1

τε

]2 .

The date-2 spot price function is

p =
τ s + τ δ
τ s + 3τ δ

m+
1

2
θA +

1

2
θB + δ + ε

− τ δ − τ s
2 (τ s + 3τ δ)

τ η
τ θ + τ η

x− τ δ − τ s
2 (τ s + 3τ δ)

τ ξ
(τ θ + τ ξ)

y − 2τ s
τ s + 3τ δ

f.

The date-1 futures price function is

f =
1

3
m+

τ s + 3τ δ
3 (τ s + τ δ)

δ +
τ η

3 (τ θ + τ η)
x+

τ ξ
3 (τ θ + τ ξ)

y +
τ s + 3τ δ

3 (τ s + τ δ)

√
τu
τ s
u.

By the expression of τ s in Proposition 2, disclosing information improves firms’

learning quality from the asset price. Intuitively, demand shocks θA and θB in the spot

price p in (11) are the uncertainty exposed to speculators when they trade futures

contracts. Releasing information about these two shocks reduces the uncertainty

faced by speculators. Being risk averse, speculators then trade more aggressively on

their own private information δ, thereby injecting more information on δ into the

futures price f . This effect shares a similar flavor as the “residual risk effect”in Bond

and Goldstein (2015) and the “uncertainty reduction effect” in Goldstein and Yang

(2015).
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Corollary 1. (Price Informativeness) Disclosure of firms improves the informational

content of the asset price. That is, ∂τs
∂τη

> 0 and ∂τs
∂τξ

> 0.

3.3. Equilibrium Disclosure Policy

3.3.1. Profit Function

At the beginning of date 0, firms choose disclosure policies to maximize unconditional

expected profits. Again, take firm A as an example. Using the FOC of firm A’s profit-

maximization problem in Part (c) of Definition 1 and the equilibrium production

policy in Proposition 2, I can compute firm A’s expected profit as follows:

EΠA (τ η, τ ξ) =
m2

9︸︷︷︸
market size

+
9τ θ + 4τ η

36τ θ (τ θ + τ η)︸ ︷︷ ︸
proprietary cost

+
τ ξ

9τ θ (τ θ + τ ξ)︸ ︷︷ ︸
disclosure by firm B

+
τ s

9τ δ (τ s + τ δ)︸ ︷︷ ︸ .
learning from prices

(15)

Here, I explicitly express EΠA as a function of disclosure precision (τ η, τ ξ) to em-

phasize the dependence of expected profit on disclosure policies. Firm A chooses its

optimal disclosure policy τ ∗η to maximize EΠA

(
τ η, τ

∗
ξ

)
, taking as given the optimal

disclosure τ ∗ξ of firm B.

There are four terms that go into firm A’s expected profit in (15). The first

term m2

9
is simply the size of the product market. Disclosure has no effect on this

term. The second term 9τθ+4τη
36τθ(τθ+τη)

captures the “proprietary cost”(Darrough, 1993)

or “competitive disadvantage cost”(Foster, 1986), whereby disclosing private infor-

mation reduces the disclosing firm’s competitive advantage. Disclosure harms firm

A’s profits via this second term; that is, ∂
∂τη

9τθ+4τη
36τθ(τθ+τη)

< 0. The third term τξ

9τθ(τθ+τξ)

captures the benefit from observing the public signal disclosed by the competing firm

B, which is determined by firm B’s disclosure precision τ ξ and so independent of

firm A’s disclosure precision τ η. The last term τs
9τδ(τs+τδ)

represents the benefit from

learning from the asset price f . Disclosure benefits firm A via this last term. That

is, ∂
∂τη

τs
9τδ(τs+τδ)

= 1
9(τs+τδ)

2
∂τs
∂τη

> 0, since ∂τs
∂τη

> 0 by Corollary 1.

In sum, the trade-off faced by firm A in the disclosure choice can be captured by
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the following FOC:
∂EΠA (τ η, τ ξ)

∂τ η
= − 5

36 (τ θ + τ η)
2︸ ︷︷ ︸

<0, proprietary cost

+
1

9 (τ s + τ δ)
2

∂τ s
∂τ η︸ ︷︷ ︸

>0, learning from prices

. (16)

That is, disclosing private information harms firm A via the proprietary cost but

benefits firm A via improving price informativeness.

3.3.2. Disclosure Policy Characterization

The equilibrium disclosure policies
(
τ ∗η, τ

∗
ξ

)
form a Nash equilibrium. That is,

τ ∗η = arg max
τη

EΠA

(
τ η, τ

∗
ξ

)
and τ ∗ξ = arg max

τξ
EΠB

(
τ ∗η, τ ξ

)
,

where firm A’s profit function EΠA (τ η, τ ξ) is given by equation (15) and firm B’s

profit function EΠB (τ η, τ ξ) is defined similarly. There are three types of disclosure

policies in a symmetric equilibrium: (1) a “nondisclosure equilibrium,”where both

firms do not disclose information (i.e., τ ∗η = τ ∗ξ = 0); (2) a “full disclosure equilib-

rium,”where both firms disclose all of their information perfectly (i.e., τ ∗η = τ ∗ξ =∞);

and (2) a “partial disclosure equilibrium,”where both firms disclose information with

noise (i.e., τ ∗η = τ ∗ξ ∈ (0,∞)). The following three theorems respectively characterize

these three types of equilibrium.

Theorem 1. (Nondisclosure Equilibrium) A nondisclosure equilibrium (τ ∗η = τ ∗ξ = 0)

exists if and only if one of the following two sets of conditions holds:

(a)



16γ2τuτ
3
θτ

3
ε (3τ ε + 8τ θ)

≤ 5

 γ2τ δτ
2
ε + 4τuτ

2
θτ

2
ε

+4γ2τ θτ δτ ε + 4γ2τ 2
θτ δ

 γ2τ δτ
2
ε + 16τuτ

2
θτ

2
ε

+8γ2τ θτ δτ ε + 16γ2τ 2
θτ δ

 ,

4γ2τuτ
3
θτ

3
ε (7τ ε + 16τ θ)

≤ 5

 γ2τ δτ
2
ε + 4τuτ

2
θτ

2
ε

+4γ2τ θτ δτ ε + 4γ2τ 2
θτ δ

 γ2τ δτ
2
ε + 8τuτ

2
θτ

2
ε

+6γ2τ θτ δτ ε + 8γ2τ 2
θτ δ

 ,

16γ2τuτ
3
θτ

3
ε (τ ε + 2τ θ) ≤ 5 (γ2τ δτ

2
ε + 4τuτ

2
θτ

2
ε + 4γ2τ θτ δτ ε + 4γ2τ 2

θτ δ)
2

;
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or

(b)



16γ2τuτ
3
θτ

3
ε (3τ ε + 8τ θ)

< 5

 γ2τ δτ
2
ε + 4τuτ

2
θτ

2
ε

+4γ2τ θτ δτ ε + 4γ2τ 2
θτ δ

 γ2τ δτ
2
ε + 16τuτ

2
θτ

2
ε

+8γ2τ θτ δτ ε + 16γ2τ 2
θτ δ

 ,

4γ2τuτ
3
θτ

3
ε (7τ ε + 16τ θ)

> 5

 γ2τ δτ
2
ε + 4τuτ

2
θτ

2
ε

+4γ2τ θτ δτ ε + 4γ2τ 2
θτ δ

 γ2τ δτ
2
ε + 8τuτ

2
θτ

2
ε

+6γ2τ θτ δτ ε + 8γ2τ 2
θτ δ

 ,

2γ2τ θτ ε

 5γ2τ 2
δτ

3
ε + 2τuτ

3
θτ

3
ε + 20τuτ

2
θτ δτ

3
ε

+30γ2τ θτ
2
δτ

2
ε + 40τuτ

3
θτ δτ

2
ε + 60γ2τ 2

θτ
2
δτ ε + 40γ2τ 2

δτ
3
θ


≤ 25τ δ (γ2τ δτ

2
ε + 4τuτ

2
θτ

2
ε + 4γ2τ θτ δτ ε + 4γ2τ 2

θτ δ)
2
.

Theorem 2. (Full Disclosure Equilibrium) A full disclosure equilibrium (τ ∗η = τ ∗ξ =

∞) exists if and only if one of the following two sets of conditions holds:

(a)



5 (τuτ
2
ε + γ2τ δ)

2 ≤ 2γ2τuτ
3
ε,

10 (τuτ
2
ε + γ2τ δ) (4τuτ θτ

2
ε + γ2τ δτ ε + 4γ2τ θτ δ) ≤ γ2τuτ

3
ε (τ ε + 16τ θ) ,

5 (τuτ
2
ε + γ2τ δ)

 γ2τ δτ
2
ε + 16τuτ

2
θτ

2
ε

+8γ2τ θτ δτ ε + 16γ2τ 2
θτ δ

 ≤ 4γ2τuτ θτ
3
ε (τ ε + 8τ θ) ;

or

(b)


5 (τuτ

2
ε + γ2τ δ)

2
< 2γ2τuτ

3
ε,

10 (τuτ
2
ε + γ2τ δ) (4τuτ θτ

2
ε + γ2τ δτ ε + 4γ2τ θτ δ) > γ2τuτ

3
ε (τ ε + 16τ θ) ,

γ2τ ε (τuτ
3
ε + 20τuτ δτ

2
ε + 20γ2τ 2

δ) ≤ 100τ δ (τuτ
2
ε + γ2τ δ)

2
.

