
Hard-to-Interpret Signals�

Larry G. Epsteiny Yoram Halevyz

July 23, 2019

Abstract

Decisions under uncertainty are often made with information that
is di¢ cult to interpret because multiple interpretations are possible.
Individuals may perceive and handle uncertainty about interpretation
di¤erently and in ways that are not directly observable to a mod-
eler. This paper identi�es and experimentally examines behavior that
can be interpreted as re�ecting an individual�s attitude towards such
uncertainty.
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1 Introduction

1.1 Objective

The two cornerstones of Bayesian theory are the subjective prior and Bayesian
updating. Ellsberg (1961) demonstrates the behavioral limitations of the as-
sumption of a prior through his celebrated thought experiments, which have
the clear intuition that a probability measure does not permit a role for lim-
ited information and con�dence underlying beliefs. In this paper, we present
a parallel critique of the updating component consisting of both a thought
experiment and a laboratory experiment that provides some supporting em-
pirical evidence.
The importance attached to Ellsberg�s experiments is due to the pre-

sumption that in many instances of decision-making under uncertainty in
the �eld, information may be lacking to justify sharp beliefs. Clearly, this
presumption does not require that in all, or even most, such cases there is no
information at all. Our motivation begins with the presumption that often
there is a great deal of information, but the di¢ culty for the decision-maker is
that its interpretation may not be clear because signals may admit multiple
interpretations. In such cases we refer to hard-to-interpret, or ambiguous,
signals. Fed policy communication and qualitative corporate news are two
examples. They also illustrate the broader class of situations where com-
plete information is complex and thus where information often comes in the
form of summaries, open to multiple interpretations, rather than in the form
of detailed reports.
We identify choices in an Ellsberg-style setting that can be understood as

revealing that uncertainty about how to interpret signals matters for behavior
(Section 2); and later (Appendix A), we provide behavioral de�nitions of the
attitude (aversion, a¢ nity or indi¤erence) to signal ambiguity in a much
more general setting. Nonindi¤erence to signal ambiguity, which is our focal
hypothesis, is conceptually distinct from nonindi¤erence to prior ambiguity
(for example, about the composition of an urn). Accordingly, while Ellsberg
pointed to the limitation of modeling prior beliefs by an additive probability
measure, our analysis points to the limitation of modeling updating in such
a way that updating conforms to the martingale property of beliefs (that
is, prior beliefs is an average of the set of posteriors). At the functional
form level, additivity of prior beliefs and the martingale property are the
two distinct fundamental properties of the Bayesian model. Importantly, the
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martingale property is extended here to a property of preference (rather than
probabilistic beliefs) which need satisfy only mild nonparametric restrictions.
Studying the behavioral meaning of hard-to-interpret signals is motivated

in part by the inherent interest in such a fundamental notion; see below for
references to papers where ambiguity in signals plays a role. In addition, the
way in which hard-to-interpret signals are treated by decision-makers re�ects
on the potential importance of the existing literature on ambiguity. Speci�-
cally, if such signals themselves reduce con�dence in beliefs about the state
space then there is reason to believe that, at least in some circumstances,
ambiguity might persist rather than being only a short-run phenomenon.
The experimental design is guided by the fact that even when the accuracy

of the information is known, individuals often fail to update their beliefs
as speci�ed by Bayes rule. We therefore use a between-subject design that
compares deviations from Bayesian updating when the signals are ambiguous
to when they have known accuracy (risky or noisy signals). We �nd that
hard-to-interpret signals signi�cantly increase deviations from updating that
is consistent with Bayes rule. In addition, we �nd a signi�cant association
between attitude to prior ambiguity (measured indirectly through compound
risk) to non-neutral attitude to signal ambiguity.
The paper proceeds as follows. The rest of this introduction considers re-

lated literature. In Section 2, we present the thought experiment, then de�ne
and discuss the behavior that is the focus of the current paper (Appendix
A extends and formalizes this discussion). The experimental implementa-
tion is described Section 3, and Section 4 describes the implications for some
existing models of preference.

1.2 Related literature

Updating under ambiguity has been studied in axiomatic decision theory,
(see, for example, Gilboa and Schmeidler (1993), Pires (2002), Epstein and
Seo (2010), Gul and Pesendorfer (2018)). For beliefs represented by proba-
bility measures, the martingale property delivered by Bayesian updating is
studied axiomatically by Shmaya and Yariv (2007) and Cripps (2018), and
is at the heart of the test of Bayesian updating proposed in Augenblick and
Rabin (2018). Gajdos et al (2008) and Hayashi and Wada (2010) incor-
porate imprecise information into models of preference. They assume that
information comes in the form of an objective (observable) set of probabil-
ity measures over the state space. None of this literature has addressed the
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speci�c questions studied here.
Epstein and Schneider (2007,8,10) pay explicit attention to the behavioral

meaning of functional form speci�cations and they introduce and discuss the
notion of ambiguous signals. In particular, they distinguish between noisy
and ambiguous signals, and correspondingly point to a new dimension of in-
formation quality, distinct from the usual notion of the precision of a noisy
signal, that pertains to the ease/di¢ culty of its interpretation. They also
describe a thought experiment which we build upon here. An important dif-
ference is that our thought experiment �leads to�and illustrates a general
model (Appendix A), while such a general analysis is not apparent in the
previous work. Moreover, the current paper is the �rst to document empiri-
cally (in an experimental setting) the behavioral relevance of these theoretical
distinctions.
Ambiguous signals are considered, implicitly or explicitly, in a number of

applied studies. Ambiguous communication is shown to arise endogenously
from maximizing behavior in a range of strategic settings (e.g., Bose and
Renou 2014; Blume and Board 2014; Kellner and Le Quement 2017, 2018;
Beauchene, Li and Li 2019). Levy and Razin (2016) study settings with
group communication in which communication, the signal in their model,
creates ambiguity. They consider several applications including to jury delib-
erations and common-value auctions. Ambiguous signals have been studied
also in macro/�nance models (e.g., Epstein and Schneider 2010; Ilut 2012;
Ilut, Kehrig and Schneider 2018; Yoo, 2016). The distinction in Daniel and
Titman (2006) between tangible and intangible information is suggestive of
the distinction between noisy and ambiguous signals. In all of these studies,
preferences and/or the form taken by updating are assumed known to the
modeler and interpretations of the model are based on functional form ap-
pearance or what seems �natural.�This paper is complementary in that it
takes behavior alone to be observable and asks, for example, �what behavior
would reveal an aversion to ambiguity in signals?�
Fryer, Harms and Jackson (forthcoming) study the relation between sig-

nals that are open to interpretation and polarization. They posit a particular
updating rule and they study its implications for polarization. In contrast,
we ask what can be learned about updating from behavior with an objective
of using identi�ed behavior to distinguish between alternative models of up-
dating. Their online experiment is designed to study polarization, while our
experiment is designed to examine whether uncertainty about signal inter-
pretation is revealed by behavior.
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Two very recent experimental studies investigate updating when informa-
tion is (in some sense) ambiguous. Neither includes behavioral de�nitions for
di¤erent attitudes to signal ambiguity, or highlights the relevance of the mar-
tingale property. In a contemporaneous project, Liang (2019) elicits certainty
equivalents (not probability equivalents) for many bets (including uncertain)
and information structures (including uncertain). In the absence of behav-
ioral de�nitions, it is not clear how to identify attitudes. In addition, though
there is overlap in motivation, there is no overlap in design as Liang (2019)
does not include our main treatment with uncertain prior and ambiguous in-
formation. Therefore, he cannot compare the e¤ects of risky and ambiguous
information when the prior is uncertain, which is the focus of our investiga-
tion. Shishkin and Ortoleva (2019) study how ambiguous information a¤ects
the valuation of risky and ambiguous bets and the willingness to pay for this
information. Their design is in�uenced heavily by the Gul and Pesendorfer
(2018) model of updating in which noninstrumental information is valuable
�the temporal resolution of information matters at a psychic level (Kreps
and Porteus 1979). Such timing issues are not important in our design or
model.1

2 A thought experiment

This section builds on Ellsberg�s two-urn experiment, and on Epstein and
Schneider (2007,8), and suggests a thought experiment to give behavioral
meaning to (nonindi¤erence to) hard-to-interpret signals. A more general
and formal treatment is provided in Appendix A.

2.1 The choice problems

Consider bets on the color, red or black, of one ball to be drawn from an urn,
which we call the �payo¤ urn�. Bets pay either $100 or $0. The decision-
maker (DM) is told further that the payo¤urn contains 10 balls, with at least
one of each color. Elicit probability equivalents in two ordered scenarios.

