Reference Pricing as a Deterrent to Entry Evidence from the European Pharmaceutical Market

Luca Maini¹, Fabio Pammolli²

¹University of North Carolina at Chapel Hill, ²Politecnico di Milano

Price regulation can affect access to drugs

Drug prices are strictly regulated in most countries

- US: prices are benchmarked to private market
- ► UK: prices tied to therapeutic value
- EU: gov't negotiates using external reference pricing (ERP)
 - Set price using prices of the same drug abroad as reference

Price regulation can affect access to drugs

Drug prices are strictly regulated in most countries

- US: prices are benchmarked to private market
- ► UK: prices tied to therapeutic value
- EU: gov't negotiates using external reference pricing (ERP)
 - Set price using prices of the same drug abroad as reference

ERP affects access in potentially unexpected ways

- Linking prices across countries limits price-discrimination
- Firm may respond by delaying entry in low-income countries

Price regulation can affect access to drugs

Drug prices are strictly regulated in most countries

- US: prices are benchmarked to private market
- ► UK: prices tied to therapeutic value
- EU: gov't negotiates using external reference pricing (ERP)
 - Set price using prices of the same drug abroad as reference

ERP affects access in potentially unexpected ways

- Linking prices across countries limits price-discrimination
- Firm may respond by delaying entry in low-income countries

How does ERP affect access to newly approved drugs?

This paper quantifies the impact of ERP in Europe

Overview of today's presentation

- 1. Launch delays in Europe: what models (don't) justify them?
- 2. ERP as a deterrent to entry: theory
- 3. Estimation of the impact of ERP in three parts:
 - Do countries actually follow ERP guidelines?
 - Are firms better off with delays?
 - ► How much would delays fall if ERP were removed?

Launch delays in Europe: what models (don't) justify them?

Drug diffusion across Europe: 1 year after approval

Drug diffusion across Europe: 2 years after approval

Drug diffusion across Europe: 3 years after approval

Drug diffusion across Europe: 4 years after approval

Drug diffusion across Europe: 5 years after approval

Many models predict delays...

1. Limited number of entry applications at the same time

2. Fixed costs of entry

3. Capacity constraints

Many models predict delays...

- 1. Limited number of entry applications at the same time
 - Prioritize highest revenue, not highest price
- 2. Fixed costs of entry

3. Capacity constraints

...but data patterns don't quite fit any of them

- 1. Limited number of entry applications at the same time
 - Prioritize highest revenue, not highest price
 - Price inversely correlated with delays, controlling for revenue
- 2. Fixed costs of entry
 - Probability of entry should decline over time
- 3. Capacity constraints

...but data patterns don't quite fit any of them

- 1. Limited number of entry applications at the same time
 - Prioritize highest revenue, not highest price
 - Price inversely correlated with delays, controlling for revenue
- 2. Fixed costs of entry
 - Probability of entry should decline over time
 - Probability of entry is flat and increases closer to LOE
- 3. Capacity constraints
 - No more entry once firm hits full capacity

...but data patterns don't quite fit any of them

- 1. Limited number of entry applications at the same time
 - Prioritize highest revenue, not highest price
 - Price inversely correlated with delays, controlling for revenue
- 2. Fixed costs of entry
 - Probability of entry should decline over time
 - Probability of entry is flat and increases closer to LOE
- 3. Capacity constraints
 - No more entry once firm hits full capacity
 - ▶ > 10% of launches occur after the firm has reached peak output

ERP as a deterrent to entry: theory

Price

At the end of each period countries adjust prices to match minimum available price.

Period 1: price p_j quantity q_j Period 2: price $\min_{k \in (1,2)} (p_k)$ quantity q_j

Quantity

At the end of each period countries adjust prices to match minimum available price.

Period 1: prices (p_1, p_2) quantities (q_1, q_2) Period 2: prices (p_2, p_2)

quantities (q_1, q_2)

Two possible strategies:

- 1. Wait until period 2 to launch in country 2
- 2. Launch everywhere right away

We estimate an extended version of this toy model

Model components

- 1. Demand
 - Data: quantity sold for each drug *i*, year *t*, country *j*
 - Goal: **predict quantity** in years prior to entry
- 2. Price
 - Data: average yearly drug prices, reference pricing functions
 - Goal: predict prices under alternative entry sequences
 - ▶ Parameter $\mu_j \in [0, 1]$ allows partial adherence to ERP

