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Figure 1: Annual standard deviation of monthly Industrial Production Growth (REV) and daily S&P 500 Index
Returns (RV) from 1930-2016, detrended.

Stock market volatility & economic uncertainty: strongest +ve correlation in recessions
ρ̂|low REV = 0.22 vs. ρ̂|high REV = 0.53
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Figure 2: Annual S&P 500 Price-Dividend ratio (PD) versus Realized Volatility (RV) from 1930-2016.

Stock market volatility & stock returns: strongest −ve correlation in recessions
ρ̂|low REV = −0.09 vs. ρ̂|high REV = −0.42
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Benchmark Model

Pt = Et

(∫ ∞
t

Ms

Mt
Dsds

)
where Mt = UC (t,Ct ,Vt)

Linear models: consumption (Ct) and dividend (Dt) growth + stochastic discount
factor (Mt) log-linear in the state-variables (Vt):

log Mt = −δt − γ log Ct − ηVt

log Dt

Ct
= α + βVt +

√
VtWt

Implications:

1. log-linear price-dividend ratios: log Pt
Dt

= α0 + α1Vt

2. proportional variance of returns: Vart(d log Pt) ∝ Vart(Vt) ∝ Vt

=⇒ At odds with the data
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This paper

Nonlinear consumption and dividend policy and SDF:

log Mt = −δt − γ log Ct − H(Vt)

log Dt

Ct
= ψ(Vt) +

√
VtWt

I Vt : exogenous, Markovian state variables

I H(Vt): state-dependent discount rate

I ψ(Vt): consumption and dividend policy functions

Application: generalizing affine model with time-varying growth volatility and habit
I Allow for interaction and higher order terms

I State-dependent impact of volatility shocks (Alfaro, Bloom, Lin, 2016)
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Contributions

1. Cross-sectional recovery of state variables

I Robust again functional form assumptions

2. Estimation: semiparametric profile maximum likelihood

I Consistent for long time series and large panel of asset prices

3. Computational: policy functions and SDF approximated by polynomials

I Closed-form price-dividend ratios and volatilities
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Framework

st : Unobserved Markovian state vector
I Transition density parameterized by α:

f (st+1 | Ft) = f (st+1 | st ;α)

Mt : Choice variables
I Consumption, investment, dividends, ...

I Aim: measuring their response to unobserved state ψ(st) = E(Mt | st)

Pt : Prices that depend on the state st , the policy functions ψ(st), and/or α
I Form of dependence determined by present value of future payoffs
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Estimation

Measurement equations: for i = 1, ...,N

Mit = ψi (st) + Z M
it

Pit = g(st , ψi (st), α) + Z P
it

with Zt = (Z M
t ,Z P

t ) ⊥ st

I Also include state proxies, i.e. realized volatilities

I ”Weak” cross-sectional dependence of Zt = (Zit)N
i=1
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Profile likelihood
Parameters of interest: θ = (ψ(·), α)

Observation vector: Yt = (Mt ,Pt)

Time-t unconditional likelihood contribution:

Lt(θ) =
∫

fθ (Yt | st) fα (st) dst

=
∫

exp (N`t(θ | st)) fα (st) dst

Let N →∞, and use a Laplace approximation:

`t(θ) = 1
N log Lt(θ) p−→ `t(θ | s̃t(θ))

provided the uniqueness of the maximizer

s̃t(θ) = arg max
s

`t(θ | s)

Pairwise profiling
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Quasi maximum likelihood

Let the N transitory deviations Zt = (Z M
t ,Z P

t ) follow the (Ornstein-Uhlenbeck)
process

dZt = −AZtdt + ΣdWt .

I increments of Zt over any horizon τ are normally distributed

The measurement density conditional on the current and future states is

log fθ (Yt+1 | st+1,Yt , st) ∝
∥∥Zt,pred (θ)

∥∥2
Ωτ

in terms of the generalized residuals

Zt,pred (θ) = Zt(θ)− e−AτZt−1(θ),

Zt(θ) = (Mt − ψ(st),Pt − g(st , ψ(st), α))T
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Identification

The population quasi-maximum likelihood criterion is

Q̄(θ) = plimN→∞
−1
2N E

(∥∥Zt,pred (θ)
∥∥2

Σ
+ log fs′|s;α (s̄t+1(θ) | s̄t(θ))

)
,

Global identification condition: for every pair θ 6= θ′,

ψ(s̄(θ, st)) 6= ψ(s̄(θ′, st)) or g(s̄(θ, st), θ) 6= g(s̄(θ′, st), θ′)

Without price vector g, could arbitrarily transform state variables in the same
parametric class

I exploit restrictions on how st affects prices, or use direct proxies

Given state dynamics, asset price i identifies product term ψi (st)H(st)
I ψi (st) identified from observed dividends

I H(st) common across assets
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Inference

Obtain the feasible profile likelihood using consistent estimators Σ̂ and Â

Construct finite-dimensional series approximators ψL and HL using basis functions
p

L
= (p1(w), ..., pL(w))

If the approximation order is correct, can perform parametric inference on the sieve
coefficients:

Theorem
Let regularity conditions and consistency hold. When N,T →∞, and T

N → κ for 0 < κ <∞,
√

NT (ϑ̂− ϑ0) d−→ H−1
0 ×N

(
κE(B̄t ),V0

)
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Setting

Let St = (log Yt , st) ⊆ RD+1 be a Markovian state vector consisting of the log
output or productivity process log Yt and the state variables st

Baseline model for output growth:

d log Yt = (µ− λVt) dt +
√

V tdWt

dVt = κ (θ − Vt) dt + ω
√

V tdBt

Cov(dWt , dBt) = ρdt

I ρ < 0 captures leverage effect: uncertainty shocks negatively correlate with
output shocks

I λ > 1
2 captures endogenous growth: uncertainty reduces expected growth
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Suppose there is an infinitely-lived representative agent with period utility

u(Ct , st) = log(Ct − Xt)H(Vt).

