A Quantitative Analysis of Subsidy Competition in the U.S.

Ralph Ossa

University of Zurich and CEPR

January 2019

Motivation and objectives

Motivation

- US cities, counties, and states spend substantial resources on subsidies trying to attract firms from other locations
- Such subsidies had an annual cost of \$45 billion in 2015, equivalent to 30% of average state and local business taxes

Objectives

- Understand what motivates regional governments to subsidize firm relocations and quantify how strong their incentives are
- Characterize fully non-cooperative and cooperative subsidy choices and assess how far away we are from these extremes

Strategy and findings

Strategy

- I pursue these objectives in the context of a quantitative economic geography model which I calibrate
 to US states
- I calculate optimal subsides, Nash subsidies, and cooperative subsidies and compare them to observed subsidies

Findings

- I show that states have strong incentives to subsidize firm relocations in order to gain at the expense
 of other states
- Observed subsidies are closer to cooperative than non-cooperative subsidies but the potential losses from an escalation of subsidy competition are large

Mechanism and approach

Mechanism

- My model features agglomeration externalities in the New Economic Geography tradition which policymakers try to exploit
- Consumers want to be close to firms and firms want to be close to firms to have better access to final and intermediate goods

Approach

- I try to strike a balance between transparency and realism to be able to clearly illustrate the main mechanism and yet obtain broadly credible quantitative results
- Analytical results are notoriously hard to derive in economic geography models and the standard practice has been to resort to simple numerical examples instead

Contribution

- I am not aware of any comparable analysis of noncooperative and cooperative policy in a spatial environment
- Theoretical work such as Baldwin et al (2005) restricts attention to highly stylized models and does not connect to data
- Quantitative work such as Gaubert (2014), Suarez Serrato and Zidar (2016), and Fajgelbaum et al (2016) takes policy as given
- My modeling of agglomeration forces builds on Krugman (1991), Krugman and Venables (1995), and Allen and Arkolakis (2014)
- Methodologically most similar are the recent contributions by Ossa (2014), Fajgelbaum et al (2016), and Redding (2016)

Outline

- Model
- Calibration
- Analysis

Model - Setup - Preferences

• Preferences are common over goods and heterogeneous over amenities:

$$\begin{array}{lcl} U_{j\nu} & = & U_{j}u_{j\nu} \\ \\ U_{j} & = & \frac{A_{j}}{L_{j}} \left(\frac{T_{j}^{R}}{\mu}\right)^{\mu} \left(\frac{C_{j}^{F}}{1-\mu}\right)^{1-\mu} \\ \\ C_{j}^{F} & = & \left(\sum_{i} \int_{0}^{M_{i}} c_{ij}^{F}\left(\omega_{i}\right)^{\frac{\ell-1}{\ell}} d\omega_{i}\right)^{\frac{\ell}{\ell-1}} \\ \\ u_{j\nu} & \sim & \textit{Frechet}\left(1,\sigma\right) \end{array}$$

NB: Heterogeneity is necessary to allow for a meaningful sense in which states can benefit at the expense of one another

◆□ > ◆□ > ◆□ > ◆□ > ◆□ = ◆○○○

Model - Setup - Technology

• Firms produce differentiated products using labor, capital, land, and intermediates:

$$q_{j} = \varphi_{j}(z_{j} - f_{j})$$

$$z_{j} = \frac{1}{M_{j}} \left(\frac{1}{\eta} \left(\frac{L_{j}}{\theta^{L}}\right)^{\theta^{L}} \left(\frac{K_{j}}{\theta^{K}}\right)^{\theta^{K}} \left(\frac{T_{j}^{C}}{\theta^{T}}\right)^{\theta^{T}}\right)^{\eta} \left(\frac{C_{j}^{I}}{1 - \eta}\right)^{1 - \eta}$$

$$C_{j}^{I} = \left(\sum_{i} \int_{0}^{M_{i}} c_{ij}^{I}(\omega_{i})^{\frac{\varepsilon - 1}{\varepsilon}} d\omega_{i}\right)^{\frac{\varepsilon}{\varepsilon - 1}}$$

$$1 = \theta^{L} + \theta^{K} + \theta^{T}$$

NB: Tax-financed cost subsidies would not work if there was only labor because then workers would essentially subsidize themselves

