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Evidence of model instability

I Stock return forecasts are plagued by model instability

I Pastor and Stambaugh (2001): breaks in equity premium

I Viceira (1997), Lettau and Van Nieuwerburgh (2008), and Pettenuzzo
and Timmermann (2011): breaks in dividend yield and/or the relation
between stock returns and the lagged dividend yield

I Rapach and Wohar (2006) and Paye and Timmermann (2006): breaks
in the relation between returns and various predictors for the US and
internationally
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Potential causes of model instability

I Predictability patterns may ‘self destruct’ as investors attempt to
exploit them

I Schwert (2003), Green et al (2011), and McLean and Pontiff (2016):
abnormal returns disappear or are greatly reduced after becoming
public knowledge, due to competitive pressure

I Technological disruption, institutional, regulation, and policy changes

I Firms may shift from paying dividends to share repurchases if taxes on
dividends rise
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Difficulties in exploiting model instability for prediction

I Lettau and Van Nieuwerburgh (2008): shifts in dividend yield cannot
be exploited for two reasons

1 Difficult to detect and determine location of breaks in real time
(timing)

2 Difficult to estimate magnitude of break, especially if break is recent
(tracking)

I Using full-sample estimates will bias parameter estimates if shifts
have occurred

I Using a shorter window of returns (after a break) leads to large
estimation errors and inaccurate forecasts
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Exploiting information in the cross-section

I Lettau and Van Nieuwerburgh (2008) use a univariate time-series
approach to detect breaks

I Time series break methods typically only detect the largest breaks and
with considerable delay

I Panel data sets widely used in finance - exploiting the information in
the cross-section increases our ability to detect breaks

I also helps forecast aggregate returns using disaggregate components
(Ferreira and Santa-Clara (2011), Kelly and Pruitt (2013))

I If breaks are relatively pervasive and their timing is relatively
homogeneous, a panel break procedure may offer more power
compared with time series approach
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Estimating magnitude of parameter shifts

I A Bayesian approach enables a prior to be specified that suggests
large shifts in the parameters are unlikely

I Pastor and Stambaugh (2001) specify a prior that suggests large shifts
in the equity premium are unlikely

I Following Wachter and Warusawitharana (2009) we specify a prior
which suggests investors are sceptical about the existence of return
predictability - directly maps to prior over R2
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Forecasting industry portfolio returns

I The ability of predictors to forecast the aggregate stock portfolio
should carry over to industry portfolios if markets are relatively
efficient - information dissemination

I if a variable ceases to predict returns on the market portfolio it is likely
to stop predicting returns on industry portfolios

I forecasting industry portfolio returns from aggregate predictors may
allow us to better estimate the timing and magnitude of breaks
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Models



Time series breakpoint model

I Ki unit-specific structural breaks split the sample into Ki + 1 distinct
regimes with changepoints τi = (τi1, . . . , τiKi

)

r̃it = µik + X̃t−1βik + εit , k = 1, . . . ,Ki + 1, t = τki−1 + 1, . . . , τki

I r̃it : dependent variable for the ith series

I µik : intercept in the ki th regime

I X̃t−1: aggregate predictor at time t − 1

I βik : slope coefficient in the ki th regime

I εit ∼ N(0, σ2ik)
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Correlated effects

I Industry portfolio returns likely to be highly correlated

1 Estimate correlation matrix in each regime?
I Many parameters

I Computationally infeasible

2 Allow for latent common factor error structure (Pesaran, 2006) !
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Accounting for Dependencies: common correlated effects

I Following Pesaran (2006), assume correlations are induced by a
common factor ft

r̃it = β′itX̃t−1 + ε̃it , i = 1, . . . ,N, t = 2, . . . ,T ,

ε̃it = γit ft + νit .

I νit : idiosyncratic errors not correlated

I If ft is observed simply add it to the regression; if it’s unobserved use
cross-sectional average of dependent variable as a proxy

I Effectively, we account for cross-sectional dependencies in returns by
cross-sectionally ”de-meaning” (pre-filtering) the data

I Baltagi et al (2016) shows that Pesaran (2006)’s CCE approach
remains asymptotically valid in presence of breaks if they are common
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Common break models

I Pool information by assuming that break point locations are the same
across cross-sectional units

I common sources of breaks (e.g., Global Financial Crisis)

I Maintain cross-sectional heterogeneity in parameters (for i = 1, ...,N)

rit = µik+Xt−1βik+εit , t = τk−1+1, . . . , τk , k = 1, . . . ,K+1

I Assuming homogeneous parameters and break dates, we get a model

rit = µk + Xtβk + εit , t = τk−1 + 1, . . . , τk , k = 1, . . . ,K + 1

13



Priors on regression coefficients

I Prior on σ2ik is inverse gamma

p(σ2ik) =
ba

Γ(a)
σ2

−(a+1)

ik exp

(
− b

σ2ik

)