1. Unconditional choice: Let fR and fB denote bets on the payo¤ urn on
red and black, respectively. Elicit unconditional probability equivalents

1We add that their paper was written with knowledge of our project, including exper-
imental design and results.
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p0;R and p0;B, where

fR �0 (100; p0;R; 0; 1� p0;R) and fB �0 (100; p0;B; 0; 1� p0;B) .

where (100; 0; 0; 1� p) is a bet that pays $100 with probability p, and
$0 with probability 1 � p; and the relation �0 denotes indi¤erence at
the unconditional stage. The intuitive behavior highlighted by Ellsberg
in his two-urn experiment corresponds to p0;R; p0;B < 1

2
, but this is not

necessary for what follows.

2. Conditional choice: The DM is now told about a second �signal urn�
that is constructed by adding an equal number (N) of red and black
balls to the payo¤ urn. The total number (2N) of balls added is not
speci�ed. Then a ball is drawn from the signal urn and its color is
revealed: � 2 � = f�R; �Bg; where � denotes the color of the ball
drawn from the signal urn. Once again, consider bets on the color to be
drawn from the payo¤ urn and elicit conditional probability equivalents
p�;R and p�;B for each signal � 2 f�R; �Bg:2

fR �� P�;R = (100; p�;R; 0; 1� p�;R)
fB �� P�;B = (100; p�;B; 0; 1� p�;B) .

(2.1)

where �� denotes indi¤erence at the conditional stage (after a signal
is observed).

Below we assume

(p�R;R � p�B ;R) � (p�R;B � p�B ;B) < 0, (2.2)

a property that we call signal diversity. Essentially, it excludes the case
where the same signal is viewed as being weakly better for both bets. For
example, a special case that is natural for the present setting is that the DM
views �R as a better signal for the bet on red than is �B, and the reverse for
the bet on black, that is,

p�R;R > p�B ;R and p�R;B < p�B ;B. (2.3)

(See Lemma 1 and Appendix A for the role played by signal diversity.)

2Throughout, upper case P s denote lotteries and lower case ps denote probabilities.
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The speci�cation of the two scenarios as ordered (or sequential) is adopted
in order to isolate the processing of signals from prior ambiguity. We com-
pare conditional choices, made after realization and processing of a signal,
with (prior, ex-ante, or) unconditional choices, made in the absence of any
realized or even anticipated signals. To clarify the relevance of �anticipated
signals,� suppose that a choice between prospects is made ex-ante, before
realization of a signal but with the expectation that before the state of the
world is realized, a signal about the state will be forthcoming. Though choice
cannot be made contingent on the signal, its anticipation can still a¤ect the
ex-ante evaluation of prospects, for example, if DM backward inducts from
anticipated conditional rankings. In that case, unconditional choices would
be �contaminated�by the signal structure, which would leave unclear how
to isolate the behavioral implications of the signal structure. Thus, to be
perfectly clear, the behavior described below should not be seen as describ-
ing dynamic choice, but rather as choice in two di¤erent (with and without
signals) but related settings (the payo¤ urn is common). Alternatively, if the
environment is dynamic but the decision maker is myopic, similar behavior
may arise. Since it may be challenging to identify myopia, we concentrate
(both theoretically and experimentally) on the setting of two ordered scenar-
ios.
We assume throughout that lotteries are ranked according to expected

utility theory (vNM). Though restrictive on descriptive grounds, it is almost
universal in the literature on ambiguity-sensitive preferences, starting with
Schmeidler (1989) and Gilboa and Schmeidler (1989).3 In addition, risk
preferences are assumed to be strictly monotone in the sense of FOSD and
una¤ected by signal realizations.

2.2 Behavior: the symmetric case

It is convenient to adopt the following notation: the payo¤-relevant state
space is S = fR;Bg, the set of prizes is X = f100; 0g, and the signal space
is � = f�R; �Bg. Conditional and unconditional preferences are de�ned on
bets and lotteries, that is, on ffR; fBg [�(X) ; where ffR; fBg are bets on
red and black from the payo¤ urn and �(X) are objective lotteries over X.
Because information about both payo¤and signal urns is color-symmetric,

one would expect a �rational� individual to satisfy also the following sym-

3An exception is Dean and Ortoleva (2017).
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metry condition:

p0;R = p0;B, p�R;R = p�B ;B, p�R;B = p�B ;R. (2.4)

We assume (2.4) throughout this section, in the ensuing discussion of models
and also in the laboratory experiment. See Appendix A for the more general
case where symmetry is not imposed, and for other generalizations of the
above choice problems whereby S;� and X can be any nonbinary �nite sets,
and bets on colors can be replaced by arbitrary Savage acts from S into X.
Assuming (2.4), our focal behavior corresponding to (strict) aversion to

signal ambiguity is:
p0;R >

1
2
p�R;R +

1
2
p�B ;R. (2.5)

In the rest of this section, we describe some intuition for (2.5). Weak aversion,
strict and weak a¢ nity, and indi¤erence or neutrality are de�ned by the
obvious modi�cations of (2.5) and can be motivated similarly. (All these
inequalities refer explicitly only to bets on red, corresponding inequalities
for bets on black follow immediately from symmetry.) Though all forms of
nonindi¤erence (inequality in (2.5)) are of equal interest, as is common in
the literature our discussion focuses on strict aversion.
The intuition we suggest for (2.5) centers on uncertainty about the num-

ber of balls added to the signal urn and hence about how to interpret a
signal. To explain, note �rst that the unconditional probability equivalent
p0 re�ects the attitude towards the uncertain composition of the payo¤ urn,
as in Ellsberg�s experiment, but is not a¤ected by uncertainty about signal
interpretation because even the possibility of signals is presumably unknown
at the unconditional stage. However, uncertainty about signal interpretation
is relevant for conditional probability equivalents. For example, a red draw
(�R) is a strong signal in favor of a bet on red (and against a bet on black)
if only a small number of balls were added in constructing the signal urn,
but it is only a weak signal for red (and against black) if a large number
of balls were added. A conservative decision-maker facing this uncertainty
might interpret �R as a weak positive signal when evaluating a bet on red,
(corresponding to large N), hence leading to a small probability equivalent
p�R;R for betting on a red ball drawn from the payo¤ urn. But similar un-
certainty applies when interpreting the implication of observing a black ball
drawn from the signal urn, and a conservative attitude would lead to viewing
it as a strong negative signal for a bet on red (corresponding to N small), and
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hence to a small probability equivalent p�B ;R. This suggests how aversion to
signal ambiguity might explain (2.5).
There is a parallel with the Ellsberg-based approach to prior ambiguity.

Given symmetry (2.4), and hence p�B ;R = p�R;B, then (2.5) can be described
as saying that a given signal (�R) is interpreted as providing weak support
for both an event (drawing red) and its complement (drawing black). This
is a counterpart of the essence of Ellsberg�s two-urn experiment, where both
an event and its complement are deemed unlikely.
To illustrate, consider a numerical example in which the DM has the

following additional information regarding the payo¤ and signal urns: All 8
unknown balls of the payo¤ urn are red (black) if a fair coin toss gives heads
(tails); and the signal urn is constructed by adding N balls of each color,
where N = 0 or 45. Thus, if DM calculates objective probabilities correctly
(satis�es the Reduction of Compound Lotteries axiom, ROCL), presumably
p0;R =

1
2
as there is no prior ambiguity.4 The posterior probabilities satisfy

Pr (R j �R) 2 f:53; :82g and Pr (R j �B) 2 f:18; :47g .

Then aversion to uncertainty about signal interpretation (the signal is strong
if N = 0 but weak if N = 45) plausibly leads to probability equivalents
p�R;R < :67 and p�B ;R < :33, and hence to (2.5).
Readers who �nd the above intuition for (2.5) convincing can proceed

directly to the laboratory experiment (Section 3). For the bene�t of other
readers, the next subsection elaborates on and deepens the above intuition.5

2.3 Discussion

Here we provide additional theoretical motivation for (2.5). We do so by
adapting the usual practice in the literature on unconditional ambiguity-
sensitive preferences where behavior in the �ambiguous� domain (bets on
Ellsberg�s unknown urn) is compared with behavior in the risk domain (bets
on Ellsberg�s known urn). Behavior in the risk domain is assumed to be �stan-
dard�(expected utility), and di¤erences in behavior across the domains are
attributed to non-indi¤erence to ambiguity. Because our focus is on updating

4Extensive research has documented that ROCL is not a good behavioral assumption
in this case, and we will use this fact in our experimental design (see Section 3.1).