- 4 ロ ト 4 周 ト 4 ヨ ト 4 ヨ ト 至 l モ め Q ()

Model - Setup - Government

Government objective

- In the non-cooperative regime, local governments maximize local expected utility, $E\left(U_{jv}|\text{living in }j\right)$, which amounts to maximizing U_i
- In the cooperative regime, the federal government maximizes national expected utility, $E\left(\max_{j}\left\{U_{j\nu}\right\}\right)$, which amounts to maximizing $\left(\sum_{i=1}^{R}U_{i}^{\sigma}\right)^{\frac{1}{G}}$

Policy instruments

- Governments provide cost subsidies to local firms which they finance with lump-sum taxes on local residents
- These subsidies capture deviations from a benefit tax benchmark which includes statutory corporate tax rates

Model - Equilibrium - Properties

- The solution to the model can be expressed as a system of 4N equilibrium conditions in the 4N unknows $\hat{\lambda}_i^L$, $\hat{\lambda}_i^K$, $\hat{\lambda}_i^C$, and \hat{P}_i
- It can be calibrated with minimal data requirements using the "exact hat algebra" approach
 of Dekle et al (2008)
- Following Allen and Arkolakis (2014), the model is isomorphic to an Armington model with external IRS technology if $\phi=\frac{1}{\epsilon-1}$ and the technology is:

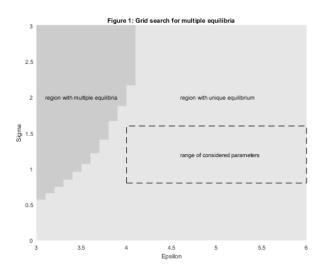
$$Q_i = \varphi_i (Z_i)^{1+\phi}$$

$$Z_{i} = \left(\frac{1}{\eta} \left(\frac{L_{i}}{\theta^{L}}\right)^{\theta^{L}} \left(\frac{K_{i}}{\theta^{K}}\right)^{\theta^{K}} \left(\frac{T_{i}^{C}}{\theta^{T}}\right)^{\theta^{T}}\right)^{\eta} \left(\frac{C_{i}^{I}}{1-\eta}\right)^{1-\eta}$$

Ralph Ossa (UZH)

Calibration - Data

- Business incentives databases of Bartik (2017) and Story et al (2012)
 - $\bar{s}_i = 0.5\%$, $s_i^{\min} = 0.0\%$ (CO), $s_i^{\max} = 3.8\%$ (NM)
- 2007 Commodity Flow Survey
 - T_{ij}
- 2007 Annual Survey of Manufacturing
 - λ_i^L
- 2007 BEA Input-Output Table and BLS Capital Income Table
 - $\theta^L = 0.57, \ \theta^K = 0.33, \ \theta^T = 0.10, \ \eta = 0.58$
- Earlier work including Suarez Serrato and Zidar (2015) and Redding (2015)
 - $\sigma = 1.2$, $\mu = 0.25$, $\varepsilon = 5$

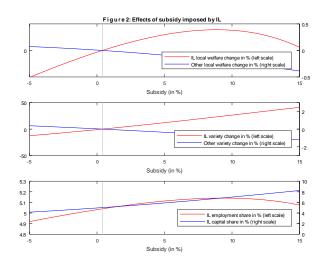

Calibration - Adjustments

- I purge the trade data of the net exports due to nominal transfers so that subsidies cannot affect the real values of nominal transfers
- For this calculation, I work with a version of the model without labor mobility to preserve the original distribution of employment
- I also allow for a federal subsidy on differentiated goods purchases in order to isolate the beggar-thy-neighbor aspects of state subsidies

$$p_{ij} = \frac{\varepsilon}{\varepsilon - 1} \frac{\left(\left(w_i \right)^{\theta^L} \left(i \right)^{\theta^K} \left(r \right)^{\theta^T} \right)^{\eta} \left(\rho^F P_i \right)^{1 - \eta} \rho_i \tau_{ij}}{\varphi_i}$$

