Industrial Specialization Matters: A New Angle on Equity Home Bias

Chenyue Hu

UCSC

Motivation

Equity Home Bias Puzzle

Domestic equity accounts for a predominant share of portfolios

⇒ One answer: risk-hedging motives

Motivation

Equity Home Bias Puzzle

Domestic equity accounts for a predominant share of portfolios

⇒ One answer: risk-hedging motives

My Contribution

Adds the sectoral dimension

Examines how industrial structure affects home bias

Preview of Results

Empirical Findings

- Compute home bias (HB) with proprietary financial datasets
- Find HB decreases in countries' degree of industrial specialization

Preview of Results

Empirical Findings

Introduction

- Compute home bias (HB) with proprietary financial datasets
- Find HB decreases in countries' degree of industrial specialization

Theoretical Contribution

Build a 2 × 2 DSGE model with Eaton-Kortum's framework

- Identify interplay between sector choice and country choice
- Explain why sectoral productivity differences matter for home bias

Empirical Findings

Introduction

- Compute home bias (HB) with proprietary financial datasets
- Find HB decreases in countries' degree of industrial specialization

Theoretical Contribution

Build a 2 \times 2 DSGE model with Eaton-Kortum's framework

- Identify interplay between sector choice and country choice
- Explain why sectoral productivity differences matter for home bias

Quantitative Assessment

- Estimate and solve the model covering 58 countries and 15 industries
- Confirm the empirical connection between portfolio diversification and industrial specialization

Related Literature

- Home Bias surveyed by Coeurdacier and Rey (2013):
 - Risk-hedging motives
 - Labor income risk
 Baxter and Jermann (1997) and Heathcote and Perri (2013)
 - Real exchange rate risk
 Cole and Obstfeld(1991) and Coeurdacier (2009)

Related Literature

- Home Bias surveyed by Coeurdacier and Rey (2013):
 - Risk-hedging motives
 - Labor income risk Baxter and Jermann (1997) and Heathcote and Perri (2013)
 - Real exchange rate risk Cole and Obstfeld(1991) and Coeurdacier (2009)
 - Market frictions
 - Informational frictions Brennan and Cao (1997), Razin et al. (1999)
 - Institutional frictions French and Poterba (1991), Lewis (1999)

Related Literature

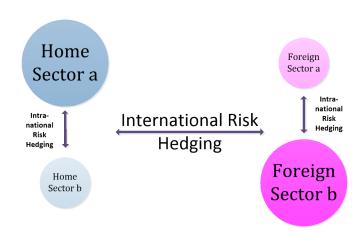
- Home Bias surveyed by Coeurdacier and Rey (2013):
 - Risk-hedging motives
 - I abor income risk Baxter and Jermann (1997) and Heathcote and Perri (2013)
 - Real exchange rate risk Cole and Obstfeld(1991) and Coeurdacier (2009)
 - Market frictions
 - Informational frictions Brennan and Cao (1997), Razin et al. (1999)
 - Institutional frictions French and Poterba (1991), Lewis (1999)
- Industrial specialization and risk-sharing Helpman and Razin (1978), Kalemli-Ozcan et al. (2003)

Intuition — **Existing Papers**

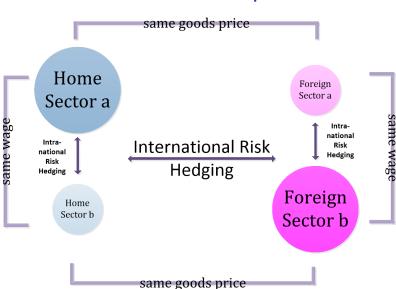
Foreign Sector b

0000000

Intuition — This Paper



Foreign Sector a


Home Sector b

Intuition — This Paper

Intuition — This Paper

Outline

Introduction

Empirical

Model

Quantitative Assessment

Conclusion

Measure of Home Bias

 $HB_{i,t} = 1 - \frac{\text{Share of Foreign Equities in Country i's Equity Holding at t}}{\text{Share of Foreign Equities in World Market Portfolio at t}}$

Example: US Market Values 40% US investors split holdings 50-50

$$HB_{\rm US} = 1 - \frac{50\%}{60\%} = \frac{1}{6}$$

HB = 1 full home bias; HB = 0 full diversification

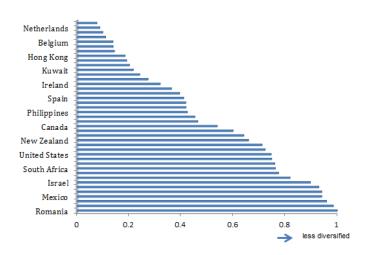
Measure of Home Bias

$$HB_{i,t} = 1 - \frac{\text{Share of Foreign Equities in Country i's Equity Holding at t}}{\text{Share of Foreign Equities in World Market Portfolio at t}}$$

