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Motivation

• An economy without aribtrages admits stochastic discount factor (SDF)

representation:

Pricei=E [m× Future Payoffi]

• The random variable m summarizes all pricing related information in
• consumer preference
• production technology
• political/international conflicts ...

• Hence, the estimation of m is critical to learn about the pricing rule of an

economy



Motivation

• Although SDF representation Pricei = E [m× Future Payoffi] is applicable

to every asset in an economy

• In practice, empirical researchers often estimate the SDF by imposing the
equilibrium restriction, Pricei = E [m× Future Payoffi] , to a small
number of assets/portfolios
• E.g., Jagannathan and Wang (1996) use size/market-beta portfolios
• Does the choice of portfolios mask interesting features of priced risk factors?
• If researchers decide portfolios after they observe some patterns in data, this

practice may highlight random errors, not true SDF



Goal

1 This paper proposes several alternative estimators of the SDF so that

empirical researchers can fully exploit useful information on asset prices

from large panels of asset return data

2 We compare our estimators to other candidate SDF estimators and provide

simulation evidence on performance

3 We apply our estimators to large panels of U.S. stock return data
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Agnostic Estimator
• Pukthuanthong and Roll (PR, 2017) porposed an agnostic SDF estimator

using large panels of asset return data
• From the population moment 1 = E [Ri,tmt] , they construct an sample

anlogue
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• and treat m as coefficients in cross-sectional OLS regression with N > T

m̂PR =
(

R′R
T 2

)−1 R
T

′
1N = T (R′R)−1 R′1N



Agnostic Estimator

1 Biased for finite T since R
T is correlated with ε

2 Assumes a large (N and T ) balanced panel

1 survivorship biases

2 Large T is not adequate for individual stocks (more on this later)

3 Noisy estimates of SDF for typical panel sizes

4 Equivalent to using Asymptotic Principal Components with the number of

factors = T and setting the SDF to a linear combination of the factors
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Set-up

• For the presentation of theory, we focus on pricing gross returns

• We assume that the gross return generating process of each individual

security follows a K-factor model:

Ri,t = αi + β′ift + ei,t, for i = 1, · · · , N and t = 1, · · · , T, (1)

where βi is the (K × 1) vector of factor loadings of the i-th asset on the

(K × 1) vector of factor realizations, ft

• We allow the factor of ft to be either traded excess returns, traded gross

returns, latent (recovered by statistical factors), or nontraded factors



Set-up

• In an economy without statistical arbitrage opportunities, there exist a

scalar λ0, the gross return on the riskless asset, and a (K × 1) vector of λf
such that

E [Ri,t] ≈ λ0 + β′iλf

• Assuming exact pricing and plugging the above expression into the process

of (1) yields

Ri,t = λ0 + β′i (λf − µf + ft) + ei,t (2)



Set-up

• The exact factor pricing assumption implies that the SDF is a linear

function of the realization of the systematic factors:

mt = δ0 + f ′tδf , (3)

which satisfies E [Ri,tmt] = 1 when the scalar δ0 and the (K × 1) vector,

δf , are functions of parameters of the economy

δ0 = 1
λ0

(
1 + µ′fΣ−1

f λf

)
, δf = − 1

λ0

(
Σ−1
f λf

)
• Hence we restrict mt to be a linear function of ft and show how to

estimate mt for various structures of panel data
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RGP

• Matrix representation: R = λ01N1′T + B (λf − µf ) 1′T + BF′ + E

• We make standard assumptions on the systematic factors and factor

loadings:

Assumption 1. As N →∞, 1
NB′1N → µβ and 1

NB′B→ Vβ = Σβ +µβµ′β ,

where Σβ is a positive definite matrix. Also, as T →∞, 1
T F′1T

p→ µf and
1
T F′F p→ Vf = Σf + µfµ′f , where Σf is a positive definite matrix.

• Also, we need the following assumptions on E. We use 0m×n to denote the

(m× n) matrix of zeros:

Assumption 2. As N,T →∞, 1′NE1T
NT

p→ 0, F′E′1N
NT , B′E1T

NT

p→ 0K and
B′EF
NT

p→ 0K×K . Also, there exists a positive constant M0 <∞ such that the

maximum eigenvale of E′E
N is smaller than M0.



Balanced Panel Estimator
• We know that SDF is a linear function of factors as

mt = δ0 + f ′tδf

• Sample analogue of SDF representation is 1
...
1
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+
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...
εN


• This is a CSR equation with K + 1 (� T ) unknowns



Balanced Panel Estimator

• Cross-sectional OLS representation

1N = 1
T

RF4δ + ε

Theorem 1. Under Assumptions 1 and 2, as N,T →∞, δ̃ =
[
δ̃0 δ̃

′
f

]′ p→ δ

where δ̃ is given by

δ̃ = D̃−1Ũ =
(F′4R′RF4

NT 2

)−1(F′4R′1N
NT

)
(4)



Latent Factors

• This approach works even when F is not directly available

Assumption 3. We have a factor estimator F∗ that converges to a rotation of

F as N, T increase.

