Investing in Children's Skills: Equilibrium Analysis of Social Interactions and Parental Investments

Francesco Agostinelli

University of Pennsylvania

Motivation

• How do social interactions affect the dynamics of skill formation?

- ▶ Peer effects (effect of friends' achievements on a child's outcome)
- ▶ Parental investments respond to the child's social interactions

• Many policies have lasting effects on peers' composition

- Examples: school busing policies, re-drawing school's district boundaries, etc
- Size of the policy matters (no. of children)
 - School composition is changed
 - Children make new friends
 - Parental investments endogenously respond to changes in peers

This Paper

- Dynamic equilibrium model of child development and social interactions
 - ► Children grow up in different *environments*
 - $({\tt peers\ composition\ ,\ neighborhood\ quality\ ,\ school\ quality\)}$
 - ▶ Endogenous peer network formation and parental investments
 - ► Technology of skill formation
 - Equilibrium effects within each environment:
 - Individual return of investing is affected by other parents' investments (through children's social interactions)
 - Explain part of developmental gaps between different environments

This Paper

- Dynamic equilibrium model of child development and social interactions
 - Children grow up in different *environments*

 $(\, {\tt peers \ composition} \ , \ {\tt neighborhood \ quality} \ , \ {\tt school \ quality} \)$

- ▶ Endogenous peer network formation and parental investments
- ► Technology of skill formation
- Equilibrium effects within each environment:
 - Individual return of investing is affected by other parents' investments (through children's social interactions)
 - Explain part of developmental gaps between different environments
- **Preview of Results:** Moving many children to better environment:
 - Important dynamic equilibrium effects
 - Receiving children: up to -10% SD skills at age 16
 - Heterogeneous effects due to endogenous formation of new peers

Data and Empirical Evidence

Data

- The National Longitudinal Study of Adolescent Health (Add Health)
- Representative for US schools in 94-95
 - ▶ 144 public and private schools
 - ▶ In-school survey: 90,118 adolescents in grades 7-12
 - ▶ In-home survey: 20,745 subsample of In-school survey
 - ► Contextual information about Census Tract (e.g.: median household income)
- Friendships nomination
 - ▶ Friendship network within school roster
- Measures for adolescents achievements (skills)
 - ▶ Peabody Picture Vocabulary Test (PPVT)
 - ▶ Math, Science, English and History Grades
- Measures for parental investments (In-home survey)

Summary of Empirical Evidence

- 1. Homophily-bias in friendship formation
 - ► Race Race
 - Skills (New Fact) Skills
- 2. Parental investments respond to peer compositions (New Fact)
 - Empirical challenge: peer groups are formed endogenously
 - ▶ I exploit within-school/across-cohorts variation in peer composition (see Hoxby, 2000)
 - Shifts in the *choice set* from which children can select their friends

Summary of Empirical Evidence

- 1. Homophily-bias in friendship formation
 - Race Race
 - Skills (New Fact) Skills
- 2. Parental investments respond to peer compositions (New Fact)
 - Empirical challenge: peer groups are formed endogenously
 - ▶ I exploit within-school/across-cohorts variation in peer composition (see Hoxby, 2000)
 - Shifts in the *choice set* from which children can select their friends
 - What's the effect on child development of changes in peer composition?
 - ▶ To answer this question, I need a model with:
 - 1. Endogenous formation of new peer groups
 - 2. Parents respond to peer changes
 - Equilibrium effects of other parents' investments on a child development

The Model

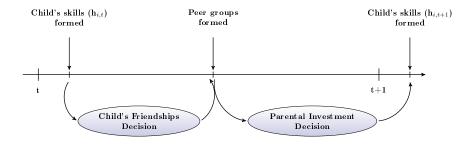
The Model

- Children will be between 13 and 16 years old
- Different environments $e \in \{1, \ldots, E\}$:
 - ▶ Populated by N_e families
 - \blacktriangleright Neighborhood quality d
 - \blacktriangleright School quality s
- Families are formed by one parent and one child
 - ▶ Heterogeneous in many dimensions: skills, race, income

