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Abstract

This paper explores the stringency of land-use regulation in US cities, focusing on building
heights. Stringency is substantial when regulated heights are far below free-market heights,
while stringency is lower when the two values are closer. Using FAR (the floor-area ratio) as
a height index, theory shows that the elasticity of the land price with respect to FAR is a
proper stringency measure. This elasticity is estimated for five US cities by combining CoStar
land-sales data with FAR values from local zoning maps, and the results show that New York
and Washington, D.C., have stringent height regulations, while Chicago’s and San Francisco’s
regulations are less stringent (Boston represents an intermediate case).
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1. Introduction

The effects of land-use regulation have been extensively studied by urban economists.

Gauging these impacts requires measurement of the scope of local regulation, and such mea-

sures have been generated by a number of different surveys of local governments, which tally

the various types of regulations in place. The first such survey, by Glickfeld and Levine (1992),

focused on California and produced a count of the number of different land-use regulations

used in a city. The count included regulations such as density restrictions (including build-

ing height limits), limitations on the number of building permits, the presence of an urban

growth boundary, and many others. Ihlanfeldt (2007) conducted a similar survey for Florida,

generating another regulation count measure, and Jackson (2018) carried out a new California

survey, generating an index more sophisticated than a simple regulation count but similar in

spirit. Gyourko, Saiz and Summers (2008) carried out a nationwide survey of local land-use

regulation. By applying factor analysis to the results, they generated the Wharton Residential

Land Use Regulatory Index, which has also been used by many other researchers.1

While information on the scope of land-use regulation is valuable, it does not provide

an answer to a different important question. The question concerns the stringency of land-

use regulation. A stringency measure gauges the degree to which regulations cause land-

use characteristics to diverge from free-market levels. For example, in the case of building

heights, the focus of the present paper, a stringency measure would capture the degree to

which regulated heights fall short of those that would be chosen in the absence of regulation.

If regulated heights are much lower than free-market heights, then regulation is highly stringent,

whereas stringency is lower when regulated heights are close to free-market levels.

The literature offers two different approaches to measuring the stringency of land-use
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regulation. The first is due to Glaeser, Gyourko and Saks (2005), who identify the gap between

the price per square foot of housing and construction cost per square foot as a measure of

stringency. This gap, which they call the “regulatory tax,” should be absent in an unregulated

market, and its existence implies that regulations are restricting the supply of housing. Glaeser

and coauthors compute the regulatory tax for Manhattan, showing that it is appreciable, but

their method does not require them to identify the particular supply-restricting regulations

that generate the tax.2

The second approach, which is applied in the present paper, exploits the relationship be-

tween the value of vacant land and the extent of a particular regulation to gauge the regulation’s

stringency. The approach, which is based on a precise theoretical result, relies on the intuitive

notion that relaxing a stringent regulation raises land value per square foot by more than re-

laxing a less-stringent one (with changes measured in percentage terms). Since building-height

regulation constrains development options, thereby reducing the developer’s willingness-to-pay

for the land, it follows that relaxation of a stringent height constraint will raise WTP by more

than relaxation of a mild constraint, a conclusion that is established formally in section 2.

Thus, to identify stringency, the log of land value per square foot is regressed on the log of the

regulated building height and other covariates, and the resulting height coefficient (which is

an elasticity) constitutes the stringency measure. Using extensive data on leasing (effectively

sales) of vacant land in China, a study by Brueckner, Fu, Gu and Zhang (2017) applied the

method to compare the stringency of height regulations across Chinese cities, made possible

by allowing city-specific elasticities.

To apply the method in a context more familiar to Western readers, the present paper

carries out the same exercise for several major US cities. As in Brueckner et al. (2017), the

focus is on regulations that limit a building’s floor-area ratio (FAR), which equals the ratio of

total square footage of floor space in the building to the area of the lot, effectively capturing

building height.3 Land-value information comes from data on vacant land sales available from

the CoStar Group’s commercial real estate website, and digital zoning maps are used to assign

an FAR value for each sale transaction. The study includes land sales over the 2000-2018 period

for five major US cities: New York, Chicago, Washington, D.C., Boston and San Francisco.
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The results allow the stringency of building-height regulation to be compared across these

cities, while also showing how stringency varies across locations within each city.

The results are important because building-height regulations can distort urban form and

raise housing prices. As shown by Bertaud and Brueckner (2005), height restrictions reduce

housing supply, pushing up prices and reducing housing affordability while creating inefficient

urban sprawl as the city attempts to accommodate its population, effects that are all more

pronounced the greater the stringency of the height limit. Height regulations have various

justifications, including the worthy goal of keeping skyscrapers away from the White House

and U.S. Capitol building in Washington D.C. and, in earlier days, the goal of limiting interior

light reduction from building-induced shadows, an issue that modern lighting has eliminated

(see Barr (2016)). In addition, by curbing population density, height limits can also reduce

demands on urban infrastructure (streets, water, gas, sewage), a consideration that may have

motivated the draconian FAR limits in India, which are studied by Brueckner and Sridhar

(2012).4

It is not always clear that imposition of height restrictions is carried out with appropri-

ate attention to the potential downsides of such regulations. Glaeser et al. (2005) and Barr

(2016), for example, argue that by blocking further densification of Manhattan (a place that

is already very dense), height limits impose a cost on New York residents by limiting housing

supply. Given such concerns, it is important to know how the stringency of height regulation

varies across cities. Cities with the most stringent restrictions could then be candidates for

looser regulation. However, such a verdict must be viewed as incomplete since information

about the offsetting benefits from height limits is missing, not being generated by the present

methodology.

Measurement of the stringency of height regulations must confront a serious identification

problem, a consequence of the fact that the FAR value for a land parcel is chosen by the local

zoning authority. To see the problem, note that an attractive vacant parcel, with favorable

values of unobserved attributes, will tend to have a high price of floor space once developed and

thus a high land value, leading to a large value for the error term in a land-value regression. But

since the zoning authority will tend to allow intensive development of attractive parcels, the
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assigned FAR value will tend to be larger for parcels with favorable unobserved attributes. The

upshot is that FAR will be positively correlated with the error term in a land-value regression,

leading to an upward biased FAR coefficient.