Example: US Market Values 40% US investors split holdings 50-50

$$HB_{\rm US} = 1 - \frac{50\%}{60\%} = \frac{1}{6}$$

HB = 1 full home bias; HB = 0 full diversification


Data

- Numerator: Factset/Lionshare
- Denominator: Datastream

- When: 1998 2014
- Where: 100 countries or regions
- Who: institutional investors: banks, insurance companies, retirement or pension funds, hedge funds, sovereign wealth funds and mutual funds (Comparison)
- How: public filings (e.g. 13-Filings with SEC in the U.S.)

Ranking of Home Bias

Share of Foreign Equities in Country i Equity Holding Share of Foreign Equities in World Market Portfolio

Independent Variables

- Hirschman-Herfindahl index : $HHI_{i,t} = \sum_{s=1}^{S} b_{i,s,t}^2$ (b: share of sectoral output in national output)
- Chinn-Ito index: a de jure measure of financial openness
- Real GDP: economic size
- IV: factor endowment including land, population, natural resource rents

Home Bias and Country Specialization

Dep. Var: Home Bias	(1)	(2)	(3)	(4)
HHI	-2.072 ***	-2.380 ***	-2.407 ***	-2.866 ***
	(0.373)	(0.276)	(0.308)	(0.472)
	[-0.234]	[-0.268]	[-0.271]	
Chinn-Ito		-0.781 ***	-0.778 ***	-0.779 ***
		(0.052)	(0.052)	(0.054)
		[-0.607]	[-0.605]	
log(GDP)			-0.004	-0.007
			(0.013)	(0.012)
			[-0.015]	
IV	No	No	No	Yes
Observations	332	332	332	330
R^2	0.080	0.438	0.438	0.434

Robust standard errors in parentheses, standardized coefficients in brackets.***significant at 1%, **significant at 5%.

Outline

Introduction

Empirical

Model

Quantitative Assessment

Conclusion

Setup

- Two symmetric countries $(i = \{H, F\})$ both produce and consume two goods ($s = \{a, b\}$)
- Eaton-Kortum trade framework with productivity differences $\bar{T}_{H,b} = \bar{T}_{F,a} = 1$, $\bar{T}_{H,a} = \bar{T}_{F,b} = T > 1$

Model

- 1 α of firms' revenue is used to cover labor costs, and α is paid as dividends to stock owners
- Households have CRRA utility and CES consumption bundles; they supply labor inelastically
- Budget constraint $P_{i,t}C_{i,t} + \sum_{s=\{a,b\}} [q_{H,s,t}(\nu_{H,s,t}^i \nu_{H,s,t}^i)]$ $[\nu_{H,s,t-1}^{i}) + q_{F,s,t}f_{i}(\nu_{F,s,t}^{i} - \nu_{F,s,t-1}^{i})]$ $= w_{i,t}L_{i,t} + \sum_{s=\{a,b\}} (d_{H,s,t}\nu_{H,s,t}^i + d_{F,s,t}f_i\nu_{F,s,t}^i)$ (q asset prices; d dividends; ν^i asset holdings i; f_i financial frictions))

The share of total domestic assets in the portfolio is

$$D = \underbrace{\frac{1}{2}}_{\text{Diversification}} + \underbrace{\left[\frac{\sigma - 1}{2\sigma\alpha}\sum_{\text{Exchange Rate Risk}}\chi(\hat{\mathbf{e}}) - \underbrace{\frac{1 - \alpha}{2\alpha}\sum_{\text{Labor Income Risk}}\chi(\hat{\mathbf{wL}})}_{\text{Labor Income Risk}} - \underbrace{\frac{2\mu - 1}{2}\sum_{\text{X}}\chi(\hat{\mathbf{d}}_{\text{H}})}_{\text{Exchange Rate Risk}} \times A$$

where $\Sigma_{\chi}(\hat{x})$: covariance between \hat{x} and the two domestic dividends; A > 0