1. Children:

Select their peers based on their observed characteristics and <u>skills</u>

2. Parents:


- ▶ Take children's decision as given
- Invest their time to foster their <u>children's skills</u>
- <u>Equilibrium</u>: Parental investments have to be consistent with each other (Equilibrium concept: Markovian Equilibrium)

Technology of Skill Formation

$$h_{i,t+1} = h_{i,t}^{\alpha_1} \left[\alpha_2 \left(I_{i,t} \right)^{\alpha_3} + (1 - \alpha_2) \left(\overline{H}_{i,t} \right)^{\alpha_3} \right]^{\frac{\alpha_4}{\alpha_3}} \cdot e^{A_d + A_s + A_t + \eta_{i,t+1}}$$

- $h_{i,t+1}$: Next-period stock of skills
- $h_{i,t}$: Current stock of skills
- $I_{i,t}$: Parental investments
- $L_{i,j,t}$: Indicator of friendship (= 1 if i and j are friends)
- Peer effects: $\overline{H}_{i,t} = \frac{1}{\sum_{j=1,j\neq i}^{H} L_{i,j,t}} \sum_{j=1,j\neq i}^{H} L_{i,j,t} h_{j,t}$
- A_d neighborhood effect
- A_s school effect
- A_t trend
- $\eta_{i,t+1}$ skills shock
- Age of children: $t \in \{13, \ldots, 16\}$

Timeline

Estimation

Sample Statistics

	Mean (1)	Standard Deviation (2)
Child's Age	15.65	1.74
Fraction black	0.16	0.37
Fraction hispanic	0.17	0.38
Fraction white	0.67	0.47
N of reported friends (In-School)	6.98	3.28
Schools characteristics:		
School size	1,042	629
Cohort size	261	156
Measures for skills:		
PPVT	64.26	11.14
English	2.83	0.98
Math	2.72	1.03
History	2.86	1.01
Science	2.82	1.01
Family's characteristics:		
Income (\$ 1994)	$42,\!844$	27,724
Mother's education	13.13	2.35
No of Obs		
In-School Survey	$90,\!118$	
In-Home Survey	$14,\!267$	

Structural Estimation

- Estimator: Simulated Method of Moments (SMM)
- <u>Dynamic latent factor model</u> (skills and investments are unobserved)
 Cunha et al. (2010), Agostinelli and Wiswall (2016)
- <u>Moments selection</u> and identification:
 - Indirect Inference:
 - Elasticities of parental investments w.r.t. peers' skills
 - Autocorrelation in skill formation and parental investments
 - Distribution of skills by age between environments Skills
 - Moments on homophily-bias in friendship formation Homophily
 - School and neighborhood valued added

Indirect Infecence: Auxiliary Model

- I want to identify the peer effects on parental investments
- 2SLS estimator (both in <u>data</u> and <u>simulated data</u>):

(Second Stage) $\Delta_s I_{i,t} = \gamma_1 \Delta_s \ln h_{i,t} + \gamma_2 \Delta_s \ln \overline{H}_{i,t} + \Delta_s X'_i \gamma_3 + \Delta_s \gamma_t + \Delta_s \epsilon_{i,t}$

(First Stage) $\Delta_s \ln \overline{H}_{i,t} = \beta_1 \Delta_s \ln h_{i,t} + \frac{\beta_2 \Delta_s Z_{i,t}}{\beta_2 \Delta_s Z_{i,t}} + \Delta_s X'_i \beta_3 + \Delta_s \beta_t + \Delta_s u_{i,t}$

- Δ_s : within-school transformation
- β_2 identifies degree of homophily in friendships formation
- γ_2 identifies parents-peers complementarities in skill formation
- $\Delta_s Z_{i,t}$: within-school/between-cohorts variation in % same-race children
 - Common IV in peer effects literature (see Hoxby, 2000)
 - ▶ I allow interaction with child's skills to account for homophily in skills