Ralph Ossa (UZH)

Calibration - Multiplicity of equilibria



Calibration - Model fit

- The calibration procedure essentially pins down trade costs, amenities, and productivities such that manufacturing trade and employment are exactly matched
- Assuming $\tau_{ij} = \tau_{ji}$ and $\tau_{ii} = 1$, the model can be inverted and relative trade costs, amenities, and productivities can be backed out (as well as many other variables)
- It turns out that the variation in trade flows and manufacturing employment is mainly attributed to variation in trade costs and amenities, respectively

14 / 29

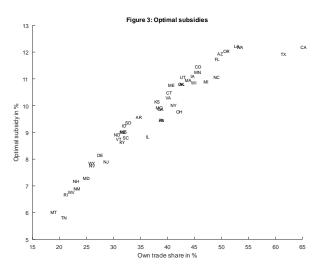
Welfare effects of subsidy - Example

Welfare effects of subsidy - Decomposition

 Under certain restrictions, the welfare effects resulting from small subsidy changes can be decomposed into:

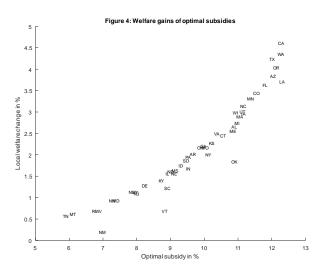
$$\frac{dU_{j}}{U_{j}} = \underbrace{\frac{1}{\eta} \sum_{i} \frac{X_{ij}}{E_{j}} \frac{1}{\varepsilon - 1} \frac{dM_{i}}{M_{i}}}_{\text{home market effect}} + \underbrace{\frac{1}{\eta} \sum_{i} \frac{X_{ij}}{E_{j}} \left(\frac{dp_{j}}{p_{j}} - \frac{dp_{i}}{p_{i}} \right)}_{\text{terms-of-trade effect}} - \underbrace{\mu \left(\frac{dr_{j}}{r_{j}} - \frac{dP_{j}}{P_{j}} \right)}_{\text{residential congestion}} - \underbrace{\theta^{T} \left(\frac{d\lambda_{j}^{L}}{\lambda_{j}^{L}} - \frac{d\lambda_{j}^{C}}{\lambda_{j}^{C}} \right)}_{\text{commercial congestion}}$$

• The terms-of-trade effect can be further decomposed into:


$$\underbrace{\theta^L \sum_{i} \frac{X_{ij}}{E_{j}} \left(\frac{dw_{j}}{w_{j}} - \frac{dw_{i}}{w_{i}} \right)}_{\text{relative wage effect}} + \underbrace{\theta^T \sum_{i} \frac{X_{ij}}{E_{j}} \left(\frac{dr_{j}}{r_{i}} - \frac{dr_{i}}{r_{i}} \right)}_{\text{relative rent effect}} + \underbrace{\frac{1}{\eta} \sum_{i} \frac{X_{ij}}{E_{j}} \left(\frac{d\rho_{j}}{\rho_{j}} - \frac{d\rho_{i}}{\rho_{i}} \right)}_{\text{direct subsidy effect}} + \underbrace{\frac{1-\eta}{\eta} \sum_{i} \frac{X_{ij}}{E_{j}} \left(\frac{dP_{j}}{P_{j}} - \frac{dP_{i}}{P_{i}} \right)}_{\text{intermediate cost effect}}$$

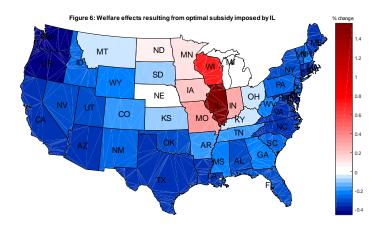
 For example, if IL unilaterally imposes a 5 percent subsidy, the approximate welfare effects are:

