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Introduction

@ Weak-1V-robust tests in overidentified regression model.
o If Vs are strong: Moreira's CLR, Kleibergen's K (LM) are
optimal.

o If IVs are weak: No uniformly optimal test.
But,
Andrews, Moreira, Stock (2006, Econometrica, AMS):

o Derived the power envelope for invariant tests;

o CLR is numerically on the envelope in a homosk. model.
For heterosked. models, design tests that behave like CLR in
homosked.
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This paper

@ We find the CLR is in fact not on the power envelope.
@ Reason: Consider Hy : 8= 8o vs Hy : B = Bs

o In standard frameworks: Can change 8, or By for power
calculations - equivalent.

e In Weak IV regression: Not equivalent as the variance of
reduced-form errors (depends on 3,) can be estimated
(known).

o Changing 3, when the variance of reduced-form errors is fixed
changes endogeneity.

(first pointed out in Davidson and MacKinnon, 2008)
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This paper (cont-d)

o Different power results for
@ Fix By change B, or
@ Fix (3, , change fg.
@ @ more standard (used in AMS), but
@ more appropriate for weak IV regressions with focus on
confidence sets (CS) (this paper):

o Allows for fixed reduced-form variance.
o Keeps endogeneity constant along the power curve.
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Contributions (i)

@ Alternative (to AMS) power analysis: 3, = fixed and |5p| 1 oo.

o Results:
o CLR is not on the power envelope.
o Anderson-Rubin (AR) can outperform CLR if endogeneity is
low.
e On average, CLR is still a better test.
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Contributions (ii)

@ New analytical result: CLR is nearly optimal when endogeneity
is nearly perfect.

@ Reconcile with AMS: When g = fixed and 8, — +o0,
endogeneity becomes perfect, and the tests behave as if [Vs
are strong.
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Contributions (iii)

o Power against 8y — Foo gives the probability of having
bounded CSs.
(Dufour (1997): Under weak ID, valid CSs are unbounded with
positive prob.)
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Model

b4t :}/25+ u,
Y2 = Zm + V2,

y1, y» are n X 1, endo., g € R.
Zis n x k, fixed (exog).

# of IVS: k > 1 (over ID).
Normal homosked. errors:

~ N ) 2 )
Vi 0 PuvOuOv gy

puv is an unknown endogeneity parameter.
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Reduced form

1= Zﬂﬂ“‘ Vi,
Y2 = Zm + V2,

o Reduced-form errors:

( . ) = < ey ) ~ N(0,Q),
V2 V2
Q- w% w12
w12 Ua ’
o Q is the var-covar of reduced-form errors,

e can be estimated consistently regardless of 7.
e Treat 2 as known and fixed.
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Problem with standard power calculations

Ho:B8=povs. Hi:B=ps.
Consider 8 = 8, — F00 with fixed /known Q:
The endogeneity parameter implied by 3, and known Q:

w12 — U%ﬁ*

(w? — 2w12, + 036,%)1/2 02

Puv(ﬁ*aQ) = — F1L.

Changing true 3, when Q is fixed changes endogeneity!

Bo and Q are fixed, 5, — +oo: Endogeneity changes with 3,
along a power curve.
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Sufficient statistics S and T for 8 and 7

o Y =[y1:y] bo=(1,—Po), sothat Yby = y1 — Boya.
@ S measures the violation of Hy:

S=(Z2'2)7*Z'Yby - (bhQ2by) /2
~ N(C,B(ﬁm Q) s M, Ik)7

where

c5(B0, Q) = (B — Bo) - (bpQbo) "2,
pr = (Z'2)Y?x.

@ The distr. of S is independent of 7 under Hy : 8 = Bo.
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Sufficient statistics S and T for 8 and 7

o Let ag = (5o, 1), so that bjag = 0.
e T is independent of S (bjag = 0):

T=(22)1Z2'vyQ tay- (ahQ tap) /2
~ N(dﬁ(ﬁm Q) * M, Ik)7

where

ds(Bo, Q) = (1, —B)Qbg - (byQ2bo) /2 - det(Q) /2,
pin = (Z'2)Y?x.

@ The distr. of T depends on 7.
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Invariance to transforms of S and T

o AMS consider similar tests invariant to orthonormal rotations
of (5, T).
o AMS maximal invariant statistic:
Q- 'S ST | | Qs Qst
ST T'T | | Qst Q7 |7
o @ ~Non-central Wishart,

@ Distr. of Q depends on 7 through the concentration
parameter:
AN=7'Z'Z1 = ||ur|?.

@ Strong IVs: A — oo,
o Weak IVs: A — A < 0.
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Tests statistics

@ Anderson-Rubin:
AR = Qs/k.

o x2/k distr. under Hp.
o Kleibergen's K or LM:

LM = Q3r/Qr.

o X2 distr. under Ho.
@ Moreira's CLR:

CLR = 0.5(Qs — Q7) + 0.5\/(05 — Qr)? +4Q2,.

o Crit. values simulated/computed numerically conditional on
Q7 for every So.