I Xt is a consumption reference level, in line with habit formation (Campbell and

Cochrane, 1999)

I H(·) describes preferences over uncertainty Vt

Model reference level via the inverse consumption surplus ratio Ct
Ct−Xt

≡ Qt :

dQt = κq(θq − Qt)dt + η
√

QtdBq
t + ry

√
V tdWt

Cov(dBq
t , dWt) = 0.

I Relative risk aversion Qt driven by shocks to output growth dWt and discount
rate dBq

t

I ry < 0: negative output/income shocks reduce risk bearing capacity
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Asset Prices

Dividend-consumption ratio:

Dt

Ct
= ψd (Vt ,Qt) + Z d

t , E(Z d
t | Vt ,Qt) = 0

Price-dividend ratios:

φ(Vt ,Qt ,Z d
t ) = Et

(∫ ∞
0

e−δτ H(Vt+τ )
H(Vt)

Qt+τ

Qt

ψd (Vt+τ ,Qt+τ ) + Z d
t+τ

ψd (Vt ,Qt) + Z d
t

dτ
)

Under polynomial policy functions ψL and HK ,

φM(st) =
gT QMst

M

gT st M ,

where M = K + L, and g and QM determined by α
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A convex dividend-consumption ratio...

Dt

Ct
= 1 + 0.1Vt + c2V 2

t ,

...generates concave decline in
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Figure 3: Expected Dividend minus Consumption growth and Price-Dividend Ratio versus Output
Growth Uncertainty.
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Amplification via higher risk aversion generates steeper decline in asset prices...
Dt

Ct
= 1 + 0.1Vt + 0.2V 2

t + 0.1QtVt ,
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Figure 4: Theoretical Price-Dividend Ratio versus Output Growth Volatility for varying levels of risk
aversion.
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Empirical Results

Macro data: U.S. real aggregate output, and consumption from 1926-2016

Financial data, from 1926-2016:
I S&P 500 index plus dividends

I Size-sorted portfolios and dividends from Kenneth French Data Library

Volatility proxies:
I realized variation of industrial production growth

REVt =
12∑

m=1

(∆ipt+1−m −∆ipt)2,

I realized variation of stock market returns

RVt =
252∑
d=1

(∆Rt+1−d − R t)2,
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Table 1 shows the heterogeneous impact of increases in uncertainty on the dividend share
of small and large firms based on the regression

Dit

Dt
= α0i + βi

T REVt + zd
it , E(zd

it | REVt) = 0.

Table 1: Parameter estimates and standard errors of regression using annual data from 1926-2016 using
one-lag feasible generalized least squares.

Size decile 1 2 3 4 5 6 7 8 9 10
β̂i -2.67 -2.24 -1.35 -1.58 0.77 0.47 2.04 1.13 1.58 1.85

(4.15) (1.18) (0.56) (0.73) (0.85) (1.08) (0.81) (0.94) (0.71) (0.70)

⇒ consistent with large firms having more liquid debt instruments, which enables
them to pay out more dividends in uncertain times - as is priced by investors
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Table 2: Estimates and standard errors (in brackets) of the discount rate and transition density parameters.

Estimates based on mixed frequency data, with annual observations from 1926 to 1946 and
quarterly observations from 1947 to 2016.

δ κ θ ω ρ µ λ κQ θQ σQ ryq

0.02 0.38 3 ∗ 10−3 0.08 -0.60 0.04 -1.98 0.55 5.45 0.21 -2.86
(0.00) (0.19) (1.7 ∗ 10−3) (0.10) (0.12) (0.01) (0.73) (0.67) (0.30) (0.84) (2.25)
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Figure 5: Estimated uncertainty aversion index ĤL for L = 2 against a constant value of one, together with
95% pointwise confidence intervals. Estimates are based on annual observations from 1926 to 1946 and
quarterly observations from 1947 to 2016.
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Figure 6: Comparison of the pairwise concentrated ‘filtered’ states ŝ′
t and ‘smoothed’ states ŝt over the period

1930-2016. Filtered time t states use observations from dates (t, t + 1); smoothed time t states use
observations from dates (t − 1, t).
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Figure 7: Fitted S&P 500 dividend-consumption ratio as a function of the estimated states using a
second-order bivariate expansion.
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Figure 8: Estimated elasticity of the S&P 500 price-dividend ratio with respect to changes in the variance of
economic growth.
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Figure 9: Time-series fitted values of the annual S&P 500 price-dividend ratio as a function of the estimated
states using a second-order bivariate expansion.
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Figure 10: Time-series fitted values of the quarterly realized variance as a function of the estimated states
using a second-order bivariate expansion.
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Conclusion

Develop semiparametric framework to analyze response of consumption and
dividends towards uncertainty and risk aversion shocks

Exploit cross-sectional heterogeneity in dividend policy response to aggregate
uncertainty shocks

Explain state-dependent impact of uncertainty shocks on prices and price volatility
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