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Overview

e We consider inference in regression models with an endogenous covariate
and weak instruments.

e The random errors of the structural equation and of the first stage can
be heteroskedastic.

e The random errors of the structural equation and those of the first stage
can be correlated between observations.

e The random errors of the structural equation and those can be correlated
for each observation (endogenous covariate), but also across observations.

e In summary: the errors of the first-stage and structural equation are
heteroskedastic and autocorrelated (HAC).



e Inference for the regression coefficient of an endogenous variable using
weak instruments is fundamentally different in the HAC case.

e Current tests for this case can result in low power c.q. wide confidence
intervals, because tests available in statistical software as STATA ignore
important information in the HAC case.

e We propose a new test that has high power in cases where current tests
fail.

e In a simple model for earnings with endogenous education and peer effects
we show that errors are HAC with a rather complicated variance matrix.



Heteroskedastic Errors in the Return to Education

e Model of earnings function with endogenous education as in Card (2001).

e Individual maximizes lifetime utility log ¢(t) with ¢(¢) consumption sub-
ject to a lifetime budget constraint.

e Net income while at school is 0, earnings grows at constant rate g, and
¢(t) the disutility of attending school.

e FOC for education beyond compulsory level is
/'(S)
f(S)

with R the interest rate at which the individual can borrow/lend and p
the subjective discount factor.

= R—g— pe "¢(9)

e The LHS is the relative return to education and the RHS is the marginal
cost of education d(5).



e The marginal return and the marginal cost depend of (un)observed char-
acteristics of the individual

f'(S)

f(Si)
with b;, r; the unobserved heterogeneity in the marginal return and the
marginal cost of education.

= bl + BIXZ d(SZ) =7, T ,OXZ + kQSZ

e Integration of this expression and assuming that the log earnings y; of ¢
with work experience E; =t — S; is logy; = log f(.S;) + A\i E;, we find for
the earnings function

logy; = a; + & X; + b;S; + ' XS + ME;

with a; + &' X; the integration constant.



e The optimal level of education is

bi—ri  (B—p)
= X,
R T

e This demand function for education can be identified if we have an ex-
ogenous shock to the marginal cost of education

7 = @91
Card (2001), Table 2 lists instruments used in 11 studies.

e Substitution results in the first-stage model
SZ:W/Zl—Fé/XZ—F??Z W:—’y/kg 5: (ﬁ—p)/kg n;, = (bi—b—cz-)/kz

e S; depends on b; and is therefore endogenous in the earnings function.
Also a;, b; may be correlated.



e The reduced form of this model is

logy; =a+br'Z;+ ' X+ (Be7)(Xi®Z) + (BR)(X; ® X)) + AE; + (G
(1)
S; = ZZ/’/T + 5/XZ + n; (2)

with b = E(b;), A = E(\;)
a= FE(a;) + E((b; — b)n;) a=a+bd
e The error that reflects the unobserved heterogeneity in the model is
¢ = ai—F(a;)+bn;+(b;—b)n;— E((bi—=b)n;)+m;8' X;+(b;—b)7' Z;+(b;—b) 6’ X;+
+(Ai — AN E;

e This model can be used to estimate the average return to education b.
Mean independence of ;, a; — E(a;)) and b; — E(b;)) of Z;, X;, E; is not
sufficient and we need full independence because E[(b; — b)n;|Z;] may
change with Z; (Card(2001)).



e (; is heteroskedastic and the covariance of n; and (; depends on Z;, F;, X;.
This is typical for a structural model with unobserved heterogeneity.
There is no correlation across observations.



Peer Effects and HAC Errors in the Return of Education

e Following Graham (2008) we assume that an individual’s return to edu-
cation depends on the peer group average

bi—b:Vp-l—(T—l)(Ep—b)—F&
with v, peer-group characteristics.

e The first-stage error is

_Vp T—1 - fi_ci

T]z'—k2+ = (bp—b)—l— T

e The error of the earnings function is
G = (ai— E(as)) +bmi+ 18 X+ (X — N Ei+nsvp + (7 — 1) (by — b) s + &+
—f—Vp(T('lZZ' =F 5/X7) Sin (7’ = 1)(517 = b)(ﬂ'/ZZ =F 5/Xz) = fi(ﬂ'/Zi O 6/XZ)



e Note that the peer effect in the return to education induces a peer effect

in the choice of the level of education (positive dependence on l;p if 7>
1, ko > 0)

e The error of the earnings equation is still heteroskedastic. In addition
the errors of the reduced form are correlated within, but not across peer
groups. Most importantly for inference, the ¢; and n; are correlated
within peer groups (and the correlation depends X;, Z;).

e Conclusion: introducing peer effects in Card’s prototypical model of
schooling level choice and earnings produces a triangular linear system
with HAC errors. We consider inference in such a system.