With instruments for FAR hard to find, Brueckner et al. (2017) addressed this bias issue by

grouping observations (which were not geocoded) into clusters of parcels located on the same

street.5 Unobservable attributes within clusters were then captured by cluster fixed effects,

an approach that reduces the correlation between FAR and the error term in the land-value

regression. When cluster fixed-effects were used, the estimated FAR coefficient dropped in

magnitude, reflecting a reduction in upward bias.

A related clustering approach is used in the present paper. With the observations all

geocoded, several different clustering strategies are used. The first is simply to include zipcode

fixed effects in the land-value regressions. Since the observations are from dense central cities,

zip codes are spatially small, ensuring that the parcels within a zip code are fairly homogeneous.

An alternative approach is to group parcels into circular clusters with a fixed radius and land

areas smaller than the average zip code. Clusters with radii of 1/8, 1/4, and 1/3 miles are

created in alternate specifications, with the appropriate cluster fixed effects included in the

regressions.

As in the Chinese study, inclusion of cluster fixed effects reduces the estimated FAR co-

efficients in all cities, indicating a reduction in upward bias. Nevertheless, the amount of

remaining bias is impossible to judge. Even if some bias is still present, however, a comparison

of regulatory stringency across cities (from comparing FAR coefficients) can still be carried

out as long as cities share the same degree of coefficient bias, a pattern that would appear

plausible.

The plan of the paper is as follows. Section 2 presents a theoretical argument demonstrating

that the elasticity of land value with respect to FAR is a measure of regulatory stringency.

Section 3 discusses the data, and Section 4 presents results for the five sampled cities. Section

5 offers conclusions.
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2. Theory

The connection between land values and FAR can be demonstrated using the standard

urban land-use model (see Brueckner (1987), Duranton and Puga (2015)).6 Let r denote the

price per unit of land and p denote the price per square foot of real estate (housing or office

space), which depends on a vector Z of locational attributes, including distance to the CBD,

that affect the attractiveness of the site (thus, p = p(Z)). This function can be treated as

exogenous with respect to land-use decisions on individual parcels, which have a negligible

effect on the city’s overall housing supply. Let h(S) denote square feet of real-estate output

per unit of land as a function of structural density S, which equals real-estate capital per acre

(h is concave, satisfying h′ > 0 and h′′ < 0). This function is the intensive form of a production

function H that has separate capital and land arguments. The housing developer’s profit per

unit of land is then equal to

π = ph(S) − iS − r, (1)

where i is the cost per unit of capital. In the absence of an FAR limit, the first-order condition

for choice of S is ph′(S) = i, and the S satisfying this condition is denoted S∗. The land price

is then given by the zero profit condition:

r = ph(S∗) − iS∗. (2)

An FAR limit imposes a maximal value for h(S), denoted h, which in turn imposes a

maximal value of S. This value is denoted S, and it satisfies h(S) = h and S < S∗. Consider

first the effect of S on the land price r, with the link between h and r analyzed later. Given

the FAR limit, developers will set S = S, and the land price will be given by

r = ph(S) − iS. (3)

The derivative of the land price with respect to S is

∂r

∂S
= ph′(S) − i > 0, (4)

5



with the inequality holding because S < S∗. In addition, because ∂r/∂Z = (∂p/∂Z)h(S), the

land price will depend on the vector Z. A higher value of a favorable parcel characteristic j

such as access to jobs, for which ∂p/∂Zj > 0, will raise the land price.

Consider now the elasticity of the land price with respect to S, which equals

E
r,S

≡

∂r

∂S

S

r
=

[ph′(S) − i]S

ph(S) − iS
. (5)

With concavity of h implying h′(S)S < h(S), it follows that Er,S in (5) is less than unity, so

that the elasticity of the land price with respect to S is less than one.

To put (5) in a more useful form, ph′(S∗) = i can be used to eliminate i in (5). The

expression then becomes

Er,S =

[

h′(S) − h′(S∗)
]

S

h(S) − h′(S∗)S
, (6)

showing that E
r,S

depends on S∗ as well as S (observe that p cancels). It is now fruitful to

impose a standard functional form for h. If the underlying production function H is Cobb-

Douglas, then the intensive form satisfies h(S) = Sβ, with β < 1, and (6) reduces to

Er,S =

[

βS
β−1

− β(S∗)β−1

]

S

S
β
− β(S∗)β−1S

=
(S∗/S)1−β

− 1
1

β (S∗/S)1−β
− 1

. (7)

Therefore, the elasticity of the land price with respect to S depends on the ratio of S∗, the

developer’s optimal S, to the restricted level, S. In addition, differentiation of (7) shows that

∂Er,S

∂(S∗/S)
> 0, (8)

indicating that elasticity is large when the restricted S lies far below S∗ (making S∗/S large).

In other words, the increase in land price from relaxing a very tight S limit is greater than the

increase from relaxing a looser limit, a conclusion that matches intuition.

Since h(S) = h implies S
β

= h, it follows that S = h
1/β

. Therefore, the elasticity of the

land price with respect to h, denoted Er,h, equals Er,S/β. Like Er,S, Er,h is therefore increasing
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in S∗/S, so that the increase in the land price from relaxing a tight FAR limit is greater than

the increase from relaxing a loose one. Note that, since both E
r,S

and β are less than 1, the

elasticity Er,h can be larger or smaller than 1, in contrast to Er,S.

The empirical model generates an estimate of E
r,h

, denoted θ. Treating θ as a known value

and assuming a value for β, (7) can be solved for the ratio S/S∗, which then allows the ratio

of the FARs to be computed. The solution is

h(S)

h(S∗)
=

(

1 − θβ

1 − θ

)

−
β

1−β

. (9)

Therefore, using the estimated θ and a value for β, the ratio of the regulated and free-market

FARs can be derived. This is a remarkable conclusion given that the free-market FAR is

unobserved.

It should be noted that, while the housing-price function p(Z) is properly treated as ex-

ogenous in evaluating the link between the land price and S for individual parcels, the city’s

overall regulatory policy may affect housing supply and thus the general level of the p func-

tion, which in turn determines the level of land prices. This broad effect will be captured in

the city-specific intercept in the land-value regression, with the elasticity θ continuing to be

identified by variation in land prices and FAR values across the city’s parcels.