Sample Fit: Auxiliary Regressions Coefficients

	Dependent Variable Fraction (%) of Invested Parental Time			
-	Instrumental Variables (IV) Data	Instrumental Variables (IV) Model		
Peer's Skills (Log)	$0.720 \\ (0.354) \\ [0.026, 1.414]$	0.895		
-	First Stage	First Stage		
$\mathbf{Z}_{1,i,t}$ (Minorities Children)	-0.104 (0.052) [-0.206,-0.002]	-0.127		
$\mathbf{Z}_{2,i,t}$ (White Children)	$egin{array}{c} 0.082\ (0.037)\ [0.009, 0.155] \end{array}$	0.105		
F-Stat Excl. Instruments P-value	$\begin{array}{c}11.78\\0.000\end{array}$			

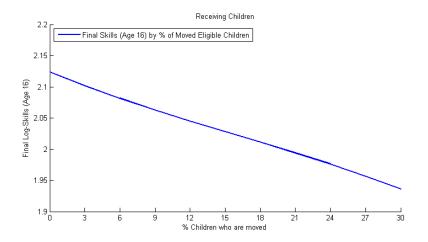
Each regression includes age and school fixed effects and controls for family characteristics. Standard errors are clustered at school level.

Structural Estimates

• Technology:

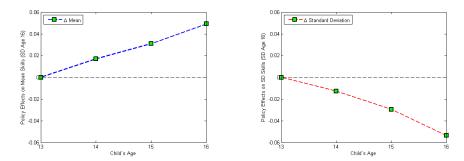
- \blacktriangleright CES complementarity parameter = 0.944 (s.e. 0.087)
 - Almost perfect substitute
- Self-Productivity = 0.744 (s.e. 0.068)
 - $\uparrow 1\%$ current skills $\Rightarrow \uparrow 0.74\%$ next period skills (elasticity)

• Peer-Network Formation:


- ▶ A white child with low-skills (first quintile skills distribution)
 - 2.5 times more likely to be friend a same-race child
 - 2 times more likely to be friend a same-skill child
- ▶ A black child with low-skills (first quintile skills distribution)
 - 4 times more likely to be friend a same-race child
 - 2 times more likely to be friend a same-skill child

Larger-scale policy

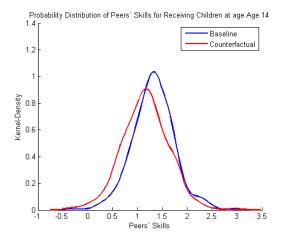
- Moving children at age 13 from *low-income* environment
 - ▶ First quartile of skill distribution
 - ▶ From 1% to 30% of population of the receiving neighborhood
 - Median family income ≈ 25 k (in 2017 dollars)
 - ▶ Racial composition: 10 % white, 43% hispanic, 47% black
- Receiving *high-income* environment
 - Median family income ≈ 100 k (in 2017 dollars)
 - ▶ Racial composition: 84 % white, 10% hispanic, 6% black


- Caveats:
 - ▶ No endogenous response of changing environment
 - Neighborhood and School quality are policy invariant

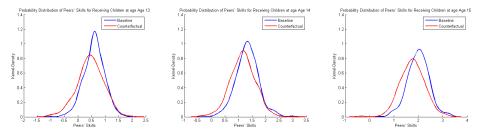
Treatment Effect by Fraction of Moved Eligible Children

A ll

Aggregate Effects on Skill Distribution

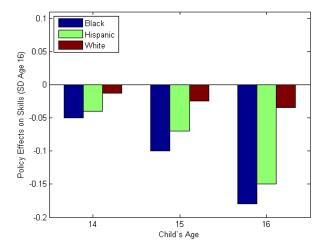


Change in Aggregate Mean Skills


Change in Aggregate SD Skills

Why are receiving children negatively affected?

Expected Peers for Receiving Children (10% Policy)


Expected Peers for Receiving Children (10% Policy)

Are effects on receiving children heterogeneous?

- Evidences on differential (stronger) peer effects on **minorities** (Hoxby (2000); Angrist and Lang (2004); Imberman, Kugler and Sacerdote (2012))
- Is it a story of endogenous social interactions?