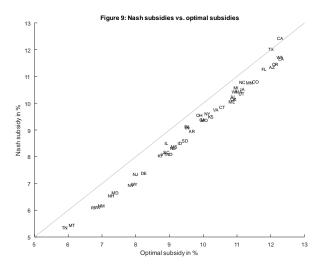
	U	НМЕ	ТОТ	CON	TOTw	TOT,	TOTs	TOTint	CON _{res}	CON _{com}
IL	1.2%	1.6%	1.0%	-1.4%	5.4%	0.5%	-4.5%	-0.3%	-2.1%	0.7%

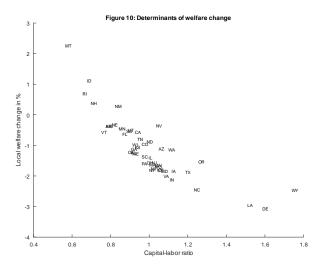

Ralph Ossa (UZH) Subsidy Competition January 2019 16 / 29

Optimal subsidies

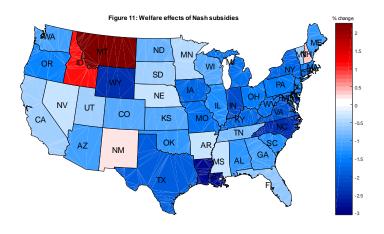
NB: Optimal subsidies average 9.6% or \$14.9 billion




NB: Local welfare rises by 2.2% or \$1.2 billion on average in the subsidy imposing state


Ralph Ossa (UZH) Subsidy Competition January 2019 18 / 2:

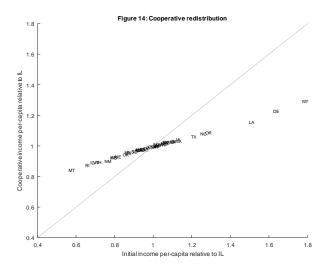
Optimal subsidies IL - Geography of welfare effects



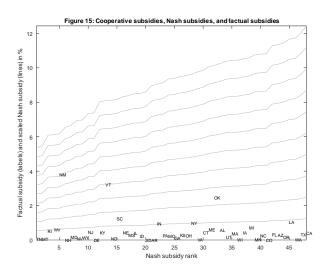
NB: Local welfare falls by -1.1% on average which adds up to a nationwide loss of -\$30.9 billion

Ralph Ossa (UZH) Subsidy Competition January 2019 21 / 25

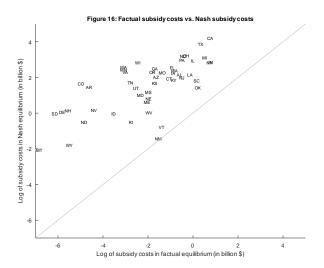
Nash subsidies - Geography of welfare effects



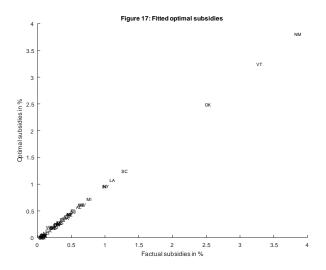
Cooperative subsidies


- If the federal government maximizes expected welfare, it sets all subsidies equal to zero and uses transfers to reduce inequality
- Starting at factual subsidies, this increases expected welfare by 0.5% which amounts to a gain of \$11.4 billion for the entire country
- Almost the entire effect is due to the use of transfers, just setting subsidies to zero brings about a total gain of only \$50.7 million
- If the federal government was not allowed to make transfers, it would mimic them by cooperatively manipulating the terms-of-trade