3. Empirical model and data

3.1. Empirical model

The basic regression used to evaluate regulatory stringency is

log(rict) = αc + δt + θ log(FARict) + εict, (10)

where i denotes the land parcel, c denotes the cluster to which the parcel belongs, t denotes

the year of sale, and ε is the error term. The year fixed effect is δt, and the cluster fixed effect

is αc, with clusters being either zip codes or smaller circular areas, as described above. This

equation is estimated separately for the different cities. Given New York’s large size, (10) is
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amended to allow the FAR coefficient to differ across the city’s five boroughs (Manhattan,

Brooklyn, Bronx, Queens and Staten Island), which is done by interacting log(FAR) with

borough dummy variables.

Another variation on the regression in (10) allows the FAR effect to depend on location,

in particular on the parcel’s distance from the CBD. Letting x denote the CBD distance, this

specification (without clusters) is written

log(rit) = α + δt + θ log(FARit) + γ xi + λxilog(FARit) + εit. (11)

The FAR elasticity is now distance-dependent, equal to θ + λxi. In addition, the effect of

distance on land value is FAR-specific, equal to γ + λlog(FAR).

3.2. Data

While the CoStar Group’s website is mainly devoted to providing data on sales of the

commercial buildings, it also includes data on vacant land sales for cities across the US. A

wealth of information is provided, including the size of the parcel, its sale price and sale date,

address, latitude and longitude coordinates, and the zoning code for the parcel. In addition,

one data field gives “improvements” to the site, which is usually blank but often includes

descriptors such as “finished lot.” Sometimes, however, existing buildings are listed under site

improvements, presumably indicating a situation where the acquisition of the underlying land

is the goal of the purchase, with demolition of the existing structures planned. Because costly

demolition is likely to depress the land’s selling price, observations with existing buildings are

dropped in creating the samples. Another common improvements designation is “previously

developed lot,” but conversations with CoStar indicated that this descriptor refers to a site

that previously contained a building but is vacant when sold.7

A possible concern about vacant land sales within built-up cities is that they may include

“bad” parcels, which have been passed over for development. The fact that many vacant

parcels were previously developed reduces this concern. Moreover, the maps of sold parcels

(see Figures 1, 3–6) show a broad distribution of sales across each city, a pattern that would

not emerge if sales were concentrated in undesirable areas. In gathering data on vacant land
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sales for construction of a Manhattan land price index, Barr, Smith and Kulkarni (2018) also

address the issue of the potential unrepresentativeness of such parcels, discounting it in several

different ways.

Since the FAR value is specified in the zoning code for a parcel, the site’s FAR follows

directly when the zoning code for the parcel is present in the CoStar data. When the code is

missing, the parcel’s latitude and longitude values are used to find its location on the city’s

digital zoning map and thus its FAR. The appendix provides links to the digital zoning maps

used for the FAR data.

Another data-manipulation step involves the creation of the circular clusters. The proce-

dure is to rank the parcels in order of increasing distance from the mean latitude and longitude

of parcels in the city. The first parcel on this list is chosen as the center of the first cluster, and

parcels within the given radius (1/8, 1/4, or 1/3 mile) of the parcel are grouped with it and

all are removed from the parcel list. Then, the first parcel in the remaining list is the center of

the second parcel, and parcels within the given radius are grouped with it and all are removed

from the list. The process continues until all parcels are assigned to clusters. For New York,

this algorithm is carried out for each borough separately, while for the other cities (which have

fewer total observations), it is carried out on the entire city sample.

Since, with cluster fixed effects, the FAR coefficient is identified by within-cluster FAR

variation, observations in clusters containing a single parcel contribute nothing, with their

deletion from the sample having no effect on the estimated FAR coefficient. The coefficient’s

standard error does fall slightly with these deletions, but since this change has no effect on the

significance of any of the estimated FAR coefficients, all observations are retained regardless

of cluster size.

Variation of FAR within areas such as zip codes or smaller clusters can arise for a number

of reasons. The border between two zoning areas that specify different FARs may pass through

a cluster, with FAR values changing across the border. Alternatively, negotiations between

parcel owners and the zoning authority may alter FARs for some parcels within a cluster while

leaving those for others unchanged (see below for further discussion). In pursuit of particular

land-use goals, the zoning authority itself may initiate such piecemeal changes in FAR, leading
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to variation within small areas.

4. Results

4.1. New York

The New York sample has 5173 parcel observations divided across the five boroughs, as

seen in Table 1. The observation map in Figure 1 shows that the parcels are widely distributed

across the city. The mean price per square foot for the entire sample is $582, the mean FAR is

4.43, and the mean straight-line distance from Times Square is 6.5 miles. The borough means

show that price per square foot and FAR are highest on average in Manhattan (at $1836 and

7.83) and that the price per square foot is lowest in the Bronx (at $105) and FAR lowest in

Staten Island (at 1.59). The table also shows the number of zip codes in each borough.8

The New York regressions include land-use categories (residential, commercial and manu-

facturing), which are derived from the zoning codes and add two additional dummy variables

to the regression (the dummies are absent from (10) because they are not used in other cities;

see below). Although categories are not shown in Table 1, they are predominantly residential

and commercial.

Table 2 shows the first set of results for New York, with the year fixed effects not reported.

The regression in column (1) includes only FAR and the land-use categories as covariates

(residential, the default category, is omitted). The FAR coefficient of 0.875 is highly significant,

showing that an increase in the regulated FAR raises the land price. Manufacturing land sells

at a discount to residential land while commercial land sells at a premium. Column (2) shows

the effect of adding zip code fixed effects, which reduces the FAR coefficient by more than 50%

(to 0.323, still strongly significant), while eliminating the commercial price premium. The

smaller FAR coefficient shows that, by controlling for unobservables common to parcels within

a zip code, the inclusion of zip code fixed effects reduces upward bias in the FAR coefficient.

Naturally, the R2 of the regression almost doubles, to 0.627. Since potential error correlation

across parcels within a zip code may lead to understatement of the FAR coefficient’s standard

error despite the use of robust standard errors in columns (1) and (2), column (3) shows the

effect of error clustering at the zip code level. The resulting increase in the coefficient standard
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error is slight, leaving the estimate strongly significant.