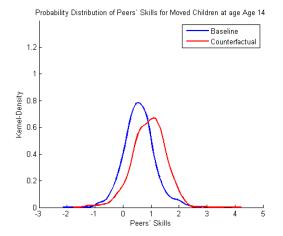
Effects on Receiving Children by Race

• Stronger policy effects for minorities

Conclusions

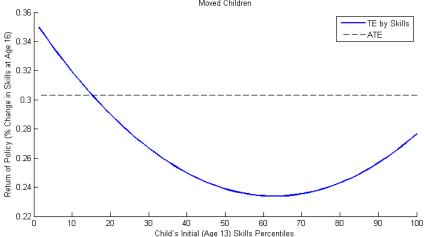
- I built and estimated a model of child development and social interactions
- Estimated model replicates previous findings on childhood exposure effects
 - ▶ Treatment effects are not informative for large-scale policies
- Large-scale policies
 - ▶ Dynamic-equilibrium effects are key for policy predictions
 - ▶ Heterogeneous effects based on endogenous formation of new peer groups

Moved Children


Panel A: Effects on Children's Log-Skills (Mean)

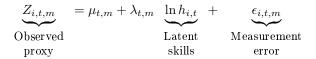
	Counterfactual (Equilibrium)	Counterfactual (No Equilibrium)
Age 13	0.00	0.00
Age 14	+0.09	+0.04
Age 15	+0.16	+0.10
Age 16	+0.31	+0.26

Panel B: Effects on Parent's Investment Decision (Mean)


$\operatorname{Counterfactual}(\operatorname{Equilibrium})$		Counterfactual (No Equilibrium)		
Age 13 Age 14 Age 15	$^{+1.63}_{+0.62}$ -0.42	-0.03 -0.85 -0.79		

Expected Peers for Moved Children: Baseline vs Counterfactual

Are effects heterogeneous by initial skill endowment?


Heterogeneous Effects in Moved Children by Skills

Moved Children

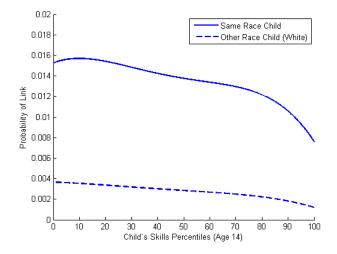
Latent Factor Model for Skills

- Measures for skills I use:
 - PPVT
 - Math Grades
 - Science Grades
 - English Grades
 - History Grades
- Latent factor model for some measure/proxy m :

- t = age of child
- $\mu_{t,m} = \text{location of measure}$
- $\lambda_{t,m}$ = factor loading/scale of measure

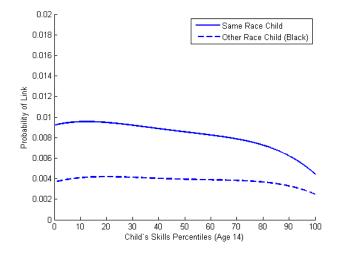
Latent Factor Model for Investments

- $Z_{i,k,t} \in \{0,1\}$ Observed measure of investments
- $p(I_{i,t})$: probability $Z_{i,k,t} = 1$ function of <u>latent investment</u>
- Assumptions:


1.
$$p(I_{i,t}) \sim \text{Beta}(\alpha + Z_{i,k,t}, 1 + \beta - Z_{i,k,t})$$

2. $p(I_{i,t}) = (\frac{I_{i,t}}{\tau})^{\lambda_{k,t}}$ where $\frac{I_{i,t}}{\tau}$ is fraction of invested time

- $\{I_{i,t}\}_i$, α , β , $\{\lambda_{k,t}\}_k$ are identified up to normalization (scale and location)
- Look at ATUS to identify mean and variance of fraction of time invested (location and scale for latent investments)


