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Model and Notation

I study a model of updating of beliefs:

Unknown parameter θ ∈ {1, 2, . . . , |Θ|} := Θ
Initial Beliefs µ = (µ1, . . . , µ|Θ|) ∈ ∆(Θ)

Signals s ∈ {1, 2, . . . , n} = S
Statistical experiment E := ((pθ)θ∈Θ) ∈ ∆o(S)K.
pθ = (pθ

1, . . . , pθ
n) > 0.
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The Updating Function

s=1	

s=n	

s	

Un1(µ,E )	

(µ,E )	 Uns(µ,E )	

Unn(µ,E )	

Δ(Θ) x	Δ(S)|Θ|	 Δ(Θ)n	



Updating Rule Un

Un is a map from the beliefs and the experiment to a profile of updated
beliefs:Un(µ, p1, . . . , p|Θ|) = (Un1, . . . , Unn)

Un : ∆(Θ)× ∆o(S)K → ∆(Θ)n, n = 2, 3, . . . .

We will impose some conditions on the function Un and see what
updating rules are consistent with these.



Some Properties we might want Un to have

1 No update if signals uninformative: Un(µ, p, . . . , p) = (µ, . . . , µ), for all
p ∈ ∆o(S), µ ∈ ∆(Θ) and n.

2 The names of the signals do not matter—reorder the signals but don’t
change their probabilities and you just get a re-ordering of
Un.Symmetry

3 Divisibility — see later.
4 If there are only two signals, you can find an experiment that

generates any updated belief you want for any one signal and
updating is one to one. Non-Dogmatic
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Divisibility

1 Typically information/signals comes in bundles: the birthday present
is small but it has expensive gift wrapping.

2 We can process this information in several ways all at once —by
treating the bundle as a signal from a joint distribution.

3 Or we can process this information in stages —That is, to update
beliefs once using the first piece of information and its distribution.
And then to update these intermediate beliefs a second time using the
second piece of information and its conditional distribution given the
first piece of information.

4 Divisibility says that both of these processes generate the same profile
of beliefs



Divisibility: Why?

1 If updating is not divisible — one updating rule does not specify an
individual’s beliefs. We need to know when the updating rule is being
applied.

2 Is a property that is easy to explain to subjects—most would agree that
it is normatively reasonable.

3 Ensures a dynamic consistency of beliefs.
4 In a dynamic setting is that it allows one summary statistic — current

beliefs. If beliefs are not divisible then in a dynamic setting may need
to keep track of more things.

5 It to allows one studied departure from Bayes: Angrisani, Guarino,
Jehiel, and Kitagawa (2017).
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Some of the Literature
Alternatives/Improvements on Bayesian updating that generate
interesting properties (overconfidence, biases, correlation neglect,
interesting biases): Rabin and Schrag (1999), Ortoleva (2012),
Angrisani, Guarino, Jehiel, and Kitagawa (2017), Levy and Razin
(2017), Brunnermeier (2009), Bohren and Hauser (2017), Epstein, Noor,
and Sandroni (2010)
Dynamically consistent preferences, exchangability of actions: Epstein
and Zin (1989), Epstein and Schneider (2003), Ahn, Echenique, and
Saito (2018) .
Divisibility: Gilboa and Schmeidler (1993) called “commutativity”.
Hanany and Klibanoff (2009), show that a “reweighted Bayesian
update” satisfies divisibility.
Zhao (2016) — order independence property.
Statistics Dawid (1984),



Divisibility

s=1	

s=n	

s	

Un1(µ,E )	

(µ,E )	 Uns(µ,E )	

Unn(µ,E )	

s=1	

s>1	

s=n	

s	

s=2	

U21(µ,p1θ)	

(U22(µ,p-1θ),E’	)	

Un-1s(U22(µ,p-1θ),E’	)	



Divisibility: Formally

Un(µ, E) ≡
[
U21(µ, p1) , Un−1

(
U22(µ, 1− p1) , E ′

)]
.

p1 := (pθ
1 : θ ∈ Θ). Here E ′ is the conditional experiment with signals

s = 2, 3, . . . , n.

E ′ :=

(
pθ
−1

1− pθ
1

)
θ∈Θ



An Example of Non-Divisible Updating
1 Arrival process: Good state a bus will arrive in period t ≥ 0 with

probability (1− α)αt; Bad state (1− β)βt (α < β).
2 µ = 1/2 that the state is good.
3 If no bus arrives in period t = 0, then Bayesian revision gives µ′ = α

β+α .
4 Epstein, Noor, and Sandroni (2010), Hagmann and Loewenstein (2017)

µ1 = (1− λ)1
2 + λ

α

β + α
, λ ≥ 0. (1)

5 In t = 2 revised beliefs would be

µ2 = (1− λ)µ1 + λ
αµ1

(1− µ1)β + µ1α
.