I Pastor and Stambaugh (1999) suggest ruling out implausibly high SRs

I Prior on intercept µik is Gaussian conditional on error variance

p(µik) = N(0, σ2µσ
2
ik)

I Choose moderate σ2µ = 5% following Pastor and Stambaugh (1999)
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Prior beliefs about degree of predictability

I High variance of the predictor σ2x might lower the prior on βi whereas
a large residual variance σ2ik might increase it (Wachter and
Warusawitharana, 2009)

I Place prior over this ‘normalised beta’ ηik = βik
σx
σik

ηik ∼ N(0, σ2η)

I Equivalent to placing the following prior on βik

p(βik) ∼ N

(
0,
σ2η
σ2x
σ2ik

)

I Compute σ2x as the empirical variance of the predictor variable over
the full sample available at the time the recursive forecast is made

I ση controls prior degree of predictability
15



Prior beliefs about degree of predictability

I This prior implies that no risky asset can have an R2 that is too large

R2
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β2i σ
2
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Posterior

Proposition 1. Assuming inverse gamma priors on the error-term
variances, σ2, and Gaussian priors on the regression coefficients, β,
conditional on σ2, the posterior distribution of the heterogeneous panel
model with breaks after marginalising the parameters takes the form

p(r | X , τ) =
N∏
i=1

K+1∏
k=1

(2π)−lk/2
ba

Γ(a)

Γ(ãk)

b̃ãkik
|Σk |1/2 | Vβ |−1/2

I where

Σ−1k = V−1β + XkX
′
k

µik = ΣkXk rik

ãk = ãik = a + (lk)/2

b̃ik =
1

2

(
2b + r ′ik rik − µ′ikΣ−1k µik

)
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Estimation



Estimation of panel breaks model

I Simulate the changepoint vector τ in two steps

I global movement: attempt to add or remove a changepoint on each
sweep of the MCMC run

I perturb each changepoint locally by a random-walk
Metropolis-Hastings step

I Sample the parameters from their full conditional distributions
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Birth move

I With equal probability a birth move is entered

I This move attempts to increase K to K + 1 and introduce a new
changepoint sampled uniformly from the time series

I τk∗ ∼ U[1,T ]

I Split an existing regime into two new ones and compute parameters
for the new regimes

I Accept the birth move with a probability min(1, α), where

I α = p(r |X ,τ∗)
p(r |X ,τ) ×

p(τ∗)
p(τ) ×

T
K+1 ×

2
2

I formula for α is given in the paper
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Death move

I With equal probability a death move is entered

I This move attempts to decrease K to K − 1 sampling one of the
existing changepoints uniformly

I τkc ∼ U[τ1, τK ]

I Merge two existing regimes into one new one and compute
hyperparameters for the new regime

I Accept the death move with probability min(1, α), where

I α = p(r |X ,τ∗)
p(r |X ,τ) ×

p(τ∗)
p(τ) ×

K
T ×

2
2
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Estimating changepoint locations

I RW-MH step provides local adjustment

I For k ∈ (1,K ) each changepoint τk is perturbed by a discrete number
u that is sampled uniformly from the interval [−s, s]

I If perturbation = 0 the proposal is immediately rejected

I Otherwise compute FC hyperparameters

I Accept with probability min(1, α)

α =
p(τ∗)

p(τ)

p(r | X , τ∗, θ)

p(r | X , τ, θ)
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Estimating the number of breaks

I Common to use the Bayes factor between two competing models to
determine the number of breaks

I Compare a model with K = 2 breaks to a model with a single break
(K = 1) through the ratio

BF21 =
P(K = 2 | r)/P(K = 1 | r)

P(K = 2)/P(K = 1)
=

p(r | K = 2)

p(r | K = 1)

I Assuming uniform prior model probabilities, the marginal likelihoods
are proportional to the posterior model probabilities

I Chib (1998)’s widely used algorithm fixes the number of breaks in
advance which leads to a nonuniform prior distribution on the
changepoint locations
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Estimating the number of breaks: RJ Approach

I Reversible jump Markov chain Monte Carlo approach includes the
number of breaks K as a parameter in the model and explores both
the model and parameter space jointly by ‘jumping’ between different
numbers of breaks

I The proportion of time spent at each number of breaks is equal to the
posterior model probabilities

