

The Macroeconomic Effects of Social Security Contributions and Benefits – Evidence from Germany

Sebastian Gechert, Christoph Paetz and Paloma Villanueva

ASSA Annual Meeting – Atlanta, GA, January 4-6, 2019

Motivation

- Multiplier effects of social security changes "relative unknowns of fiscal policy" (Romer and Romer, 2016)
- Identification problem (endogeneity of the budget to business cycle fluctuations)
 - Cyclical Adjustment Approach (Blanchard and Perotti, 2002) (BP)
 - Narrative Approach (Romer and Romer, 2010) (RR)

Contribution of the Paper

- Constructs a narrative quarterly series of social security contribution and benefit shocks for Germany
- Estimates their respective GDP effects
 - ...based on the proxy SVAR specification of Mertens and Ravn (2014) (MR) (rule out model friction)
- \bullet ...compares narrative MR/RR specification with BP specification

Constructing the Shock Series

- Period 1970q1-2013q4
- Shock series covers changes in transfers and social security contributions for pensions, health care, long-term care and unemployment insurance on the German federal level
- Sources:
 - Chronicles from Federal Ministry of Labour and Social Affairs, German Statutory Pension Insurance Scheme, Steffen (2013)
 - Historical records of draft legislations and legislative texts from Bundestag (Federal Parliament) and Bundesrat (Federal Council)
 - \rightarrow Provide <u>size</u>, timing and <u>motivation</u> of the shock
- Size
 - Expected amount of full-year budgetary effect of the measure (without macroeconomic feedback), % of annual GDP
- Timing
 - Shocks are timed at the implementation date of the discretionary measure
 - But we also test with announcement dates, non-anticipated shocks (fiscal foresight)
- Motivation
 - Exogenous: structural and ideological reasons, budget consolidation, rulings of the court
 - Endogenous: counter-/procyclical policies, contemp. macroeconomic shocks, spending-driven / revenue-driven

Figure 1: Exogenous Shocks to Social Security at Implementation Date (% GDP) (>0 = consolidation shock)

Reduced-form VAR model

identical for both MR and BP approaches:

$$X_t = \mathbf{\Gamma}(L)X_{t-1} + v + u_t$$

$$X_t = \left[g_t \ y_t \ \tau_t\right]'$$
(2)

 $X_t = \left[g_t \ y_t \ au_t\right]'$

... more specifically:

4 lags

 g_t = general gov't spending on consumption and capital formation

 $y_t = \mathsf{GDP}$

 τ_t = social security revenues or expenditures

all log real per capita levels (robustness: growth rates)

v = constant, linear time trend, re-unification dummy and financial crisis dummy

Identification (AB model)

$$\mathbf{A}X_{t} = \mathbf{A}\Gamma(L)X_{t-1} + \mathbf{A}v + \mathbf{B}\varepsilon_{t}$$
(3)

$$u_t = \mathbf{A}^{-1} \mathbf{B} \varepsilon_t$$

$$\Sigma_u = \mathbf{A}^{-1} \mathbf{B} \Sigma_{\varepsilon} \mathbf{B}' (\mathbf{A}^{-1})'$$

$$(5)$$

$$oldsymbol{\Sigma}_{arepsilon} = oldsymbol{I}$$
 $oldsymbol{A}_{MR} = egin{bmatrix} 1 & -ar{lpha}_{gy} & -ar{lpha}_{g au} \ -lpha_{yg} & 1 & -ar{lpha}_{y au} \ -ar{lpha}_{ au g} & -ar{lpha}_{ au y} \end{bmatrix}$ $oldsymbol{A}_{BP} = egin{bmatrix} 1 & -ar{lpha}_{gg} & 1 & -ar{lpha}_{y au} \ -ar{lpha}_{ au g} & -ar{lpha}_{ au y} & 1 \end{bmatrix}$ $oldsymbol{B} = egin{bmatrix} eta_{gg} & 0 & ar{eta}_{g au} \ 0 & eta_{yy} & 0 \end{bmatrix}$

Identifying Restrictions

MR approach:

 $\bar{\alpha}_{ii}$ – technical 0/1 restrictions

 $\bar{\alpha}_{v\tau}$ – IV estimation

$$\hat{\mathbf{u}}_t^y = \mu^y + \alpha_{y\tau}^{IV} \bar{\mathbf{u}}_t^\tau + \zeta_t^y \tag{6}$$

$$\hat{\boldsymbol{u}}_{t}^{\tau} = \boldsymbol{\mu}^{\tau} + \gamma \boldsymbol{m}_{t} + \boldsymbol{\omega}_{t}^{\tau} = \bar{\boldsymbol{u}}_{t}^{\tau} + \boldsymbol{\omega}_{t}^{\tau} \tag{7}$$

BP approach:

 $\bar{\alpha}_{ii}$ – technical 0/1 restrictions

 $\bar{\alpha}_{\tau y}$ – elasticities of social security benefits and contributions (Price et al., 2014)

Table 1: Elasticities imposed and estimated for the BP and MR models in levels

	Socrev	Socexp
$\overline{lpha_{ au \mathbf{y}}}$		
(1) BP imposed	0.60	-0.50
(2) MR implied	0.74 (0.43, 1.04)	-0.74 (-1.14, -0.34)
$lpha_{ extsf{y} au}$		
(3) BP implied	-0.09 (-0.18, 0)	0.15 (0.07, 0.23)
(4) MR imposed	-0.13	0.20

95% confidence bounds for implied elasticities in parentheses.

Results

Figure 2: IRF for MR (solid red or green) and BP (dashed blue) identification - expansionary shock to contributions or benefits (tau) sized to 1% of GDP, log levels, 2-SE confidence bands

Results are robust to ...

- non-anticipated shocks only
- original MR B-model specification
- extended 5-variable VAR
- big vs. small shocks (for revenues big shocks have lower multiplier)

Central Findings

- 1. Revenues: Impact multiplier of ≈ 0.8 , effect dies out quickly
- 2. Benefits: Impact multiplier of \approx 0.9, effect much more persistent
- 3. No significant difference between MR/RR and BP approach
- \rightarrow Social security shocks push GDP only mildly, middle of the range of multipliers
- \rightarrow Redistribution from rich to poor (higher contributions + higher transfers) might have positive net effect in the medium run