Inference with HAC errors and weak instruments

e Triangular system with single endogenous variable and % possibly weak
instruments and n observations

Y1 = Y28 +u
Yo = LT + vy

Goal is to do inference (test, confidence interval) on f.

e The errors in u, vy can be correlated, both within (endogeneity) and be-
tween observations, and can be heteroskedastic.

e Correlation between observations occurs in time-series data (HAC, see
e.g. Newey and West (1987)), in spatial data (spatial HAC, see e.g.
Conley (1999)) and in data with a group structure (clustering, see e.g.
Cameron and Miller( 2015)).

e We consider the implication of correlation of the errors between observa-
tions on weak-instrument robust inference.



e With Y = [i; y»] and a = (5 1)’ the reduced form is
Y =Zrd +V (3)

e We pre-multiply the reduced form by (Z’Z)~'/2Z’ and define R = (Z2'2)~'/?Z'Y
so that N
R=pd +V (4)
with = (2'2)"? 7 and V = (2/2)* 2'V.

~

e The variance matrix of vec(V') is the 2k x 2k matrix X

Y11 212 >
E p—
( Y1 222

is unrestricted.



e Y is estimated as in Newey and West (1987) (HAC), Conley (1999) (spa-
tial HAC) or with a White (1980) type estimator.

e The cluster-robust estimator (White (1980)) is

g 12 Z Z g, Zo(2' Z) 7V

e We ignore the details of estimation of > but focus on the impact of
features of this variance matrix on inference.



Current practice

e Instead of R we consider equivalent statistics S, T.

e Current practice for testing Hy : § = 0 is to use one of the following
tests, implemented in STATA (Finlay and Magnusson(2009)).

o LM test

S'T
LM, = T (5)
e Anderson-Rubin (AR) test
AR=25'S
e CQLR test
AR-T'T AR —T'T)? +4LM -T'T
COLR R + /(AR )2 +

2



e Power curves show the performance of these tests with simulated data.
e The LM; and CQLR tests are behaving poorly with power equal to size.

e The AR test does better, but it will behave worse if the number of in-
struments increases (AR is optimal choice if £ = 1).

e The poor performance is only in the case of weak instruments. If the
instruments are strong the LM; test dominates the other tests.

e The DGP for which the LM; and CQLR tests do poorly only occur if the
errors are HAC.

e To be specific the DGP have
WEL ¥ =0



e A necessary and sufficient condition for this is that the eigenvalues of the
covariance matrix of the reduced-form and first-stage errors are not all
negative or positive.

e With time-series regressions of consumption on asset returns we found
that for 9 out of 11 countries the eigenvalues of 315 + X}, or of opposite
signs.



Using additional information

e A further diagnosis shows that the relevant information in the data is in
the statistics S’S, S"T",T'T if the errors are homoskedastic and uncorre-
lated between observations.

e The LM;, AR, and CQLR tests all depend on these statistics.

e This follows from the fact that the model does not change if the data are
transformed in certain way so that the test should not change either.

e The model with HAC errors at first sight changes with the data trans-
formation. However if we consider ¥ as a parameter but also as part
of the data then there is again a transformation that leaves the model
unchanged.

e The statistics S’S, S"T,T"T no longer contain all relevant information.



e To take account of the additional information Moreira and Ridder (2018)
propose a new test.

=1 / —1 -1 / —1 /
00 wee(Rp)'Tg (aA®Ik)((aA®Ik)EO (aA®Ik)) (/A ®1},) S5 Lvec(Ry)~T'T
Gl = e 2 (6)

x |(ar ® IS5 (aa ® Ie) |2 | A[F2dA .
e This is an integrated likelihoood ratio test where we do not maximize

over A = 3 — [y, but integrate.

e See power curves for performance.



Conclusion

e Inference with weak instruments is different if errors are homoskedastic
and serially uncorrelated, and if errors are HAC.

e With weak instruments tests that perform well in the homoskedastic case
ignore relevant information in the HAC case.

e That leads to poor performance of these tests for a class of HAC DGP.

e Although an indication that one has such a DGP can be obtained from
the data, there is no test of such DGP-s.

e Therefore practitioners should not use the LM, LM; and CQLR tests
that are currently implemented in STATA. The AR test is preferred over
these, but performs poorly if the number of instruments is large.

e The CIL test is a promising alternative.

e This advice affects researchers who use IV with time-series, spatial and
grouped data.



Figure 1: Power curves AR, LM, CQLR, and CIL tests for model with HAC errors with ¢15 = 100, ¢;; = 1
and ¢z = ¢35 + ¢15; varying instrument strength A, a = .05.
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