5One possible concern is that the equal weighting of p�;R for the two signals � 2
f�R; �Bg may seem arbitrary. However, Lemma 1 should resolve this concern.
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behavior, we go further in these respects. In our case, the comparison risk
domain includes also risky (�noisy�) signals and in addition, updating in the
risk domain is assumed to conform to Bayes�rule.6 Then, for each color in
turn, we compare bets on that color from the payo¤ urn versus from a risky
urn (constructed below) both unconditionally, and then also conditionally
after realization of both ambiguous and noisy signals.
To elaborate, �x two possible noisy signals, denoted also �R and �B,

and their probabilities given by � 2 �(�). For each color s 2 fR;Bg,
the following table describes two trees, a subjective one corresponding to
the choice problems in Section 2.1 (left column), and an objective tree (right
column). In the objective tree, if the ��-signal is realized, Bayesian updating
leads to the posterior lottery P�;s. In the subjective tree, the signal � leads
to the conditional preference order �� according to which fs is indi¤erent to
P�;s (recall (2.1)).

fs �0
P

� ��P�;s

# #
signal � & ��-event for risk

+ +
subjective updating Bayes�rule

fs �� P�;s

(2.6)

Moreover, this is true for both colors s and both signals �. Yet, for each s,
fs is strictly preferable to

P
� ��P�;s unconditionally. We attribute this to

the higher cognitive cost of updating based on hard-to-interpret signals that
is re�ected in the conditional lottery equivalents P�;s, but is absent at the
unconditional stage and also in the objective tree. (An alternative expla-
nation is that the objective mixture is ranked lower because risk preferences
exhibit a dislike for randomization �utility over lotteries is quasiconvex. This
interpretation is excluded only by the assumption of vNM risk preferences.)
The preceding suggests the following de�nition of (strict) aversion to sig-

6This discussion applies to the thought experiment. In the experiment itself, however,
we will not make such an assumption, but compare the updating behavior under risk and
ambiguity (see Section 3.1.)
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nal ambiguity:7 There exists � 2 �(�) such that, for each s = R;B,

fs �0 ��RP�R;s + ��BP�B ;s
fs ��R P�R;s
fs ��B P�B ;s,

(2.7)

or equivalently, there exists � 2 �(�) such that,

p0;R > ��Rp�R;R + ��Bp�B ;R and (2.8)

p0;B > ��Rp�R;B + ��Bp�B ;B.

Though it might seem less demanding than (2.5), where each �� is �xed
at 1

2
, in fact, the two conditions are equivalent under present assumptions.

Lemma 1 Assuming signal diversity, the conditions (2.5) and (2.8) are
equivalent.

Proof. Given symmetry (2.4), condition (2.5) implies (2.8) with �� = 1
2

for all �. Conversely, suppose there exists � as indicated but that p0;R �
1
2
p�R;R +

1
2
p�B ;R. Then, for s = R;B,

����p�;s < p0;s � 1
2
p�R;s +

1
2
p�B ;s =)

0 <
�
1
2
� �

�
(p�R;s � p�B ;s) .

But this is impossible given signal diversity (2.2). �

The intuition leading to (2.7) thus serves to explain and motivate (2.5).
Next we add perspective by examining the existential quanti�er �there ex-
ists ��in (2.7). An alternative that may have occurred to some readers is to
require that the behavior indicated in (2.7) be exhibited for all signal struc-
tures, that is, �for all �.�This condition is equivalent (given symmetry) to
requiring that

p0;R > p�R;R and p0;R > p�B ;R,

or, more explicitly in terms of preferences,

fR �0 P�;R for � 2 f�R; �Bg . (2.9)

7An equivalent condition would have unconditional indi¤erence and conditional strict
preference for fs for each signal.
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This says roughly that, for each �, �� is more ambiguity averse than �0 in
the sense of the comparative notion widely adopted in the decision theory
literature and built on the following intuition: given that fR �� P�;R, that
P�;R is ambiguity-free, and that �0 is less averse to ambiguity, then fR �0
P�;R follows. Thinking of ambiguous signals as increasing ambiguity aversion,
one might take (2.9) as the behavioral meaning of signal ambiguity aversion.
Clearly, (2.9) is strictly more demanding than our condition in (2.7), or

equivalently (2.5).8 Moreover, it is too strong in our view. A signal � may
reduce utility because of uncertainty about its interpretation, but, in general,
a signal also contains information about the state space that could render
the bet under consideration more attractive, thus raising utility. Think of
two dimensions of a signal �its �mean informational content�and �uncer-
tainty about that content��that may a¤ect utility in opposite directions.
The condition (2.9) identi�es as ambiguous only signals for which the uncer-
tainty e¤ect dominates for all signal realizations. In contrast, the behavior
that we propose can identify uncertainty about a signal�s interpretation even
if, for some realizations, its mean informational content dominates and re-
sults in an overall increase in utility. To see how, suppose that contrary
to (2.9), P�R;R �0 fR, and that there is nevertheless uncertainty about the
interpretation of �R. The indicated strict ranking reveals that �R is a very
strong positive signal in the mean dimension for drawing red, strong enough
to more than o¤set di¢ culties with interpretation. But then it is also a
very unfavorable signal for drawing black. Thus �R makes the bet on black
unattractive because of both uncertainty about interpretation and because of
its negative mean informational content. This can lead to its lottery equiv-
alent P�R;B being su¢ ciently unattractive that, assuming symmetry (2.4),
fR �0 1

2
P�R;R +

1
2
P �B ;R is satis�ed. (This possibility is illustrated in the

numerical example in Section 2.2 when, for instance, p�R;R >
1
2
.)

In our view, the preceding suggests that (2.9) is too restrictive to be
taken as the behavioral manifestation of aversion to signal ambiguity.9 In
contrast, some might feel that the behavior we suggest is too broad in that it

8By the independence axiom, P�;R � 1
2P�R;R+

1
2P�B ;R for at least one � 2 f�R; �Bg.

Thus, by transitivity, (2.9) implies (2.7). It is easy to see that the converse is false.
9This is not to suggest that rankings such as in (2.9) are implausible. See Walley (1991,

pp. 298-9) for some examples. Seidenfeld and Wasserman (1993) study such rankings
within a maxmin framework under prior-by-prior Bayesian updating. They characterize
when the sets of posteriors can enlarge (include) the set of priors for every signal realization
(a phenomenon called dilation and �rst discussed by Good (1974)).
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might admit other rationales unrelated to signals being hard-to-interpret.10

An advantage of our liberal approach, however, is that (arguably) it includes
any behavior that might be understood as revealing sensitivity to signal
ambiguity even where other rationales are possible. Therefore, where a model
is shown to preclude (2.5), there can be little doubt about its inability to
capture aversion to signal ambiguity.

3 A laboratory experiment

In the section we report the design and results of a lab experiment whose
goal is to evaluate the empirical applicability of the signal-sensitive behavior
proposed in (2.5). There are a few major practical challenges that a lab
experiment must overcome. First, subjects may not be Bayesian even when
the accuracy of the signal is known (see Grether 1980, Ambuehl and Li 2018,
for example). Second, they might not reduce compound objective lotteries,
a behavior that has been shown to be empirically associated with ambiguity
sensitivity. Third, they may not satisfy expected utility even when dealing
with objective probabilities. Fourth, even if all the above are non-issues,
and subjects are sensitive to signal ambiguity as we suggest, they may use
the elicitation system to hedge such ambiguity. In the following subsection
we detail how we dealt with these challenges and provide the details of the
experimental design.

3.1 Experimental Design

We adopted a between-subject design, where the control group received a
known risky-signal, while the treatment group received an ambiguous signal.
Our focus is on the di¤erential e¤ect of signal ambiguity on updating.
The environment is similar to the numerical example presented in Section

2.2. The payo¤ urn (for both groups) consisted of 10 balls, that had either
9 red balls (and 1 black ball) or 1 red ball (and 9 black balls), each with
probability .5, as on the left panel of Figure 3.1. Hence, the probability of
drawing a red ball is either .1 or .9, each with probability .5. Two consider-
ations motivated us to eliminate prior ambiguity from the payo¤ urn. First,

10For example, Cripps (2018) presents an axiomatic model of non-Bayesian updating
of objective probability distributions where prior beliefs need not equal the average of
posteriors because of under- or over-reaction to new information.
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Figure 3.1: The payo¤ urn (left) and the basket used to elicit probability
equivalents (right)

symmetry between a bet on red and a bet on black is universal in such a
case, while if the compositions were only symmetric but included prior ambi-
guity, then some subjects may have had non-symmetric belief. We deal with
this possibility in Appendix A, but the elicitation is more complex in that
case. Second, there exists now strong empirical evidence that many subjects
do not distinguish between symmetric ambiguous environments and simi-
lar environments with compound risk (Halevy 2007; Dean and Ortoleva, in
press; Gillen, Snowberg and Yariv, forthcoming; and especially Chew, Miao
and Zhong 2017). The payo¤ urn is a special case of Chew et al�s two-point
compound-risk, which they show is similar to two-point ambiguity. We there-
fore expect many (ambiguity averse) subjects to prefer a one-stage lottery
with a winning probability of .5 to a bet on either color from the payo¤ urn.
We eliminated hedging opportunities in the unconditional choice11 by asking
the subject to choose a color to bet on (red or black) from the payo¤ urn.

11Strictly speaking, there should not be a concern for hedging here, as the payo¤ urn
is compound risk and not ambiguous. However, if a subject identi�es the two, and reacts
to ambiguity using hedging, she may hedge here as well. As a result, she may report the
probability equivalent .5 for bets on both red and black from the payo¤ urn, even if her
true probability equivalent is smaller than .5 (Baillon, Halevy and Li 2019).