Theorem 3. (Partial Disclosure Equilibrium) A partial disclosure equilibrium
(
τ ∗η, τ

∗
ξ

)
∈

R2
++ (with τ

∗
ξ = τ ∗η) is characterized by the following three conditions:

(a) (FOC) τ ∗η > 0 is a solution to the fourth order polynomial,

F
(
τ ∗η
)
≡ F4τ

∗4
η + F3τ

∗3
η + F2τ

∗2
η + F1τ

∗
η + F0 = 0;

(b) (SOC) τ ∗η satisfies the second-order condition,

S
(
τ ∗η
)
≡ S6τ

∗6
η + S5τ

∗5
η + S4τ

∗4
η + S3τ

∗3
η + S2τ

∗2
η + S1τ

∗
η + S0 ≤ 0;

(c) (Global maximum) τ ∗η is a global maximum of EΠA

(
τ η, τ

∗
ξ

)
, that is,

EΠA

(
τ ∗η, τ

∗
ξ

)
≥ EΠA

(
τ η, τ

∗
ξ

)
, for τ η ∈ {0,∞, τ̂ η} ,
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where τ̂ η is the positive roots of the fourth order polynomial:

G
(
τ ∗η
)
≡ G4τ̂

4
η +G3τ̂

3
η +G2τ̂

2
η +G1τ̂ η +G0 = 0.

The F -coeffi cients, S-coeffi cients, and G-coeffi cients are given in Online Appendix.

Theorems 1 and 2 respectively characterize the conditions that support the nondis-

closure equilibrium and the full disclosure equilibrium. Theorem 3 characterizes a

partial disclosure equilibrium in three conditions in the form of polynomials of the

disclosure policy τ η. The first two conditions respectively correspond to the first and

second order conditions, while the last condition ensures that the optimal disclosure

maximizes ex ante expected profits globally, rather than only locally.

Theorems 1—3 suggest the following five-step algorithm to compute all the linear

symmetric equilibria:

Step 1: Employ Theorem 1 to check whether the nondisclosure equilibrium is supported.

Step 2: Employ Theorem 2 to check whether the full disclosure equilibrium is supported.

Step 3: Compute all the positive roots τ ∗η of the fourth order polynomial in Part (a) of

Theorem 3 to serve as candidates of partial disclosure equilibria.

Step 4: For each root τ ∗η computed in Step 3, check whether the SOC in Part (b) of

Theorem 3 is satisfied. Retain those roots that satisfy the SOC.

Step 5: For each value retained in Step 4, check whether the condition in Part (c)

of Theorem 3 is satisfied. If yes, then it is a partial disclosure equilibrium;

otherwise, it is not.

Figure 2 plots the regimes of equilibrium types in the parameter space of (τu, τ δ)

when τ θ = 1, γ = 10, and τ ε ∈ {1, 5, 10, 50}. I use “x”to indicate the nondisclosure

equilibrium (i.e., τ ∗η = τ ∗ξ = 0), “o” to indicate the full disclosure equilibrium (i.e.,

τ ∗η = τ ∗ξ = ∞), and “+”to indicate a partial disclosure equilibrium (i.e., τ ∗η = τ ∗ξ ∈

(0,∞)).
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Figure 2: Parameter Space for Equilibrium Types

This figure plots the regions of equilibrium types in the parameter space of (τu, τ δ). Parameter τu
denotes the precision of noise trading in the financial market, and parameter τ δ is the precision of

financial specualtors’information. Parameter τε is the precision of residual uncertainty in commodity

demand. The other parameter values are: τθ = 1 and γ = 10. I use “x”to indicate the nondisclosure

equilibrium (i.e., τ∗η = τ∗ξ = 0), “o” to indicate the full disclosure equilbrium (i.e., τ∗η = τ∗ξ = ∞),
and “+”to indicate a partial disclosure equilibrium (i.e., τ∗η = τ∗ξ ∈ (0,∞)).
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Two observations emerge from Figure 2, both of which are unique to a setting with

learning from asset prices. First, unlike a standard setting with demand uncertainty

and Cournot competition in which nondisclosure forms a dominant strategy for firms

(e.g., Gal-Or, 1985, 1986; Darrough, 1993; Vives, 1984, 2008), introducing learning

from asset prices causes firms to disclose information in some cases and not to disclose

in other cases. Firms are more likely to withhold information only when τ δ or τu are

suffi ciently high. When τ δ is high (i.e., V ar (δ) is low), speculators know little new

information so that the value of learning from asset prices is low and hence firms

choose not to disclose because of the proprietary-cost concern as in the standard

setting. When τu is high (i.e., V ar (u) is low), there is little noise trading in the

financial market and thus, the market is already very effi cient in communicating

speculators’ information to firms. Again, in this case, the value of learning from

prices is low and the only equilibrium is the nondisclosure equilibrium.

Proposition 3. (Nondisclosure)When τu or τ δ is suffi ciently high, the nondisclosure

equilibrium prevails as the unique linear symmetric equilibrium.

The second observation emerging from Figure 2 is that multiple equilibria can

be supported. That is, when τu and τ δ are relatively small, both the nondisclosure

equilibrium and a full/partial disclosure equilibrium can be supported. This is also

different from the standard setting where the nondisclosure equilibrium prevails as the

unique equilibrium. The multiplicity of equilibrium is generated by the coordination

motivates among firms, which are explored in detail in the next section.

4. Disclosure in a Noisy Financial Market

In this section, I illustrate two points. First, I examine the multiplicity result to un-

derstand its driving forces. Second, I show that firms can use disclosure as an effective

device to shape the informativeness of financial markets and improve real decisions.

I achieve my illustration in two steps. In Subsections 4.1 and 4.2, I remove residual
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uncertainty ε in the commodity demand and examine the limit of increasing noise

trading in the financial market (τu → 0). These simplifications enhance tractability

and make the analysis transparent. In Subsection 4.3, I conduct numerical analyses

to examine the robustness/interpretation of results.

4.1. Complementarity and Multiplicity

By removing residual uncertainty in commodity demand, I can show that the full

disclosure equilibrium is not supported. That is, τ ∗η = τ ∗ξ < ∞ when τ ε = ∞ (see

Theorem 2). As a result, the possible equilibria are either nondisclosure or partial

disclosure. The following theorem characterizes the equilibrium when there is a lot

of noise trading in the financial market (i.e., τu is low and so V ar (u) is high).

Theorem 4. (Multiplicity) In an economy without residual uncertainty, suppose there

is a lot of noise trading in the financial market (i.e., τ ε = ∞ and τu is suffi ciently

low). Then:

(a) If 4τ θ ≥ 5τ δ, there are two symmetric linear equilibria:

τ ∗η = τ ∗ξ = 0 and τ ∗η = τ ∗ξ =
γ2

5τu
+ o (1) ,

where o (1) is a term that converges to zero as τu → 0.

(b) If 4τ θ < 5τ δ, there exists a unique symmetric linear equilibrium, which is the

nondisclosure equilibrium.

Theorem 4 suggests that multiplicity arises in the limiting economy if and only if

4τ θ ≥ 5τ δ ⇐⇒
V ar (δ)

V ar (θA + θB + δ)
≥ 38.46%.

That is, multiple equilibria are supported if and only if the financial market knows

more than 38.46% of the total demand shock. This condition sounds likely to hold in

reality, given that the market aggregates information from a large number of market

participants (although many of them are noise traders).

On the qualitative side, Theorem 4 says that multiplicity is more likely to arise

when speculators know more information that is useful to firms (i.e., V ar (δ) is rel-
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atively large). This multiplicity is driven by a strategic complementarity in the dis-

closure decisions of firms. Specifically, recall that in the profit expression (15), the

benefit of disclosing information comes from the fact that firms learn from the as-

set price. When there is a lot of noise trading in the market, the scope to improve

price informativeness via disclosure is large; it is particularly helpful for both firms

to disclose information to reduce the uncertainty faced by speculators, which in turn

encourages speculators to trade more aggressively on their private information δ.

When this complementarity is suffi ciently strong, both disclosure and nondisclosure

equilibria are supported.