Cooperative redistribution



▶ Sensitivity

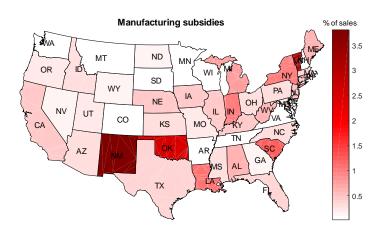

Observed vs. counterfactual subsidies

Observed vs. counterfactual subsidy costs

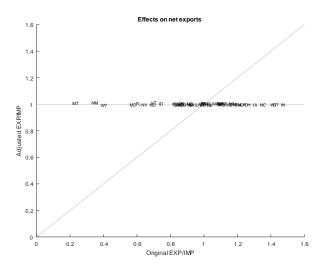
Fitted subsidies

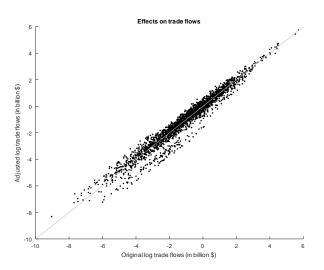
Fitted subsidies - Own welfare weights

State	Weight (%)	State	Weight (%)
IN	0.54	MS	0.05
NY	0.52	GA	0.05
CA	0.41	KS	0.05
ОК	0.40	RI	0.04
SC	0.38	AZ	0.04
MI	0.37	ME	0.03
IL	0.29	MD	0.03
TX	0.20	TN	0.03
NJ	0.20	OR	0.02
NM	0.19	WI	0.02
ОН	0.17	UT	0.02
PA	0.16	ID	0.01
VT	0.15	MN	0.01
AL	0.14	VA	0.01
KY	0.12	WA	0.01
LA	0.11	NV	0.00
NC	0.10	AR	0.00
FL	0.10	MT	0.00
MA	0.09	NH	0.00
IA	0.08	ND	0.00
CT	0.08	co	0.00
мо	0.06	SD	0.00
wv	0.05	DE	0.00
NE	0.05	WY	0.00

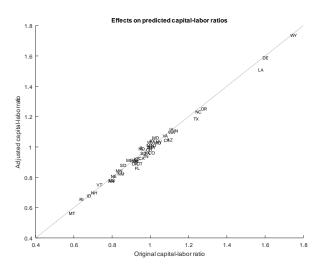


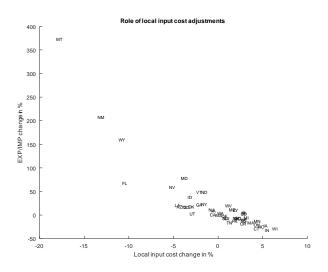
Conclusion

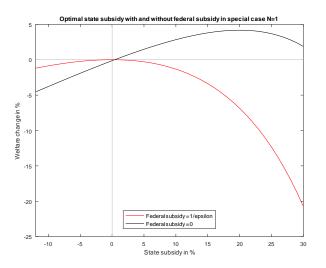

- I analyze subsidy wars and subsidy talks among US states using a quantitative economic geography model
- I believe this is the first quantitative analysis of noncooperative and cooperative policy in a spatial environment
- I show that states have strong incentives to subsidize firm relocations in order to gain at the
 expense of other states
- Observed subsidies are closer to cooperative than non-cooperative subsidies but the potential losses from an escalation of subsidy competition are large

