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Typhoon Forecasting Narratives

• NCEP delivers science-based environmental predictions to the
Nation and the global community. We collaborate with
partners and customers to produce reliable, timely, and
accurate analyses , guidance, forecasts and warnings for the
protection of life and property and the enhancement of the
national economy.

Source: National Centers for Environmental Prediction’s Mission and Vision

• TV meteorologists weren’t placing much emphasis on accuracy
• Aren’t bothering to make accurate forecasts
• Presentation takes precedence over accuracy

Source: Silver, Nate “The Signal and the Noise - Why so many predictions fail
but some don’t”
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Research Question
• Construct model to capture the mechanism behind biased

typhoon forecasting
• Identify empirically the strategic bias in typhoon forecasting
• Analyze the factors that determine the bias
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Model

Assumptions
• The observatory minimizes the expected cost of

misreporting
• Costs incur when the weather forecasting is

inaccurate
• Two types of inaccurate forecasting

• Observatory forecasts that a typhoon hits
but it does not

• Observatory does not forecast a typhoon hits
but it does

• The costs are different
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Model
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• 2-dimensional coordinate system S, with origin as the
observatory’s location

• Rx , Ry : random variable of real typhoon location in S (mean:
µx , µy ; variance: σ2

x , σ2
y )

• Fx , Fy : decision variable of forecast typhoon location in S
• α1 and α2 are the cost caused by the gap of aggressive and

conservative biased forecasting, respectively. α1 6= α2
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Model
Optimal Forecast location:

F ∗
x =

√
µx + σxα√

1− α2

Similarly,F ∗
y =

√
µy + σyα√

1− α2

where
α = α1 − α2

α1 + α2

Implications:
• The forecast is based on the mean µx , µy

• if σx or σy are larger, the forecast will be more distanced from
the mean of the real location

• if |α| is larger, the forecast will be more distanced from the
mean of the real location
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Empirical Challenges
• Data

• Historical typhoon paths are super easily
available (long history of records)

• However, we need more than historical
typhoon paths. Since we are analyzing the
observatories’ behaviour, not the typhoon’s
behaviour

• Historical forecast paths is needed (This
limits the sample size)
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Empirical Challenges
• Identification

• Identifying bias (statistically significant) is
not difficult

• The difficulty is about the “strategic” bias.
• Typhoon forecasting is a very difficult task,

even with modern technology
• Inaccurate reports from the observatories do

not necessarily indicate intentionally biased
forecasts
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Some NHC Examples
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Some NHC Examples
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Some NHC Examples

1000 0 1000 2000
0

10

20

30

40

50

60

70

80

Honolulu

real

1000 0 1000 2000

Honolulu

predict

Typhoons Data from National Hurricane Center(2009-2017)

distance(km)

co
un

t



Introduction Model Challenges Data Empirical Results

The case we need

• Two independently operated observatories
• Observatories in small cities
• Similar technology
• Many typhoons paths between the two cities
• Typhoons with relatively simple paths
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Cherry Picking Example

Source: https://typhoon2000.ph
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Cherry Picking Example

Source: https://typhoon2000.ph
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Data

• Data Source: https://typhoon2000.ph
• Historical typhoon data recorded of HKO(Hong kong

Observatory) and CWB (Central Weather Bureau of Taiwan)
• From 2009-2017, with 204 typhoons and 14701 forecast

records
• The data include forecast location records and real location

records
• The data include typhoon properties such as geological

location, wind intensity and forecast time.
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Data

Table: DOKSURI and HATO Data Sample

Name Year Anchor (Latitude,Longitude) Knot Observatory
DOKSURI 2017 +000H (14.9N,119.6E) 30 HKO
DOKSURI 2017 +024H (16.1N,116.4E) 49 HKO
DOKSURI 2017 +048H (17.2N,113.0E) 70 HKO
DOKSURI 2017 +072H (18.6N,109.7E) 70 HKO
DOKSURI 2017 +096H (20.4N,104.9E) 40 HKO
DOKSURI 2017 +120H (22.8N,101.6E) 22 HKO
DOKSURI 2017 +000H (14.0N,119.0E) 35 CWB
DOKSURI 2017 +024H (14.9N,115.6E) 54 CWB
DOKSURI 2017 +048H (16.7N,112.1E) 58 CWB
DOKSURI 2017 +072H (18.3N,108.8E) 68 CWB
DOKSURI 2017 +096H (20.5N,104.8E) 58 CWB
DOKSURI 2017 +120H (21.6N,102.6E) 45 CWB