14



The elicitation of probability equivalents was implemented as in Freeman,
Halevy and Kneeland (2019). Subjects were presented with a basket contain-
ing 100 balls numbered from 1 to 100 (as on the right panel of Figure 3.1),
and on each line of a choice list they were asked to choose between their bet
on the payo¤ urn and a bet that the ball drawn from the basket has a num-
ber that is smaller or equal to the line number, so the latter increases when
the subject moves down the list. In the initial choice list the step was 10
percent, and then subjects were presented with a zoom-in list were the res-
olution was 1 percent.12 One may worry that if subjects have non-expected
utility preferences, the elicitation of probability equivalents is not incentive
compatible. As demonstrated in Freeman et al (2019) and again in Freeman
and Mayraz (2019), this poses a challenge only when the constant alternative
in the choice list is certain, while in our case it is uncertain.
The control group facing a risky signal was then introduced to a signal

urn constructed by adding 5 red and 5 black balls to the payo¤ urn (left
panel of Figure 3.2). The signal urn therefore included 20 balls, which were
equally likely to be 14 red (and 6 black) or 6 red (and 14 black). Conditional
probability equivalents were elicited, that is �the probability equivalent of
the chosen bet on the payo¤ urn conditional on each color being drawn from
the signal urn. By Bayes rule, if the prior probability of drawing red from
the payo¤ urn is p, and if the signal urn contains N additional balls of each
color, then the probability of drawing red from the payo¤ urn conditional on
a red ball being drawn from the signal urn is:

P (Rj�R; N) =
�
9+N
10+N

�
9
10
(1� p) +

�
1+N
10+N

�
1
10
p�

9+N
10+N

�
(1� p) +

�
1+N
10+N

�
p

(3.1)

Applied to the risky signal urn (N = 5), the Bayesian updates of p = :5
are .66 and .34 for a favorable and unfavorable signal, respectively. We did
not expect subjects to calculate Bayes rule exactly. In order to facilitate
a reasonable approximation to Bayes rule, and inspired by Gigerenzer and
Ho¤rage (1995), we presented to subjects the two possible signal urn com-
positions (right panel of Figure 3.2), which suggest that the probabilities of

12If subjects switched more than once in a choice list, a pop-up explained to them the
logic of monotonic preferences. However, if they wished to switch multiple times - they
were allowed to do so. In other words, we did not impose a single crossing, but tried to
make sure subjects understood their choices. This technique was �rst used in Freeman et
al (2019).
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Box C

OR
50% chance 50% chance

Possible Compositions of Box C

Box C

Figure 3.2: The signal urn: the risk control

drawing the chosen color from the signal urn are .7 or .3 depending on the
composition of the payo¤ urn.
The treatment group faced an ambiguous signal urn, constructed by

adding N balls of each color to the payo¤ urn, where N was either 0 or
45 (left panel of Figure 3.3). That is, the signal urn contained either 10
balls (with a composition of 9R1B or 1R9B) or 100 balls (with a composi-
tion of 54R46B or 46R54B). If N = 0 the signal is much more informative
than if N = 45; accordingly, if p = :5, then P (Rj�R; N = 0) = :82 while
P (Rj�R; N = 45) = :532: As done for the control group, we presented sub-
jects with images of the possible compositions of the signal urn (right panel
of Figure 3.3) in order to facilitate their intuitive reasoning when eliciting
conditional probability equivalents.
Skeptics may wonder whether the fact that we elicited two (conditional)

probability equivalents generates more noise compared to the prior probabil-
ity equivalent. We believe this is not the case as random noise would tend
to cancel out, and the average conditional probability equivalents would be
close to the prior. Hence, the noise hypothesis would work against �nding
non-neutrality to signal ambiguity. More crucially, we did the same in the
control (risky) group, and we will concentrate on the di¤erential e¤ect of
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Figure 3.3: The signal urn: the ambiguous treatment

ambiguous signals relative to this control.
As we elicited probability equivalents conditional on both red and black

balls being drawn from the signal urn and paid only one choice, we expose the
experimental design in the conditional stage to the theoretical possibility of
hedging. That is, if a subject is ambiguity averse, she may use the incentive
system to hedge part of the ambiguity concerning the accuracy of the signal
urn. Although this is a theoretical possibility, we �nd it highly improbable
that subjects will be sophisticated enough to hedge the ambiguity in this
way. In any case, the resulting bias would be that ambiguity averse subject
who do not have probabilistic beliefs about the accuracy of the signal will
behave as if they are Bayesian, which is the null hypothesis in the current
investigation.
To sum up, we elicited for each subject three probability equivalents (as-

suming the subject chose to bet on red): p0;R �the unconditional probability
equivalent; p�R;R and p�B ;R �the probability equivalents conditional on draw-
ing a favorable (red) and unfavorable (black) signal from the signal urn. Since
symmetry is built into the payo¤ urn using the compound lottery, Bayesian
updating implies that the unconditional probability equivalent is the (equally
weighted) average of the conditionals. Therefore, our interest is in measuring
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the di¤erence
(0:5p�R;R + 0:5p�B ;R)� p0;R. (3.2)

However, since we do not expect subjects to be exactly Bayesian even in the
case of a risky signal, we compare this measure for hard-to-interpret signals
with the corresponding measure for risky signals.
Before moving to results, one may wonder what would be the e¤ect of

replacing the ambiguous signals with two equally likely possible signals. As
argued above, there is now considerable empirical evidence that many DMs
identify ambiguous environments with compound but risky environments in
which they do not reduce compound lotteries. This evidence suggests that
modeling ambiguity as a compound object has sound behavioral support,
and contributes to the understanding new dimensions of ambiguity.
The experiment was conducted at the Toronto Experimental Economics

Laboratory in March 2018. Subjects had to answer 12 comprehension ques-
tions, and were incentivized by $0.25/question to answer each correctly on
their �rst attempt (they had to answer it correctly before moving to the next
question/stage). The experiment was programmed in zTree (Fischbacher
2007). The potential prize in the experiment was $20 plus a show-up pay-
ment of $7 and a maximum of $3 as payment for answering the comprehen-
sion question correctly. We recruited 153 subjects: 67 for the risk control
and 86 for the ambiguous signal treatment. The instructions as well as the
experimental interface are included in Appendix D.

3.2 Results

In this section, we �rst report results for all subjects. Later, we omit sub-
jects whose behavior is inconsistent with any model of updating based on the
objective information provided in the experiment, as we believe that it re-
�ects confusion rather than deliberate choice. We mainly report probability
equivalents (PE) that were elicited using choice lists. Option A was always
held constant and represented a bet on the payo¤ urn (unconditional and
conditional), while option B was an objective one-stage bet on the number
of the ball drawn from a basket containing balls numbered from 1 to 100.13

13We calculated the probability equivalent as the average of the last line in which Option
A was chosen and the �rst line in which Option B was chosen. For subjects whose choices
are consistent with monotonic and transitive preferences, these lines will be consecutive
(single switching point, e.g. if a subject switched to B at .5 then the PE would be .495).
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44.81% of subjects (69 out of 154) have unconditional PE of approxi-
mately .5, close to 46.75% (72 subjects) have unconditional PE lower than
.475 and the remainder 8.44% (13 subjects) higher than .525. These are stan-
dard results for 2-point ambiguity and compound risk attitude (Halevy 2007;
Chew et al 2017), and justify our behavioral approach of using compound
lotteries to mirror two point ambiguity.14 As expected, there is no treatment
e¤ect when measuring unconditional PE.
Although not the main focus of our study, as it does not take into ac-

count the unconditional PE, it is interesting to note how subjects respond
to favorable and unfavorable signals when the signal is risky and when its
accuracy is ambiguous, assuming an unconditional prior of .5. In the risky-
signal control, only 13.24% of subjects (9 out of 68) had favorable PE that
was approximately the Bayesian update of .5 (.66 +/- .025), while almost
two-thirds of the others had PE that was below this. In the ambiguous sig-
nal treatment, and assuming equally likely signals, only a single subject (out
of 86) had PE that was approximately the Bayesian update of .5 (.676 +/-
.025), while more than three quarters of the others had PE that was below
the Bayesian benchmark of .5. For the unfavorable signal, the di¤erence be-
tween the treatments is even starker. 19.12% of subjects in the risk control
(13 of 68) are close to the Bayesian update of .5 (.34 +/- .025), and the re-
mainder are equally split between those whose unfavorable PE is higher and
lower than the benchmark. In the ambiguous signal treatment, only 3 out
of 86 are approximately Bayesian (.324 +/- .025), assuming equally likely
signals and a prior of .5), and almost 94% (78 subjects) of the others have
PE that is higher than the Bayesian benchmark.
Three comments are in order regarding these observations. First, as noted

above, most subjects do not start from an unconditional prior of .5 (it is
typically lower). Second, even if the average behavior in the risky signal
treatment is not too far from the Bayesian update of .5, there is huge het-
erogeneity at the individual level. Third, the tendency to underreact to an
unfavorable ambiguous signal can be rationalized by the belief that the sig-

If a subject switches multiple times between A and B, this is the midpoint in the range of
switching (so if the last time A was chosen is .6 and the �rst time B was chosen was .5,
the reported PE would be .55). Throughout this section we allow subjects 2.5% margin
to standard behavior: reduce compound lotteries and Bayesian updating. We term this
�approximate�.