Proposition 4. (Complementarity) In an economy without residual uncertainty, when

there is a lot of noise trading in the financial market, there is strategic complemen-

tarity in disclosure decisions. That is, ∂2EΠA
∂τη∂τξ

> 0 and ∂2EΠB
∂τη∂τξ

> 0 when τ ε = ∞ and

τu is suffi ciently low.

Remark 2. (Complementarity and Multiplicity) I make two remarks about the result

on complementarity and multiplicity. First, Corollary 1 can be viewed as complemen-

tarity between firm disclosure and speculative trading: more disclosure encourages

more informed trading. However, this firm-speculator complementarity alone does

not lead to the multiplicity result in Theorem 4. In a variation setting in which θB is

always set at its mean 0 so that the complementarity between firms is removed, there

exists a unique disclosure equilibrium of firm A. Second, I have assumed that firms

and speculators are endowed with information. If instead, speculators can determine

which information– θA, θB, or δ– to acquire, the complementarity and multiplicity

results can be strengthened. For instance, the following two types of equilibrium can

be simultaneously supported. In one equilibrium, firms disclose θ-information and

speculators acquire δ. This is because firms’disclosure weakens trading profits based

on θ and at the same time speculators’acquisition about δ encourages firms to dis-

close. In another equilibrium, speculators acquire information θA, firm A does not

disclose, and firm B discloses. Intuitively, when speculators acquire information θA,
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firm A has no benefit of learning from the asset price, and so it does not disclose;

firm B may disclose to encourage speculators to trade more aggressively, making the

price more informative about θA; speculators want to acquire θA not θB since firm B’s

disclosure lowers the trading profits on θB. The results will depend on the variance

of information and the structure of information-acquisition cost.

4.2. Shaping Price Informativeness by Coordinated Disclo-

sure

When the size of noise trading is infinitely large, both firms choose not to disclose

in equilibrium. That is, τ ∗η = τ ∗ξ = 0 when τu = 0. This is because firms do not

learn from asset prices when the financial market is populated with infinitely many

liquidity traders (and thus the economy degenerates to the standard setting without

learning from asset prices).

Now suppose that τu is small but positive. According to Part (a) of Theorem

4, a partial disclosure equilibrium is supported provided 4τ θ ≥ 5τ δ. In addition, as

τu → 0, the optimal disclosure precision τ ∗η diverges to infinity on the partial dis-

closure equilibrium (i.e., τ ∗η = τ ∗ξ = γ2

5τu
+ o (1) → ∞ as τu → 0). In addition, this

disclosure equilibrium is a preferred equilibrium from the perspective of firms: both

firms are better off on the partial disclosure equilibrium than on the nondisclosure

equilibrium. This is because on the disclosure equilibrium firms make more informed

decisions after equipped with more public information (the additional public informa-

tion disclosed by both firms and the more informative asset price). In this sense, the

disclosure equilibrium is more likely to be selected by firms. Under this selection crite-

rion, adding learning from prices dramatically changes the firms’disclosure behavior:

without learning from prices, firms do not disclose information at all; in contrast,

with learning from prices, firms may disclose their information almost perfectly.

On the disclosure equilibrium, firms choose to disclose more information when

there is more noise trading (i.e., τ ∗η and τ
∗
ξ increase as τu decreases). Hence, firms
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effectively coordinate to disclose information to offset the negative effect of added

noise trading on price informativeness τ ∗s. Formally, by the expression of τ
∗
s in equa-

tion (14), decreasing τu has two effects on τ ∗s. The direct effect is negative: other

things being equal, more noise trading clouds the speculators’information in the order

flow, which reduces price informativeness. The indirect effect is positive: more noise

trading encourages more disclosure from firms, which in turn reduces the uncertainty

faced by speculators and so they trade more aggressively on their private information

δ, making the price more informative. Overall, the positive indirect effect dominates,

so that a decrease in τu leads to an increase in price informativeness τ ∗s.

The improved price informativeness has real consequences on firms’production

activities through firms’ learning from the futures price. First, firms’ production

policies rely more on asset prices, i.e., both af and bf increase with τ ∗s. Second,

the products of both firms comove more strongly; that is, a decrease in τu raises

Cov (q∗A, q
∗
B). This is because the products of both firms are driven more by public

information than by private information: as τu decreases, both firms release more

public information (τ ∗η and τ
∗
ξ increase), and at the same time, the futures price f

becomes more informative. Third, the volatility of firms’products also increases,

i.e., V ar (q∗A) and V ar (q∗B) increase as τu decreases. Intuitively, as firms learn more

information from disclosure x and y and from the price f , they adjust their production

better to accommodate the later commodity demand. This increased flexibility of

production raises product volatility and also firms’profits (formally, EΠ∗i = V ar (q∗i )+

m2/9). Finally, a decrease in τu increases the volatility V ar (Q∗) of total product Q∗,

since V ar (Q∗) = V ar (q∗A) + V ar (q∗B) + 2Cov (q∗A, q
∗
B), where all the three terms,

V ar (q∗A), V ar (q∗B), and Cov (q∗A, q
∗
B), increase as τu decreases.

Proposition 5. (Coordinated Disclosure, Price Informativeness, and Real Effects)

Suppose that there is no residual uncertainty (i.e., τ ε =∞). Then:

(a) When τu = 0, the unique symmetric linear equilibrium is the nondisclosure equi-

librium (i.e., τ ∗η = τ ∗ξ = 0). When τu → 0 and when 4τ θ ≥ 5τ δ, there are two
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symmetric linear equilibria: τ ∗η = τ ∗ξ = 0 and τ ∗η = τ ∗ξ = γ2

5τu
+ o (1); and firms are

better off on the partial disclosure equilibrium than on the nondisclosure equilibrium.

(b) Suppose 4τ θ ≥ 5τ δ. On the partial disclosure equilibrium, as τu decreases toward

0, all of the following variables increase: disclosure precision levels τ ∗η and τ
∗
ξ, the

informativeness of futures price τ ∗s, investment-price sensitivities af and bf , product

variances and covariance V ar (q∗A), V ar (q∗B), V ar (Q∗), and Cov (q∗A, q
∗
B).

4.3. Numerical Analysis with Residual Uncertainty

I now add back residual uncertainty ε to the commodity demand to examine the ro-

bustness/interpretation of Proposition 5. The complexity of the setting with residual

uncertainty precludes an analytical characterization, and so I instead rely on numer-

ical analysis. In Figure 3, I plot disclosure policy, price informativeness, and product

features for the parameter configuration τ θ = 1, τ δ = 0.2, τ ε = 10, and γ = 10. The

general patterns are robust to parameter choices.

To facilitate the drawing of the full disclosure equilibrium, the first panel depicts

a monotonic transformation
τ∗η
τ∗η+1

of disclosure precision τ ∗η against noise trading pre-

cision τu. The variable
τ∗η
τ∗η+1

takes values on [0, 1]:
τ∗η
τ∗η+1

= 1 on the full disclosure

equilibrium;
τ∗η
τ∗η+1

= 0 on the nondisclosure equilibrium; and
τ∗η
τ∗η+1

∈ (0, 1) on a par-

tial disclosure equilibrium. At τu = 0, there is a unique equilibrium, which is the

nondisclosure equilibrium τ ∗η = 0. When τu is small, there are two equilibria: one is

the nondisclosure equilibrium τ ∗η = 0, and the other is the full disclosure equilibrium

τ ∗η =∞. This is broadly consistent with Part (a) of Proposition 5.

Unlike Part (b) of Proposition 5, some variables, such as price informativeness

τ ∗s and investment-price sensitivity af , exhibit non-monotone relation with τu. For

instance, as τu decreases from 8 toward 0, τ ∗s first increases and then decreases on the

partial/full disclosure equilibrium. This is driven by the switch between disclosure

equilibria. Specifically, as τu starts to decrease from 8, the disclosure equilibrium

is a partial disclosure equilibrium, and the disclosure precision τ ∗η increases as τu
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Figure 3: Disclosure, Multiplicity, and Real Effects

This figure plots the disclosure policies (τ∗η), price informativeness (τ
∗
s), investment-price sensitivity

(af ), and variances and covariance of firms’product quantities (V ar (Q∗) , V ar (q∗A) , Corr (q
∗
A, q

∗
B))

against the precision τu of noise trading in the financial market. The nondisclosure equilibrium is

plotted in red, the full disclosure is plotted in green, and the partial disclosure equilbrium is plotted

in in blue. The other parameters are: τθ = 1, τ δ = 0.2, τε = 10, and γ = 10.

decreases. On this regime, as what Part (b) of Proposition 5 predicts, τ ∗s increases

as well because of the increase in τ ∗η in response to the decrease in τu. However,

as τu continues to decrease, the disclosure equilibrium switches to the full disclosure

equilibrium τ ∗η =∞, and as a result, τ ∗η no longer increases as τu decreases. Now, on

this regime, the indirect positive effect on τ ∗s vanishes and thus, τ
∗
s has to decrease

with more noise trading. The non-monotone patterns for other variables af , V ar (q∗A),

and V ar (Q∗) can be explained in a similar manner.