Return

Peer Group Formation: Black - Low Skills - Child

Return

Peer Group Formation: White - Low Skills - Child

Return

Estimates for Initial Conditions

		Panel A: N	lean Initia	I Child's ar	id Mother's	SKHIS	
	Neighborhood 1		Neighborhood 2		Neigh	Neighborhood 3	
	Child	Mother	Child	Mother	Child	Mother	
Black	+0.47 (0.08)	-0.07 (0.15)	-0.40 (0.27)	$0.36 \\ (0.25)$	-0.30 (0.29)	$0.44 \\ (0.20)$	
Hisp an ic	$^{+0.49}_{(0.11)}$	-0.93 (0.19)	$^{+0.48}_{(0.26)}$	-0.77 (0.19)	-0.34 (0.25)	-0.36 (0.19)	
White	0.00 (-)	0.0 (-)	$\begin{array}{c} 0.02 \\ (0.2.4) \end{array}$	$\begin{array}{c} 0.26 \\ (0.18) \end{array}$	$ \begin{array}{c} 0.22 \\ (0.24) \end{array} $	$0.58 \\ (0.19)$	

Panel A: Mean Initial Child's and Mother's Skills

Panel B: Variance-Covariance Initial Child's and Mother's Skills Naishborhood 1 Naishborhood 2 Naishborhood 3

	reguo	ornood 1	reguo	010000 2	realin	Dointood 3	
	Child	Mother	Child	Mother	Child	Mother	-
Black	$\begin{array}{c} 0.65 \\ (0.05) \\ 0.20 \\ (0.08) \end{array}$	0.61 (0.14)	0.87 (0.08) 0.31 (0.09)	0.67 (0.17)	$\begin{array}{c} 0.89 \\ (0.15) \\ 0.30 \\ (0.16) \end{array}$	$0.64 \\ (0.14)$	
Hispanic	${\begin{array}{c} 0.84 \\ (0.09) \\ 0.22 \\ (0.08) \end{array}}$	159 (0.32)	$\begin{array}{c} 1.10 \\ (0.10) \\ 0.26 \\ (0.08) \end{array}$	1.58 (0.35)	$\begin{array}{c} 0.78 \\ (0.12) \\ 0.28 \\ (0.10) \end{array}$	$1.33 \\ (0.34)$	
White	1.00 (-) 0.48 (0.07)	1.00 (-)	1.09 (0.09) 0.37 (0.04)	$0.74 \\ (0.19)$	$\begin{array}{c} 0.99 \\ (0.13) \\ 0.36 \\ (0.06) \end{array}$	0.78 (0.17)	

Estimates: Technology

Parameter	Estimate	S.E .
Child's Skills (α_1)	0.744	0.0682
Investments (Yearly Hours, $\alpha_2)$	0.009	0.0014
Elasticity Investment vs Peers (α_3)	0.944	0.0270
Return to Scale (α_4)	0.767	0.0283
Std of Shocks (σ_ξ)	0.700	0.0461
Panel B: Neighborhood TFP		
Constant $(\gamma_{0,tfp})$	-1.329	0.1256
Neighborhood Quality $(\gamma_{1,tfp})$	0.008	0.0003
Age Trend $(\gamma_{2,tfp})$	0.030	0.0008
Panel C: School-Quality Effects		
Low Income Neighborhood		
Mean $(\eta_{s,1})$	-0.033	0.0350
Standard Deviation $(\sigma_{s,1})$	0.262	0.0264
Medium Income Neighborhood		
Mean $(\eta_{s,2})$	0.006	0.0277
Standard Deviation $(\sigma_{s,2})$	0.244	0.0278
High Income Neighborhood		
Mean $(\eta_{s,3})$	0.041	0.0318
Standard Deviation $(\sigma_{s,3})$	0.188	0.0249

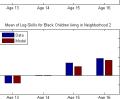
Estimate of Preferences and Wage/Income Process

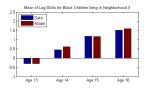
Parameter	Estimate	S.E.	
Panel A: Preferences Parameters			
Curvature on consumption (γ_1)	0.786	0.0046	
Weight on Child's Skills (γ_2)	0.901	0.0030	
Weight on Final Child's Skills (γ_4)	2.475	0.2455	
Curvature on Child's Skills (γ_3)	0.562	0.0256	
Curvature on Final Child's Skills (γ_5)	0.465	0.0011	
Panel B: Parameters of Labor and Non-Labor Income			

