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1 Set-Up

1.1 Motivating examples

We are interested in weighted average welfare
0o = Ew(x)V (x), (1)

where z € X is the state variable X < R%, w(x) : X — R is a known function, and V(z) is the
expected value function. There are many interesting objects can be represented as . For one
example, w(x) = 1 corresponds to the average welfare. Another interesting example is the average
effect of changing the conditioning variables according to the map = — ¢(z). The object of interest
is the average policy effect of a counterfactual change of covariate values

fi(z)
f(z)

b0 = BV (1(2)) - V)] = [ (52 - 1) V(o) (o), 2)

where fi(z) is p.d.f. of t(x) and w(z) = J;f((;)) - L

A third example is the average partial effect of changing the subvector 1 < z. Assume that

x1 has a conditional density given z_; and X has bounded support. Then, average partial effect

takes the form

Oz, f(21]7-1)

Ed,, V(z) =E ( F@ile)

v, 3)

_ Oay f(za|z—1)
f(z1lz—1)

bution of by vector ¢ € R%

where w(z) = . A fourth example is the average marginal effect of shifting the distri-

Ed.V(z +¢)=E <VCW> V(x), (4)



_ v fol@—o)
where w(z) = V. Ofo(x) :

Now let us introduce the primitives of the single-agent dynamic discrete choice problem that give
rise to the value function V(z). In every period t € A/, the agent observes current value of (xy, €;)
and chooses an action a; in a finite choice set A = {1,2,...,J}. His utility from action a is equal to
u(x,a) + €(a), where u(z,a) is the structural part that may depend on unknown parameters, and
€(a) is the shock unobserved to the researcher. Under standard assumptions (Assumptions 1,2) of

Aguirregabiria and Mira (2002), the maximum ex-ante value at state z is equal to

V(z) = Emaxv(z,a) := Emax [u(ac,a) + €e(a) + ﬁE[V(w')|x,a]]g(e)de (5)

aceA aceA

where 8 < 1 is the discount factor, g(e€) is the density of the vector (€(a))qea and

v(z,a) = u(z,a) + ﬁf/e)( V(2 f(2 |z, a) (6)

is the choice-specific value function that is equal to expected value from choosing the action « in the
state x. To estimate value function, many methods require the estimate of the transition density
f(2'|z,a),a € A and the vector of conditional choice probabilities p(z) = (p(1|z),p(2|x),...,p(J|z))
as a first stage.

The objective of this paper is to find an estimator 9 of the target parameter 6y that is asymp-
totically equivalent to a sample average, while allowing the state space X to be high-dimensional
(i.e., d; = N) and having the first-stage parameters f(2'|z, a), p(z)to be estimated by modern ma-
chine learning tools. Specifically, suppose a researcher has an i.i.d sample (zl)f\i 1, where a generic
observation z; = (x;,a;,2}),7 € {1,2,..., N} consists of the current state z, discrete action a € A,

and the future state 2. Our goal is to construct a moment function m(z;~) for 6
o = Em(za ’70)7

such that the estimator § = % vaz 1 m(2;;7) is asymptotically linear:

N
o 1 —1/2
0= N;m(%ﬁo) +Op(N~Y2). (7)

The parameter 7 contains the transition density f(2'|x,a) and the vector of CCPs (p(a|z))aea, but
may contain more unknown functions of x. It will be estimated on an auxiliary sample.

To achieve asymptotic linearity , the moment function m(z;,~p) must be locally insensitive
(or, formally, orthogonal|Chernozhukov et al. (2017al) or locally robust Chernozhukov et al.|(2017b)))

with respect to the biased estimation of 4. To introduce the condition, let I'y be a shrinking



neighborhood of vy that contains the first-stage estimate 4 w.p. 1 — o(1). A moment function

m(z;7y) is locally robust with respect to v at 7o if
orEm(z;r(y — ) +7) =0, Vyeln. (8)

In Section we show that the moment function is already orthogonal with respect to the
CCPs for any weighting function w(x). In Section we construct the moment function m(z;~y)

that is orthogonal with respect to the transition density function.

1.2 Orthogonality with respect to the CCP

That the value function is orthogonal with respect to the CCP has been first shown in|[Aguirregabiria,
and Miral (2002) for a finite state space X. In this paper, we present an alternative argument that
leads to the same conclusion for an arbitrary X.