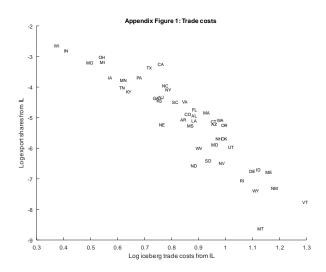

Data - Distribution of subsidies



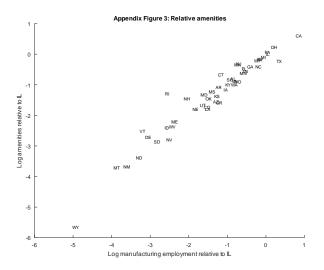


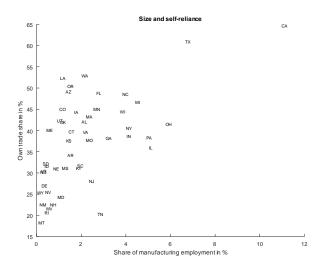


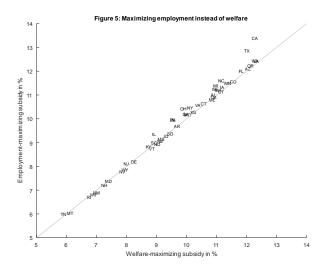





Adjustment II - Federal subsidy





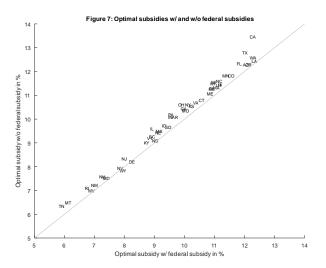


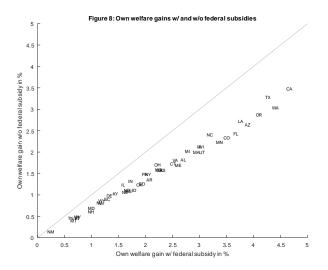
▶ Back

Optimal subsidies - Determinants of own trade share

Optimal subsidies - Maximizing employment

subsidy			Δ welf	are	$\Delta \lambda^{\scriptscriptstyle L}$
σ	avg	own	other	expected	avg.
0.80	9.6	2.2	-0.2	-0.1	1.8
1.20	9.6	2.2	-0.2	-0.1	2.7
1.60	9.7	2.1	-0.2	-0.1	3.5


Sensitivity wrt. epsilon


	subsidy		Δ welf	are	$\Delta \lambda^L$
ε	avg	own	other	expected	avg.
4.00	13.0	6.7	-0.7	-0.3	8.5
5.00	9.6	2.2	-0.2	-0.1	2.7
6.00	7.8	1.1	-0.1	0.0	1.3

Sensitivity wrt. phi

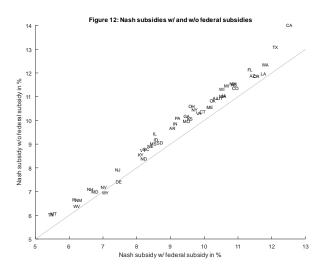
	subsidy		Δ welf	are	$\Delta \lambda^L$
ф	avg	own	other	expected	avg.
0.33	16.4	15.7	-1.5	-0.6	20.2
0.25	9.6	2.2	-0.2	-0.1	2.7
0.20	5.6	0.5	0.0	0.0	0.7

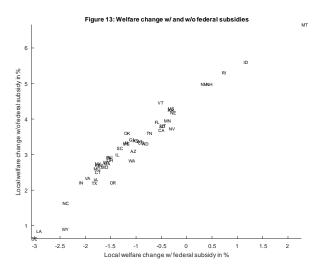
	Sen	sitivity wrt.	intial subsid	ies	
state	sub	sidy	state	sub	sidy
	min	max		min	max
AL	10.6	10.8	NE	8.7	9.1
AZ	11.7	12.0	NV	7.4	7.8
AR	9.3	9.6	NH	6.9	7.2
CA	12.2	12.3	NJ	7.7	8
CO	11.2	11.5	NM	6.9	7.2
CT	10.2	10.5	NY	9.9	10.1
DE	7.8	8.2	NC	10.9	11.1
FL	11.5	11.8	ND	8.6	8.9
GA	9.6	9.9	ОН	9.6	9.8
ID	8.9	9.3	OK	10.7	11
IL	8.7	8.9	OR	11.8	12
IN	9.3	9.5	PA	9.3	9.5
IA	10.9	11.1	RI	6.4	6.7
KS	9.9	10.2	SC	8.6	8.9
KY	8.4	8.7	SD	9	9.4
LA	12.1	12.3	TN	5.6	5.8
ME	10.5	10.8	TX	11.9	12
MD	7.0	7.3	UT	10.8	11.1
MA	10.7	11.0	VT	8.7	9
MI	10.8	10.9	VA	10	10.3
MN	11.0	11.3	WA	12	12.2
MS	8.7	9.1	WV	6.5	6.8
MO	9.7	9.9	WI	10.6	10.9
MT	5.7	6.0	WY	7.5	7.9

		Sensitivity wit. sig	IIIa
	subsidy	Δ welf	are
σ	avg.	incumbent	expected

	subsidy	∆ welfare		$\Delta \lambda^L$
σ	avg.	incumbent	expected	avg.
0.80	9.1	-1.1	-1.3	0.2
1.20	9.1	-1.1	-1.3	0.3
1.60	9.1	-1.1	-1.3	0.4