I Using conjugate priors on the regression parameters β and σ allow us
to marginalise them from the posterior and thereby explore the model
space alone, greatly reducing the complexity of the algorithm.
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Estimating parameter vector

I Sample parameters from FCs

σ2ik | · ∼ IG (ãk , b̃ik),

βik | · ∼ MVN

(
µik ,Σik

σ2ik
σ2x

)

I σ2x is empirical variance of X from the full sample available at the
time the forecast is made

I λ has been marginalised
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Empirical Results



Empirical Results

I Forecast 30 portfolio returns and constructing the market forecast as
weighted average with univariate regressions

I Dividend-price ratio (aggregate)

I T-bill

I Term spread

I Default spread

I Benefits of using panel to predict industry portfolio returns

I Real-time break detection to exploit out-of-sample predictability
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Data

I Monthly data from July 1926 - December 2015

I 30 industry portfolio returns (with and without dividends)

I 5× 5 portfolio sorts on size and value and size and momentum

I Weights are constructed using two variables from French’s website

I Average firm size in portfolio

I Number of firms in portfolio

I Returns in excess of risk-free rate and predictors from Goyal and
Welch
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Testing for cross-sectional dependencies

I Residuals eit computed from OLS regressions for series i = 1, . . . ,N

eit = rit − µ̂i − β̂′iXt

I Estimate pairwise correlations to compute CD statistic of Pesaran
(2004)

CD =

√
2T

N(N − 1)

N−1∑
i=1

N∑
j=i+1

ρ̂ij


I Our approach reduces CD from 168.84 to 2.39 and average pairwise

correlation from 0.74 to 0.13

I Any remaining correlations are likely to be weak and will not
compromise inference in large panels (N > 10)
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Models

I Unit-specific panel with pooled breaks (τ is common across units)

rit = µik + βikXt−1 + εit

I Benchmark I: Unit-specific panel with no breaks

rit = µi + βiXt−1 + εit

I Benchmark II: Time-series break model (Chib,1998) (τi is unit
specific)

rit = µik + βikXt−1 + εit

I Benchmark III: Prevailing mean model
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Real-time detection of breaks

Estimation Date
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Forecast evaluation

I Evaluate the forecasting ability of each of the models relative to the
benchmark model through the out-of-sample R2 measure

R2
OoS = 1−MSEPbrk/MSEbmk

I MSEPbrk : MSFE for the heterogeneous panel break model

I MSEbmk : MSFE for the benchmark

I Positive R2
OoS values suggest that the panel break model outperforms

the benchmark

I Statistical significance (Diebold and Mariano, 1995; Clark and West,
2007)
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Histogram of R2
OoS values across 31 cases
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Out-of-sample forecasts: Diebold-Mariano tests

Dividend-price ratio

Predictor DM CW

t <-1.64 -1.64< t <0 0< t <1.64 t >1.64 t <-1.64 -1.64< t <0 0< t <1.64 t >1.64

No break panel

dp 0 2 4 25† 0 2 2 27†

Industry prevailing mean

dp 0 2 5 24† 0 2 3 26†

Time series break

dp 0 2 3 26† 0 2 2 27†

34



Panel model consistently beats benchmarks

I The cumulative sum of squared error difference is defined as

CSSEDit =
t∑

τ=1

(ε2Bmk,iτ − ε2PBrk,iτ )
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Utility gains by portfolio

I At time t the mean-variance investor allocates a portion of his wealth
to the portfolio at period t + 1

wi ,t+1 =
1

γ

r̂it+1|t

σ̂2t+1|t

I σ̂2t+1 is five year rolling window of monthly stock returns to estimate
the variance of stock returns (Campbell and Thompson, 2008)

I Moderate risk aversion (γ = 3)

I Investor realises an average utility of

ν̂i ,0 = µ̂i ,0 −
γσ̂2i ,0

2

I Utility gain equals the difference multiplied by 1200
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Histogram of ∆U values across 31 cases
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Utility gains from allocating across industry portfolios

I Allocate wealth between rf and risky portfolio constructed from 30
portfolios (Avramov and Wermers, 2006; Banegas et al, 2013)

I Rp,t+1: excess return on the risky portfolio at time t + 1

I ωt : portfolio weights

I Numerical methods used to compute ωt that maximises

E [U(Rp,t+1 | γ)] = rft + ω′t r̂0,t+1 −
γ

2
ω′tΣ̂0,tωt

I subject to
N∑
i=1

ωit = 1 and ωit ∈ [0, 1] for i = 1, . . . ,N

I Σ̂0,t estimated using residuals from return model up to time t

I ωt is plugged into utility function to obtain realized utility for time t

I Difference between utility values is annualized
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Utility gain from allocating across portfolios