Nonetheless, if one focuses only on the partial disclosure equilibrium, Part (b) of

Proposition 5 continues to hold. That is, on the partial disclosure equilibrium, all

of the six variables– τ ∗η, τ
∗
s, af , V ar (q∗A), V ar (Q∗), and Cov (q∗A, q

∗
B)– increase, as
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τu decreases. This makes sense, since only on the partial disclosure equilibrium, can

firms have the flexibility to disclose more information in response to an increase in

noise trading, which in turn makes the indirect effect active.

Remark 3. (IPO Waves) The literature on initial public offerings (IPOs) has iden-

tified a hot-issue market phenomenon characterized by the clustering of IPOs in some

periods and industries (see Derrien (2010) for a survey on the IPO literature). A

popular explanation is a sentiment-based behavioral theory: when the market is too

optimistic about an industry, companies in this industry take advantage of this mis-

pricing by selling overvalued stocks to the market. The first panel of Figure 3 suggests

an alternative theory connecting sentiment with IPO waves to the extent that noise

trading is partially driven by sentiment. Intuitively, firms face the following trade-

off in making the decision to go public: on the one hand, going public offers an

additional signal, the price on the firm share, which is useful for real investment deci-

sions; on the other hand, going public is associated with more disclosure requirement,

which can result in releasing confidential information to competitors.9 This trade-off

is the same as the main model in Section 2 and thus, one can associate IPO with

the partial/full disclosure equilibrium. As the first panel of Figure 3 suggests, when

the financial market becomes more sentiment-driven (i.e., τu becomes smaller), both

firms are more likely to go public (i.e., τ ∗η > 0).

5. Conclusion

I study the classic information-sharing problem in a duopoly setting augmented with

a financial market. Disclosure improves price informativeness via reducing the uncer-

tainty faced by financial speculators. When making disclosure decisions, firms face a

trade-off between incurring the proprietary cost and improving learning quality from

9In Bhattacharya and Ritter (1983) and Maksimovic and Pichler (2001), the costs of going public
also comes from releasing confidential information to competitors at the time of IPO, but the benefit
arises from raising capital at a cheaper rate in the public equity markets.
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asset prices. In equilibrium, firms may optimally choose to disclose information in a

setting with learning from asset prices, which differs from the standard setting where

firms always withhold information. In addition, firms’disclosure decisions can be

a strategic complement. When this complementarity is suffi ciently strong, both a

disclosure equilibrium and a nondisclosure equilibrium are supported. Overall, my

analysis highlights the importance of incorporating the feature of learning from asset

prices in understanding firms’disclosure behavior.
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Appendix: Proofs

Proof of Proposition 2

After expressing q∗A in (9) as functions of (θA, x, y, f) and comparing with the conjec-

tured policy in (5), I obtain the following five conditions in terms of the unknown a

coeffi cients and b coeffi cients:

2a0 = m− τ s
τ δ + τ s

(m− a0 − b0)− b0,

2aθ = 1,

2ax = − τ s
τ δ + τ s

[
(1− aθ) τ η
τ θ + τ η

− (ax + bx)

]
− bx,

2ay = − τ s
τ δ + τ s

[
(1− bθ) τ ξ
τ θ + τ ξ

− (ay + by)

]
+

(1− bθ) τ ξ
τ θ + τ ξ

− by,

2af =
τ s

τ δ + τ s
(af + bf + 1)− bf .

Conducting a similar analysis for firm B leads to the following additional five equa-

tions:

2b0 = m− τ s
τ δ + τ s

(m− a0 − b0)− a0,

2bθ = 1,

2bx = − τ s
τ δ + τ s

[
(1− aθ) τ η
τ θ + τ η

− (ax + bx)

]
+

(1− aθ) τ η
τ θ + τ η

− ax,

2by = − τ s
τ δ + τ s

[
(1− bθ) τ ξ
τ θ + τ ξ

− (ay + by)

]
− ay,

2bf =
τ s

τ δ + τ s
(af + bf + 1)− af .

Solving the above system yields the expressions of a’s and b’s in Proposition 2.

The expressions of τ s, p, and f in Proposition 2 are obtained by plugging a’s and b’s

respectively into equations (14), (11), and (12).

Proof of Corollary 1

By the expression of τ s in Proposition 2, we can directly compute the partial deriva-

tives and show that ∂τs
∂τη

> 0 and ∂τs
∂τξ

> 0.
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Proof of Theorem 1

Nondisclosure is an equilibrium if and only if τ ∗η = 0 is the best response to τ ∗ξ = 0,

i.e., if and only if

EΠA (0, 0) ≥ max
τη

EΠA (τ η, 0) .

By the expression of τ s in Proposition 2 and the expression of expected profitEΠA (τ η, τ ξ)

in (15), direct computations show that

EΠA (0, 0)− EΠA (τ η, 0) ≥ 0⇐⇒ H (τ η) ≡ H2τ
2
η +H1τ η +H0 ≤ 0,

where

H2 = [48γ2τuτ
3
θ − 5 (γ2τ δ + 4τuτ

2
θ) (γ2τ δ + 16τuτ

2
θ)] τ

4
ε

−4γ2τ θ (15γ2τ 2
δ − 32τuτ

3
θ + 120τuτ

2
θτ δ) τ

3
ε − 20γ2τ 2

θτ δ (13γ2τ δ + 32τuτ
2
θ) τ

2
ε

−480γ4τ 3
θτ

2
δτ ε − 320γ4τ 4

θτ
2
δ ,

H1 = 4τ θ


[28γ2τuτ

3
θ − 5 (γ2τ δ + 4τuτ

2
θ) (γ2τ δ + 8τuτ

2
θ)] τ

4
ε

−2γ2τ θ (25γ2τ 2
δ − 32τuτ

3
θ + 140τuτ

2
θτ δ) τ

3
ε

−20γ2τ 2
θτ δ (9γ2τ δ + 16τuτ

2
θ) τ

2
ε − 280γ4τ 3

θτ
2
δτ ε − 160γ4τ 4

θτ
2
δ

 , and
H0 = 4τ 2

θ

 (16γ2τuτ
3
θ − 5 (γ2τ δ + 4τuτ

2
θ)

2
)
τ 4
ε − 8γ2τ θ (5γ2τ 2

δ − 4τuτ
3
θ + 20τuτ

2
θτ δ) τ

3
ε

−40γ2τ 2
θτ δ (3γ2τ δ + 4τuτ

2
θ) τ

2
ε − 160γ4τ 3

θτ
2
δτ ε − 80γ4τ 4

θτ
2
δ

 .
Thus, nondisclosure is an equilibrium if and only if

H (τ η) ≤ 0, ∀τ η ≥ 0. (A1)

Clearly, a necessary condition for (A1) to hold is H0 ≤ 0. Now suppose H0 ≤ 0

and discuss the possible values of H2 and H1 to check when condition (A1) holds.

If H2 > 0, then H (τ η) > 0 for suffi ciently large τ η, so that condition (A1) is

violated. If H2 = 0, then H (τ η) becomes linear, and condition (A1) holds if and only

if H1 ≤ 0.

Suppose H2 < 0. If in addition, H1 ≤ 0, then the range of τ η > 0 lies on the

right branch of H (τ η) and thus condition (A1) holds. If H1 > 0, then condition

(A1) holds if and only if the discriminant of H (τ η) is nonpositive (i.e., if and only if

H2
1 − 4H2H0 ≤ 0).

To summarize, (A1) holds if and only if one of the following two sets of conditions
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holds:

{H2 ≤ 0, H1 ≤ 0, H0 ≤ 0} or
{
H2 < 0, H1 > 0, H2

1 − 4H2H0 ≤ 0
}
,

which are respectively the two sets of conditions in Theorem 1.

Proof of Theorem 2

The proof of Theorem 2 follows the same logic as the proof of Theorem 1. A full

disclosure equilibrium exists if and only if

EΠA (∞,∞) ≥ max
τη

EΠA (τ η,∞) .

By the expression of τ s in Proposition 2 and the expression of expected profitEΠA (τ η, τ ξ)

in (15), we can compute

EΠA (∞,∞)− EΠA (τ η,∞) ≥ 0⇐⇒ K (τ η) ≡ K2τ
2
η +K1τ η +K0 ≤ 0,

where K2 = 16 (5γ4τ 2
δ + 5τ 2

uτ
4
ε − 2γ2τuτ

3
ε + 10γ2τuτ δτ

2
ε) ,

K1 = 40γ4τ 2
δτ ε+160τ θγ

4τ 2
δ+40γ2τuτ δτ

3
ε+320τ θγ

2τuτ δτ
2
ε−4γ2τuτ

4
ε−64τ θγ

2τuτ
3
ε+

160τ θτ
2
uτ

4
ε,

K0 = 80γ4τ 2
θτ

2
δ + 5γ4τ 2

δτ
2
ε + 80τ 2

uτ
2
θτ

4
ε − 32γ2τuτ

2
θτ

3
ε − 4γ2τuτ θτ

4
ε + 5γ2τuτ δτ

4
ε +

40γ4τ θτ
2
δτ ε + 160γ2τuτ

2
θτ δτ

2
ε + 40γ2τuτ θτ δτ

3
ε.

