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Introduction

Weak-IV-robust tests in overidentified regression model.
If IVs are strong: Moreira’s CLR, Kleibergen’s K (LM) are
optimal.
If IVs are weak: No uniformly optimal test.
But,
Andrews, Moreira, Stock (2006, Econometrica, AMS):

Derived the power envelope for invariant tests;
CLR is numerically on the envelope in a homosk. model.

For heterosked. models, design tests that behave like CLR in
homosked.
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This paper

We find the CLR is in fact not on the power envelope.
Reason: Consider H0 : β = β0 vs H1 : β = β∗

In standard frameworks: Can change β∗ or β0 for power
calculations - equivalent.
In Weak IV regression: Not equivalent as the variance of
reduced-form errors (depends on β∗) can be estimated
(known).
Changing β∗ when the variance of reduced-form errors is fixed
changes endogeneity.
(first pointed out in Davidson and MacKinnon, 2008)
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This paper (cont-d)

Different power results for
1 Fix β0 change β∗, or
2 Fix β∗ , change β0.
1 more standard (used in AMS), but
2 more appropriate for weak IV regressions with focus on

confidence sets (CS) (this paper):
Allows for fixed reduced-form variance.
Keeps endogeneity constant along the power curve.
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Contributions (i)

Alternative (to AMS) power analysis: β∗ = fixed and |β0| ↑ ∞.
Results:

CLR is not on the power envelope.
Anderson-Rubin (AR) can outperform CLR if endogeneity is
low.
On average, CLR is still a better test.
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Contributions (ii)

New analytical result: CLR is nearly optimal when endogeneity
is nearly perfect.
Reconcile with AMS: When β0 = fixed and β∗ → ±∞,
endogeneity becomes perfect, and the tests behave as if IVs
are strong.
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Contributions (iii)

Power against β0 → ±∞ gives the probability of having
bounded CSs.
(Dufour (1997): Under weak ID, valid CSs are unbounded with
positive prob.)
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Model

y1 = y2β + u,

y2 = Zπ + v2,

y1, y2 are n × 1, endo., β ∈ R.
Z is n × k , fixed (exog).
# of IVS: k > 1 (over ID).
Normal homosked. errors:(

ui
v2i

)
∼ N

((
0
0

)
,

(
σ2
u ρuvσuσv

ρuvσuσv σ2
v

))
,

ρuv is an unknown endogeneity parameter.
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Reduced form

y1 = Zπβ + v1,

y2 = Zπ + v2,

Reduced-form errors:(
v1
v2

)
=

(
u + v2β

v2

)
∼ N (0,Ω) ,

Ω =

(
ω2

1 ω12
ω12 σ2

v

)
.

Ω is the var-covar of reduced-form errors,
can be estimated consistently regardless of π.
Treat Ω as known and fixed.
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Problem with standard power calculations

H0 : β = β0 vs. H1 : β = β∗.
Consider β = β∗ → ±∞ with fixed/known Ω:
The endogeneity parameter implied by β∗ and known Ω:

ρuv (β∗,Ω) =
ω12 − σ2

2β∗(
ω2

1 − 2ω12β∗ + σ2
2β

2
∗
)1/2

σ2

→ ∓1.

Changing true β∗ when Ω is fixed changes endogeneity!
β0 and Ω are fixed, β∗ → ±∞: Endogeneity changes with β∗
along a power curve.
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Sufficient statistics S and T for β and π

Y = [y1 : y2], b0 = (1,−β0)′, so that Yb0 = y1 − β0y2.
S measures the violation of H0:

S = (Z ′Z )−1Z ′Yb0 · (b′0Ωb0)−1/2

∼ N(cβ(β0,Ω) · µπ, Ik),

where

cβ(β0,Ω) = (β − β0) · (b′0Ωb0)−1/2,

µπ = (Z ′Z )1/2π.

The distr. of S is independent of π under H0 : β = β0.
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Sufficient statistics S and T for β and π

Let a0 = (β0, 1)′, so that b′0a0 = 0.
T is independent of S (b′0a0 = 0):

T = (Z ′Z )−1Z ′YΩ−1a0 · (a′0Ω−1a0)−1/2

∼ N(dβ(β0,Ω) · µπ, Ik),

where

dβ(β0,Ω) = (1,−β)Ωb0 · (b′0Ωb0)−1/2 · det(Ω)−1/2,

µπ = (Z ′Z )1/2π.