6 If arrived in t = 2 and just did one big update

µ̃2 = (1− λ)1
2 + λ

α2

β2 + α2 ,
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Examples of Divisible Updating

1 Weighted Bayes µ1 = αxµ
µαx+(1−µ)βx

µ2

1− µ2
=

αx

βx
µ1

1− µ1
=

(α2)x

(β2)x
µ0

1− µ0

2 Trigonometric tan π
2 µ1 =

√
α
β tan π

2 µ

tan
π

2
µ2 =

√
α

β
tan

π

2
µ1 =

√
α2

β2 tan
π

2
µ0
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The Characterisation Result

The updating satisfies (uninformativeness, symmetry, non-dogmatism,
divisibility), iff there exists a homeomorphism F : ∆(Θ)→ ∆(Θ) such that
the updating satisfies

BeliefsyF

Shadow Prior
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The Characterisation Result

The updating satisfies (uninformativeness, symmetry, non-dogmatism,
divisibility), iff there exists a homeomorphism F : ∆(Θ)→ ∆(Θ) such that
the updating satisfies

Beliefs Updated BeliefsyF
xF−1

Shadow Prior
Bayes Updating

−−−−−−−−−−−−−−−−−−−→ Shadow Posterior



Equivalently

F(µ) ≡ (F1(µ), F2(µ), . . . , F|Θ|(µ)).

u(µ, ps) = F−1

 F1(µ)p1
s

∑θ∈Θ Fθ(µ)pθ
s

, . . . ,
F|Θ|(µ)p|Θ|s

∑θ∈Θ Fθ(µ)pθ
s

 ;

Or odds ratio:
Fθ(u)
Fθ′(u)

=
Fθ(µ)

Fθ′(µ)

pθ
s

pθ′
s

.



Proof of this Result 1: Simplifying the
updating function.

Divisibility and symmetry implies updating has the form

Un(µ, E) = (u(µ, p1), . . . , u(µ, pn)) .

where: ps := (pθ
s : θ ∈ Θ), and u : ∆(Θ)× [0, 1]|Θ| → ∆(Θ). To see this

recall



s = 1-update depends on only (pθ
s)θ∈Θ

s=1	

s=n	

s	

Un1(µ,E )	

(µ,E )	 Uns(µ,E )	

Unn(µ,E )	

s=1	

s>1	

s=n	

s	

s=2	

U21(µ,p1θ)	

(U22(µ,p-1θ),E’	)	

Un-1s(U22(µ,p-1θ),E’	)	



Symmetry implies this is true for any s

s=1	

s=n	

s	

Un1(µ,E )	

(µ,E )	 Uns(µ,E )	

Unn(µ,E )	

U21(µ,p1)=u(µ,p1)	

U21(µ,pn)=u(µ,pn)	
	

U21(µ,ps)=u(µ,ps)	

ps:=(psθ:θ 	Θ)	



u is homogeneous degree zero in ps

1 Suppose signal 1 is uninformative and consider signal s′

2 Divisibility says
Un = (u(µ, ps))s∈S

Equals [
u(µ, p1) , Un−1

(
u(µ, 1− p1) ,

(
p−1

1− p1

))]
.



u is homogeneous degree zero in ps.

1 If signal 1 is uninformativeu(µ, p1) , Un−1

u(µ, 1− p1)︸ ︷︷ ︸
=µ

,

(
p−1

1− pθ
1

)
 .

2 For signals s > 1 we get

u(µ, ps) ≡ u
(

µ,
(

ps

1− p1

))



Deriving a Functional Equation

1 If we now re-write the divisibility

u(µ, ps) ≡ u(u(µ, 1− p1) , ps ÷ (1− p1))

where ps ÷ (1− p1) := ( pθ
s

1−pθ
1
)θ∈Θ

2 Hence u : ∆o(Θ)× ∆o(Θ)→ ∆o(Θ) solves the functional equation

u(µ, π) ≡ u(u(µ, φ) , π ÷ φ)

For all µ, π, φ ∈ ∆o(Θ)—using homogeneity.
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Reducing Dimension

1 Let w : ∆o(Θ)→ R
|Θ|−1
++ be

w(µ1, . . . , µK) :=
(

µ1

µK
, . . . ,

µK−1

µK

)
.

2 Define µ̃ := ln w(µ) ∈ R|Θ|−1 and ũ, φ̃ and π̃ similarly
⇒ transformed functional equation for µ̃ : R|Θ|−1 ×R|Θ|−1 → R|Θ|−1

ũ(µ̃, π̃) ≡ ũ(ũ(µ̃, φ̃) , π̃ − φ̃) , ∀µ̃, π̃, φ̃ ∈ R|Θ|−1.