Thus, full disclosure is an equilibrium if and only if

K (τ η) ≤ 0,∀τ η ≥ 0. (A2)

Then, following the same logic as the proof of Theorem 1, (A2) holds if and only if

one of the following two sets of conditions holds:

{K2 ≤ 0, K1 ≤ 0, K0 ≤ 0} or
{
K2 < 0, K1 > 0, K2

1 − 4K2K0 ≤ 0
}
,

which are respectively the two sets of conditions in Theorem 2.

Proof of Theorem 3

A symmetric disclosure equilibrium requires that τ ∗η > 0 is the best response to

τ ∗ξ = τ ∗η > 0. That is,

τ ∗η = arg max
τη

EΠA

(
τ η, τ

∗
η

)
.

I characterize the value of τ ∗η in three steps. First, I use the FOC to find the candidates

for τ ∗η. Second, I use the SOC to ensure that τ
∗
η is a local maximum of EΠA

(
τ η, τ

∗
η

)
.
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Third, I compare EΠA

(
τ ∗η, τ

∗
η

)
with the other extreme values of EΠA

(
τ η, τ

∗
η

)
to

ensure that τ ∗η is a global maximum of EΠA

(
τ η, τ

∗
η

)
.

For the FOC, direct computations show
∂EΠA (τ η, τ ξ)

∂τ η

∣∣∣∣
τξ=τη

= 0⇐⇒ F (τ η) ≡ F4τ
4
η + F3τ

3
η + F2τ

2
η + F1τ η + F0 = 0,

where the expressions of the F -coeffi cients are provided in the Online Appendix. Any

candidate disclosure policy τ ∗η > 0 must satisfy F
(
τ ∗η
)

= 0.

For the SOC, direct computations show
∂2EΠA (τ η, τ ξ)

∂τ 2
η

∣∣∣∣
τξ=τη

≤ 0⇐⇒ S (τ η) ≡ S6τ
6
η+S5τ

5
η+S4τ

4
η+S3τ

3
η+S2τ

2
η+S1τ η+S0 ≤ 0,

where the S-coeffi cients are given in the Online Appendix. Any candidate disclosure

policy τ ∗η > 0 must satisfy S
(
τ ∗η
)
≤ 0.

Finally, fixing τ ξ = τ ∗η, I can find the interior extreme values of EΠA (τ η, τ ξ) by

setting its FOC at zero, that is,
∂EΠA (τ η, τ ξ)

∂τ η
= 0⇐⇒ G (τ η) ≡ G4τ

4
η +G3τ

3
η +G2τ

2
η +G1τ η +G0 = 0,

where the G-coeffi cients are given in the Online Appendix. The extreme values of

EΠA (τ η, τ ξ) include (1) the positive roots of G (τ η) = 0; and (2) the two boundaries

τ η = 0 and τ η =∞.

Proof of Proposition 3

Fix the other parameters and let τu → ∞. Condition (a) in Theorem 1 is satisfied

and thus nondisclosure is an equilibrium.

For suffi ciently large values of τu, we have 5 (τuτ
2
ε + γ2τ δ)

2
> 2γ2τuτ

3
ε. Thus,

both condition (a) and condition (b) in Theorem 2 is violated. In consequence, full

disclosure is not an equilibrium.

Condition (a) in Theorem 3 is violated, because all the F coeffi cients are negative

for suffi ciently large values of τu, which implies F (τ η) < 0 for all τ η > 0. So, there

are no disclosure equilibria.

The proof for large values of τ δ is identical to the proof for large values of τu and

thus is omitted.
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Proof of Theorem 4

To remove residual uncertainty, we let τ ε →∞ for a fixed (γ, τ θ, τ δ, τu). As τ ε →∞,
we have 5 (τuτ

2
ε + γ2τ δ)

2
> 2γ2τuτ

3
ε; by Theorem 2, the full disclosure equilibrium is

not supported. We then consider the process of τu → 0. Condition (a) of Theorem 1

is satisfied for small values of τu and thus the nondisclosure equilibrium is supported.

The key is to characterize the partial disclosure equilibrium. I conduct this char-

acterization in four steps. First, I use the FOC in Part (a) of Theorem 3 to compute

all the candidates for a partial disclosure equilibrium. It turns out that there are

two possible values of disclosure policy τ ∗η, which I label as τ
large
η and τ smallη , respec-

tively. Second, I employ the SOC in Part (b) of Theorem 3 to rule out candidate

τ smallη and retain the other candidate τ largeη . Third, I compare EΠA

(
0, τ largeη

)
with

EΠA

(
τ largeη , τ largeη

)
to show that under condition 4τ θ < 5τ δ, the unique equilibrium

is the nondisclosure equilibrium (i.e., Part (b) of Theorem 4). Lastly, I show that if

4τ θ ≥ 5τ δ, then τ ∗η = τ ∗ξ = τ largeη is supported as a partial disclosure equilibrium (i.e.,

Part (a) of Theorem 4).

Compute disclosure equilibrium candidates

A partial disclosure equilibrium requires F (τ ∗η) = 0 in Part (a) of Theorem 3. I can

rewrite this equation as follows:

−80
(
τ θ + τ ∗η

)4
τ 2
u + 8γ2 (τ θ + τ η)

2 (2τ θ − 5τ δ + 2τ ∗η
)
τu = 5γ4τ 2

δ . (A3)

Now consider the process of τu → 0 and examine the order of τ ∗η. Clearly, τ
∗
η must

diverge to ∞ as τu → 0, because if τ ∗η converges to a finite value, then the left-

hand-side (LHS) of equation (A3) converges to 0, which cannot maintain equation

(A3).

The highest order of the LHS of equation (A3) is −80τ ∗4η τ
2
u + 16γ2τ ∗3η τu. Thus,

by equation (A3),

−80τ ∗4η τ
2
u + 16γ2τ ∗3η τu ∝ 5γ4τ 2

δ , (A4)

where ∝ means that the LHS has the same order as the right-hand-side (RHS).

Equation (A4) determines the order of τ ∗η.
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Given that the RHS of (A4) is positive and that only the term 16γ2τ ∗3η τu in the

LHS of (A4) is positive, there are two possibilities. First, −80τ ∗4η τ
2
u has a lower order

than 16γ2τ ∗3η τu, i.e., −80τ ∗4η τ
2
u = o

(
16γ2τ ∗3η τu

)
, where the notation X2 = o (X1)

means limτu→0
X2
X1

= 0. Second, −80τ ∗4η τ
2
u has the same order as 16γ2τ ∗3η τu, i.e.,

−80τ ∗4η τ
2
u = O

(
16γ2τ ∗3η τu

)
, where the notation X2 = O (X1) means X2

X1
converges to

a finite constant as τu → 0.

Case 1. −80τ ∗4η τ
2
u = o

(
16γ2τ ∗3η τu

)
By equation (A4),

16γ2τ ∗3η τu = 5γ4τ 2
δ + o (1)⇒ τ ∗η =

3

√
5γ2τ 2

δ

16

1

τu
+ o

(
3

√
1

τu

)
.

I denote this candidate disclosure policy as τ smallη .

Case 2. −80τ ∗4η τ
2
u = O

(
16γ2τ ∗3η τu

)
In this case, τ ∗η diverges at the order of

1
τu
, that is, τuτ ∗η converges to a finite value

as τu → 0. By equation (A4),

−80τ ∗4η τ
2
u + 16γ2τ ∗3η τu = 5γ4τ 2

δ = O (1)⇒

16τuτ
∗
η

(
γ2 − 5τuτ

∗
η

)
τ ∗2η = O (1) .

Note that 16τuτ
∗
η = O (1) and τ ∗2η = O

(
1
τ2u

)
, and thus

γ2 − 5τuτ
∗
η = O

(
1

τ ∗2η

)
⇒ 5τuτ

∗
η = γ2 +O

(
1

τ ∗2η

)
⇒ τ ∗η =

γ2

5τu
+O (τu) .

Hence, the other candidate is:

τ ∗η =
γ2

5τu
+ o (1) ,

which is labeled as τ largeη , where the superscript “large”follows from γ2

5τu
> 3

√
5γ2τ2δ

16
1
τu

for small values of τu.