The distr. of T depends on π.
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Invariance to transforms of S and T

AMS consider similar tests invariant to orthonormal rotations
of (S ,T ).
AMS maximal invariant statistic:

Q =

[
S ′S S ′T
S ′T T ′T

]
=

[
QS QST

QST QT

]
.

Q ∼Non-central Wishart,
Distr. of Q depends on π through the concentration
parameter:

λ = π′Z ′Zπ = ‖µπ‖2.

Strong IVs: λ→∞,
Weak IVs: λ→ λ∞ <∞.
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Tests statistics

Anderson-Rubin:
AR = QS/k .

χ2
k/k distr. under H0.

Kleibergen’s K or LM:

LM = Q2
ST/QT .

χ2
1 distr. under H0.

Moreira’s CLR:

CLR = 0.5(QS − QT ) + 0.5
√

(QS − QT )2 + 4Q2
ST .

Crit. values simulated/computed numerically conditional on
QT for every β0.

LM and CLR are efficient under strong IVs.
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AMS power envelope

AMS two-sided point-optimal invariant statistic:

POIS2(Q;β0, β∗, λ) =
ψ(Q;β0, β∗, λ) + ψ(Q;β0, β2∗, λ2)

2ψ2(QT ;β0, β∗, λ)
,

where for a Bessel function Iv ,

ψ(Q;β0, β, λ) = e−λ(c2
β+d2

β)/2(λξβ(Q))−(k−2)/4I(k−2)/2

(√
λξβ(Q)

)
,

ψ2(Q;β0, β, λ) = e−λd
2
β/2(λd2

βQT )−(k−2)/4I(k−2)/2

(√
λd2

βQT

)
,

ξβ(Q)= c2
βQS + 2cβdβQST + d2

βQT .

POIS2 has optimal average-power against (β∗, λ) and
(β2∗, λ2).
(β2∗, λ2) is chosen so that POIS2 is efficient under strong
IVs.
Crit. values simulated conditionally on QT for every β0, β∗, λ.
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AMS Power curves: β0 = 0 fixed, β∗ → ±∞

ω12 = 0.
λ = 20, k = 10.
Nearly equal power for CLR and POIS2.
CLR strongly outperforms AR.
power→ 1 as β∗ → ±∞.
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Power curves: β∗ = 0 fixed, β0 →∞

ρuv = 0, λ = 15, k = 10.
power 9 1 as β0 → ±∞ (height depends on λ).
AR outperforms CLR for large β∗ − β0.
AR ≈ POIS2 as β0 →∞.
CLR ≈ POIS2 for small β0 − β∗.
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Power curves: β∗ = 0 fixed, β0 →∞

ρuv = 0.5, λ = 15, k = 40.
CLR is below POIS2 and AR for interm. values of β∗ − β0.
CLR outperforms AR for β0 →∞.
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Power curves: β∗ = 0 fixed, β0 →∞

ρuv = 0.9, λ = 15, k = 10.
CLR ≈ POIS2.
CLR outperforms AR.
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Questions

1 Why is there such a diff. btwn. the two scenarios:
1) β0 = fixed, β∗ → ±∞ and 2) β∗ = fixed, β0 → ±∞?

2 Is CLR optimal or close to optimal in any sense?
3 Should we be interested in β0 → ±∞?
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Power as ρuv → 1

Since the implied endogeneity parameter

|ρuv (β∗,Ω)| → 1 as |β∗| → ∞,

consider first
ρuv → 1.
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Power under weak IVs as ρuv → 1

T ∼ N(dβ∗(β0,Ω) · λ1/2Υ, Ik),

where ‖Υ‖ = 1.
Strong IV behavior is modeled by λ→∞ (standard).
We keep 0 < λ <∞ fixed (weak IVs).
As ρuv → 1, reduced-form become errors perfectly corr-ed.:

v1 = u + v2β,

ρΩ = Cov(v1, v2)/
√
Var(v1)Var(v2)→ 1.

dβ∗(β0,Ω) = (1,−β∗)Ωb0 · (b′0Ωb0)−1/2 · det(Ω)−1/2 →∞.
The mean of T goes to ∞ as in the case of strong IVs, while
IVs are weak!
Due to dβ instead of λ.
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Power under weak IVs as ρuv → 1

S ∼ N(cβ∗(β0,Ω) · λ1/2, Ik),
When β∗, β0, σu, σv , and λ are fixed,

cβ∗(β0,Ω) = (β∗ − β0) · (b′0Ωb0)−1/2

→ β∗ − β0

|σu + (β∗ − β0)σv |
≡ c∞.