1410 subjects had multiple switching, only 1 of them had unconditional PE of approx-
imately .5 (6 had PE<.475 and 3 had PE>.525).
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nal is more likely to be less informative (it is more likely that the signal urn
contains 100 balls rather than 10 balls). Indeed, this is consistent with the
tendency to underreact to a favorable signal as well. This demonstrates the
necessity to measure individual behavior using (3.2), as it ties together the
conditional (favorable and unfavorable) PEs and unconditional PE, allows
for non-neutral attitude to prior ambiguity (compound-risk), and answers
the crucial question if there exists a prior over the possible signals that can
rationalize the unconditional/conditional PEs as a result of Bayesian updat-
ing.

3.2.1 Bayesian updating

In the control risky-signal treatment 32 out of 68 subjects (47.06%) are ap-
proximately Bayesian in the sense that their unconditional PE is approxi-
mately the average of their conditional PE, while in the ambiguous-signal
treatment the proportion falls to 27 out of 86 (31.4%). The increase in the
incidence of non-Bayesian behavior as a response to hard-to-interpret signals
is signi�cant at the 5% level (p-values of one-sided proportion test and one
sided Fisher exact test are .0162 and .024, respectively).
One might suspect that the noted di¤erence is due to subjects making

more mistakes in the cognitively more challenging ambiguous-signal treat-
ment. We therefore omit from both treatments subjects who made various
errors. We consider two types of �errors�that are incompatible with standard
models of preference and updating. The �rst is multiple switching between
options A and B in one or more of the choice lists (and here there is no signif-
icant di¤erence between the treatments).15 The second mistake is updating
in the wrong direction between the unconditional and conditional PEs.16 In
the ambiguous-signal treatment 36 out of 86 subjects (41.86%) updated in
the wrong direction, and in the risky-signal treatment 21 out of 68 subjects
(30.88%) updated in the wrong direction. The di¤erence is marginally signif-
icant (p-values of one-sided proportion test and one-sided Fisher exact test
are .0806 and .109, respectively). In order to test if the di¤erence in be-

15In the risky-signal control treatment 4 out of 68 subjects switched more than once
between A and B, while in the ambiguous-signal treatment the number was 6 out of 86
(and only 1 of them in one of the conditional PEs).

16That is, if the signal is favorable to the chosen bet on the payo¤ urn - the conditional
PE should not decrease, and if the signal is unfavorable - the conditional PE should not
increase.
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Figure 3.4: Bayesian behavior and attitude to signal ambiguity - regular
subjects

havior that is incompatible with Bayesian updating is due to error, we omit
the subjects who committed one or more of the above mistakes. This leaves
us with 44 (out of 68) �regular�subjects in the risky-signal treatment and
48 (out of 86) �regular�subjects in the ambiguous-signal treatment. These
�regular�subjects switched exactly once between options A and B in all the
choice lists, and always updated in the correct direction.
Figure 3.4 demonstrates that the proportion of �regular� subjects who

are approximately Bayesian falls signi�cantly from 63.64% in the risky-signal
treatment to 39.58% in the ambiguous-signal treatment (p-values of one-sided
proportion test and one sided Fisher exact test are .0106 and .018, respec-
tively). Because these subjects are �mistake-free�, we attribute the greater
departure from Bayesian updating under ambiguous signals as being due to a
deliberate response to uncertainty about the accuracy of signals. It is inter-
esting to note that the marginal e¤ect of signal ambiguity is almost equally
split between an increase in the proportion of subjects who are averse to sig-
nal ambiguity - the average of the conditionals is lower than the unconditional
PE (from 13.64% under risk to 27.08% with ambiguous signals), and those
who exhibit a¢ nity to signal ambiguity - the average of the conditionals is
higher than the unconditional PE (from 22.73% to 33.33%).
Figure 3.5 plots the di¤erence in the distributions of our proposed mea-

sure for Bayesian behavior (3.2) between the risky-signal treatment (green
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Figure 3.5: CDF of Bayesian updating for regular subjects

full line) and the ambiguous-signal (dashed line). A value of �0� on the
horizontal axis implies that the unconditional PE equals the average of the
two conditional PEs, that is �the subject is exactly Bayesian. The interval
between the two vertical dashed lines is the 5% interval: [�2:5%;+2:5%] in
which we classify subjects as approximate Bayesian. Subjects that are to
the left (right) of the interval have PEs that indicate that they are averse
(seeking) to signal ambiguity. As can be easily seen from the �gure, the
distribution of (3.2) in the ambiguous-signal treatment has a higher vari-
ance than in the risky-signal control (p-value of Levene�s test for equality of
variances is .0425).
Finally, it is of interest to understand the relation between the attitudes

towards prior-ambiguity and towards signal-ambiguity. As discussed above,
we have only an indirect measure of the former, since using unconditional
PE measures attitude to 2-point compound-risk that has been shown to
be strongly associated with attitude to two-point ambiguity (Halevy, 2007;
Chew et al 2017). We �nd that among �regular� subjects the association
between approximately reducing compound lotteries (and indirectly �being
neutral to prior ambiguity), and being approximately Bayesian in the risky-
signal control is insigni�cant at the 5% level (p-value of Fisher�s exact test is
.065). In contrast, in the ambiguous-signal treatment the association is very
strong (p-value of Fisher�s exact test is .001).17

17If we consider all subjects, the associations are strong in both treatments (p-values of
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4 Models

The previous section showed that sensitivity to signal ambiguity is common,
but not universal. Decision makers vary in their attitude to hard-to-interpret
signals: some are close to the Bayesian benchmark, others are averse while
the remainder like signal ambiguity. Moreover, we found that non-neutrality
to signal ambiguity is associated with aversion to prior ambiguity (as cap-
tured by compound risk). The goal of this section (and Appendix B) is to
demonstrate (in a non-exhaustive way) how some popular models accommo-
date the various patterns of behavior and the associations among behaviors
documented in the experiment.
As emphasized, we explore choice given two di¤erent information struc-

tures �no signals, and then a particular signal structure as de�ned above.
Existing static models of ambiguity-sensitive preference restrict attention to
one �xed (implicit) information structure (Gajdos et al (2008) is the only
exception of which we are aware) and thus do not apply directly. Put an-
other way, one could apply any of these models separately to model �0 and
each conditional order ��. Applied in this way, received theories would
not address updating in that they would not restrict how unconditional and
conditional preferences are related, rendering (2.5), as well as many other
patterns of unconditional and conditional choices, rationalizable. We view
this approach as conceding that received theories are orthogonal to the is-
sues considered here. We proceed instead by examining whether extensions
of these models that include plausible and/or commonly used updating rules
can accommodate signal ambiguity. Another point to emphasize is that our
treatment of models is intended to be illustrative rather than exhaustive.
After examining the benchmark Bayesian model, we focus on the maxmin
model (Gilboa and Schmeidler 1989) with two alternative updating rules.
(See also Appendix C for an examination of the smooth ambiguity model.)
For all models, preferences are de�ned on a set F of Savage acts over

the state space S with outcomes in X. As above, we assume for the most
part that S = fR;Bg, X = f100; 0g, F = ffR; fBg, and that the signal
space is � = f�R; �Bg, but arguments extend readily to the general setup
treated in Appendix A. Risk preferences are expected utility with vNM index

Fisher�s exact tests are .007 in the risky-signal control and <.001 in the ambiguous-signal
treatment), as subjects who make mistakes tend not to reduce compound lotteries and
not to be Bayesian. However, we �nd this observation less interesting for understanding
signal-ambiguity in a rational framework.
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u normalized by
u (100) = 1; u (0) = 0.

Utility functions on F , denoted V� (�), for � 2 f0g [ �, are de�ned by
probability equivalents:

V� (fR) = p�;R and V� (fB) = p�;B.

Symmetry (2.4) and signal diversity (2.2) are assumed throughout. We ex-
amine the capacity of models to accommodate (2.5) and its ambiguity loving
counterpart where the inequality is reversed.

4.1 Models with �Bayesian updating�

In the Bayesian model, unconditional utility has the subjective expected
utility (SEU) form with respect to prior belief m0,

V0 (f) =

Z
S

u (f) dm0 (s) , f 2 F .

Conditional utility V (� j �) is given by SEU with the posteriorm (� j �) which
is derived by Bayesian updating using a likelihood function ` (� j s). Exclude
the degenerate case where signals are uninformative and assume that

` (�R j R) 6= ` (�R j B) ; (4.1)

this implies signal diversity. The well-known implication of this model is that

m0 (�) =
X
�

L (�)m (� j �) and

V0 (f) =
X
�

L (�)V� (f) , f 2 F , (4.2)

where

L (�) �
Z
S

` (� j s) dm0 (s) .