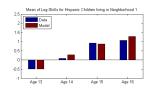
Constant (Wage, $\kappa_{1,0}$)	2.750	0.0067
Mother's Skills (Wage, $\kappa_{1,1})$	0.438	0.0048
Constant (Non-Labor Income, $\kappa_{2,0})$	9.992	0.0174
Mother's Skills (Non-Labor Income, $\kappa_{2,1})$	1.033	0.0113

Estimate: Child's Utility

Parameter	Estimate	S.E.
Constant (δ_1)	-0.246	0.0172
Child's Log-Skills (δ_2)	0.088	0.0048
Black $(\delta_{3,1})$	0.075	0.0023
Hispanic $(\delta_{3,2})$	-0.005	0.0001
Both Black $(\delta_{4,1})$	0.763	0.0317
Both Hispanic $(\delta_{4,2})$	0.701	0.0298
Both White $(\delta_{4,3})$	0.559	0.0475
Distance in Children's Skills (δ_5)	-0.038	0.0014
N of Children (Hundreds, $\delta_{6,1})$	-0.890	0.0003
N of Children Squared (Hundreds, $\delta_{6,2})$	0.001	0.0000
Distance in Children's Skills - % White $(\delta_{6,3})$	- 0.063	0.0032
Distance in Children's Skills - %Black $(\delta_{6,4})$	0.042	0.0025
Age (δ_7)	-0.050	0.0010
Additional Unobserved Heterogeneity $(\zeta_{i,j,t})$		
Correlation with Skill Shocks	-0.404	0.0212
Standard Deviation	0.110	0.0095

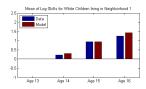

Dynamics of Mean Children's Skills by Race and Neighborhood (Return)

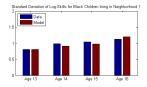


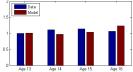

2.6

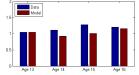
1.5

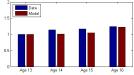
-0.5

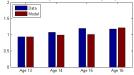


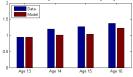


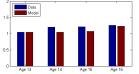

Dynamics of Std Children's Skills by Race and Neighborhood (Return)

