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Motivation

• Growing importance of nonlinear methods in applied macroeconomic
research.

• Regime changes and time-varying volatility.

• Long-run risk.

• Asymmetric adjustment costs of prices and wages.

• Collateral and borrowing constraints.

• Zero lower bound.

• Substantial progress in two important fronts:
• Model solution.

• Evaluation of likelihood function.
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Motivation

• Common approach to tackle nonlinear DSGE models:

• Accurate nonlinear solution: high-order perturbations, projection
methods, time-iteration, value function iteration.
Fernandez-Villaverde, Rubio-Ramirez and Schorfheide (2016).

• Use of particle filter to approximate likelihood function. Herbst and
Schorfheide (2015).

• Use of particle filter:

• Good: Very general approach and relatively easy to implement.

• Bad: Computationally demanding. Multiple ”flavors”.

• Ugly: Auxiliary measurement error for practical implementation.
Often fixed as constant fraction of variance of observables!

• Accuracy of likelihood approximation as important as accuracy of
model solution. Interaction?
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Some examples

”...we include measurement error in the observation equation (16). One reason
for its presence is feasibility...we set me = 0.25 for the baseline parameter
estimates of the model and me = 0.1 for a lower measurement error case.”

Gust, C., E. Herbst, D. Lopez-Salido, and M. E. Smith. 2017. ”The Empirical
Implications of the Interest-Rate Lower Bound.” American Economic Review.

”Regarding the tuning of the filter, I set N = 100000. The matrix Σ [of
measurement errors] is diagonal, and the diagonal elements equal 25% of the
variance of the observable variables.”

L.Bocola. 2016.”The Pass-Through of Sovereign Risk.” Journal of Political
Economy.

Literature
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What we do

Focus on nonlinear DSGE model with occasionally binding
constraints.

Main question: How does misspecification from using an incorrect
model solution interact with misspecification from approximating the
likelihood function to affect parameter inference?

• Consider three ways to solve the model:

1. Global nonlinear solution using VFI/time-iteration.

2. Piecewise linear method based on OccBin toolkit.

3. First-order perturbation method.

• Consider two ways to approximate the likelihood function:

1. Inversion filter

2. Particle filter
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Our strategy

1. We generate data from a model solved using the global nonlinear
solution without measurement error.

2. We construct the posterior distribution assuming the correct model
solution and using an inversion filter.

3. We compare this posterior distribution to the resulting posterior
distributions from three cases:

• Solution error: solve the model using piecewise linear or first-order
perturbation and evaluate the likelihood using an inversion filter

• Likelihood approximation error: solve the model using a global
nonlinear solution and evaluate the likelihood using a particle filter
assuming fixed measurement error

• The interaction between solution and likelihood approximation error

Main results:

• Solution and likelihood approximation error bias parameter inference.

• Interaction of bias is nonlinear.
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Conceptual Framework

• Consider equilibrium conditions of a generic model:

H(st , ηt ; θ) = 0

• Solution is a function h(st , ηt ; θ), which can be used to express the
dynamics of yt and st as a nonlinear state space model:

st+1 = h(st , ηt ; θ), State transition equation. (1)

yt = g(st ; θ) + ζt , Measurement equation. (2)
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Conceptual Framework

• Framework:

H(st , ηt ; θ) = 0

Eq. conditions

h(st , ηt ; θ)

Model solution

p(y1:T )

Likelihood

• We are interested in the following choices:

1. Model Solution: Numerical Approximation of h(.; θ).

2. Likelihood Function: Given sequence y1:T , evaluate p(y1:t ; θ)
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Application

Consumption-Saving Model with Occasionally Binding Borrowing
Constraint

• Household solves:

max
{Ct ,Bt}

E0

∞

∑
t=0

βt C
1−γ
t − 1

1− γ
(3)

st :
Ct + RBt−1 = Yt + Bt , (4)

Bt ≤ mYt , (5)

lnYt = ρ lnYt−1 + σεt (6)

• FOC:

C
−γ
t = βREt

(
C
−γ
t+1

)
+ λt

λt (Bt −mYt) = 0.
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Framework: Solution

H(st , ηt ; θ) = 0

Eq. conditions

h(st , ηt ; θ)

Model solution

p(y1:T )

Likelihood
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Solution Algorithms

• Three alternatives to approximate the function h(.):
• hvfi (.): value function iteration (Ljungqvist and Sargent, 2004).
• ho(.): piecewise linear solution (Guerrieri and Iacoviello, 2015) .
• hl (.): First-order perturbation (Judd, 1992).