Check the SOC

Inserting the candidate disclosure policy τ smallη = 3

√
5γ2τ2δ

16
1
τu

+ o
(

3

√
1
τu

)
into the SOC

in Part (b) of Theorem 3 and keeping the highest order, I compute S
(
τ smallη

)
∝

15
4
γ6τ 3

δ > 0. That is, the SOC is violated and thus τ smallη cannot be supported as a

partial disclosure equilibrium.

Similarly, for the other candidate policy τ largeη = γ2

5τu
+ o (1), I can compute
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S
(
τ largeη

)
∝ − 16

3125
γ12

τ3u
< 0, which means that τ largeη is a local maximum for func-

tion EΠA

(
·, τ largeη

)
.

In sum, the value of τ largeη serves as the only candidate for a partial disclosure

equilibrium.

Compare EΠA

(
τ largeη , τ largeη

)
with EΠA

(
0, τ largeη

)
(Proof of Part (b))

By the profit expression (15) and using τ largeη = γ2

5τu
+ o (1), I can show:

EΠA

(
τ largeη , τ largeη

)
< EΠA

(
0, τ largeη

)
⇐⇒(

−200 000τ 6
θ

)
τ 5
u − 20 000γ2τ 4

θ (6τ θ + 5τ δ) τ
4
u − 500γ4τ 2

θ

(
44τ 2

θ + 25τ 2
δ + 100τ θτ δ

)
τ 3
u

−100γ6τ θ
(
4τ 2

θ + 25τ 2
δ + 85τ θτ δ

)
τ 2
u + 5γ8

(
48τ 2

θ − 25τ 2
δ − 120τ θτ δ

)
τu + 4γ10 (4τ θ − 5τ δ) < 0.

For suffi ciently small τu,

EΠA

(
τ largeη , τ largeη

)
< EΠA

(
0, τ largeη

)
⇐⇒ 4τ θ < 5τ δ.

Thus, if 4τ θ < 5τ δ, τ largeη does not form a global maximum for function EΠA

(
·, τ largeη

)
,

and hence τ largeη cannot be supported as a partial disclosure equilibrium. Given that

τ largeη is the only partial disclosure equilibrium candidate, there is no partial disclosure

equilibrium when 4τ θ < 5τ δ and τu is suffi ciently small.

Proof of Part (a)

Now suppose 4τ θ ≥ 5τ δ, so that EΠA

(
τ largeη , τ largeη

)
> EΠA

(
0, τ largeη

)
for suffi ciently

small τu. I then examine the shape of EΠA

(
·, τ largeη

)
and show that τ largeη forms a

global maximum of EΠA

(
·, τ largeη

)
. Using Part (c) of Theorem 3 and the expression

of τ largeη = γ2

5τu
+ o (1), I can show that the FOC of EΠA

(
·, τ largeη

)
has the same sign

as

A (τ η) = A4τ
4
η + A3τ

3
η + A2τ

2
η + A1τ η + A0,

where

A4 = −1280τ 2
u, A3 = 128τu

(
γ2 − 40τuτ θ

)
,

A2 = 32τu
(
12γ2τ θ − 5γ2τ δ − 240τuτ

2
θ

)
,

A1 = 64τuτ θ
(
6γ2τ θ − 5γ2τ δ − 80τuτ

2
θ

)
,

A0 = −
(
5γ4τ 2

δ + 1280τ 2
uτ

4
θ − 128γ2τuτ

3
θ + 160γ2τuτ

2
θτ δ
)
.
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Thus, for suffi ciently small τu, if 4τ θ ≥ 5τ δ, then A4 < 0, A3 > 0, A2 > 0, A1 > 0, and

A0 < 0.

Taking derivative of A (τ η) yields:

A′ (τ η) = 4A4τ
3
η + 3A3τ

2
η + 2A2τ η + A1.

Given 4A4 < 0, 3A3 > 0, 2A2 > 0, and A1 > 0, it must be the case that A′ (0) > 0 and

A′ (∞) < 0 and that A′ (τ η) changes signs only once (by Descartes’“rule of signs”).

Hence, A (τ η) first increases and then decreases. Given that A (τ η) is negative at small

and large values of τ η and that τ largeη is a local maximum for function EΠA

(
·, τ largeη

)
(i.e., A

(
τ largeη − ε

)
> 0 for suffi ciently small ε), A (τ η) crosses zero twice, which

corresponds to two local extreme values of τ η. Recall that A (τ η) has the same

sign as the FOC of EΠA

(
·, τ largeη

)
, function EΠA

(
·, τ largeη

)
must first decrease, then

increase, and finally decrease. Thus, the two local maximum values are 0 and τ largeη .

Given that EΠA

(
τ largeη , τ largeη

)
> EΠA

(
0, τ largeη

)
(under the condition 4τ θ ≥ 5τ δ),

it is clear that τ largeη forms a global maximum of EΠA

(
·, τ largeη

)
, which implies that

τ largeη is supported as a partial disclosure equilibrium.

Proof of Proposition 4

Let τ ε =∞. By the FOC (16) in firm A’s disclosure decision problem,
∂2EΠA

∂τ η∂τ ξ
=

∂

∂τ ξ

[
1

9 (τ s + τ δ)
2

∂τ s
∂τ η

]
.

Using the expression of τ s in Proposition 2, I can show that
∂

∂τ ξ

[
1

9 (τ s + τ δ)
2

∂τ s
∂τ η

]
∝ −16 (τ θ + τ η)

2 (τ θ + τ ξ)
2 τu + 3γ2τ δ (2τ θ + τ ξ + τ η)

2 .

Hence, when τu is suffi ciently small, ∂
2EΠA
∂τη∂τξ

> 0. Given symmetry, ∂
2EΠB
∂τη∂τξ

> 0.

Proof of Proposition 5

Proof of Part (a)

When τu = 0, price informativeness τ s is equal to 0, and so the profit expression in

equation (15) becomes

EΠA (τ η, τ ξ)|τu=0 =
m2

9
+

9τ θ + 4τ η
36τ θ (τ θ + τ η)

+
τ ξ

9τ θ (τ θ + τ ξ)
.
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Taking derivatives shows
∂ EΠA(τη ,τξ)|

τu=0

∂τη
< 0. Thus, no disclosure is a dominant

strategy, which implies that the nondisclosure equilibrium serves as the unique equi-

librium (i.e., τ ∗η = τ ∗ξ = 0).

The multiplicity result follows immediately from Part (a) of Theorem 4.

Using the expression of τ ∗η = τ ∗ξ = γ2

5τu
+o (1) and the profit expression in equation

(15), I can show that EΠA

(
γ2

5τu
, γ2

5τu

)
− EΠA (0, 0) has the same sign as

∆Π (τu) = −2000τ 4
θτ

3
u−1000γ2τ 2

θτ δτ
2
u+5γ4

(
32τ 2

θ − 25τ 2
δ − 40τ θτ δ

)
τu+4γ6 (4τ θ − 5τ δ) .

Thus, when τu is suffi ciently small, ∆Π (τu) > 0 provided 4τ θ > 5τ δ.

Proof of Part (b)

By τ ∗η = τ ∗ξ = γ2

5τu
+ o (1), it is clear that τ ∗η decreases with τu and diverges to ∞

as τu → 0. By the expression of τ s in Proposition 2, direct computation shows that

τ ∗s = 4
25

γ2

τu
+ o (1). Thus, as τu decreases, τ ∗s increases. By the expression of af in

Proposition 2, we know that af and τ ∗s change in the same direction.

Direct computation shows
∂V ar(q∗A)

∂τu
∝ − 5

9γ2
, and thus, V ar (q∗A) increases as τu

decreases. Finally, one can compute Cov (q∗A, q
∗
B) = 2

9

τ∗η

(τθ+τ∗η)τθ
+ τ∗s

9τδ(τ∗s+τδ)
. Since

both τ ∗η and τ
∗
s increase as τu decreases, we know that Cov (q∗A, q

∗
B) increases as well

when τu decreases.
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Online Appendix (Not for Publication)

Expressions of F ′s, S ′s, and G′s in Theorem 3
The F -coeffi cients are:

F4 = −16 (5τ 2
uτ

4
ε − 2γ2τuτ

3
ε + 10γ2τuτ δτ

2
ε + 5γ4τ 2

δ) ,

F3 = 16

(
γ2τuτ

4
ε − 20τ 2

uτ θτ
4
ε + 8γ2τuτ θτ

3
ε − 10γ2τuτ δτ

3
ε

−40γ2τuτ θτ δτ
2
ε − 10γ4τ 2

δτ ε − 20γ4τ θτ
2
δ

)
,

F2 = 8


6γ2τuτ θτ

4
ε − 5γ2τuτ δτ

4
ε − 60τ 2

uτ
2
θτ

4
ε

+24γ2τuτ
2
θτ

3
ε − 60γ2τuτ θτ δτ

3
ε

−120γ2τuτ
2
θτ δτ

2
ε − 15γ4τ 2

δτ
2
ε

−60γ4τ θτ
2
δτ ε − 60γ4τ 2

θτ
2
δ

 ,

F1 = 8


6γ2τuτ

2
θτ

4
ε − 10γ2τuτ θτ δτ

4
ε − 40τ 2

uτ
3
θτ

4
ε

+16γ2τuτ
3
θτ

3
ε − 5γ4τ 2

δτ
3
ε − 60γ2τuτ

2
θτ δτ

3
ε

−30γ4τ θτ
2
δτ

2
ε − 80γ2τuτ

3
θτ δτ

2
ε

−60γ4τ 2
θτ

2
δτ ε − 40γ4τ 3

θτ
2
δ

 ,

F0 = −


5γ4τ 2

δτ
4
ε + 80τ 2

uτ
4
θτ

4
ε − 16γ2τuτ

3
θτ

4
ε + 40γ2τuτ

2
θτ δτ

4
ε

−32γ2τuτ
4
θτ

3
ε + 40γ4τ θτ

2
δτ

3
ε + 160γ2τuτ

3
θτ δτ

3
ε

+120γ4τ 2
θτ

2
δτ

2
ε + 160γ2τuτ

4
θτ δτ

2
ε

+160γ4τ 3
θτ

2
δτ ε + 80γ4τ 4

θτ
2
δ

 .

The S-coeffi cients are:
S6 = 64 (τuτ

2
ε + γ2τ δ) (5τ 2

uτ
4
ε − 2γ2τuτ

3
ε + 10γ2τuτ δτ

2
ε + 5γ4τ 2

δ) ,

S5 = 16

 120τ 3
uτ θτ

6
ε − 5γ2τ 2

uτ
6
ε + 60γ2τ 2

uτ δτ
5
ε − 48γ2τ 2

uτ θτ
5
ε

−9γ4τuτ δτ
4
ε + 360γ2τ 2

uτ θτ δτ
4
ε + 120γ4τuτ

2
δτ

3
ε − 48γ4τuτ θτ δτ

3
ε

+360γ4τuτ θτ
2
δτ

2
ε + 60γ6τ 3

δτ ε + 120γ6τ θτ
3
δ

 ,

S4 = 16


300τ 3

uτ
2
θτ

6
ε − 25γ2τ 2

uτ θτ
6
ε + 15γ2τ 2

uτ δτ
6
ε

+300γ2τ 2
uτ θτ δτ

5
ε − 120γ2τ 2

uτ
2
θτ

5
ε − 3γ4τuτ δτ

5
ε

+900γ2τ 2
uτ

2
θτ δτ

4
ε − 45γ4τuτ θτ δτ

4
ε + 90γ4τuτ

2
δτ

4
ε

+600γ4τuτ θτ
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δτ

3
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+75γ6τ 3
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θτ
3
δ

 ,

S3 = 4
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uτ
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S1 = 4
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For the G-coeffi cients, let us set τ ξ = τ ∗η. Then, we have:
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+2560τuγ
2τ 4