Corollary 1. Under Assumptions 1, 2, and 3, Theorem 1 holds using the

estimated factors.

• Relation to PR-SDF estimator
• The Agnostic Estmator by PR is the same as our balanced panel estimator

with K + 1 = T

• Empirically, there is a significant gain in performance by imposing a low

value for K
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Individual Stock Data
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Strategy

• Split the long time series into multiple blocks:

• Balanced within a block of finite size τ but unbalanced across blocks!

• RGP in block b: R[b] = λ01N[b]1′τ + B[b] (λf − µf ) 1′τ + B[b]F′[b] + E[b]

• Assumptions of the availability of large cross-sectional data in each time

block and the time-invariant first two moments in the cross-sectional

distribution of factor loadings
Assumption 4. (i) N[b] →∞ (ii) 1

N[b]
B′[b]1N[b] → µβ ,

1
N[b]

B′[b]B[b] → Vβ = Σβ + µβµ′β ,
E′[b]1N[b]
N[b]

p→ 0τ ,
E′[b]BN[b]
N[b]

p→ 0τ×K , and
E′[b]E[b]

N

p→ Ve,[b], where Ve,[b] is a (τ × τ) diagonal
matrix



Strategy

• Applying the cross-sectional regression idea for a block b

1N[b] = 1
τ

R[b]F4,[b]δ + ε =
( 1
τ

(
R[b] −E[b]

)
F4,[b] + 1

τ
E[b]F4,[b]

)
δ + ε

• With fixed τ , we need to adjust the effect of 1
τE[b]F4,[b] by subtracting

F′4,[b]V̂e,[b]F4,[b]

τ2

(
' F′4,[b]E

′
[b]E[b]F4,[b]

τ2

)
in the process of estimation where

V̂e,[b]
p→ Ve,[b]



Analogy to Litzenberger-Ramaswamy (1979)
• Consider a Fama-MacBeth regression of excess returns on a constant and

estimated CAMP betas

Rt = [1N β]Γt + ut = ZΓt + ut,Γ′t = [γ0 γ1]

• But we actually observe β̂ = β + ε. Let ΣZ = plim Z′Z
N and σ̄2

ε = plim ε′ε
N .

• If we simply regress Rt on Ẑ =
[
1N β̂

]

plimΓ̂t = plim

( Ẑ′Ẑ
N

)−1
Ẑ′Rt

N

 =

ΣZ +

 0 0

0 σ̄2
ε

−1

ΣZΓt

• Solution: subtract a consistent estimate of σ̄2
ε from the (2,2) element of

Ẑ′Ẑ
N !



Short-τ correction

We utilize the estimator of Ve,[b] proposed by Kim and Skoulakis (2018).

Lemma 1. Let Assumptions 1, 4 be in effect. Define V̂e,[b] by

V̂e,[b] = diag
((

H[b] �H[b]
)−1 S ′vec

(
Ê′[b]Ê[b]

N[b]

))
, (5)

H[b] = Jτ − JτF[b]

(
F′[b]JτF[b]

)−1
F′[b]Jτ , (6)

Jτ = Iτ −
1
τ

1τ×τ

Si,j = 1(i = (j − 1)τ + j).

Then, it holds that as N,T →∞, V̂e,[b]
p→ Ve,[b] for each b = 1, · · · , B.



Unbalanced Panel
• From (i) the moment condition + (ii) short τ adjustment in block b(

F′4,[b]R′[b]R[b]F4,[b]

N[b]τ2 −
F′4,[b]V̂e,[b]F4,[b]

τ2

)
δ '

F′4,[b]R′[b]1N[b]

N[b]τ

• We aggregate information across blocks as follows
• Define d[b] and u[b]

d[b] =
(

F′4,[b]F4,[b]

τ

)−1
(

F′4,[b]R′[b]R[b]F4,[b]

N[b]τ2 −
F′4,[b]V̂e,[b]F4,[b]

τ2

)

u[b] =
F′4,[b]R′[b]1N[b]

N[b]τ

• Aggregate across blocks: D̂ =
(

F′4F4
T

)
1
B

∑B

b=1 d[b] and Û = 1
B

∑B

b=1 u[b]

• Finally, we have D̂δ ' Û, yielding δ̂ = D̂−1Û



Unbalanced Panel Estimator

Theorem 2. Under Assumptions 1, 4, as N,T →∞, δ̂ =
[
δ̂0 δ̂

′
f

]′ p→ δ where

δ̂ = D̂−1Û

• Basically, this unbalanced estimator mimics the moment condition of the

balanced panel estimator in Theorem 1

• This result can be extended to latent factors (See Corollary 2.2 of the

paper)