The share of total domestic assets in the portfolio is

Model

$$D = \underbrace{\frac{1}{2}}_{\text{Diversification}} + \underbrace{\left[\frac{\sigma - 1}{2\sigma\alpha}\sum\chi(\hat{\mathbf{e}}) - \underbrace{\frac{1 - \alpha}{2\alpha}\sum\chi(\hat{\mathbf{wL}})}_{\text{Exchange Rate Risk}} - \underbrace{\frac{1 - \alpha}{2\alpha}\sum\chi(\hat{\mathbf{wL}})}_{\text{Labor Income Risk}} - \underbrace{\frac{2\mu - 1}{2}\sum\chi(\hat{\mathbf{d}}_{H})}_{\text{Income Risk}} \times A$$

where $\Sigma \chi(\hat{x})$: covariance between \hat{x} and the two domestic dividends; A > 0

Proposition 2

Sectoral share μ and domestic share D are substitutes as long as $\sum \chi(\hat{d}_H) > 0$.

(Notation: $\mu = \nu_{H,a} + \nu_{F,a}, D = \nu_{H,a} + \nu_{H,b}$)

 $\Sigma \chi(\hat{d}_H)$: the covariance <u>between</u> domestic dividends relative to foreign ones <u>and</u> sector *a* dividends relative to sector *b* ones

Home bias decreases in T the sectoral productivity disparity.

Model

$$HB = \frac{f-1}{f+1} + \frac{2}{f+1} \left[-\frac{1-\alpha}{\alpha} + \frac{1}{\alpha} \frac{T-1}{T+1} \frac{1-\frac{1}{\sigma}}{\lambda} \right]$$

where
$$\lambda \equiv \frac{1-\tau^{1-\phi}}{1+\tau^{1-\phi}}[1-\phi+(\phi-\frac{1}{\sigma})(\frac{1-\tau^{1-\phi}}{1+\tau^{1-\phi}})^2]^{-1}<0$$

Home bias decreases in T the sectoral productivity disparity.

Model

$$HB = \frac{f-1}{f+1} + \frac{2}{f+1} \left[-\frac{1-\alpha}{\alpha} + \frac{1}{\alpha} \frac{T-1}{T+1} \frac{1-\frac{1}{\sigma}}{\lambda} \right]$$

where
$$\lambda \equiv \frac{1-\tau^{1-\phi}}{1+\tau^{1-\phi}}[1-\phi+(\phi-\frac{1}{\sigma})(\frac{1-\tau^{1-\phi}}{1+\tau^{1-\phi}})^2]^{-1}<0$$

$$f=\infty$$

Infinite financial friction f, full home bias

Home bias decreases in T the sectoral productivity disparity.

Model

$$HB = \frac{f-1}{f+1} + \frac{2}{f+1} \left[-\frac{1-\alpha}{\alpha} + \frac{1}{\alpha} \frac{T-1}{T+1} \frac{1-\frac{1}{\sigma}}{\lambda} \right]$$

where
$$\lambda \equiv \frac{1-\tau^{1-\phi}}{1+\tau^{1-\phi}}[1-\phi+(\phi-\frac{1}{\sigma})(\frac{1-\tau^{1-\phi}}{1+\tau^{1-\phi}})^2]^{-1}<0$$

$$f=\infty$$

Infinite financial friction f, full home bias

$$f = 0, T = 1$$

A single good world, as in Baxter and Jermann (1997)

$$f=0, T=\infty$$

Fully specialized countries, as in Coeurdacier and Rey (2013)

Outline

Introduction

Empirical

Model

Quantitative Assessment

Conclusion

- Covers 58 countries and 15 manufacturing sectors
- Includes nontradable sectors

$$C_i = C_{i,T}^{\mu_i} C_{i,N}^{1-\mu_i} = (\sum_{s=1}^S \psi_s^{rac{1}{\phi}} C_{i,s}^{rac{\phi-1}{\phi}})^{rac{\phi}{\phi-1}\mu_i} C_{i,N}^{1-\mu_i}.$$

Embeds trade costs

$$p_{i,s}(z) = \frac{\tau_i r_{i,s}^{\alpha} w_{i,s}^{1-\alpha}}{A_{i,s}(z)}.$$

Incorporates capital restriction

$$\begin{split} &P_{i,t}C_{i,t} + \sum_{k \in \{1,2,\ldots,S,N\}} [q_{i,k,t}(\nu_{i,k,t}^{j} - \nu_{i,k,t-1}^{i}) + q_{j,k,t}f_{i}(\nu_{j,k,t}^{i} - \nu_{j,k,t-1}^{j})] \\ &= w_{i,t}L_{i,t} + \sum_{k \in \{1,2,\ldots,S,N\}} (d_{i,k,t}\nu_{i,k,t}^{i} + d_{j,k,t}f_{i}\nu_{j,k,t}^{j}). \end{split}$$