Concitivity wrt ciama


Sensitivity wrt. epsilon


	subsidy	Δ welfare		$\Delta \lambda^{\scriptscriptstyle L}$
ε	avg.	incumbent	expected	avg.
4.00	11.7	-2.8	-3.2	0.6
5.00	9.1	-1.1	-1.3	0.3
6.00	7.5	-0.6	-0.7	0.2

Sensitivity wrt. phi

	subsidy	Δ well	fare	$\Delta \lambda^L$
ф	avg.	incumbent	expected	avg.
0.33	14.9	-4.5	-4.9	0.5
0.25	9.1	-1.1	-1.3	0.3
0.20	5.3	-0.3	-0.4	0.2

	Se	nsitivity to i	ntial subsidie	es	
state	min	max	state	min	max
AL	10.0	10.4	NE	8.0	8.4
AZ	11.1	11.4	NV	6.6	7.1
AR	8.6	9.0	NH	6.2	6.6
CA	12.4	12.5	NJ	7.1	7.5
CO	10.5	10.9	NM	6.2	6.5
CT	9.6	10.0	NY	9.4	9.8
DE	7.1	7.5	NC	10.6	10.9
FL	11.1	11.3	ND	7.8	8.2
GA	9.1	9.5	ОН	9.3	9.6
ID	8.2	8.6	OK	10.0	10.4
IL	8.3	8.6	OR	11.2	11.6
IN	8.9	9.2	PA	8.9	9.2
IA	10.3	10.6	RI	5.8	6.2
KS	9.2	9.6	SC	8.0	8.4
KY	7.8	8.1	SD	8.3	8.7
LA	11.5	11.8	TN	5.1	5.4
ME	9.8	10.2	TX	11.9	12.0
MD	6.4	6.8	UT	10.1	10.5
MA	10.2	10.5	VT	8.0	8.4
MI	10.4	10.7	VA	9.5	9.8
MN	10.5	10.8	WA	11.5	11.8
MS	8.1	8.5	WV	5.9	6.2
MO	9.1	9.4	WI	10.2	10.5
MT	5.2	5.5	WY	6.7	7.1

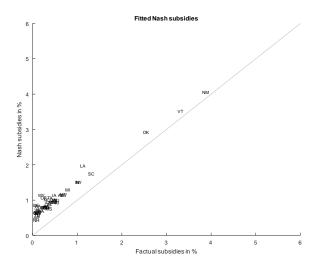
Cooperative subsidies - Sensitivity

Sensitivity wrt. sigma

	subsidy	Δ well	$\Delta \lambda^L$	
σ		incumbent	expected	avg.
0.80	0.0	2.7	0.5	1.6
1.20	0.0	2.3	0.5	2.2
1.60	0.0	2.0	0.5	2.7

Sensitivity wrt. epsilon

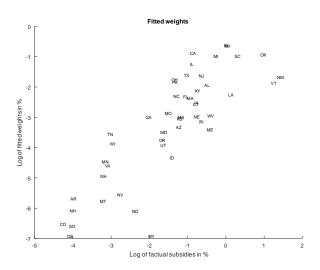
Sensitivity wit. epsilon							
	subsidy	∆ welfare		$\Delta \lambda^L$			
ε		incumbent	expected	avg.			
4.00	0.0	3.6	0.8	3.5			
5.00	0.0	2.3	0.5	2.2			
6.00	0.0	1.8	0.4	1.7			


Sensitivity wrt. phi

Schistarty wite pin					
	subsidy	Δ welfare		$\Delta \lambda^L$	
ф		incumbent	expected	avg.	
0.33	0.0	2.9	0.8	2.8	
0.25	0.0	2.3	0.5	2.2	
0.20	0.9	2.4	0.4	2.5	

NB: Without federal subsidies, the cooperative subsidy would be set to undo the markup distortion

▶ Back


Fitted subsidies - Nash

Fitted subsidies - Weights

▶ Back