c∞ depends on β∗ − β0.
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Power under weak IVs as ρuv → 1

Suppose i) λ = fixed (weak IVs), ii) d2
β∗
→∞, iii) cβ∗ → c∞:

Pβ∗,β0,λ,Ω (POIS2 > κPOIS2,β0,λ,α(QT ))→ P
(
χ2

1(λ · c2
∞) > χ2

1,1−α
)
,

Pβ∗,β0,λ,Ω (CLR > κCLR,α(QT ))→ P
(
χ2

1(λ · c2
∞) > χ2

1,1−α
)
,

Pβ∗,β0,λ,Ω

(
LM > χ2

1,1−α
)
→ P

(
χ2

1(λ · c2
∞) > χ2

1,1−α
)
.

Go to proofs

P
(
χ2

1(λ · c2
∞) > χ2

1,1−α

)
is the efficiency bound.

Attained by CLR & LM: they are nearly optimal!
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High endogeneity: ρuv ≈ ±1.

The usual t or Wald tests have largest size distor. when
ρuv ≈ ±1.
More reasons to use the robust (AR, CLR, LM) tests when
endogeneity is high.
In those cases, CLR and LM are nearly efficient, but not AR.
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AMS Power as β∗ →∞

Suppose Ω, β0, and λ are fixed:

lim
β∗→∞

d2
β∗(β0,Ω) = lim

β∗→∞

((1,−β∗)Ωb0)2

(b′0Ωb0) · det(Ω)
=∞.

c2
∞ = lim

β∗→∞
(β∗ − β0)2/(b′0Ωb0) =∞.

Power → 1.
Strong-IV-like behavior for distant alternatives.
But |ρuv | → 1 along power curves.
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Alternative power calculations: As β0 → ±∞

Suppose β∗, σu, σv , ρuv , and λ are fixed:

lim
β0→±∞

dβ∗(β0,Ω) = ∓ 1
σv
· ρuv

(1− ρ2
uv )1/2 ≡ ∓

1
σv
· ruv ,

lim
β0→±∞

cβ∗(β0,Ω) = ∓ 1
σv

.

Power 9 1.
Under H1 as β0 → ±∞:

S ∼ N

(
∓ 1
σv
· µπ, Ik

)
,

T ∼ N

(
∓ ruv
σv
· µπ, Ik

)
.

Can be used to describe the power of AR, CLR, LM as
β0 → ±∞.
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Power bound as β0 → ±∞

The limit of AMS POIS2, for λv = λ/σ2
v ,

POIS2∞(Q;∞, ruv , λv ) =
ψ(Q; ruv , λv ) + ψ(Q;−ruv , λv )

2ψ2(QT ; ruv , λv )
,

where

ψ(Q; ruv , λv ) = e−
λv (1+r2uv )

2 (λvξ(Q; ruv ))−
(k−2)

4 I k−2
2

(√
λvξ(Q; ruv )

)
,

ψ2(Q; ruv , λv ) = e−
λv r

2
uv

2 (λv r
2
uvQT )−

(k−2)
4 I k−2

2

(√
λv r2

uvQT

)
,

ξ(Q; ruv )= QS + 2ruvQST + r2
uvQT .

The distribution depends only on λv , ruv , and k .

27/39



Optimality of AR when β0 → ±∞ and ρuv = 0

POIS2∞ depends on

ξ(Q; ruv ) = QS + 2ruvQST + r2
uvQT .

When ρuv = 0,

ruv =
ρuv

(1− ρ2
uv )1/2 = 0 =⇒

ξ(Q; ruv ) = QS = AR.

POIS2∞ becomes equivalent to AR ⇐⇒ QST is not used.
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Intuition

QST = S ′T .
Under H0, S ∼ N(0, Ik).
Under H1 as β0 → ±∞,

T ∼ N(∓ruv · µπ/σv , Ik).

= N(0, Ik) when ρuv = 0.

S ′T has mean zero under H0 and H1 (as β0 → ±∞).
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Why consider β0 → ±∞?

Dufour (1997): valid CSs are unbounded with positive prob.
when IVs are weak.

CLR, AR, LM, POIS2 based CSs are unbounded with positive
prob.