• VFI: exploits dynamic programming structure.
• Pros: highly accurate.
• Cons: slow, course of dimensionality.

• OccBin: Approximate dynamics in two regimes: (i) binding and (ii)
non-binding. Use shooting algorithm to obtain combined solution.

• Pros: relatively fast, can be combined with inversion filter.
• Cons: doesn’t capture precautionary motive.

• Linear: Approximate linear dynamics in one regime: always binding.
• Pros: Very fast, easy to implement.
• Cons: Inaccurate, ignores possibility of switches across regimes.

Decision rules Accuracy
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Framework: Likelihood

H(st , ηt ; θ) = 0

Eq. conditions

h(st , ηt ; θ)

Model solution

p(y1:T )

Likelihood
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Likelihood of DSGE model

• Likelihood function plays a crucial role in confronting DSGE model
with data:

p(y1:T ; θ) =
T

∏
t=1

p(yt ; y1:t−1, θ) =
∫

p(y1:T , s1:T ; θ)ds1:T

• Two approaches to compute likelihood function:

• Exact likelihood: Inversion Filter (Hamilton (1994)). More

• Approximated likelihood: Particle filter (Herbst and Schorfheide,
(2015)). More

• Bootstrap particle filter.

• 2,000,000 particles.
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Monte Carlo Experiment

• Calibrate parameters as follows:

γ m ρ σ R β

1 1 0.9 0.01 1.05 0.945

• Simulate T = 100, 500, 1000 consumption observations from most
accurate solution method and no measurement error (hvfi and
Ω = 0) → y1:T .

• Solve model for range of values of γi ∈ (0, 4.5] using three methods:
hvfi (.; γ̂i ),ho(.; γ̂i ),hl (.; γ̂i )

• Evaluate likelihood
• For each solution use: inversion filter (IF) and particle filter (PF).

• Three choices of measurement error (Ω): 1%, 5%, 20%.

• Flat prior over γ

• We repeat this exercise 100 times
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Benchmark: No solution, no filtering error

Benchmark: VFI + IF
• Negligible Euler equation errors
• Avoids misspecification in measurement equations

• Posterior mode estimate γ̂ has a bias near 0
• 90% credible sets include γ = 1: 88% of the time
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Result 1: Some solution error, no filtering error

OccBin + IF: Solution errors causes a bias in the parameter estimate

• Posterior mode estimate γ̂ has a bias of 0.23 Bias in estimates

• Almost all 90% credible sets are shifted to the right relative to benchmark
• Average shift lower bound: 0.17
• Average shift upper bound: 0.29

• 90% credible sets include γ = 1: 32% of the time
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Result 1: Intuition

• Solution error biases the estimates of γ upwards.
• OccBin ignores precautionary motive present in true DGP:

• Co more sensitive to income than Cvfi when constraint does not bind.
• In order to match data, the likelihood function calls for higher γ/risk

aversion.
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Result 2: No solution error, some filtering error

VFI + PF with 5% measurement error: bias in the estimate

• Posterior mode estimate γ̂ has a bias of 0.28 Estimate more parameters

• Almost all 90% credible sets are shifted to the right relative to benchmark
• Average shift lower bound: 0.20
• Average shift upper bound: 0.38

• 90% credible sets include γ = 1: 26% of the time
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Result 2: Intuition

• Estimation measurement error biases γ upwards.