The regression in column (4), which again includes zip code fixed effects, allows the FAR

coefficient to differ across New York boroughs.9 As can been seen, the Staten Island FAR

coefficient is insignificantly different from zero, indicating that the FAR limits in that borough

are not binding. Comparing the sizes of the remaining FAR coefficients within the regression

yields the first major lesson of the analysis. In particular, the Manhattan FAR coefficient is

larger than the coefficients for the other boroughs, indicating that FAR regulation is more

stringent in Manhattan than elsewhere in New York City. Thus, even though regulated FAR

values are larger in Manhattan than in the other boroughs from Table 1, they fall short of

free-market FARs to a greater extent than elsewhere. In other words, if FAR regulation were

removed in all the boroughs of New York, building heights would rise by more in Manhattan

than elsewhere.

When the errors are clustered by zip code, the four FAR coefficients that are significant in

column (4) remain significant, as seen in column (5). Note that the commercial and residential

coefficients are similar to those in column (2).

The regressions in columns (6)–(11) use the circular parcel clusters instead of zip codes,

with each cluster having its own fixed effect. Note that the number of clusters within each

borough is shown at the bottom of the table, numbers that are much larger than the zip

code counts by borough shown in Table 1. For each cluster radius, the second regression has

borough-specific FAR coefficients, while the first has a common coefficient. As can be seen

in columns (6) and (7), where the cluster radius is 1/3 mile, the results are very similar to

those in columns (2) and (4), with the common FAR coefficient and the borough-specific FAR

coefficients just slightly smaller than in the previous regressions.

In regressions with a smaller cluster radius of 1/4 mile, shown in columns (8) and (9), the

results are similar to those in columns (6) and (7). Note, however, that some of the borough-

specific FAR coefficients increase while others decrease. Moving to the smallest cluster radius

of 1/8 mile, which typically more than doubles the number of clusters compared to the 1/3

mile radius, the previously significant FAR coefficient for Bronx becomes insignificant. On

the one hand, the reduction in the cluster size presumably makes the included parcels more
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homogeneous, better controlling for unobservables and thus reducing upward coefficient bias.

On the other hand, a smaller size, by reducing the number of observations per cluster, also

reduces the within-cluster variances of FAR, making it harder to estimate the effect of FAR on

land prices (identification of the FAR effect comes solely from this within-cluster variation).

This pattern is shown in the rows near the bottom of Table 2, where the number of New York

zip codes (clusters) is shown, along with the number of observations per zip code (cluster).

Also shown is the average squared FAR deviation from the zip code (cluster) mean, with the

deviation computed for each zip code (cluster) and then averaged across the city. As can be

seen, observations per zip code (cluster) falls as cluster size decreases, leading to a monotonic

decline in the average squared FAR deviation within clusters. This decline makes precise

estimation of the FAR effect harder as cluster size falls.

If credence is given to bias reduction from a smaller cluster size, the emergence of zero

FAR coefficients with small clusters would imply that the true FAR effect is zero, implying

that FAR regulations are not binding in the Bronx. However, it is more likely that a zero FAR

coefficient arises because of the difficulty of estimating FAR effects with little intra-cluster

FAR variation.10 Finally, it is to note that regressions (7), (9), and (11) again imply that the

stringency of FAR regulation is highest in Manhattan. This key conclusion thus survives the

use of a much finer division of parcels into clusters than occurs under zip code fixed effects.

Table 3 shows regressions where borough-specific FAR coefficients are replaced by an FAR

effect that is allowed to depend on distance from the CBD, following the specification in eq.

(11). In columns (1) and (2), Times Square is treated as the New York CBD, with zip code fixed

effects added in column (2). As can be seen in column (1), the FAR coefficient is positive, the

distance coefficient is negative, and the distance-FAR interaction coefficient is also negative

but smaller in absolute value than the FAR coefficient. This pattern of coefficients implies

that the FAR effect (equal to θ + λxi from (11)) starts out positive at the CBD and decreases

with distance, implying that FAR regulation is most stringent near the CBD. This conclusion

mirrors the earlier finding that stringency is greatest in Manhattan. Figure 1 shows a graph of

the FAR effect as a function of distance, along with 95% confidence intervals. Note that the

confidence intervals cover zero starting at a distance of 13 miles, suggesting that FAR limits
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may no longer be binding beyond that distance.

Because both the distance and interaction coefficients are negative, the distance effect on

the land price (equal to γ + λ log(FARict) in (11)) is also negative in standard fashion, being

stronger where FAR is large.11 When zip code fixed effects are added to the regression, the

distance coefficient becomes insignificant but the previous qualitative conclusions remain. Note

that, because FAR can vary across zip codes that lie at a common distance but in different

directions from the CBD, the FAR effect is identified even with distance held constant.

Recognizing that New York in effect has two CBDs, one at Manhattan’s Midtown and

one at Wall Street, columns (3) and (4) of Table 3 set distance to the CBD equal to the

minimum of the distances to Times Square and Wall Street. As can be seen, the pattern of

coefficients, and the resulting conclusions, are identical to those from columns (1) and (2) (the

distance coefficient with zip code fixed effects regains significance). Note the coefficients of the

commercial and manufacturing land-use categories in Table 3 follow the pattern seen in Table

2.

As explained in Barr (2016), FAR values in New York can be open to negotiation between

developers and the zoning authority, a possibility that might affect the interpretation of the

preceding results. Barr’s discussion details how developers can secure an FAR “bonus” by

taking steps that are viewed as desirable by the authority. For example, by providing a public

plaza adjacent to a building, the developer can gain permission to exceed the site’s FAR limit,

as specified in the zoning code. Responding to Barr’s description of this process, Bertaud

(2018) argues that the New York zoning authority is exerting inappropriate control over land-

use in the city by channeling development in specific directions that it deems desirable. Given

this policy, the FAR limits in the data may be viewed as somewhat flexible by developers,

which might undermine the interpretation of the FAR coefficient as a measure of stringency.