Let p(x) = (p(1|x),p(2|x),...,p(J|z)) be a J-vector of the CCPs and let p,(z) = r(p(x) —
po(x)) + po(x)) be a one-dimensional path in the space of J-vector functions; the vector po(z) is
the vector of true CCPs. Plugging in p, into and taking the derivative with respect to r, we

obtain

orV(x;pr; fo)

= ﬁf f oV (2sprs fo)| fo(a!|z,a*(€))g(e)da' de,
r=0 ee€ Jx'eX r=0

where a*(e) = argmaxge4(v(x,a) + €(a)) is the optimal action as a function of shock e. As shown

in Lemma [3] the map I' : 7, — F» defined on the space of Lo-integrable functions Fo

Meo)i= 5[ | ol o/ fo.a”(@)a(o)dr'de. ©)

is a contraction mapping and thus has a unique fixed point. Therefore, 0,V (z;p,; fo) =0 Vx e X.
Therefore, when the nuisance parameter v consists of the CCPs p(x), the moment equation

obeys orthogonality condition with respect to ~.

1.3 Orthogonality with respect to the transition density

ASSUMPTION 1 (Stationarity).

For any positive number k = 0, any sequence (T4, Ti41,. .., Tiqj,...) has the same distribution as

(Toaks Tor 14k - - - s Lttj+ky - - )-



To derive the bias correction term for the transition density, consider the case w(x) = 1. Recall

that value function obeys a recursive property (Aguirregabiria and Mira| (2002)):

V(x;p; f) = Ulas; p) + BEf[V (2 p; f)l2], (10)

where U(z;p) = Daeaplalz)(u(z,a) + ey(a;p)) is the expected current utility and e, (a;p) is the
expected shock conditional on x and a being the optimal action. Consider a one-dimensional
parametric submodel {f(2'|z,7)},7 > 0 where f(2'|z,7 = 79) is the true value of the density.

Taking the derivative of w.r.t 7 gives

0-V(x;p; ) = BE[0-V (/s p; f)lz] + B f V(z'sp; )0 f (2 |z 7)da’
= BEf[0-V (/s p; f)|z] + BEV (s p; [)S (2 |x)da,

where S(z'|z) = or f(a'|2,7)

@) |T:TO is the conditional score. Taking expectations w.r.t z and incurring

Assumption [I] gives the expression for the derivative
0BV (x;p; f) = MBBEV(xl;p; S |z)da’

and the expression for the bias correction term is

1—B5 (V(@spi ) = Ef[V(sp: £lz]) . )

where the first-stage parameter v = {p(x), f(2'|z,a)} consists of the CCPs p(x), the transition
density f(2'|z,a).
Remarkably, we do not require a consistent estimator of the transition density when the weight-

ing function w(x) = 1.

Remark 1 (Double Robustness with respect to the transition density).
Here we show that (@/ is mot only orthogonal to f(x'|x,a), but also robust to its misspecification.

Rewriting (@, we exrpress

/ 1 . 7 ( e
Es[V(&!)lo] = 5 (Viwspi f) = Ulwsp) (12)
and note that it holds for any p(x) and any f(2'|z,a). Plugging @ into (@ gives an orthogonal
moment
V(z) — U(z;
m(z;y) = V(z;p; f) + 1_65‘/(:6’;19; f) - (x>1 — B(x’p)- (13)



Let Alm(z; )] := m(z; p; f; No)—m(z;p; fo; Mo) be the specification error of the transition density

f(@'|z,a). Then, specification bias of the transition density is

EA[m(z:7)] = - E[AV (:p) — AV('sp)] =0, (14)

=13

where the last equality follows from the stationarity assumption.

Now we present the density correction term for an arbitrary function w(z). Define the function
Mz) = ) B'E[w(z—p)], (15)

k=0
where x_j, is the k-period lagged realization of x. Alternatively, A(z) can be implicitly defined as

a solution to the recursive equation
w(z") — Xz') + BE[A(z)]2'] = 0. (16)
The bias correction term takes the form

BAx) (V(2'sp; f) = Eg[V(2's p; f)l2]) (17)

where the first-stage parameter v = {p(z), f(2'|x,a), A\(z)} consists of the CCPs p(x), the transition
density f(2'|z,a), and A(z). The property , which is the generalization of , ensures that
is doubly robust in \(z), f(2'|z, a).