Translation Equation

ũ(µ̃, x + y) ≡ ũ(ũ(µ̃, x) , y) , ∀µ̃, x, y ∈ R|Θ|−1.

A simple solution to this multivariate equation is u(µ̃, x) = µ̃ + x.
This gives Bayesian updating when all the above transformations are
reversed.
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ũ(µ̃, x + y) ≡ ũ(ũ(µ̃, x) , y) , ∀µ̃, x, y ∈ R|Θ|−1.

A simple solution to this multivariate equation is u(µ̃, x) = µ̃ + x.
This gives Bayesian updating when all the above transformations are
reversed.



Translation Equation

ũ(µ̃, x + y) ≡ ũ(ũ(µ̃, x) , y) , ∀µ̃, x, y ∈ R|Θ|−1.

There is a big literature on the classes of solutions to this equation: Aczél
and Hosszú (1956), Moszner (1995), Aczél and Dhombres (1989).

Equation says that (µ̃, x + y) and (ũ(µ̃, x) , y) are both on the same
contour of the u(., .) function.
Note that µ̃ ≡ ũ(µ̃, 0).



Points on a contour

µ

x

u(µ,x)=c

yy+x

u(µ,x)

µ=u(µ,0)



Slope
µ

x

u(µ,x)=c

yy+x

u(µ,x)

Slope =
u(µ,x)-u(µ,0)

- x

µ=u(µ,0)



Slope independent of x

µ

x

u(µ,x)=c

yy+x

u(µ,x)

Slope =
u(µ,x)-u(µ,0)

- x

-u2(µ,0)

Only depends on µ
u(µ,0)



Equation of contours
This implies that all contours have the equation c = f (µ) + x. (Where
f (.) is a homeomorphism.)
Thus as the value on the contours is arbitrary we can deduce
u(µ, x) = g( f (µ) + x) where g is another homeomorphism.
But we know u(µ, 0) ≡ µ, so g = f−1.
Hence all continuous solutions to the functional equation
ũ(µ̃, x + y) ≡ ũ(ũ(µ̃, x), y) have the form

ũ(µ, x) ≡ f−1(x + f (µ))

where f is a homeomorphism.
The formal proof of Aczél and Hosszú (1956) uses non-dogmatic
axiom.
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ũ(µ, x) ≡ f−1(x + f (µ))

where f is a homeomorphism.
The formal proof of Aczél and Hosszú (1956) uses non-dogmatic
axiom.



Equation of contours
This implies that all contours have the equation c = f (µ) + x. (Where
f (.) is a homeomorphism.)
Thus as the value on the contours is arbitrary we can deduce
u(µ, x) = g( f (µ) + x) where g is another homeomorphism.
But we know u(µ, 0) ≡ µ, so g = f−1.
Hence all continuous solutions to the functional equation
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Inverting all the transformations.

This gives

u (µ, ps) ≡ F−1 ◦
(

F1(µ)p1
s

∑θ∈Θ Fθ(µ)pθ
s

, . . . ,
FK(µ)pK

s

∑θ∈Θ Fθ(µ)pθ
s

)
.

F is defined so that e f (ln x) ◦ w ≡ w ◦ F.



Examples of Divisible Non-Bayesian: F

F(µ) =
(

µα
1

∑θ µα
θ

, . . . ,
µα

K
∑θ µα

θ

)
Gives

uθ

(
µ, (pθ

s )θ∈Θ
)

uθ′ (µ, (pθ
s )θ∈Θ)

=
µθ

µθ′

(
pθ

s
pθ′

s

)1/α

;

Weighted Bayes, Angrisani, Guarino, Jehiel, and Kitagawa (2017),
Bohren and Hauser (2017)
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Examples of Divisible Non-Bayesian F

F(µ) =

(
e−β1/µ1

∑θ e−βθ/µθ
, . . . ,

e−βK/µK

∑θ e−βθ/µθ

)
Gives

βθ′

µ′θ′
− βθ

µ′θ
=

βθ′

µθ′
− βθ

µθ
+ ln

pθ
s

pθ′
s

.

“Inverse multinomial logit”
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“Inverse multinomial logit”



Relaxing Some Implicit and Explicit
Assumptions

Do not assume 1:1 and dogmatism. Instead suppose the function
ũ(µ, x) is C1.

⇒ For almost all µ̃ (excluding a nowhere dense set) the equation
ũ(µ̃, x + y) ≡ ũ(ũ(µ̃, x) , y) has a solution of the form

ũ(µ, x) ≡ f−1(x + f (µ))

on a neighbourhood of (µ, 0).