However, if developers view the effective FAR as equal to some factor τ times the de facto

FAR , with τ greater than but close to 1, then the estimating equation (10) would change only

slightly. The replacement of θ log(FAR ) by θ log(τFAR) would simply add the term θ log(τ )

to the constant term in the regression. With the de facto FAR still determining stringency of

the regulation (up to the constant τ ), the interpretation of the regression results is unchanged.
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Note also that, if developers only rarely take steps to secure FAR bonuses, the issue recedes in

importance.12

In another application of the methodology used in this paper, Moon (2018) studies New

York and uses the selling price of “teardown” parcels to generate land value data, following

Dye and McMillen (2007). The idea is that land value is well approximated by the selling price

of occupied parcels where the building is torn down and replaced within a few years. Using

land value data generated in this fashion, and regressing value per square foot on the FAR

limit for the parcel, Moon finds the highest borough-specific FAR coefficient in Manhattan.

Therefore, the conclusion Manhattan has more-stringent FAR regulation than the other New

York boroughs again emerges, even though Moon’s land value data come from teardowns.

4.2. Washington, D.C.

Table 4 shows summary statistics for the remaining cities. Note that average price square

foot and FAR are lower in each city than in New York.

The Washington, D.C. sample contains 720 observations, which are widely distributed

within the District of Columbia (see the map in Figure 3). Since Washington’s zoning code

has mixed-use designations in many areas, assigning parcels a residential, commercial or manu-

facturing designation is not possible, so that category dummies do not appear in the regressions.

Table 5 shows the results for Washington, D.C. In column (1), the only variables are the year

fixed effects and FAR, which has a strongly significant coefficient. Column (2) adds zip code

fixed effects, which cuts the FAR coefficient almost in half, following the pattern seen in New

York. As seen in column (3), clustering of the standard errors by zip code leaves the FAR

coefficient strongly significant.

Unlike New York, Washington, D.C. has an explicit building-height limit, and its presence

appears to be manifested in the large magnitude of the FAR coefficient, indicating substantial

stringency of height regulation in D.C. At 0.716, the coefficient is more than twice as large as

the comparable New York coefficient of 0.322 from column (2) of Table 2, a regression that

has a common FAR coefficient across New York boroughs and includes zip code fixed effects.

The D.C. coefficient of 0.716 is also larger than all of the New York borough-specific FAR

coefficients in column (4) of Table 2. These comparisons yield the second major lesson of the
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paper, namely, that height regulation is more stringent in Washington, D.C., than in New York

City. Since this conclusion emerges for a city with a well-known height limit, the credibility of

the FAR coefficient as a measure of the stringency of height regulation is strengthened.

Use of circular clusters in place of zip codes, leading to the results in columns (4)–(6) of

Table 5, reduces the FAR coefficient more substantially than in the New York case, where the

magnitude of the common FAR coefficient hardly changed at all (columns (6), (8), and (10)

of Table 2). With 1/3 mile clusters, the Washington coefficient of 0.381 is larger than the

corresponding New York coefficient of 0.321, again suggesting greater stringency in D.C. But

with 1/4 and 1/8 mile clusters, the relationship is reversed, with the D.C. coefficient of 0.270

and 0.257 slightly smaller than the New York coefficients of 0.313 and 0.322. However, given

the different relationships between FAR coefficients with zip code and cluster fixed effects in

the two cities (similar vs. substantially different magnitudes in New York vs. Washington), a

comparison of regulatory stringency based on the results with zip code fixed effects seems most

credible. Therefore, the previous conclusion regarding the greater stringency of building-height

regulation in D.C. appears justified.

Note that the rows near the bottom of Table 5 show the same pattern as the corresponding

rows of Table 2. Observations per zip code (cluster) fall with cluster size, which reduces the

average squared FAR deviation within zip codes (clusters) as size decreases. In contrast to

New York, this decline does not prevent estimation of a significant FAR effect even with the

smallest (1/8 mile) cluster size.

Columns (7) and (8) of Table 5 show regressions where the FAR effect is allowed to depend

on the distance from the CBD (identified as the Washington Monument). In contrast to the

New York case, the insignificance of the distance-FAR interaction coefficient implies that the

stringency of height regulation is spatially uniform in D.C. This result may make sense given

that government employment tends to be fairly evenly distributed over much of D.C., implying

that job access is similar at different locations within the district and thus that free-market FAR

values for private development would be correspondingly similar across space. This pattern,

in conjunction with a uniform height limit, would imply spatially invariance in the stringency

of height regulation.
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4.3. Chicago

The regressions for Chicago are based on 2,540 observations, with the map in Figure 4

showing that the parcels are widely distributed across the city. As in Washington, D.C.,

inclusion of land-use categories is not feasible in the regressions, which are shown in Table 6.

The regression in column (1) shows a strongly significant FAR coefficient, but the magnitude

of the coefficient drops dramatically, to 0.0933 when zip code fixed effects are included, as seen

in column (2). While significant at the 5% level, this coefficient is not as strongly significant

as those in previous tables, which showed 1% significance. As a result, when standard errors

are clustered by zip code, the FAR coefficient loses significance, as can be seen in column (3)

of Table 6. This pattern continues for the circular-cluster results, with none of the coefficients

in columns (4)–(7) statistically significant. Comparing Table 6 to Tables 5 and 2 shows a

possible reason for this lack of significance: fewer observations per cluster in Chicago than in

Washington D.C. or New York under 1/3, 1/4 and 1/8-mile cluster sizes. This difference may

account for the lower precision of Chicago’s estimated FAR effects for these cluster sizes.

Viewing the significant column (2) coefficient as credible, its small magnitude compared

to the corresponding coefficients for New York and Washington, D.C., suggests the third main

lesson of the analysis: building-height regulation is mild in Chicago, with low stringency com-

pared to that in New York and Washington, D.C. Thus, regulated building heights in Chicago

are close to free-market levels.

The regressions in columns (7) and (8) of Table 6 allow the FAR effect to depend on

distance, and the coefficient pattern is the same as in New York, with a positive FAR coefficient,

a negative distance coefficient, and a negative interaction coefficient that is smaller in absolute

value than the FAR coefficient (with and without zip code fixed effects). As before, the

implication is that the FAR effect declines with distance to the CBD, and that the effect of

distance on the land price (which depends on FAR) is negative in standard fashion.13 Therefore,

the stringency of building-height regulation in Chicago, while low on average, is greatest near

the CBD.