θτ δ + 10 240τuγ
2τ 3

θτ δτ ξ
+15 360τuγ

2τ 2
θτ δτ

2
ξ + 10 240τuγ

2τ θτ δτ
3
ξ + 2560τuγ

2τ δτ
4
ξ

 τ 2
ε

+
(
1280γ4τ 3

θτ
2
δ + 3840γ4τ 2

θτ
2
δτ ξ + 3840γ4τ θτ

2
δτ

2
ξ + 1280γ4τ 2

δτ
3
ξ

)
τ ε

+

(
1280γ4τ 4

θτ
2
δ + 5120γ4τ 3

θτ
2
δτ ξ + 7680γ4τ 2

θτ
2
δτ

2
ξ

+5120γ4τ θτ
2
δτ

3
ξ + 1280γ4τ 2

δτ
4
ξ

)
,

G3 =


40γ4τ θτ

2
δ + 20γ4τ 2

δτ ξ − 640γ2τuτ
4
θ + 960γ2τuτ

3
θτ δ

−2048γ2τuτ
3
θτ ξ + 2240γ2τuτ

2
θτ δτ ξ − 2304γ2τuτ

2
θτ

2
ξ

+1600γ2τuτ θτ δτ
2
ξ − 1024γ2τuτ θτ

3
ξ + 320γ2τuτ δτ

3
ξ

−128γ2τuτ
4
ξ + 5120τ 2

uτ
5
θ + 20 480τ 2

uτ
4
θτ ξ

+30 720τ 2
uτ

3
θτ

2
ξ + 20 480τ 2

uτ
2
θτ

3
ξ + 5120τ 2

uτ θτ
4
ξ

 τ 4
ε

+


560γ4τ 2

θτ
2
δ + 800γ4τ θτ

2
δτ ξ + 240γ4τ 2

δτ
2
ξ

−2048τuγ
2τ 5

θ + 6400τuγ
2τ 4

θτ δ − 8192τuγ
2τ 4

θτ ξ
+20 480τuγ

2τ 3
θτ δτ ξ − 12 288τuγ

2τ 3
θτ

2
ξ

+23 040τuγ
2τ 2

θτ δτ
2
ξ − 8192τuγ

2τ 2
θτ

3
ξ

+10 240τuγ
2τ θτ δτ

3
ξ − 2048τuγ

2τ θτ
4
ξ + 1280τuγ

2τ δτ
4
ξ

 τ 3
ε

+


2880γ4τ 3

θτ
2
δ + 6720γ4τ 2

θτ
2
δτ ξ + 4800γ4τ θτ

2
δτ

2
ξ

+960γ4τ 2
δτ

3
ξ + 10 240τuγ

2τ 5
θτ δ + 40 960τuγ

2τ 4
θτ δτ ξ

+61 440τuγ
2τ 3

θτ δτ
2
ξ + 40 960τuγ

2τ 2
θτ δτ

3
ξ

+10 240τuγ
2τ θτ δτ

4
ξ

 τ 2
ε

+

(
6400γ4τ 4

θτ
2
δ + 20 480γ4τ 3

θτ
2
δτ ξ + 23 040γ4τ 2

θτ
2
δτ

2
ξ

+10 240γ4τ θτ
2
δτ

3
ξ + 1280γ4τ 2

δτ
4
ξ

)
τ ε
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+

(
5120γ4τ 5

θτ
2
δ + 20 480γ4τ 4

θτ
2
δτ ξ + 30 720γ4τ 3

θτ
2
δτ

2
ξ

+20 480γ4τ 2
θτ

2
δτ

3
ξ + 5120γ4τ θτ

2
δτ

4
ξ

)
,

G2 =



120γ4τ 2
θτ

2
δ + 120γ4τ θτ

2
δτ ξ + 30γ4τ 2

δτ
2
ξ

−1152γ2τuτ
5
θ + 2080γ2τuτ

4
θτ δ − 3840γ2τuτ

4
θτ ξ

+5440γ2τuτ
3
θτ δτ ξ − 4608γ2τuτ

3
θτ

2
ξ + 4800γ2τuτ

2
θτ δτ

2
ξ

−2304γ2τuτ
2
θτ

3
ξ + 1600γ2τuτ θτ δτ

3
ξ − 384γ2τuτ θτ

4
ξ

+160γ2τuτ δτ
4
ξ + 7680τ 2

uτ
6
θ + 30 720τ 2

uτ
5
θτ ξ

+46 080τ 2
uτ

4
θτ

2
ξ + 30 720τ 2

uτ
3
θτ

3
ξ + 7680τ 2

uτ
2
θτ

4
ξ

 τ 4
ε

+


1440γ4τ 3

θτ
2
δ + 2640γ4τ 2

θτ
2
δτ ξ + 1440γ4τ θτ

2
δτ

2
ξ

+240γ4τ 2
δτ

3
ξ − 3072τuγ

2τ 6
θ + 11 520τuγ

2τ 5
θτ δ

−12 288τuγ
2τ 5

θτ ξ + 38 400τuγ
2τ 4

θτ δτ ξ − 18 432τuγ
2τ 4

θτ
2
ξ

+46 080τuγ
2τ 3

θτ δτ
2
ξ − 12 288τuγ

2τ 3
θτ

3
ξ

+23 040τuγ
2τ 2

θτ δτ
3
ξ − 3072τuγ

2τ 2
θτ

4
ξ + 3840τuγ

2τ θτ δτ
4
ξ

 τ 3
ε

+


6240γ4τ 4

θτ
2
δ + 16 320γ4τ 3

θτ
2
δτ ξ + 14 400γ4τ 2

θτ
2
δτ

2
ξ

+4800γ4τ θτ
2
δτ

3
ξ + 480γ4τ 2

δτ
4
ξ + 15 360τuγ

2τ 6
θτ δ

+61 440τuγ
2τ 5

θτ δτ ξ + 92 160τuγ
2τ 4

θτ δτ
2
ξ

+61 440τuγ
2τ 3

θτ δτ
3
ξ + 15 360τuγ

2τ 2
θτ δτ

4
ξ

 τ 2
ε

+

(
11 520γ4τ 5

θτ
2
δ + 38 400γ4τ 4

θτ
2
δτ ξ + 46 080γ4τ 3

θτ
2
δτ

2
ξ

+23 040γ4τ 2
θτ

2
δτ

3
ξ + 3840γ4τ θτ

2
δτ

4
ξ

)
τ ε

+

(
7680γ4τ 6

θτ
2
δ + 30 720γ4τ 5

θτ
2
δτ ξ + 46 080γ4τ 4

θτ
2
δτ

2
ξ

+30 720γ4τ 3
θτ

2
δτ

3
ξ + 7680γ4τ 2

θτ
2
δτ

4
ξ

)
,

G1 =



160γ4τ 3
θτ

2
δ + 240γ4τ 2

θτ
2
δτ ξ + 120γ4τ θτ

2
δτ

2
ξ

+20γ4τ 2
δτ

3
ξ − 896γ2τuτ

6
θ + 1920γ2τuτ

5
θτ δ

−3072γ2τuτ
5
θτ ξ + 5440γ2τuτ

4
θτ δτ ξ − 3840γ2τuτ

4
θτ

2
ξ

+5440γ2τuτ
3
θτ δτ

2
ξ − 2048γ2τuτ

3
θτ

3
ξ + 2240γ2τuτ

2
θτ δτ

3
ξ

−384γ2τuτ
2
θτ

4
ξ + 320γ2τuτ θτ δτ

4
ξ + 5120τ 2

uτ
7
θ

+20 480τ 2
uτ

6
θτ ξ + 30 720τ 2

uτ
5
θτ

2
ξ

+20 480τ 2
uτ

4
θτ

3
ξ + 5120τ 2

uτ
3
θτ

4
ξ


τ 4
ε

+


1600γ4τ 4

θτ
2
δ + 3520γ4τ 3

θτ
2
δτ ξ + 2640γ4τ 2

θτ
2
δτ

2
ξ

+800γ4τ θτ
2
δτ

3
ξ + 80γ4τ 2

δτ
4
ξ − 2048τuγ

2τ 7
θ

+8960τuγ
2τ 6

θτ δ − 8192τuγ
2τ 6

θτ ξ + 30 720τuγ
2τ 5

θτ δτ ξ
−12 288τuγ

2τ 5
θτ

2
ξ + 38 400τuγ

2τ 4
θτ δτ

2
ξ − 8192τuγ

2τ 4
θτ

3
ξ

+20 480τuγ
2τ 3

θτ δτ
3
ξ − 2048τuγ

2τ 3
θτ

4
ξ + 3840τuγ

2τ 2
θτ δτ

4
ξ

 τ 3
ε

+


5760γ4τ 5

θτ
2
δ + 16 320γ4τ 4

θτ
2
δτ ξ + 16 320γ4τ 3

θτ
2
δτ

2
ξ

+6720γ4τ 2
θτ

2
δτ

3
ξ + 960γ4τ θτ

2
δτ

4
ξ + 10 240τuγ

2τ 7
θτ δ

+40 960τuγ
2τ 6

θτ δτ ξ + 61 440τuγ
2τ 5

θτ δτ
2
ξ

+40 960τuγ
2τ 4

θτ δτ
3
ξ + 10 240τuγ

2τ 3
θτ δτ

4
ξ

 τ 2
ε

+

(
8960γ4τ 6

θτ
2
δ + 30 720γ4τ 5

θτ
2
δτ ξ + 38 400γ4τ 4

θτ
2
δτ

2
ξ

+20 480γ4τ 3
θτ

2
δτ

3
ξ + 3840γ4τ 2

θτ
2
δτ

4
ξ

)
τ ε

+

(
5120γ4τ 7

θτ
2
δ + 20 480γ4τ 6

θτ
2
δτ ξ + 30 720γ4τ 5

θτ
2
δτ

2
ξ

+20 480γ4τ 4
θτ

2
δτ

3
ξ + 5120γ4τ 3

θτ
2
δτ

4
ξ

)
,
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G0 =



80γ4τ 4
θτ

2
δ + 160γ4τ 3

θτ
2
δτ ξ + 120γ4τ 2

θτ
2
δτ

2
ξ

+40γ4τ θτ
2
δτ

3
ξ + 5γ4τ 2

δτ
4
ξ − 256γ2τuτ

7
θ + 640γ2τuτ

6
θτ δ

−896γ2τuτ
6
θτ ξ + 1920γ2τuτ

5
θτ δτ ξ − 1152γ2τuτ

5
θτ

2
ξ

+2080γ2τuτ
4
θτ δτ

2
ξ − 640γ2τuτ

4
θτ

3
ξ + 960γ2τuτ

3
θτ δτ

3
ξ

−128γ2τuτ
3
θτ

4
ξ + 160γ2τuτ

2
θτ δτ

4
ξ + 1280τ 2

uτ
8
θ

+5120τ 2
uτ

7
θτ ξ + 7680τ 2

uτ
6
θτ

2
ξ + 5120τ 2

uτ
5
θτ

3
ξ + 1280τ 2

uτ
4
θτ

4
ξ

 τ 4
ε

+


640γ4τ 5

θτ
2
δ + 1600γ4τ 4

θτ
2
δτ ξ + 1440γ4τ 3

θτ
2
δτ

2
ξ

+560γ4τ 2
θτ

2
δτ

3
ξ + 80γ4τ θτ

2
δτ

4
ξ − 512τuγ

2τ 8
θ

+2560τuγ
2τ 7

θτ δ − 2048τuγ
2τ 7

θτ ξ + 8960τuγ
2τ 6

θτ δτ ξ
−3072τuγ

2τ 6
θτ

2
ξ + 11 520τuγ

2τ 5
θτ δτ

2
ξ − 2048τuγ

2τ 5
θτ

3
ξ

+6400τuγ
2τ 4

θτ δτ
3
ξ − 512τuγ

2τ 4
θτ

4
ξ + 1280τuγ

2τ 3
θτ δτ

4
ξ

 τ 3
ε

+


1920γ4τ 6

θτ
2
δ + 5760γ4τ 5

θτ
2
δτ ξ + 6240γ4τ 4

θτ
2
δτ

2
ξ

+2880γ4τ 3
θτ

2
δτ

3
ξ + 480γ4τ 2

θτ
2
δτ

4
ξ + 2560τuγ

2τ 8
θτ δ

+10 240τuγ
2τ 7

θτ δτ ξ + 15 360τuγ
2τ 6

θτ δτ
2
ξ

+10 240τuγ
2τ 5

θτ δτ
3
ξ + 2560τuγ

2τ 4
θτ δτ

4
ξ

 τ 2
ε

+

(
2560γ4τ 7

θτ
2
δ + 8960γ4τ 6

θτ
2
δτ ξ + 11 520γ4τ 5

θτ
2
δτ

2
ξ

+6400γ4τ 4
θτ

2
δτ

3
ξ + 1280γ4τ 3

θτ
2
δτ

4
ξ

)
τ ε

+

(
1280γ4τ 8

θτ
2
δ + 5120γ4τ 7

θτ
2
δτ ξ + 7680γ4τ 6

θτ
2
δτ

2
ξ

+5120γ4τ 5
θτ

2
δτ

3
ξ + 1280γ4τ 4

θτ
2
δτ

4
ξ

)
.

Expressions of Moment Variables in Section 4

V ar (q∗A) =
9τ θ + 4τ η

36τ θ (τ θ + τ η)
+

1

9 (τ θ + τ ξ)

τ ξ
τ θ

+
τ s

9τ δ (τ s + τ δ)
,

Cov (q∗A, q
∗
B) =

τ θτ ξ + τ θτ η + 2τ ξτ η
9τ θ (τ θ + τ η) (τ θ + τ ξ)

+
τ s

9τ δ (τ s + τ δ)
,

V ar (p− f) =
2τ θ + τ ξ + τ η

4 (τ θ + τ η) (τ θ + τ ξ)
+

1

τ s
+

1

τ ε
,

V ar (p) =
9τ θ + 4τ η

36τ θ (τ θ + τ η)
+

9τ θ + 4τ ξ
36τ θ (τ θ + τ ξ)

+
τ s + 9τ δ

9τ δ (τ s + τ δ)
+

1

τ ε
,

V ar (f) =
τ η

9 (τ θ + τ η) τ θ
+

τ ξ
9 (τ θ + τ ξ) τ θ

+
(τ s + 3τ δ)

2

9τ sτ δ (τ s + τ δ)
.
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