We estimate an extended version of this toy model

Model components

- 1. Demand
 - Data: quantity sold for each drug *i*, year *t*, country *j*
 - Goal: **predict quantity** in years prior to entry
- 2. Price
 - Data: average yearly drug prices, reference pricing functions
 - Goal: predict prices under alternative entry sequences
 - ▶ Parameter $\mu_j \in [0, 1]$ allows partial adherence to ERP
- 3. Firm dynamic entry decision model
 - Firms apply for entry, but may experience **stochastic** delays
 - ► Goal: link 1. & 2. to compute revenue of any entry sequence

Stage I: Firm choose where to send entry applications

Strategic delays:

firm only sends applications to some countries

Stage II: delay shocks are realized

Idiosyncratic delays: some applications are randomly delayed

Stage III: prices are set

Stage IV: products are sold and profits realized

Estimation of the impact of ERP in three parts

What we need to estimate

- 1. Do countries actually follow ERP guidelines?
 - μ_i needs to be close to 1 for at least some countries

Do countries actually follow ERP guidelines? Estimates of μ_i

What we need to estimate

- 1. Do countries actually follow ERP guidelines?
 - μ_i needs to be close to 1 for at least some countries
 - Spain and Italy follow ERP, their prices are affected by EU10
- 2. Are firms better off with delays?
 - Firms should earn more if entry is delayed

Are firms better off with delays?

% of drugs for which delaying entry in country *X* only is optimal

What we need to estimate

- 1. Do countries actually follow ERP guidelines?
 - μ_i needs to be close to 1 for at least some countries
 - Spain and Italy follow ERP, their prices are affected by EU10
- 2. Are firms better off with delays?
 - Firms should earn more if entry is delayed
 - Most firms earn more when delaying entry in EU10
- 3. How much would delays fall if ERP were removed?
 - If we get rid of ERP, there should be faster entry

How much would delays fall if ERP were removed?

Empirical problem: find ψ_i (prob. of random delay in country *j*)

- ► Ideally: solve model, match observed entry to predicted entry
- ► In practice: model is too complicated to solve

How much would delays fall if ERP were removed?

Empirical problem: find ψ_j (prob. of random delay in country *j*)

- ► Ideally: solve model, match observed entry to predicted entry
- In practice: model is too complicated to solve

Solution: use moment inequalities

- Lower bound:
 - Lower ψ_i is better for the firm
 - w/ low $\dot{\psi}_i$, can find strategies that earn more than firm did
 - Find these strategies \rightarrow reject low values of ψ_i

Upper bound:

► Worst case scenario: all delays are idiosyncratic

How much would delays fall if ERP were removed?

Empirical problem: find ψ_j (prob. of random delay in country *j*)

- ► Ideally: solve model, match observed entry to predicted entry
- In practice: model is too complicated to solve

Solution: use moment inequalities

- Lower bound:
 - Lower ψ_i is better for the firm
 - w/ low ψ_j , can find strategies that earn more than firm did
 - Find these strategies \rightarrow reject low values of ψ_i

Upper bound:

Worst case scenario: all delays are idiosyncratic

Output:

- Western Europe: assume away strategic delays
- ► Eastern Europe: estimate interval $\psi_{EU10} \in [0.416, 0.669]$

How much would delays fall if ERP were removed? Simulated delays w/out ERP: only idiosyncratic delays remain

How much would delays fall if ERP were removed? Simulated delays w/out ERP: only idiosyncratic delays remain

What we need to estimate

- 1. Do countries actually follow ERP guidelines?
 - μ_i needs to be close to 1 for at least some countries
 - Spain and Italy follow ERP, their prices are affected by EU10
- 2. Are firms better off with delays?
 - Firms should earn more if entry is delayed
 - Most firms earn more when delaying entry in EU10
- 3. How much would delays fall if ERP were removed?
 - If we get rid of ERP, there should be faster entry
 - Up to 14.5 months earlier entry in EU10

Conclusion: the bigger picture

Main takeaway:

A framework to formally uncover policy-driven entry delays

Conclusion: the bigger picture

Main takeaway:

• A framework to formally uncover policy-driven entry delays

General implication: price-linked regulation causes spillovers

- Medicare/Medicaid reimbursement rules affect private prices
- Medicare Part B reform would introduce ERP to US
 - US prices are well above highest prices in Europe
 - ► US market is roughly 3x size of entire EU market

Conclusion: the bigger picture

Main takeaway:

• A framework to formally uncover policy-driven entry delays

General implication: price-linked regulation causes spillovers

- Medicare/Medicaid reimbursement rules affect private prices
- Medicare Part B reform would introduce ERP to US
 - US prices are well above highest prices in Europe
 - ► US market is roughly 3x size of entire EU market

What we still don't know

- ► W/out ERP would prices rise in West. EU or fall in East. EU?
- ► Would ERP reduce US prices, or raise foreign prices?

thank you