Asymptotic distribution
• Note that D̂ =

(
F′4F4

T

)
1
B

∑B

b=1 d[b] and Û = 1
B

∑B

b=1 u[b] where δ̂ = D̂−1Û

• Under regularity conditions (Assumptions 5, 7 of the paper), we identify

the asmyptotic distribution of D̂ and Û and apply delta method

Theorem 3. Under regularity conditions, as N,T →∞,

√
T
(
δ̂ − δ

)
d→ N (0,Σδ) ,

where Σδ is given in Theorem 2.3 of the paper

• Furthermore, we can consistently estimate Σδ using the sample analogue
Theorem 4. Under regularity conditions, as N,T →∞,

Σ̂δ = τΨ̂

(
1
B

B∑
b=1

η[b]η
′
[b]

)
Ψ̂′

p→ Σδ,

where Ψ̂ =
[
1 − δ̂′

]
⊗ D̂−1 and η[b] is given by (2.30) of the paper
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Calibration

1 Three return generating processes implied by the CAPM, FF3, FF5

2 To obtain the parameters for a large number of assets in the simulation we

exploit 14,277 individual stock returns over 600 months (January 1967 to

December 2016) from the CRSP monthly database by regressing the excess

returns of Ri,t −Rf,t on a constant and a vector of factor returns:

Ri,t −Rf,t = αi + β′ift + ei,t

3 The first two moments of factors: µf = 1
600
∑600
t=1 ft and

Σf = 1
600−1

∑600
t=1 (ft − µf ) (ft − µf )′ . The riskless gross return is

estimated as the average of the gross realized risk free return over the same

period: λ0 = 1
600
∑600
t=1Rf,t.



Simulation

1 Simulated economy with N =500, 1,000, 2,000, and 4,000.

2 “Monthly” asset returns with T = 60, 120, 240, and 480 (corresponding to

5, 10, 20, and 40 years of data) and τ = 30

3 Returns constructed to obey one of three asset pricing models: CAPM,

FF3, FF5

4 Cross-sectional systematic and idiosyncratic risk exposures drawn jointly

from the empirical distribution, as in Chen, Connor, and Korajczyk (2018).



Performance metrics

Regress the SDF estimator, m̂t, on the true SDF, mt: m̂t = a+ bmt + ut.

1 R2 =1

2 a = 0

3 b = 1



Gross returns, FF5 (PR method)

R2 intercept(a) slope(b)

Panel C: Pukthuanthong and Roll’s (2017) Estimator

N\T 60 120 240 480 60 120 240 480 60 120 240 480

500 0.11 0.09 0.05 0.00 0.46 0.29 0.17 0.09 0.55 0.71 0.83 0.92

1000 0.17 0.16 0.11 0.06 0.45 0.29 0.16 0.09 0.55 0.71 0.84 0.91

2000 0.24 0.24 0.20 0.13 0.45 0.28 0.17 0.09 0.55 0.72 0.83 0.91

4000 0.32 0.35 0.31 0.23 0.45 0.28 0.17 0.09 0.56 0.72 0.84 0.91

1 R2 low

2 R2 declines in T (estimating SDF with more factors)

3 a and b independent of N improve in T



Gross returns, FF5 (Unbalanced)

R2 intercept(a) slope(b)

Panel A: Unbalanced Panel Estimator

A-1: With Observed Factors

N\T 60 120 240 480 60 120 240 480 60 120 240 480

500 0.19 0.20 0.23 0.27 -0.74 1.97 -0.30 -0.05 1.75 -1.10 1.30 1.06

1000 0.21 0.23 0.28 0.37 -0.46 0.10 -0.06 -0.01 1.44 0.91 1.06 1.02

2000 0.26 0.30 0.37 0.49 -0.12 -0.07 -0.02 -0.01 1.14 1.08 1.03 1.01

4000 0.31 0.38 0.49 0.63 -0.10 -0.03 -0.02 -0.01 1.12 1.04 1.02 1.02

A-2: With Estimated Factors

N\T 60 120 240 480 60 120 240 480 60 120 240 480

500 0.19 0.22 0.27 0.36 0.21 0.30 0.30 0.30 0.80 0.70 0.70 0.70

1000 0.23 0.27 0.36 0.47 0.15 0.20 0.20 0.21 0.86 0.80 0.80 0.79

2000 0.26 0.34 0.45 0.59 0.13 0.12 0.13 0.13 0.88 0.88 0.87 0.87

4000 0.32 0.42 0.56 0.71 0.03 0.06 0.07 0.06 0.98 0.95 0.93 0.94



Gross returns, FF5 (Unbalanced)

1 R2 higher.

2 R2 increases in T (more data with the fixed number of factors).

3 a and b improve in both N and T .