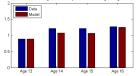

Standard Deviation of Log-Skills for Hispanic Children living in Neighborhood 1

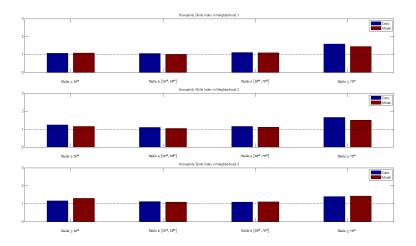

Standard Deviation of Log-Skills for White Children living in Neighborhood 1


Standard Deviation of Log-Skills for White Children living in Neighborhood 2

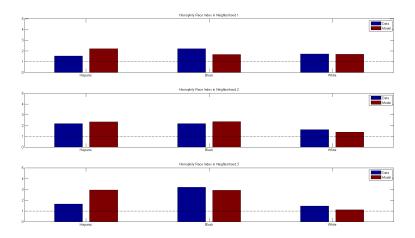

Standard Deviation of Log-Skills for White Children living in Neighborhood 3


Standard Deviation of Log-Skills for Black Children living in Neighborhood 2

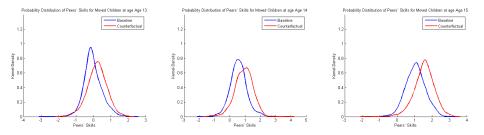

Standard Deviation of Log-Skills for Black Children living in Neighborhood 3


Standard Deviation of Log-Skills for Hispanic Children living in Neighborhood 2

Standard Deviation of Log-Skills for Hispanic Children living in Neighborhood 3



Homophily Skill Index by Skills and Neighborhood

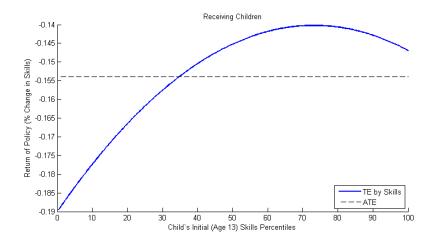


Homophily Race Index by Race and Neighborhood

Return

Expected Peers for Moved Children: Baseline vs Counterfactual

Technology of Skill Formation

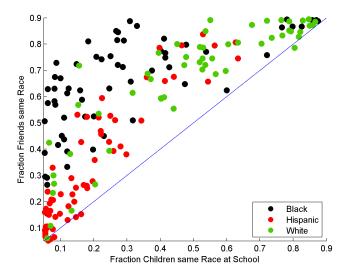

$$h_{i,t+1} = h_{i,t}^{\alpha_1} \left[\alpha_2 (I_{i,t})^{\alpha_3} + \alpha_4 (\overline{H}_{i,t})^{\alpha_3} + \alpha_5 (A_s)^{\alpha_3} \right]^{\frac{\alpha_0}{\alpha_3}} \cdot A_{d,t} \cdot e^{\eta_{i,t+1}}$$

• $\overline{H}_{i,t}$ and $\eta_{i,t+1}$ correlated via unobserved heterogeneity in peer groups formation

• Peer effects:
$$\overline{H}_{i,t} = \frac{1}{\sum_{j=1, j \neq i}^{H} L_{i,j,t}} \sum_{j=1, j \neq i}^{H} L_{i,j,t} h_{j,t}$$

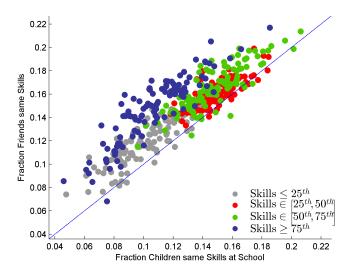
- $A_{d,t}$ neighborhood quality
- A_s school quality
- $\eta_{i,t+1}$ skills shock (it is realized end of each period)

Heterogenous Treatment Effect by Skills Receiving Children



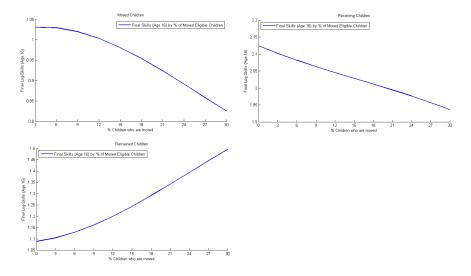
Latent Parental Investments and Skills

- Dynamic latent factor model (as in Del Boca et al., 2014, Cunha et al., 2010, Agostinelli and Wiswall, 2016)
- 1. Investments $(I_{i,t})$:
 - Gone shopping
 - Played a sport
 - Gone to a religious service
 - Gone to a movie, play, museum, concert, or sports event
 - Had a talk about a personal problem
 - Had a serious argument about your behavior
 - Talked about your school work or grades
 - Worked on a project for school
 - Talked about other things you are doing in school
- 1. Child's skills $(\theta_{i,t})$:
 - Peabody Picture Vocabulary Test (PPVT)
 - Math, Science, English and History Grades



Endogenous Peer Groups Formation: Race

Endogenous Peer Groups Formation: Skills


If peers' skills double:

$$16 * (-0.01441) * 7 * 52 = -84$$
 hours per year

84 * 15 = 1258 \$ per year

Treatment Effect by Fraction of Moved Eligible Children

Return

Existence of Equilibrium

- The existence proof follows the <u>lattice</u> programming argument (Topkis, 1998)
- The goal is preserving <u>supermodularity</u> in the value function (Datta, Mirman and Reffett, 2002; Datta, Mirman, Morand and Reffett, 2002; Mirman, Morand and Reffett, 2008; Datta, Reffett and Wozny, 2017)
- The supermodularity here is preserved because of the technology:

$$h_{i,t+1} = h_{i,t}^{\alpha_1} \left[\alpha_2 (I_{i,t})^{\alpha_3} + (1 - \alpha_2) (\overline{H}_{i,t})^{\alpha_3} \right]^{\frac{\alpha_4}{\alpha_3}} \cdot e^A$$

• Technology is supermodalar in $I_{i,t}$ and $\overline{H}_{i,t}$

▶ Technology is supermodalar in $h_{i,t}$ and $\overline{H}_{i,t}$