4.4. Boston

Boston has fewer observations than the previous cities, with only 299 land sales observed.
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The bulk of the observations lie in the city of Boston, but some are in outlying communities

(see the map in Figure 5). The results, contained in Table 7, show a strongly significant

FAR coefficient in column (1), and a substantial reduction in the coefficient (to 0.239**) when

zip code fixed effects are included (column (2)). The significance of the FAR coefficient is

reduced to the marginal 10% level when standard errors are clustered by zip code, as seen

in column (3), and insignificance persists in the three circular-cluster regressions in columns

(4)–(6). Comparison to Table 6 shows that observations per cluster are smaller in Boston than

in Chicago (and thus smaller than in New York and Washington D.C.), possibly accounting

for this lack of significance.

When the FAR effect is allowed to depend on distance, the coefficient pattern is the same as

in New York, with a positive FAR coefficient and negative distance and interaction coefficients,

in the regression without zip code fixed effects.14 But when zip code fixed effects are included,

only the FAR coefficient among these three is significant, implying that the distance has no

effect on land values and that the FAR effect is independent of distance. The first of these

conclusions is anomalous and presumably shows that, with relatively few observations, there

is not enough distance variation within zip codes to identify an effect on land values.

Focusing on the coefficient in column (2) for purposes of comparison with the other cities,

the results suggest that the Boston’s building-height regulation is more stringent than in

Chicago, but less stringent than in New York and Washington D.C., a conclusion that consti-

tutes the fourth main lesson of the analysis.

4.5. San Francisco

Like Boston, San Francisco has relatively few observations (291), which are widely dis-

tributed across the city (see the map in Figure 6). The regression results are shown in Table

8. The FAR coefficient is positive and strongly significant in column (1), which only contains

the year dummies and FAR itself. As before, the FAR coefficient drops substantially (to 0.116

in column (2)) when zip code fixed effects are included, but the estimate is not statistically

significant (and remains so with clustered standard errors). Evidently, this outcome is due to

the relatively small number of observations, which reduces the number of observations per zip

code and thus hinders identification of the FAR effect, which relies on within-zip-code variation
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in FAR . Similarly, the FAR coefficients in the circular-cluster regressions are all insignificant,

as seen in columns (4)–(6) of Table 8 (but as in Boston, observations per cluster are lower than

in New York, Washington D.C., and Chicago).

In the regressions that allow the FAR effect to depend on distance from the CBD (columns

(7)–(8)), the FAR and interaction coefficients are significantly positive and negative, respec-

tively, as before, but the distance coefficient is insignificant (with and without zip code fixed

effects). The FAR effect thus decreases with distance, as in New York and Chicago, and while

the distance effect is negative as before, it now emerges solely through the interaction term.

The insignificance of column (2)’s FAR coefficient makes comparing regulatory stringency

with other cities tenuous. But based on the insignificant point estimate of 0.116, the conclusion

would be that San Francisco’s height regulation exhibits low stringency, like that in Chicago.

This conclusion might be viewed as surprising given California’s reputation as a state with

extensive land-use regulation. The finding of low stringency could conceivably be explained

by the higher costs of earthquake-resistant construction, which may reduce free-market FARs

in San Francisco relative to those in similar earthquake-free cities, making them closer to

regulated FARs. Alternatively, the burdens of other regulations such as minimum parking

requirements may limit the incentives for dense development to an extent that makes existing

FAR limits nonbinding.15

4.6. Calculation of h(S)/h(S∗)

With estimated values of θ in hand, the ratio of h(S)/h(S∗) can be computed once a

value for the production-function exponent β is assumed, using the formula in (9). This ratio

gives the regulated FAR as a share of the free-market FAR. Table 9 shows the calculations for

two different values of β, 0.6 and 0.8. Note that, for Washington, D.C., the θ value of 0.381

from the 1/3-mile cluster regression is used in place of the much larger 0.716 value from the

regression with zip code fixed effects. As can be seen from Table 9, the calculation implies that

regulated building heights are 70–77% of free-market heights in New York and 63–72% of free-

market heights in Washington, D.C. In Chicago, regulated heights are 92–94% of free-market

heights, reflecting low stringency, and San Francisco’s 90–93% value is similar. Boston’s heights

are 78–84% of free-market values. Thus, the stringency ranking, from greatest to lowest is:
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Washington D.C., New York, Boston, San Francisco, Chicago.

The conclusions from Table 9 can be compared to the results of Glaeser et al. (2005),

who provide regulatory-tax measures for other cities in addition to New York. Since their

results are based on data for detached single-family houses (see footnote 1) and implicitly

include all types of land-use regulations as sources of the regulatory tax, the findings are not

strictly comparable to the present findings. Nevertheless, the ranking of stringency based on

the regulatory tax for the current group of cities is as follows, from most to least stringent:

San Francisco, Washington D.C., Boston, New York, Chicago. While this ranking is different

from the one based on Table 9, both rankings do count Chicago as a low-stringency city.16

Since urban theory shows that building-height limits raise housing prices (Bertaud and

Brueckner (2005)), a connection between housing affordability and regulatory stringency might

be expected. Among the five current cities, it is well known that Chicago is the most affordable,

in line with the stringency ranking from Table 9. However, since the other four cities benefit

from coastal amenities, which also affect housing prices, other factors would not be equal

in attempting to link affordability to FAR stringency across the five cities. Note, however,

that with data on many more cities than the current sample of five, it would be possible

to untangle these effects by running a regression relating a city-level housing price index to

estimated stringency and other covariates. With such a sample, it would also be possible to

explore the determinants of stringency. For example, using regression results for their much

larger sample of Chinese cities, Brueckner et al. (2017) found that stringency is greater in cities

with many historical-cultural sites (high stringency in Washington, D.C., is the US counterpart

to this finding).