New result: Power against β0 → ±∞ = Prob. of bounded
CSs.
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Proof

Test statistic: T (Qβ0(Y )).
Test: φ(Qβ0(Y )) = 1 {T (Qβ0(Y )) > cv(QT ,β0(Y ))}.
CS: CSφ(Y ) = {β0 : φ(Qβ0(Y )) = 0}.
CSφ(Y ) has right infinite length, RLength(CSφ(Y )) =∞, if:

∃K (Y ) <∞ s.t. β ∈ CSφ(Y ) for all β ≥ K (Y ).

Can similarly define left infinite length.
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Proof

1

1 {RLength(CSφ(Y )) =∞}
=1 {T (Qβ0(Y )) ≤ cv(QT ,β0(Y )) ∀β0 ≥ K (Y ) for some K (Y ) <∞}
= lim
β0→∞

1 {T (Qβ0(Y )) ≤ cv(QT ,β0(Y ))} .

2 Take Eβ∗,λ,Ω, apply the Dominated Convergence Theorem:

P (RLength(CSφ(Y )) =∞) = lim
β0→∞

P (T (Qβ0(Y )) ≤ cv(QT ,β0(Y )))

= 1− lim
β0→∞

P (T (Qβ0(Y )) > cv(QT ,β0(Y ))) .
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Probability of infinite-length CSs

ρuv # of IVs λ POIS2∞ CLR − POIS2∞ AR − POIS2∞
.0 5 10 .323 .031 .000
.0 40 20 .394 .049 .000
.3 40 20 .380 .029 .012
.5 40 20 .321 .013 .069
.7 40 20 .186 .009 .204
.9 40 20 .038 .000 .350

AR performs better for small ρuv (by ≈ 5%).
CLR performs better for large ρuv (by ≈ 40%).
Approaching strong-IV-like behavior as ρuv → 1.
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Power differences between POIS2 and CLR: fixed β∗ = 0,
varying β0

Max and avg. power differences over λ and β0 for k = 40:

ρuv λmax β0,max max diff avg diff
.0 22 −50 .059 .016
.3 22 4.00 .061 .014
.5 15 1.75 .050 .012
.7 15 1.50 .050 .008
.9 5 1.25 .040 .004

λmax =the value of λ maximizing the diff.
β0,max =the value of β0,max maximizing the diff.
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Conclusion

CLR is not on the power envelope.
Optimality of CLR & LM as ρuv → ±∞.
Power for β0 → ±∞ gives the prob. of bounded CSs.
AR has better prob. of bounded CSs when ρuv ≈ 0.
Overall, CLR is still the recommended test.
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Proof for LM:
Pβ∗,β0,λ,Ω

(
LM > χ2

1,1−α
)
→ P

(
χ2
1(λ · c2∞) > χ2

1,1−α
)

dβ∗ →∞, cβ∗ → c∞, λ <∞ and fixed.
Υ = µπ/λ

1/2, ‖Υ‖ = 1.
S = cβ∗ · µπ + ZS = λ1/2cβ∗ ·Υ + ZS .
T = dβ∗ · µπ + ZT = λ1/2dβ∗ ·Υ + ZT .
LM = Q2

ST/QT .
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Proof for LM

dβ∗ →∞, cβ∗ → c∞, λ <∞ and fixed.

QST

Q
1/2
T

=

(
λ1/2cβ∗ ·Υ + ZS

)′ (
λ1/2dβ∗ ·Υ + ZT

)∥∥λ1/2dβ∗ ·Υ + ZT

∥∥
=

(
λ1/2cβ∗ ·Υ + ZS

)′ (
λ1/2dβ∗ ·Υ + ZT

)
λ1/2dβ∗(1 + oa.s.(1))

=
(
λ1/2cβ∗ + Υ′ZS

)
(1 + oa.s.(1))

→ N
(
λ1/2c∞, 1

)
.
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Sketch of the proof for CLR

dβ∗ →∞⇒ QT →∞.

CLR = 0.5(QS − QT ) + 0.5
√

(QS − QT )2 + 4Q2
ST .

√
(QS − QT )2 + 4Q2

ST ≈
√

(QS − QT )2 +
4Q2

ST

2
√

(QS − QT )2
.

CLR ≈
Q2

ST

QT (1 + oa.s.(1))
=

LM

1 + oa.s.(1)
.
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Sketch of the proof for POIS2

For large dβ and QT , POIS2 approximately depends on:√
c2
βQS + 2cβdβQST + d2

βQT −
√

d2
βQT

≈
c2
βQS + 2cβdβQST

2
√

d2
βQT

∼QST

Q
1/2
T

.

Go back
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