Therefore, by Lemma 1, indi¤erence to signal ambiguity (that is, equality in
(2.5)) is implied.
Note that the preceding applies to any likelihood function ` (and more

generally, for any L consistent with (4.2)), just as the Ellsberg paradox is
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robust to which prior is assumed. In particular, it applies to two variants
of the above Bayesian model that have been explored in the literature. To
capture uncertainty about interpretation of signals, and hence about the true
likelihood function, Acemoglu, Chernozhukov and Yildiz (2016) assume that
updating of m0 is done using an average likelihood ` of the form

` (� j s) =
Z
` (� j s) d�s (`) ,

where, for each s, �s 2 �(� (f�R; �Bg)) is a subjective distribution over
likelihoods. Conclude that this speci�cation does not model hard-to-interpret
signals in the sense of the behavior we have identi�ed. In another variant,
it is assumed that the Bayesian agent uses the �wrong�likelihood function,
speci�cally, one in which signals are taken to be more precise than they
really are. Such agents are often called �overcon�dent�(Daniel, Hirshleifer
and Subrahmanyam 1998). We see that such overcon�dence is behaviorally
distinguishable from an a¢ nity to signal ambiguity.
Indi¤erence to signal ambiguity is implied also in models that can ratio-

nalize (unconditional) Ellsbergian ambiguity aversion if a suitable �Bayesian-
like�updating rule is added. See Epstein and Seo (2015) for one such model.

4.2 Maxmin utility

Following Gilboa and Schmeidler (1989), ambiguity about S is represented
by a subjective setM0 � �(S), and unconditional utility is given by

V0 (f) = min
m2M0

Z
u (f) dm.

In the alternative scenario, the individual is informed that a signal will be
realized. Thus she contemplates uncertainty about f�R; �Bg � S, which
is modeled by a subset M of �(f�R; �Bg � S). We assume that M is
consistent withM0 in the sense thatM0 equals the set of all S-marginals of
measures inM, that is,

M0 = fmrgS m : m 2Mg . (4.3)

After realization of the signal �, the individual updates her set of priors to
M� � �(S) and she evaluates acts using the conditional maxmin utility
function

V� (f) = min
m2M�

Z
u (f) dm.

25



It remains to describeM and the setsM� in greater detail. We consider
two widely used update rules: prior-by-prior Bayesian updating (also known
as generalized Bayes�rule (GBR)), and maximum likelihood updating (ML),
whereby only those priors that maximize the likelihood of the realized signal
are retained and updated by Bayes�rule.18 We further divide the discussion
into two cases that highlight the main message regarding how to model signal
ambiguity within the framework of maxmin utility. (See Appendix B for
supporting details.)

Single-likelihood : For each s, let ` (� j s) 2 �(f�R; �Bg) describe the distri-
bution of signals conditional on the true state satisfying (4.1). The critical
feature of this special case is that this conditional distribution, or likelihood
function, is unique as in Bayesian modeling. To incorporate this sharp view
of likelihoods let M consist of all measures m on f�R; �Bg � S for which
the S-marginal lies inM0 and the S-conditional is `. Then, for both of the
noted updating rules, a¢ nity to signal ambiguity is implied (and the a¢ nity
is strict ifM0 is not a singleton).

Multiple-likelihoods: To sharpen the contrast with the preceding case, sup-
pose that unconditional beliefs about S are represented by the single (full
support) prior m0, that is, M0 = fm0g. Multiplicity arises at the level of
conditional distributions or likelihoods: let L denote a subjective set of pos-
sible likelihood functions `, where ` (� j s) 2 �(f�R; �Bg) for every s. De�ne
M to be the set of all measures m on f�R; �Bg�S for which the S-marginal
is m0 and, for which the S-conditional is an element of L. Then signal ambi-
guity aversion is implied for both updating rules. The intuition is apparent at
the functional form level: the multiplicity of likelihoods captures uncertainty
about how to interpret a given signal and permits the adopted interpretation
to vary with the bet being evaluated. For example, when evaluating the bet
on red (black), a signal � is interpreted conservatively in the way least (most)
favorable to red being drawn. This acts to reduce conditional utility levels
for each bet and each signal, consistent with (2.5).

Note that unconditional ambiguity aversion (satis�ed by single-likelihood
but not by multiple-likelihood as de�ned above) and signal ambiguity aver-

18Pires (2002) provides axiomatic foundations for GBR; Gilboa and Schmeidler (1993)
axiomatize ML in the special case where the maxmin model of preference with setM also
conforms with Choquet expected utility (Schmeidler 1989).
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sion (satis�ed by multiple-likelihood but not by single-likelihood) are inde-
pendent properties. Simultaneous aversion to both kinds of ambiguity can
be achieved by perturbing initial beliefs in the multiple-likelihoods model
slightly and takingM0 to be a small neighborhood of m0.
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A Appendix: A more general analysis

A.1 Primitives

� S: �nite (payo¤ relevant) state space

� �: �nite set of signals

� X: set of real-valued outcomes with largest and smallest elements (say
100 and 0)

� Acts f map S into X; F is a (�xed) �nite subset of acts

� �(X): the set of all (simple) lotteries P

� Preferences �0 and f��g�2� on F [�(X)

Adopt the following basic assumptions on preferences:

Pref0 All preferences are complete and transitive.

Pref1 All conditional preferences agree with �0 in the ranking of lotteries.

Pref2 �0 restricted to lotteries conforms to expected utility theory.

Pref3 �0 is strictly FOSD-monotone on lotteries

Pref4 For each � 2 f0g [ �, and act f , 9 probability-equivalent p�;f , such
that P�;f = (100; p�;f ; 0; 1� p�;f ) �� f

Pref1 expresses the assumption that signals are unrelated to the objective
prospects (lotteries). Pref2 is almost universal in the decision theory lit-
erature focussing on ambiguity. Pref3 and Pref4 are self-explanatory and
common. These assumptions permit construction of utility functions V� (�)
for ��, � 2 f0g [�, where,

V� (f) = p�;f , for all f 2 F ,

and, for all P 2 �(X),

V� (P ) = p, where P �0 (100; p; 0; 1� p) .
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These utility functions render meaningful the comparison of utility levels
unconditionally and across di¤erent signals. In particular, the inequality

V�0 (f) > V� (f) , for given �0 6= � 2 �,

is equivalent to the preference statement

[f ��0 P 0 and f �� P ] =) P 0 �0 P ,

It is interpreted to mean that �0 is a better signal for f than is �.

Remark 2 Finiteness of the set of acts F is not typical in axiomatic studies
but is entirely appropriate in underpinnings for experiments where one elic-
its risk equivalents of only �nitely many acts. The attitudes towards signal
ambiguity de�ned below depend on the empirically relevant set F .

Refer to signal diversity (relative to F) if: For every disjoint subsets
�I ;�II � �nf�1g, at least one nonempty, 9f 2 F s.t.

p�;f > p�1;f if � 2 �I
p�;f < p�1;f if � 2 �II ,

that is, � is better (worse) than �1 for f if � 2 �I (�II). If � = f�1; �2g is
binary, then reduces to: 9g; h 2 F s.t.

(p�2;g � p�1;g)(p�2;h � p�1;h) < 0

that is, �1 is better for one act and �2 is better for the other, as in (2.2).

A.2 Attitudes: de�nitions and characterizations

De�ne attitudes to signal ambiguity as follows (strict notions can be de�ned
in the obvious way).

De�nition 3 Weak aversion: There exists � 2 �(�) s.t.

V0 (f) �
X
�

��V� (f) for all f 2 F . (A.1)

Weak a¢ nity: There exists � 2 �(�) s.t.

V0 (f) �
X
�

��V� (f) for all f 2 F . (A.2)
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Indi¤erence: There exists � 2 �(�) such that

V0 (f) =
X
�

��V� (f) for all f 2 F . (A.3)

Intuition for these de�nitions is similar to that derived from (2.6). In
the SEU framework, when updating conforms to Bayes�rule, (A.3) reduces
to the familiar martingale condition relating prior and posterior beliefs. Our
intention here is to identify it as a meaningful condition more generally where
preferences over acts are not necessarily SEU and beliefs are not necessarily
representable by probability measures.
The presence of the existential quanti�ers 9� raises two questions about

these de�nitions. First, is indi¤erence equivalent to the conjunction of weak
aversion and weak a¢ nity? Second, and more practically, can the de�ning
conditions be veri�ed? The next theorem addresses these concerns.