In addition to raising housing prices, Bertaud and Brueckner’s (2005) analysis shows that

a height limit creates urban sprawl and reduces the utility of urban residents. The numerical

simulation of their model is based on a draconian height limit that reduces central building

height to about 20% of its free-market value, a more stringent regulation than any of those in

Table 9. In addition to raising the housing price per square foot by 20-30% throughout the city,

the height limit causes the city’s radius to grow from 21.4 miles to 23.5 miles, increasing the

urban land area by 21% (the height limit binds out to a distance of 11.7 miles). In response to
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this spatial expansion of the city, the annual commuting cost of the resident living at the city’s

edge increases by $945 per year, or 2.2% of income. This resulting reduction in disposable

income is an exact measure of the welfare cost of the restriction for each of the city’s identical

residents.

5. Conclusion

This paper has explored the stringency of land-use regulation in US cities, focusing on

building heights. Stringency is substantial when regulated heights are far below free-market

heights, while stringency is lower when the two values are closer. Using FAR as a height

index, theory shows that the elasticity of the land price with respect to FAR is a proper

stringency measure. This elasticity is estimated for five US cities by combining CoStar land-

sales data with FAR values from local zoning maps, and the results show that New York

and Washington, D.C., have stringent height regulations, while Chicago’s and San Francisco’s

regulations are less stringent (Boston represents an intermediate case). While the stringency

verdict for Washington is not very surprising given the city’s explicit height limit, the verdict

for New York is more noteworthy since it confirms other calls for greater densification of the

city, especially Manhattan.

The remarkable aspect of the paper’s methodology is that stringency can be measured

without knowing free-market building heights, which are obviously unobservable. The method

exploits the intuitive proposition that relaxing a tight height limit raises the developer’s

willingness-to-pay for the land by more than relaxing a loose limit. The method could be

applied to any regulation that targets a continuous land-use variable, such as a minimum

parking requirement, a minimum lot size, or a minimum street set-back distance. Given that

land-use regulations are gaining more attention as a potential cause of high housing prices in

the US, the ability to gauge their stringency is an important advancement.
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Table 1: Summary Statistics: New York

Variable Obs Mean Std. Dev. Min Max

New York (Zip Code count = 172)

FAR 5173 4.428 2.789 1.000 15.000
Sale Price (in ’000s) 5173 6363.601 27862.700 1.000 870000.000
Land Area (in ’000s sqft) 5173 26.264 417.746 0.200 29446.560
Price per sqft 5173 581.605 1774.472 0.165 36418.250
Dist. to Wall Street 5173 6.722 3.916 0.126 18.780
Dist. to Times Square 5173 6.532 3.802 0.110 22.392
Min. distance to Times Square or Wall Street 5173 5.365 3.545 0.110 18.780

Brooklyn (Zip Code count = 38)

FAR 2098 3.621 1.593 1.000 12.000
Sale Price (in ’000s) 2098 3393.037 14156.470 3.000 383217.500
Land Area (in ’000s sqft) 2098 14.726 44.657 0.200 958.320
Price per sqft 2098 325.293 502.890 1.695 8333.333
Dist. to Wall Street 2098 4.306 2.029 0.609 9.192
Dist. to Times Square 2098 6.569 2.536 2.036 12.921
Min. distance to Times Square or Wall Street 2098 4.284 2.044 0.609 9.192

Bronx (Zip Code count = 25)

FAR 802 4.171 1.571 1.000 7.200
Sale Price (in ’000s) 802 1352.363 2558.830 28.000 45800.000
Land Area (in ’000s sqft) 802 21.098 48.383 0.984 580.306
Price per sqft 802 104.956 108.267 1.084 1479.444
Dist. to Wall Street 802 11.545 1.934 8.169 16.192
Dist. to Times Square 802 7.894 1.955 4.437 12.455
Min. distance to Times Square or Wall Street 802 7.894 1.955 4.437 12.455

Manhattan (Zip Code count = 42)

FAR 1088 7.834 3.207 2.000 15.000
Sale Price (in ’000s) 1088 19345.980 54626.150 1.000 870000.000
Land Area (in ’000s sqft) 1088 13.722 29.280 0.436 569.600
Price per sqft 1088 1836.249 3514.259 0.165 36418.250
Dist. to Wall Street 1088 4.774 2.860 0.126 12.593
Dist. to Times Square 1088 2.570 1.697 0.110 8.686
Min. distance to Times Square or Wall Street 1088 2.210 1.769 0.110 8.686

Queens (Zip Code count = 55)

FAR 1021 3.114 2.092 1.000 15.000
Sale Price (in ’000s) 1021 3068.671 9352.842 33.504 173539.700
Land Area (in ’000s sqft) 1021 25.348 67.835 0.370 927.610
Price per sqft 1021 226.913 339.047 1.703 3735.730
Dist. to Wall Street 1021 9.136 3.266 3.569 16.016
Dist. to Times Square 1021 8.162 4.210 1.767 17.168
Min. distance to Times Square or Wall Street 1021 7.904 3.860 1.767 15.897

Staten Island (Zip Code count =12)

FAR 164 1.590 0.977 1.000 4.800
Sale Price (in ’000s) 164 3257.189 11654.480 60.842 122000.000
Land Area (in ’000s sqft) 164 288.048 2322.446 1.600 29446.560
Price per sqft 164 76.153 72.319 1.406 400.000
Dist. to Wall Street 164 11.954 3.894 5.554 18.780
Dist. to Times Square 164 15.519 3.887 9.208 22.392
Min. distance to Times Square or Wall Street 164 11.954 3.894 5.554 18.780
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Table 4: Summary Statistics for Other Cities

Variable Obs Mean Std. Dev. Min Max

Washington, DC (Zip Code count = 24)

FAR 720 3.720 2.120 0.500 10.000
Sale Price (in ’000s) 720 6526.632 13586.700 3.733 136602.600
Land Area (in ’000s sqft) 720 38.771 138.215 0.638 3073.859
Price per sqft 720 348.194 504.407 0.986 8186.687
Dist. to CBD 720 2.490 1.307 0.437 6.616

Chicago (Zip Code count = 49)

FAR 2540 2.679 2.926 0.100 32.000
Sale Price (in ’000s) 2540 1852.842 5800.289 1.000 136469.000
Land Area (in ’000s sqft) 2540 70.481 598.675 0.600 26136.000
Price per sqft 2540 86.146 149.845 0.164 2062.639
Dist. to CBD 2540 4.915 3.018 0.020 16.756

Boston (Zip Code count = 28)