HATO 2017 +000H (19.6N, 128.0E) 30 HKO
HATO 2017 +024H (20.4N, 124.0E) 40 HKO
HATO 2017 +048H (22.2N,119,9E) 49 HKO
HATO 2017 +072H (23.1N,114.9E) 35 HKO
HATO 2017 +096H (25.4N,109.4E) 22 HKO
HATO 2017 +000H (20.0N,128.0E) 35 CWB
HATO 2017 +024H (20.8N,124.2E) 45 CWB
HATO 2017 +048H (21.9N,120.0E) 45 CWB
HATO 2017 +072H (23.0N, 115.6E) 39 CWB
HATO 2017 +096H (24.0N, 109.9E) 29 CWB
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Data
Two key variables
• Gap

• The difference between
“the distance between forecast location and the observatory”
and
“the distance between real location and the observatory”

• Forecast comparison(Hong Kong)
• the difference between

“HKO’s forecast distance to Hong Kong”
and
“CWB’s forecast distance to Hong Kong”

• Similarly we can calculate the Forecast comparison(Taiwan)
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Data

Hong Kong

Taipei

Typhoon path
HK forecast Taipei forecast

^

r

•



Introduction Model Challenges Data Empirical Results

Data
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Data
• Forecast comparison(Hong Kong):= a - b
• Forecast comparison(Taiwan):= d - c
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Data

Table: Summary Statistics

Knot Forecast Gap Forecast comparison Real
(Hong Kong)

count 14701 14701 14701 14701 14701
mean 65.303 1536.320 -2.400 1714.627 1538.660
std 22.780 913.939 167.991 1122.884 905.078
min 0.000 12.207 -1260.352 2.625 32.271
25% 46.000 857.517 -77.220 887.421 867.053
50% 64.000 1392.739 -2.281 1450.060 1410.708
75% 84.000 2034.294 68.792 2296.329 2036.452
max 140.000 5781.257 1341.319 6594.057 5805.630
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Gap

Table: Analyzing the Gap

Observatory Location type Scope(km) Mean(km) t-stat
CWB Between less than 400 -75.527 10.992
CWB East of Taiwan less than 400 -45.171 6.177
HKO Between less than 400 -42.563 6.118
HKO West of Hongkong less than 400 -52.332 6.177

• Both observatories forecast typhoons to land closer to their
own location than the (mean of the) real situation

• This is just replicating the histograms
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Forecast Comparison

Table: Analyzing the Forecast comparison

Observatory Counterpart Scope(km) Mean(km) t-stat
CWB HKO less than 400 -154.177 10.248
HKO CWB less than 400 -162.123 10.647

• Both observatories forecast typhoons to land closer to their
own location than their counterpart.

• This is true even if after controling for typhoon fixed effects
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Regression

Table: Regression results on Location type (HKO)

Dep. Variable: gap
Intercept 139.739(22.661)***

Between HK and TW -51.332(8.195)***
West of HK -48.735(9.294)***

wind type -79.580(31.317)*
Anchor -7.942(2.605)**
Other Controls Yes
Fixed Effects Yes
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Regression

Table: Regression Results on Wind Type (HKO and CWB)

Dep. Variable: gap
Intercept 45.164(16.308)**
Wind Type -104.595(19.851)***
East of TW 17.760(5.513)**
West of HK 40.054(8.212)***
Anchor -4.528(1.390)***
knot 0.751(0.261)**
real -0.070(0.012)***
Other controls Yes
Observatory Fixed Effects Yes
Typhoon Fixed Effects Yes
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Others

• The bias increases when there are or more typhoons
approaching (σ)

• The bias direction changes depending on the direction of error
of the previous typhoon (α)
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Conclusion

• Accuracy is the best policy for a forecaster. It is
forecasting’s original sin to put politics, personal glory or
economic benefit before the truth of the forecasts

Source: Silver, Nate “The Signal and the Noise - Why so many predictions fail
but some don’t”
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