• Lower γ makes C more sensitive to Y , and less skewed. (lower
variance and less left-skewness)

• Measurement error increases variance of C explained by model

• Hence estimation calls for higher γ to compensate.
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Result 3: Interaction of solution and filtering error

OccBin + PF with 5% ME: bias in the parameter estimate is amplified

• Posterior mode estimate γ̂ has a bias of 0.78

• All 90% credible sets are shifted to the right relative to benchmark
• Average shift lower bound: 0.60
• Average shift upper bound: 1.00

• 90% credible sets include γ = 1: 2% of the time
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Conclusion

• Explore interaction of solution approximation and likelihood
approximation error.

• Use a simple nonlinear model of consumption-savings choice subject
to occasionally binding constraints.

• Illustrate that both solution and likelihood approximation error bias
parameter inference.

• Bias is increasing in size of measurement error in particle filter
approximation.

• Solution and likelihood approximation error interact nonlinearly.
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Decision Rules

• VFI captures precautionary motive.

• OccBin misses precautionary motive but captures anticipatory effect.

• Linear solution disregards the constraint.
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Accuracy of solutions

• Use Euler Equation Errors expressed in terms of consumption.

• VFI is highly accurate. OccBin accuracy is modest errors ($1 per
$1000 of consumption). Linear approximation has worst accuracy.
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Exact likelihood: Inversion

• In the case of no error Ω = 0 in measurement equation:

st = h(st−1, ηt ; θ), yt = g(st ; θ)

Combining:

yt = f (st−1, ηt ; θ), ηt ∼ N(0, Σ)

• Change of variable and prediction-error decomposition yields exact
expression for the log-likelihood function:

log(p(y1:T ; θ)) ∝ −T

2
log(det(Σ))− 1

2

T

∑
t=1

ηt(θ)
′Σ−1ηt(θ)

+
T

∑
t=1

log

(
| det

∂ηt(θ)

∂yt
|
)

• Number of structural shocks = number of observed variables.

Back
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Approximate Likelihood: Particle Filter
A generic filtering problem (Herbst and Schorfheide, 2015):

p(st−1|y1:t−1; θ)

p(st |y1:t−1; θ)

p(yt |y1:t−1; θ)

=
∫
p(yt |st , y1:t−1)p(st |y1:t−1)dst

p(st |y1:t ; θ)

p(y1:t ; θ) =
T

∏
t=1

p(yt |y1:t−1; θ)

Likelihood

Forecast density

Predictive density

Filtered density

• Implementation of particle filter usually assumes normally distributed
measurement error to compute p(yt |st , y1:t−1) in predictive density
step.

Back
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Bias in estimates

T = 100 T = 500 T = 1000
VFI OCC VFI OCC VFI OCC

IF -0.01 0.29 -0.01 0.23 -0.01 0.21
ME1 0.05 0.46 0.04 0.39 0.03 0.35
ME5 0.28 0.91 0.28 0.78 0.27 0.76

ME20 1.47 2.37 1.67 2.55 1.68 2.56

Back
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Estimate more parameters

• Estimate γ, ρ, σ

Back
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Result 1: More solution error, no filtering error

• Linear + IF
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Can the bias go the other way?

• Consider DGP with measurement error: yt = g(st ; θ) + ζt

• Particle filter with correctly specified ME gives the correct
approximation to the likelihood.

• Econometrician ignores measurement error and uses inversion filter.

• Too little ME relative to the DGP generates a downward bias in γ.
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Related Literature

• Nonlinear DSGE models without occasionally binding
constraints.

• Fernandez-Villaverde and Rubio-Ramirez(2005, 2007).
Andreasen(2008), Aruoba, Bocola and Schorfheide (2017). Farmer
(2017).

• Nonlinear DSGE models with occasionally binding constraints.
• Bocola(2016). Gust, Herbst, Lopez-Salido and Smith(2017).

Guerrieri-Iacoviello(2015,2017), Aruoba, Cuba-Borda,
Schorfheide(2018), Atkinson, Richter and Throckmorton (2018).

• Measurement error in linearized DSGE models

• Canova(2009). Canova, Ferroni, and Matthes (2014). Canova,
Ferroni and Matthes (2017).

Back


	Introduction
	Conceptual Framework
	Benchmark application
	Model solution
	Likelihood evaluation
	Results
	Conclusion