FAR 299 2.242 2.081 0.300 11.000
Sale Price (in ’000s) 299 7775.499 23178.500 30.000 203750.000
Land Area (in ’000s sqft) 299 73.394 207.947 0.476 2199.997
Price per sqft 299 250.493 804.227 3.403 12049.080
Dist. to CBD 299 2.956 2.173 0.121 9.221

San Francisco (Zip Code count = 22 )

FAR 291 3.916 2.858 1.000 18.000
Sale Price (in ’000s) 291 6776.412 16889.440 1.812 191816.200
Land Area (in ’000s sqft) 291 26.488 81.705 1.171 958.908
Price per sqft 291 364.7446 485.2245 0.143445 4353.691
Dist. to CBD 291 2.241 1.698 0.214 6.233
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Table 9: Calculation of h(S)/h(S∗)

estimated θ β = 0.6 β = 0.8

New York 0.322 0.77 0.69

Washington, D.C. 0.381 0.72 0.63

Chicago 0.093 0.94 0.92

Boston 0.239 0.84 0.78

San Francisco 0.116 0.93 0.90
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Fig. 1: New York observation map 
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Fig. 3: Washington, DC observation map
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Fig. 4: Chicago observation map
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Fig. 5: Boston observation map
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Fig. 6: San Francisco observation map
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Appendix: Sources of Zoning Data

New York

http://www1.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.

page

Washington DC

http://opendata.dc.gov/datasets/planned-land-use-in-2006?geometry=-78.321

%2C38.712%2C-75.708%2C39.086

Chicago

https://data.cityofchicago.org/Community-Economic-Development/Boundaries-

Zoning-Districts-current-/7cve-jgbp

Boston

http://hub.arcgis.com/datasets/boston::zoning-subdistricts

San Francisco

http://sf-planning.org/zoning-use-district-summaries#crnc
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Footnotes

∗We thank CoStar for access to their land sales data. We also thank Jason Barr, Devin
Bunten, Jeffrey Brinkman, Edward Coulson, Shihe Fu, Leonard Nakamura, Jeffrey Lin,
David Neumark, Chris Severen, Guangliang Yang, Junfu Zhang, and seminar participants
at Xiamen University and at the 2018 CURE conference for helpful comments.

1The regulatory indexes are typical used to study the impacts of regulation on housing and
land prices. Ihlanfeldt (2007) and Jackson (2018) use their indexes in this way, and other
recent examples are Turner, Haughwout, and van der Klaauw (2014) and Albouy and Ehrlich
(2017) (see Gyourko and Molloy (2015) for a survey of earlier work).

2The New York calculation, which applies to residential floor space in high-rise buildings,
can ignore land costs, focusing on the cost of per square foot of adding more vertical space
relative to the price of such space. The paper also includes calculations of the regulatory
tax for detached single-family houses in other metropolitan areas, a calculation that requires
consideration of land costs. In the calculation, the excess of house value over production
cost (which includes the cost of land, estimated from the lot-size coefficient in an hedonic
price function) is expressed as a percentage of house value, with a larger number indicating
a greater regulatory tax.

3If a building completely covers its lot, then FAR equals the number of storeys in the building,
and with partial coverage, FAR equals the number of storeys times the fraction k < 1 of lot
coverage. Since the k is fairly uniform within cities, FAR is good index of building height.

4Brueckner and Sridhar (2012) provide a measure of the welfare cost of the very stringent
height limits in India. They use results from Bertaud and Brueckner (2005), which show
that welfare cost of a tighter FAR limit can be measured by the sprawl-induced increase in
commuting cost for the resident at the edge of the city. Regressing the size of the urban
footprint on average regulated FAR, population and other covariates shows the negative
effect of a higher FAR on edge-resident commute distance. Using estimates of the time
and money costs of commuting in India, the edge-resident’s commuting-cost savings from
a higher FAR can be computed and aggregated up to the city level to measure the overall
benefit from looser regulations. For an average-size Indian city, the aggregate welfare gain
from a unit increase in FAR is more than $1 billion.

5The approach is imperfect because, when streets are long, parcels within a cluster may not
be close to one another.

6The discussion in this section mostly replicates the full derivations in Brueckner et al. (2017)
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since leaving out steps would keep the paper from being self-contained.

7Other studies using CoStar land-value data include Albouy, Ehrlich and Shin (2017) and
Barr (2016).

8See Barr and Cohen (2014) for an analysis of the spatial FAR pattern in existing New York
buildings. In addition, Barr (2012a,b) analyzes the determinants of building heights in New
York.

9Specifications that allow the FAR coefficient to differ by land-use category did not yield
useful results.

10With relatively few observations per cluster, as opposed to the larger number of observations
per zip code, clustering the standard errors by circular cluster seems less needed than in the
zip code case and therefore is not done.

11The distance effect is significantly negative for a wide range of FAR values around the mean.

12Although one might expect that buildings would always be constructed up to the relevant
height limit in an area, the fact that many buildings predate existing zoning rules can make
existing FARs less than regulated levels in many cases. In fact, as explained by Barr (2016),
New York rules allow this FAR gap to be sold in the form of “air rights”, which allow a
developer to exceed a regulated FAR by the amount of a nearby building’s shortfall via
payment to its owner. See Furman Center for Real Estate and Urban Policy (2013) for
further information.

13In a graph like Figure 1, the confidence intervals start to cover zero at a distance of 4 miles,
suggesting that FAR limits may not bind beyond this distance. As in New York, the distance
effect is negative in a range around the mean FAR.

14In a graph like Figure 1, the confidence intervals start to cover zero at a distance of 4 miles
(as in Chicago), again suggesting that FAR limits may not bind beyond this distance. The
distance effect is negative in a range around the mean FAR.

15For a cost-benefit analysis of regulations targeted toward earthquake resistance, see Schulze,
Brookshire, Hageman and Tschirhart (1987). They assume that such regulation raises con-
struction costs by 3–7%.

16The ranking of the current group of cities by the value of the Wharton Residential Land Use
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Regulatory Index (Gyourko et al. (2008)) is, from largest to smallest: Boston, San Francisco,
New York, Washington D.C., Chicago. This index, however, does not attempt to measure
the stringency of regulation.
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