Gross returns, SDF test

N 1000

(T, τ) (450,30) (750,50) (600,30) (1000,50)

Nominal Size 1 5 10 1 5 10 1 5 10 1 5 10

Panel A: CAPM

δMKT 2.1 7.6 13.7 2.6 8.4 14.1 1.6 6.7 12.4 2.1 7.2 13.3

Panel B: FF3

δMKT 2.1 7.2 13.5 2.6 7.7 13.6 1.5 6.2 11.9 1.8 7.0 12.4

δSMB 2.1 6.9 12.9 2.2 8.2 14.2 1.6 6.2 12.0 2.0 7.3 12.7

δHML 1.7 6.8 12.6 2.5 8.2 13.9 1.8 7.0 12.8 1.8 6.9 12.5

Panel C: FF5

δMKT 1.5 6.0 11.7 2.1 7.4 13.1 1.4 5.7 10.5 1.7 7.2 12.9

δSMB 1.5 6.2 11.5 2.3 7.6 13.5 1.5 5.8 11.0 1.9 7.0 12.3

δHML 1.6 6.4 12.0 2.2 7.4 13.2 1.5 6.0 11.3 2.0 6.6 12.4

δRMW 1.5 6.5 11.7 2.3 8.2 13.8 1.3 6.0 11.6 2.1 7.2 13.0

δCMA 1.7 6.2 11.7 2.1 7.3 13.0 1.4 6.0 11.4 1.7 6.7 12.2
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Data

• CRSP monthly returns

• 600 months from January 1967 to December 2016

• 10,112 individual stocks (five dollar price filter)

• We split 600 months data into 20 blocks with equal length of 30 months
• The first block is from January 1967 to June 1969
• The last block is from July 2014 to December 2016
• The number of stocks is ranged from 1578 to 3443 with the average of 2455

over 20 blocks.



Asset Pricing Models

1 Specific asset pricing model applied to individual asset returns

1 CAPM, FF3, Hou, Xue, Zhang – HXZ4 (MKT, ME, I/A, ROE), FF5

(FF3+CMA+RMW), Barillas and Shanken – BS6

(HXZ4+MOM+HML devil), Pástor and Stambaugh – PS5

(FF3+MOM+LIQ)

2 Statistical Factor Models

1 Connor and Korajczyk (1986, 1991): PCA in each block + Rotation to FF3



Estimate (t-stat)

Panel A: Specific Asset Pricing Models

MKT SMB HML I/A ROE CMA RMW MOM LIQ HML(devil)

CAPM -4.46

(-4.38)

-2.51

FF3 -3.42 -2.69 -0.94

(-3.49) (-1.39) (-0.42)

-3.08 -1.90 -5.97

HXZ4 -5.04 -5.81 -7.85 -12.73

(-4.05) (-4.59) (-1.73) (-6.19)

-4.79 -4.84 -14.90 -10.32

FF5 -5.45 -3.31 4.62 -8.48 -11.57

(-3.96) (-1.70) (1.48) (-2.38) (-2.05)

-4.83 -3.55 0.40 -8.74 -12.50

PS5 -5.54 -2.60 -5.37 -8.59 0.19

(-6.54) (-2.71) (-3.08) (-6.06) (0.22)

BS6 -5.41 -5.73 -5.03 -8.29 -7.43 -5.16

(-4.28) (-4.69) (-1.59) (-2.86) (-3.85) (-2.66)

-4.90 -5.99 -5.55 -13.25 -5.22 -10.60

All -5.50 -4.95 -5.79 -9.23 1.91 1.68 -7.96 -0.15 -5.92

(-4.23) (-4.12) (-0.94) (-2.17) (0.56) (0.24) (-4.05) (-0.17) (-2.60)

Panel B: Statistical Factor Model

PC1 PC2 PC3

Single-Factor -4.58

(-4.38)

Three-Factor -3.42 -0.96 -2.75

(-2.08) (-0.25) (-0.68)



Result



Result



Result



Result



Result



Results

1 The market always enters the SDF significantly - in contrast to many

cross-sectional regression estimates of the market risk premium. CAMP

with realized moments implies δ = −2.5 while δ̂ =-4.46

2 SMB usually significant

3 HML mixed while HML(devil) significant

4 ROE and Momentum significant

5 I/A not significant but CMA is

6 Liquidity not significant
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Conclusion

• We propose several SDF estimators exploiting large panel data

• The imposition of a factor structure improves performance over the fully

agnostic alternative by PR

• We handle unbalanced panel data with block structure
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