Relaxing Some Implicit and Explicit
Assumptions

Can allow beliefs to lie in a subspace of ∆(Θ), (so the dimension of the
set of posteriors is smaller than the dimension of the set of parameters)
and have solutions of the form

ũ(µ, x) ≡ f−1(Cx + f (µ))

where C is an arbitrary matrix of the appropriate dimension that
contains a square regular matrix. This admits the same kind of
interpretation.



Properties: Consistency?

Consistency: = updating eventually learns/converges to the truth.
Bayes’ updating satisfies consistency when parameter spaces are finite
or Polish.

⇒ Divisible updating is consistent (provided you don’t choose a silly F).
For all θ there exists µ∞ ∈ ∆(Θ) such that µt → µ∞, Pθ almost surely.
If Un(eθ, E) = (eθ, . . . , eθ) pθ 6= pθ′ for all θ′ 6= θ, and µ0 ∈ ∆o(Θ), then,
µ∞ = eθ with Pθ probability one.
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Biases in the Learning?

Bayes’ updating⇒ belief in the parameter θ on average increases
when θ is true (Submartingale).
The convexity of the homeomorphism is what matters here:
Divisible updating is

Locally consistent ⇔ µθ ≤ Eθ(uθ(µ, ps)) ,

Locally inconsistent ⇔ µθ > Eθ(uθ(µ, ps)) .
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Biases in the Learning

The Bayes’ updating after the homeomorphism has been applied has a
likelihood ratio that is a conditional martingale

Eθ

(
1− f (uθ)

f (uθ)

)
=

1− f (µθ)

f (µθ)

Applying Jensen’s and the monotonicity of f (.)⇒

µθ ≤ Eθ(uθ(µ, ps)) if 1
f (.) is convex.

µθ ≥ Eθ(uθ(µ, ps)) if 1
f (.) is concave.
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Under/Over-reaction?

Bayes’ updating

Var
[

log
µ′θ

1− µ′θ

]
= Var

[
log

pθ

pθ′

]
.

How does the presence of a map F affect this variance? There are two
issues

1 If F−1 moves points further apart it exaggerates the variability of Bayes.
(Slope of F.)

2 If F maps points to extremities then little updating.
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Under/Over-reaction?

Overreaction result:

Var
[

log
uθ(µ, ps)

1− uθ(µ, ps)

]
≥ Var

[
log

pθ

pθ′

]
.

If f ′(µ) < f (µ)(1− f (µ))/(µ(1− µ)) for all µ.
Underreaction result:

Var
[

log
uθ(µ, ps)

1− uθ(µ, ps)

]
≤ Var

[
log

pθ

pθ′

]
.
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Unbiased/Bayes’ Plausible/Martingale
Updating

This is the property that the expected value of the posterior beliefs equals
the prior beliefs. For any µ > 0, n > 1, and E ∈ ∆o(S)K

µ ≡ ∑
s∈S

(
∑

θ∈Θ
µθ pθ

s

)
Us

n(µ, (p)θ∈Θ).

Difficult to explain to subjects and motivate normatively.
Characterisation Result: the updating function Un(µ, E) is unbiased if
and only if it is the Bayesian update for some misspecified experiment
E ′.



Sufficient Conditions for Full Bayes
Result: Bayesian updating is the only updating that satisfies:
Uninformativeness, Symmetry, Divisibility, Non-dogmatic, and
Unbiasedness.
Why?
Suppose you have a binary experiment that either reveals the state θ if it is
true but is otherwise uninformative, then

µ ≡ µθ F−1(eθ) + (1− µθ)F−1(yθ).

(where eθ is a vector with one in the θth entry and zeros elsewhere and yθ

has zero in the θth entry. Hence
µθ

1− µθ
(1− F−1

θ (eθ)) ≡ F−1
θ (yθ)

So 1 = F−1
θ (eθ)



Sufficient Conditions for Full Bayes
Result: Bayesian updating is the only updating that satisfies:
Uninformativeness, Symmetry, Divisibility, Non-dogmatic, and
Unbiasedness.
Suppose the binary experiment reveals the state θ with probability pθ if it is
true, then

µ ≡ µθ pθ F−1(eθ) + (1− µθ pθ)F−1
(

F(µ)− pθ Fθ(µ)eθ

1− pθ Fθ(µ)

)
.

or

F
(

µ− pθµθeθ

1− pθµθ

)
≡ F(µ)− pθ Fθ(µ)eθ

1− pθ Fθ(µ)

So µθ = Fθ(µ)



What’s missing?

Domain and range of the function
Discrete Domain
Random updates
Local updates
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