Parametrization(1)

Common variables from previous literature

Parameter	Description	Value
β	Discount factor	0.95
σ	Coefficient of relative risk aversion	2
ϕ	Elasticity of substitution between sectors	2
θ	Dispersion of productivity draws	8.28

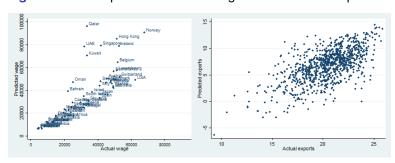
Country-specific factors

- Examples: labor and capital endowments, expenditure on nontradables
- Sources: Penn World, OECD

Parametrization(2)

Sector-specific factors

Sector Name	Expenditure Shares	Capital Intensity (α_s)
	within Tradables (ψ_s)	
Food	0.165	0.329
Beverages	0.054	0.272
Tobacco	0.010	0.264
Clothing & Accessories, Footwear	0.134	0.491
Forestry	0.009	0.452
Paper	0.013	0.366
Oil & Gas Producers, Coal	0.096	0.244
Chemicals	0.008	0.308
Pharmeceutical	0.036	0.319
Iron & Steel	0.015	0.381
Nonferrous Metals	0.074	0.407
Electronics & Electric Equipement	0.060	0.405
Machinery	0.073	0.473
Automobiles & Parts	0.183	0.464
Furnishings	0.068	0.460


Sources: US consumption data and I-O table

Country-sector specific factors

Productivity estimated with trade data (Algorithm)

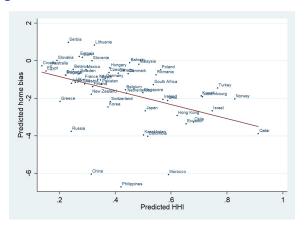
Model Fit

Figure: Model-implied and Actual Wages and Sectoral Exports

Numerical Results(1)

HB and HHI

Dep. Var: Home Bias	Model	Data
HHI	-2.849 ***	-2.134 **
	(1.028)	(0.867)
	[-0.311]	[-0.313]
Constant	-0.452	0.650 ***
	(0.488)	(0.082)
Observations	58	36
R^2	0.097	0.098


Note: Robust standard errors in parentheses and standardized coefficients in brackets. **significant at 5%, and *** significant at 1%.

Financial Frictions

$$f_i = \alpha + \beta Chinn_i + \epsilon_i,$$

 $\hat{\beta} = -0.60^{**}$

Numerical Results (2)

Figure: Home Bias and HHI absent Financial Frictions

When there is no productivity difference across sectors within a country,

- HHI decreases by 0.24 (or 55.8 percent) on average
- Home bias increases by 2.04 (126 percent) on average
- HHI and home bias are no longer significantly correlated
- Baseline vs counterfactual

$$\Delta HB_i = \alpha + \beta \Delta HHI_i + \epsilon_i.$$

$$\hat{\beta} = -.304^{**}$$

Outline

Introduction

Empirical

Model

Quantitative Assessment

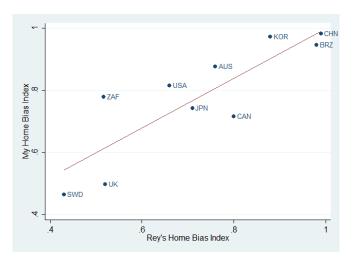
Conclusion

Conclusion

Conclusion

Summary

- Add the sectoral dimension to the home bias literature
- Examine the influence of industrial structure on portfolio choice


Summary

- Add the sectoral dimension to the home bias literature
- Examine the influence of industrial structure on portfolio choice

Future Research

- Study bilateral financial investment
- Introduce debt and examine investors' preferences between different types of assets

National HB based on Factset Data versus that based on IFS

Algorithm

- Step 1. Guess factor prices using national output and endowment data.
- Step 2. Estimate sectoral productivity and trade cost to fit a country's trade pattern including
 - (1) its share of all the countries' exports in a sector
 - (2) the country's overall export-to-output ratio
- Step 3. Plug the estimated productivity and trade cost in the model equations to determine factor allocations.
- Step 4. Update factor prices, repeat Step 2 and 3, until they satisfy the market-clearing conditions.
- Step 5. Solve the portfolio choice problem using Devereux and Sutherland (2011)'s method.