Theorem 4 (i) There is weak aversion indi¤erence to signal ambiguity i¤

min
�2�

�Z
V� (f) d�

�
�
Z
V0 (f) d� for all � 2 �(F) . (A.4)

(ii) There is weak a¢ nity to signal ambiguity i¤Z
V0 (f) d� � max

�2�

�Z
V� (f) d�

�
for all � 2 �(F) . (A.5)

(iii) There is weak indi¤erence to signal ambiguity i¤ 8� 2 ba (F),19

min
�2�

�Z
V� (f) d�

�
�
Z
V0 (f) d� � max

�2�

�Z
V� (f) d�

�
. (A.6)

Assuming signal diversity, then: (a) weak indi¤erence is also equivalent to the
conjunction of weak aversion and a¢ nity; and (b) � = (��) in the martingale
condition is unique.

In each case, the corresponding equivalent statement replaces the existen-
tial quanti�ers for � with more customary and preferable universal quanti�er
(see Section A.3 for how the reformulation aids veri�ability). The condition

19ba (F) is the set of signed measures on F . Given �niteness of F , it is isomorphic to
RjFj.
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(A.6) can be simpli�ed since the left-hand inequality is redundant given that
� is not restricted in sign. However, it is strictly stronger than the act-by-act
condition

min
�2�

V� (f) � V0 (f) � max
�2�

V� (f) for all f 2 F ,

which would be su¢ cient if in (A.3) we allowed � to vary with f . The
conjunction of (i) and (ii) is weaker than (A.3), because the former asserts
only existence of two measures, one for (A.1) and another, generally distinct,
measure for (A.2), while (A.3) asserts that there is a single measure satisfying
both inequalities. Accordingly, the characterization (A.6) is stronger than
the conjunction of (A.4) and (A.5) because the �s are not restricted to be
probability measures. However, under signal diversity, the conjunction of
weak aversion and weak a¢ nity is equivalent to indi¤erence.20

Signal diversity also guarantees other desirable properties. For example,
de�ne strict attitudes by the obvious strict inequality counterparts of (A.1)
and (A.2). Then, for example, strict aversion (a¢ nity) and weak a¢ nity
(aversion) are disjoint if signal diversity is satis�ed.
Part (iii) of the theorem can be interpreted as providing an axiomati-

zation for the property (A.3) of updating and doing so for a very broad
class of preferences.21 There is arguably a rough parallel with Machina and
Schmeidler (1992). They generalize SEU and axiomatize probabilistically
sophisticated preferences �those for which underlying beliefs can be repre-
sented by a probability measure; and they do so without unduly restricting
other aspects of preference. We generalize the other main component of the
Bayesian model, namely Bayesian updating, and we axiomatize those collec-
tions fV�g�2f0g[� of preferences that satisfy the key martingale property of
Bayesian updating; and we do so without assuming maxmin or any other
parametric class of preferences, and without specifying a particular updating
rule beyond what is implicit in (A.3) or (A.6). Another parallel is that just
as probabilistic sophistication de�nes a benchmark for modeling sensitivity
to unconditional ambiguity of the sort highlighted by Ellsberg, we propose
(A.3) as a benchmark for modeling sensitivity to signal ambiguity.

20The proof is elementary. For example, assume that (A.1) and (A.2) are satis�ed
with � and �0 respectively. Then

P
� 6=�1 (�� � �

0
�) (V� (f)� V�1 (f)) � 0 for all f , which

contradicts signal diversity unless � = �0 (take �I = f� 6= �1 : �� > �0�g and
�II = f� 6= �1 : �� < �0�g).

21Condition (A.6) is a full-�edged axiom because the utility values V� (f) are probability
equivalents and hence observable. Its interpretation is not clear however.
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A.3 Veri�ability

Here we show that the alternative characterizations (A.4) and (A.5) in The-
orem 4 provide a tractable way to check whether a given data set is consis-
tent with weak aversion or weak a¢ nity. By �data,�we mean probability
equivalents elicited along the lines of our thought (and laboratory) experi-
ments. Utility values for each act are equal to the corresponding probability
equivalents�hence, it merits emphasis that the utility values appearing in
the theorem are observable. When a similar procedure is applied to check
for strict aversion, (using the obvious strict counterpart of the theorem), one
obtains a generalization of the inequality (2.5) which is the focus of the text.
That presumed a binary environment and the symmetry expressed by (2.4),
while these restrictions are not needed in Theorem 4.
Consider the practical value of the characterization (A.4) for verifying

(A.1): The former can be written as

max
�2�(F)

� (�) � 0,

where � (�) = min�2�
�R
V� (f) d�

�
�
R
V0 (f) d�. Finding a maximizer is a

matter of linear programming because � is piecewise linear.
To illustrate, consider the thought experiment and revert to earlier nota-

tion. Then

� (�) = min f�p�R;R + (1� �) p�R;B; �p�B ;R + (1� �) p�B ;Bg (A.7)
�(�p0;R + (1� �) p0;B)

The maximum is achieved at �� = 0; 1, or �c,

�c =
1

1 +
p�R;R�p�B;R
p�B;B�p�R;B

.

�c is that weight � for which the two terms inside the minimization in (A.7)
are equal:

�cp�R;R + (1� �c) p�R;B = �cp�B ;R + (1� �c) p�B ;B. (A.8)

Thus weak aversion is equivalent to � (�) � 0 at these three values of � and
hence (by brute calculation) to:

��p0;R + (1� ��) p0;B (A.9)

� min f��p�R;R + (1� ��) p�R;B; ��p�B ;R + (1� ��) p�B ;Bg ,
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where

�� =

8>><>>:
0 p0;R � p0;B > p�R;R � p�R;B
1 p0;R � p0;B < p�B ;R � p�B ;B
1

1+
p�R;R

�p�B;R
p�B;B

�p�R;B

p�B ;R � p�B ;B � p0;R � p0;B
� p�R;R � p�R;B

(A.10)

Under the intuitive assumption

p�B ;R � p�B ;B < p0;R � p0;B = 0 < p�R;R � p�R;B, (A.11)

(A.9)-(A.10) are equivalent to the single inequality

p0;R �
p�B;B�p�R;B

(p�B;B�p�R;B)+(p�R;R�p�B;R)
p�R;R +

p�R;R�p�B;R
(p�B;B�p�R;B)+(p�R;R�p�B;R)

p�R;B.

If (A.11) is strengthened to symmetry (2.4), then �� = 1
2
and one obtains

the weak inequality form of (2.5).

A.4 Proof of Theorem 4

For vector inequalities, adopt the notation

x � y: xi > yi all i

x > y: xi � yi all i and x 6= y
x � 0: xi � yi all i

All vectors are column vectors unless transposed by superscript |.
We use Tucker�s Theorem of the Alternative (Mangasarian 1969): Exactly

one of the following systems of inequalities has a solution:

(1) Bx > 0, Cx � 0, Dx = 0 (B nonvacuous)

(2) 0 = B|y2 + C
|y3 +D

|y4, y2 � 0, y3 � 0.

Purely for notational simplicity, let � = f�1; �2g and F = fg; hg be
binary; the reader will see that the argument is perfectly general.

Proof of (iii): If we denote by x the vector (1; ��1 ; ��2)
|, or as any positive

scalar multiple thereof, then existence of solution � satisfying (A.3) can be
restated as: 9x 2 R3 solving

Cx = 0, x > 0
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where22

d| =
�
1 �1 �1

�
, C =

�
A
d|

�
, and

A =

�
A|g
A|h

�
, A|f =

�
V0 (f) �V�1 (f) �V�2 (f)

�
, f = g; h.

By Tucker�s Theorem, the alternative is: 9y = (y2; y4) such that

y2 + C|y4 = 0, y2 � 0,

or equivalently C|y4 << 0, or equivalently (let y4 =
�
�g; �h; �0

�
):�

A| d
�
y4 � 0,24 V0 (g) V0 (h) 1

�V�1 (g) �V�1 (h) �1
�V�2 (g) �V�2 (h) �1

3524 �g�h
�0

35 << 0,
or equivalently: 9

�
�g; �h; �0

�
s.t.

�f�fV0 (f) + �0 < 0 and

�f�fV� (f) + �0 > 0 for all �

which is true i¤

�f�fV0 (f) < ��0 < �f�fV� (f) for all �.

Conclude that the alternative is: 9
�
�g; �h

�
s.t.

�f�fV0 (f) < �f�fV� (f) for all �.

Therefore, (A.3) obtains i¤: 8
�
�g; �h

�
�f�fV0 (f) � �f�fV� (f) for some �.

But taking ��, obtain also that: 8
�
�g; �h

�
�f�fV0 (f) � �f�fV� (f) for some �.

22Note that x > 0 and d|x = 0 imply that x1 > 0. Below keep in mind also that C is
3� (� + 1).
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Combine to obtain: 8�,

min
�
�f�fV� (f) � �f�fV0 (f) � max

�
�f�fV� (f) .

Consider (iii.a). Assume that (A.1) and (A.2) are satis�ed with � and
�0 respectively, � 6= �0. Then

P
� 6=�1 (�� � �

0
�) (V� (f)� V�1 (f)) � 0 for all

f 2 F . Obtain a contradiction by taking �I = f� : �� � �0� > 0g and
�II = f� : �� � �0� < 0g in the de�nition of signal diversity,
Uniqueness follows similarly.