@ LM and CLR are efficient under strong IVs.
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AMS power envelope

AMS two-sided point-optimal invariant statistic:

P(Q; Bo, Bes A) + U(Q; Bo, Pk, A2)

POIS2(Q; Bo, Bs, A) = 202(Q7; Bo, Bes N) ’

where for a Bessel function /,,,
(i o, 5.3) = € M BV Dy (260

02(Q: Bo. B,2) = e MEP(d3Qr) KD )5 (/AdBQT )
£(Q)= CE Qs + 2cpdpQsT + déQT.

@ POIS2 has optimal average-power against (3., A) and
(Boxs A2).

@ (S24, A2) is chosen so that POIS2 is efficient under strong
IVs.

e Crit. values simulated conditionally on Q7 for every Bg, B, \.
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AMS Power curves: By = 0 fixed, B, — *oo

Wi = 0.

A =20, k=10.

Nearly equal power for CLR and POIS2.
CLR strongly outperforms AR.

power — 1 as 3, — Fo0.

POISZ
— — CIR
04 AR |4
LM
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Power curves: £, = 0 fixed, Sy — oo

pu =0, A =15, k = 10.

power - 1 as Bp — +oo (height depends on ).
AR outperforms CLR for large 3. — fo.

AR = POIS2 as By — oo.

CLR = POIS2 for small By — 5.

1F
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Power curves: £, = 0 fixed, Sy — oo

@ puy = 0.5, A= 15, k = 40.
@ CLR is below POIS2 and AR for interm. values of S8, — fo.
o CLR outperforms AR for 5y — oc.

.
40 45
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Power curves: £, = 0 fixed, Sy — oo

® pu, = 0.9, A =15, k = 10.
o CLR =~ POIS2.
o CLR outperforms AR.
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Questions

@ Why is there such a diff. btwn. the two scenarios:

1) Bo = fixed, B, — +oo and 2) S, = fixed, By — £o0?
@ Is CLR optimal or close to optimal in any sense?
© Should we be interested in Sy — +o00?
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@ Since the implied endogeneity parameter

I (B, Q)| — 1 as [Bi| — oo,

consider first
Pu — L.
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Power under weak Vs as p,, — 1

T ~ N(ds. (50, Q) - AV2T, ),

where ||T|| = 1.
@ Strong IV behavior is modeled by A — oo (standard).
o We keep 0 < A < oo fixed (weak [Vs).

@ As p,, — 1, reduced-form become errors perfectly corr-ed.:

V1:U+V26,

pa = Cov(vi, w)/+/Var(vi)Var(va) — 1.

o ds. (B0, Q) = (1,—B.)Qbg - (byQbo)~1/2 - det(Q) /2 — oo.
o The mean of T goes to co as in the case of strong IVs, while
IVs are weak!
o Due to ds instead of \.
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Power under weak 1Vs as p,, — 1

® S~ N(cg(Bo, Q) - A2, Iy),
@ When B, Bo, ou, oy, and X are fixed,

cs. (B0, Q) = (Bs — Bo) - (ByQby) /2
Bx — Bo
- |UU + (5* - ﬁo)a\,]

= Coo-

@ C, depends on B, — (9.
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Power under weak Vs as p,, — 1

Suppose i) A = fixed (weak IVs), ii) dé* — 00, iii) €3, = Coo'

Ps. poxq (POIS2 > Kpois2 gona(QT)) (G- ) > xT1a) s
Ps. o0 (CLR > Kcir,a(QT)) (G- %) > X1 a)
P, pore (LM >x31 o) > P(xd(A - c2) > X31-a) -

— P
— P

[ Go to proofs ]
o P (X%()\ %) > x%,l_a> is the efficiency bound.
@ Attained by CLR & LM: they are nearly optimal!
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High endogeneity: p,, ~ +1.

@ The usual t or Wald tests have largest size distor. when
Puv = 1.

@ More reasons to use the robust (AR, CLR, LM) tests when
endogeneity is high.

@ In those cases, CLR and LM are nearly efficient, but not AR.
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AMS Power as 3, — 00

Suppose , B, and X are fixed:

L 0 _ (1, —B.)Qk)*
ﬁl'inoo d5. (Po, 1) = Jboo (bhQby) - det(Q) —

o= lim (8. — Ho)?/(b2bo) = oo

o Power — 1.

Strong-1V-like behavior for distant alternatives.

But |puv| — 1 along power curves.
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Alternative power calculations: As Sy — +o0

@ Suppose By, o4, 0y, puv, and X are fixed:

. 1 Puv 1
| d ND=F— " =" .r,,
Bomrtoo CY) :FO'V (1—p2,)1/2 :Fav u
1
li Q)=F—.
o oo (P D) = F 0

@ Power = 1.

e Under H; as By — oo

1
SNN<$'/L7T,I/<>,

T~N<q:r“v-uﬂ,/k) .
Ov

Can be used to describe the power of AR, CLR, LM as
,30 — Fo0.
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Power bound as Sy — £o00

The limit of AMS POIS2, for A\, = /o2,

w(Q, Tuv, )‘v) + ?Z)(Q, —luv, )‘v)
2w2(QT; ruva)\v) ’

POIS2(Q; 00, ruy, \) =

where

Av(1+rgy) (k=2)
2

V(Qiruv, Av) = e~ (ME(Qiruy)) = /g< Avé(Q;ruv)>7

Ay (k=2)
. A 2 - / 2
¢2(Qv Tuv, Av) =€ 2 (AvrquT) 4 /% ( )\erVQT> ’

E(Q, ruv): QS + 2rquST + rSVQT-

@ The distribution depends only on A,, r,,, and k.
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Optimality of AR when By — £o00 and p,, =0

@ POIS2,, depends on

&(Q;ruy) = Qs + 2r,, Qs + rSVQT-
@ When p,, =0,

I
uv —
(1= )7

‘f(Q, ruv) = QS = AR.