Full sample After breaks
Predictor hist avg no brk ts hist avg no brk ts

dp 2.19 2.02 1.97 3.02 2.43 2.72
tbl 2.04 2.10 2.34 2.61 2.80 3.06
tms 1.99 2.42 1.86 2.21 2.57 2.37
dfs 2.02 1.92 2.29 2.89 2.53 2.72
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Sources of breaks in return predictability



Sources of breaks in return predictability

I Return predictability could arise from two sources

I time-varying risk premia

I time-varying expectations of cash flows

I Cochrane (2008): little-to-no predictability in dividend growth

I Chen (2009), Binsbergen et al. (2010), Kelly and Pruitt (2013): some
evidence of dividend growth predictability

I Disagreements about dividend growth predictability could be due to
breaks in the dividend growth process

I Are breaks in return predictability linked to breaks in the dividend
growth process?

41



Breaks in dividend growth
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Is there a break risk factor?



Is there a break risk factor?

I Breaks reveal macroeconomic shocks

I e.g. oil price shocks, financial crisis etc

I Are stocks more exposed to shocks priced in the cross-section?

I Produce forecasts for 7,299 stocks using panel model with and
without breaks

I Break risk exposure proxied by mean squared forecast difference

I Sort stocks into quintile portfolios according to this measure
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Is there a break risk factor?

Fama-Macbeth Regressions

Independent variable Slope coefficients and (t-stats)

Break risk 0.59
(4.60)

log(B/M) 0.30
(5.19)

log(ME) -0.08
(-3.02)

PR1YR 0.57
(3.17)
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Is there a break risk factor?

Portfolio r α MKT SMB HML

Low 0.26 -0.18 1.02 0.01 0.05
(1.98) (-2.04) (22.21) (1.43) (3.93)

2 0.32 -0.06 0.98 0.03 0.13
(2.19) (-1.99) (31.98) (1.69) (2.80)

3 0.44 -0.01 0.94 0.00 -0.09
(2.25) (-1.60) (32.04) (2.06) (-1.21)

4 0.46 0.02 1.01 0.06 0.14
(1.98) (1.01) (24.09) (1.31) (2.02)

High 0.53 0.17 0.96 -0.03 -0.03
(2.58) (2.04) (23.26) (1.99) (-3.78)

High-low 0.27 0.35 -0.06 -0.04 -0.08
(2.18) (2.97) (-1.05) (-2.03) (-1.55)

46



Break exposure and company characteristics

s.d. across regimes
Portfolio Size of break rank Intercept Slope Volatility

Size and Value
SMALL.HiBM 1 0.067 0.141 0.088

ME1BE4 2 0.059 0.132 0.078
ME1BE3 3 0.058 0.129 0.078
ME1BE2 4 0.051 0.111 0.069

SMALL.LoBM 5 0.041 0.107 0.067

BIG.HiBM 20 0.032 0.052 0.054
ME5BE4 21 0.028 0.050 0.048
ME5BE3 23 0.024 0.044 0.039
ME5BE2 24 0.021 0.038 0.029

BIG.LoBM 25 0.019 0.030 0.024
Size and Momentum

SMALL.LoPRIOR 1 0.049 0.091 0.087
ME1PRIOR2 2 0.043 0.080 0.082
ME1PRIOR3 3 0.032 0.062 0.075
ME1PRIOR4 4 0.031 0.060 0.071

SMALL.HiPRIOR 5 0.027 0.056 0.052

BIG.LoPRIOR 20 0.029 0.042 0.046
ME5PRIOR2 22 0.020 0.036 0.042
ME5PRIOR3 23 0.012 0.025 0.038
ME5PRIOR4 24 0.009 0.022 0.026
BIG.HiPRIOR 25 0.008 0.020 0.022
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Robustness checks



Results using other predictors

I Forecast with three other predictive variables

I T-bill

I Term spread

I Default spread

I Improved forecasts !

I Statistically significant !

I Economically meaningful !
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Conclusions



Conclusions

1 We propose a new approach to predict returns in the presence of
model instability

I Exploit information in cross-section to detect breaks in real time

I Use economically-motivated prior to estimate magnitude of break

2 Demonstrate the usefulness of the method in an application to
industry portfolio returns

I Outperforms a range of competing benchmark specifications, including
univariate time-series break model and a no-break panel model

I Fast real-time break detection

I Improvements to predictive accuracy are significant and economically
meaningful

I Results are robust to using a range of predictors

3 Break risk factor is priced in the cross-section
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