Proof of (i): Use notation from the preceding proof. x denotes the vector
(1; ��1 ; ��2)

|, or any positive scalar multiple thereof. We want a solution to

x > 0, Ax � 0, d|x = 0:

By Tucker�s Theorem, the alternative is:

y2 + A|y3 + dy4 = 0,

y2 � 0; y3 � 0

or, letting y3 =
�
�g; �h

�| � 0,24 V0 (g) V0 (h)
�V�1 (g) �V�1 (h)
�V�2 (g) �V�2 (h)

35� �g
�h

�
+

24 1
�1
�1

35 y4 � 0.

Thus (adding 1st and 2nd components, then 1st and 3rd) the alternative to
(A.1) is that 9

�
�g; �h

�| � 0 s.t.
�f=g;h�fV0 (f) < �f=g;h�fV� (f) for each �.

Conclude that (A.1) is equivalent to: 8
�
�g; �h

�| � 0,
�f=g;h�fV0 (f) � min

�
�f=g;h�fV� (f) .

The proof for (ii) is similar. �

B Appendix: Details for the maxmin model

We provide some supporting details for the maxmin model de�ned in Section
4.2. Accordingly, S = fR;Bg and � = f�R; �Bg. Both symmetry (2.4) and
signal diversity (2.2) are assumed.
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B.1 Maxmin with single-likelihood

We are given that ` (� j s) 2 �(�) for each s = R;B, satisfying (4.1). With-
out loss of generality, renaming signals if necessary, suppose that

` (�R j R) > ` (�R j B) . (B.1)

LetM0 � �(S) be compact and a non-singleton, and letM� �(�� S)
be constructed as in Section 4.2. Unconditional utilities are

V0 (fB) = min
m2M

m (B) = m� (B) , and

V0 (fR) = min
m2M

m (R) = m�� (R) .

By symmetry, the probability interval [m�� (R) ; 1�m� (B)] for red is sym-
metric about 1

2
and

V0 (fR) = m
�� (R) < 1

2
:

For any given m inM, its Bayesian update is

m (s j �) = [m (s) ` (� j s)] =Lm (�) , where

Lm (�) �
Z
` (� j s0) dm (s0) .

Prior-by-prior updating (GBR): Conditional utilities are given by, for
each � = �B; �R,

V� (fB) = min
m2M

m (B) ` (� j B)
Lm (�)

=
m� (B) ` (� j B)

Lm� (�)
.

Therefore,

V0 (fB) = m�
0 (B) = m

�
0 (B) ` (�B j B) +m�

0 (B) ` (�R j B) =)
V0 (fB) = Lm� (�B)V�B (fB) + Lm� (�R)V�R (fB) . (B.2)

Similarly for R,

V0 (fR) = Lm�� (�B)V�B (fR) + Lm�� (�R)V�R (fR) . (B.3)
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In addition, because maxm (B) = m�� (B) > m� (B) = minm (B),

Lm� (�B) = m�
0 (B) ` (�B j B) +m�

0 (R) ` (�B j R)
< m��

0 (B) ` (�B j B) +m��
0 (R) ` (�B j R) = Lm�� (�B) .

By (B.1),
V�B (fB) > V�R (fB) and V�R (fR) > V�B (fR) . (B.4)

Therefore, from (B.2), (B.3), and (B.4),

V0 (fR) < Lm� (�B)V�B (fR) + Lm� (�R)V�R (fR) , and

V0 (fB) < Lm�� (�B)V�B (fB) + Lm�� (�R)V�R (fB) .

Combine these with the equalities (B.2) and (B.3) to obtain

V0 (fs) <
X
�

��V� (fs) , s = R;B,

where �� = 1
2
Lm� (�)+ 1

2
Lm�� (�). This proves strict signal ambiguity a¢ nity.

Maximum likelihood updating (ML): Conditional on each realized signal
�, one retains only those measures inM that maximize the probability of �.
Each is updated by Bayes�rule and the minimum conditional probability of
s, s = R;B, de�nes the conditional utilities V ML

� (fs). Since the minimum is
taken over a smaller set than under GBR, it is immediate that, for each �
and s,

V ML
� (fs) � V�(fs). (B.5)

Unconditional utilities are identical for the two updating rules. It follows
that there is signal ambiguity loving also under ML.

B.2 Maxmin with multiple-likelihoods

We haveM0 = fm0g. By symmetry for unconditional utility,

m0 (R) = m0 (B) =
1
2
.

Let the nonsingleton set L be such that ` (� j s) > 0 for every �; s, and ` 2 L.
Each likelihood is determined by a pair (` (�R j R) ; ` (�R j B)) 2 [0; 1]2. Thus
L can be identi�ed with a subset of the unit square (it is assumed compact).
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Prior-by-prior updating (GBR): Aversion to signal ambiguity follows
from (B.5) and the result below for ML.

Maximum likelihood updating (ML): The priors maximizing the likeli-
hood of � are obtained by combining m0 with every ` in L�,

L� = argmax
`2L

L` (�) , L` (�) � �s` (� j s)m0 (s) .

Utilities are given by

V� (fs) = 1
2

min`2L� ` (� j s)
L� (�)

, s = R;B,

L� (�) = max
`2L

L` (�) .

Therefore, using symmetry (2.4),

V�R (fR) + V�B (fR) = V�R (fR) + V�R (fB)

=
1

2L� (�R)

�
min
`2L�R

` (�R j R) + min
`2L�R

` (�R j B)
�

� 1

2L� (�R)
min
`2L�R

[` (�R j R) + ` (�R j B)]

=
min`2L�R [` (�R j R) + ` (�R j B)]
max`2L [` (�R j R) + ` (�R j B)]

� 1,

which implies the weak-inequality counterpart of (2.5). �

C Appendix: Smooth ambiguity

Consider the smooth model (Klibano¤, Marinacci and Mukerji 2005) adapted
as follows. For concreteness and simplicity only, adopt the setting in the
experiment. Accordingly, take S = fR;Bg and � = f�R; �Bg. Denote
by n = 1 or 9 the possible number of red balls in the payo¤ urn and by
mn 2 �(S) the corresponding probability distribution for the color drawn
from the payo¤ urn (mn (R) = n=10). At the unconditional stage, before
becoming aware of the signal structure, uncertainty about n is represented
by �0 2 �(f1; 9g); since equal probabilities are announced to subjects, take
�0 (1) =

1
2
, though any subjective prior would do equally. Her unconditional
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utility function is V0 given by

� � V0 (f) = �(p0;f ) =
Z
f1;9g

�

�Z
S

u (f) dmn

�
d�0 (n) , (C.1)

for f = fR; fB, where � (�) is (strictly) increasing. Unconditional ambiguity
aversion is modeled by taking � concave.
In the alternative scenario, the individual is informed about the signal

structure, (where N = 0 or 45 balls of each color are added when construct-
ing the signal urn), and that a signal, either �R or �B, has been realized.
Inferences about the payo¤ urn composition depend on beliefs about both
n and N represented by the measure � 2 �(f1; 9g � f0; 45g). The only
restriction on � is that the marginal probability � (n) satisfy

� (n) = �0 (n) , n = 1; 9. (C.2)

The likelihood of each signal � given any pair (n;N) is well-de�ned (e.g.
L (�R j n = 9; N = 45) = L (�B j n = 1; N = 45) = 54=100), which permits
Bayesian updating to � (� j �). Conditional utility is de�ned by

� � V� (f) = �(p�;f ) =
Z
f1;9g�f0;45g

�

�Z
S

u (f (s)) dmn (s)

�
d� (n;N j �) .

(C.3)

Remark 5 Following Klibano¤, Marinacci and Mukerji (2009), one might
replace mn (s) above by mn (s j �;N). However, the natural assumption is
that draws from the payo¤ and signal urns are independent conditional on
(n;N). Therefore, mn (s j �;N) = mn (s j N) = mn (s), and we are back to
(C.3).

The utility functions in (C.1) and (C.3), plus (C.2), constitute a version
of the smooth model for our setting. De�ne L� (�) by

L� (�) = �n;NL (� j n;N)� (n;N) .
Then it follows from the martingale property of Bayesian updating that

�(p0;f ) = L� (�R)�(p�R;f ) + L
� (�B)�(p�B ;f )

� � (L� (�R) p�R;f + L
� (�B) p�B ;f ) =)

p0;f � L� (�R) p�R;f + L
� (�B) p�B ;f ,

which, by Lemma 1 (and its obvious extension to weak inequalities), is equiv-
alent to (weak) signal ambiguity loving. Conclude that unconditional (Ells-
berg) ambiguity aversion implies signal ambiguity loving.
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D Appendix: Experimental interface

D.1 Risk control
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D.2 Ambiguous-signals treatment

Below are only the screens that are di¤erent in the ambiguous signal treat-
ment
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