@ POIS2., becomes equivalent to AR <= Qst is not used.
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[ntuition

QsT=S5'T.
Under Hy, S ~ N(O, I).
Under Hy as By — Fo0,

T~ N(:Fruv : )LLﬂ‘/O-V? lk)
= N(0, /) when p,, =0.

@ S'T has mean zero under Hy and H; (as Sy — +0).
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Why consider Sy — +007?

e Dufour (1997): valid CSs are unbounded with positive prob.
when Vs are weak.

o CLR, AR, LM, POIS2 based CSs are unbounded with positive
prob.

@ New result: Power against S9 — 0o = Prob. of bounded
CSs.
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Proof

Test statistic: 7 (Qp,(Y))-

Test: 9(Qun(¥)) = 1{T(Qso(Y)) > W(Q@r,(Y))}.

CS: C5,(Y) = {fo - H(Qo(Y)) = 0.

CS4(Y) has right infinite length, RLength(CS4(Y')) = oo, if:

JK(Y) < oos.t. fe CS54(Y) forall 5> K(Y).

Can similarly define left infinite length.
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Proof

o
1{RLength(CS4(Y)) = oo}
=1{T(Qs,(Y)) < cv(Q7,5,(Y)) VB0 > K(Y) for some K(Y) < oo}
= Jim 1{T(Qso(Y)) < cv(Qr50(Y))}-

@ Take Eg, x0. apply the Dominated Convergence Theorem:
P (RLength(CSy(Y)) = o0) = lim P (T(Qs,(Y)) < cv(Qr.5(Y)))

= 1— lim P(T(Qs(¥)) > cv(Qrs(Y))).
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Probability of infinite-length CSs

pu  Fof IVs A POIS2,, CLR — POIS2,, AR — POIS2,
.0 5 10 .323 .031 .000
.0 40 20 .394 .049 .000
3 40 20 .380 .029 .012
.5 40 20 321 .013 .069
g 40 20 .186 .009 .204
9 40 20 .038 .000 .350

@ AR performs better for small p,, (by =~ 5%).
o CLR performs better for large p,, (by ~ 40%).
@ Approaching strong-IV-like behavior as p,, — 1.
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Power differences between POIS2 and CLR: fixed B8, = 0,
varying (o

e Max and avg. power differences over A and 3y for k = 40:

puv AI‘!‘]aX /BO’maX maXx difF an difF

0 22 —50 .059 .016
3 22 4.00 .061 .014
5 15 1.75 .050 .012
7 15 1.50 .050 .008
9 5 1.25 .040 .004

@ Amax =the value of A maximizing the diff.

@ [0,max =the value of 8y max maximizing the diff.
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Conclusion

CLR is not on the power envelope.

Optimality of CLR & LM as p,, — *oc.

Power for 5y — +oo gives the prob. of bounded CSs.
AR has better prob. of bounded CSs when p,, ~ 0.

Overall, CLR is still the recommended test.

35/39



Proof for LM:
Ps. por0 (LM > X%,l—a) — P (X%()‘ - c3) > X%,l—a)

@ dg, — 00, €8, — Coo, A < 00 and fixed.
o T = /A2 T =1.

o S=cs pr+Zs=A"cs T+ Zs.
o T=ds,  pr+Zr =\2ds, - T+ Z7.
o LM = Q% /Qr.
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Proof for LM

@ dg, — 00, €8, — Coo, A < 00 and fixed.

Qst _ (\V2cs. - T+ Zs) (A2 - T + Z7)
Q¥ a7 2]

(A\V2¢s, - T + Zs) (A\V2ds. - T + Z7)
A2d5 (1+ 0.5.(1))

- ()\1/2% + T’Zs> (1+ 0as.(1))
= N (W2 1)
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Sketch of the proof for CLR

@ dg, — 00 = QT — o0.

o CLR =0.5(Qs — Qr) + 0.5\/(05 — Q7)? +4Q3.

4 2
V(@5 —Qrp? +4Q3 ~ /(@5 — Qr + 2\/(QSQSTQ 3
— T
Qzr M

QT(l + Oa.s.(l)) 1 + Oa.s.(l).

CLR ~
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Sketch of the

proof for POIS2

For large ds and Q7, POIS2 approximately depends on:

~
~

~

\/CEQS +2¢3dsQst + d3QT — \/déQT
c5Qs + 2¢ds Qs

2\/d§QT
QsT
QY
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