1.4 Orthogonality with respect to the structural parameter

To derive the bias correction term for the structural parameter, consider the case w(z) = 1. Let §
be the structural parameter of the per-period utility function u,(z;6),a € {1,2,...,J}. Taking the
derivative of w.r.t § gives

sV (z;ipi f) = D plala)dsua(w; 8) + BE[GsV (2; p; f)|].
acA

The derivative of dsEV (z;p; f) takes the form

OsEV (z;p; f) = 1—15E Z p(a|z)dsuq(x;0).
aceA

As shown in |Chernozhukov et al.| (2015), the orthogonal moment takes the form
m(z:7) == (1 — 05EV (w;p; f)(O5EV (w;p; f) T OsEV (303 )~ OBV (w;p; /) )
(w(@)V (@:p; £) + BA@) (V'3 f) = Ef[V(a'sp3 f)a])) -



For an arbitrary function w(z), define

Gs 1= (B () = T5BN) X plofe) ().
acA

where A(x) is as defined in . The orthogonal moment takes the form

m(z;7) == (1= Gs(G; Gs) G} ) (w(@)V (m;:p; f) + BA(@) (V (/55 f) — Ef[V (s p; f)]2])) . (18)

2 Asymptotic Theory

ASSUMPTION 2 (Quality of the first-stage parameters). A There exists a sequence of neigh-
borhoods Ty < T such that the following conditions hold. (1) The true wvector of CCPs
po(x) € Tv VN = 1. (2) There exists a sequence Ay = o(1), such that w.p. at least
1 — Ay, the estimator p(z) € Tn. (3) There exists a sequence py = o(N~Y4) such that
SUppery, (%) — po(x)[2 = O(pn)-

B There exists W < w0 and V < o such that |w(z)|ew < W and |V(z)|ew < V. There exists
€ > 0 such that € < p(alz) <1 —¢e <1, Vae AVx € X. There exists E < 0 such that
Va € X, suppery SUPgex |Oppe(@;p)lo < E.

C There exists a sequence of neighborhoods I'y < T' such that the following conditions hold. (1)
The true nuisance parameter o = {f(2'|z,a), \o(x)} € Ty VN = 1. (2) There exists a
sequence An = o(1), such that w.p. at least 1 — Ay, the estimator (x) € T'n. (8) There exist
p,q>0: p+q=1 and sequences Ay = o(1) and fn such that

sup_sup [ M) — Xo() ||/ (@', a) = fo(@'|z,a) ]y = OONfN) = o(N )
(fsN)el aeA

sup sup |[(AM(@) — Ao(@))(f (2|2, a) — fo(a'|z, a))|* = O(r}y) = o(N 72
(fi\)el ae A

Theorem 1 (Asymptotic normality with known transition density).
Let the following assumptions hold. (1) The transition function f(a'|z,a) is known. Assumption[]]
holds. Assumption@ (A)-(B) hold. (2) Then, asymptotic lineam’ty@ holds for the moment function

m(z;7) = w(@)V(z;p; fo). (19)

Theorem 2 (Asymptotic theory in the general case).

Let the following assumptions hold. Under Assumption [1] and[g, asymptotic linearity [7 holds for



the moment function

m(z;7y) i= w(@)V (z;p; f) + BA(z) ( 2'spif) = DL EelV(@'ips Sl alp (Mfﬁ)) o (20)

aeA

and v = {{(p(a|z))aca}, f(2'|2,a), \(2)}.

3 Appendix

Lemma 3 (Orthogonality with respect to CCP).

Value function is orthogonal with respect to estimation error of CCP:
oV(x;pr; fo) =0 Voe X.

Proof. Let Fi, = {h(x), |h(z)|r < B} is a subset of functions h(z) that are bounded in the norm k.
Throughout the paper, we will focus on two norms: k = 2, defined as ||h(z)2 := (§, h*(x )dx)'/? and
|h(x)] o := supyex |h(z)].To prove the theorem, we will show that I'(¢) : F, — Fj, is a contraction
mapping for k = c0. Moreover, if Assumption [I] holds, it is a contraction mapping for k =
Since ¢(x) =0 Ve X is a fixed point of @, contraction property implies the uniqueness of this
solution.

Step 1. Proof for k = oo. First, let us show that for any function ¢(z) € Fup, I'(¢) € Foo holds.

Indeed,
IT(P) oo = 5SUP| o(2) f (@' |z, a*(€))g(€)da’ de|
z'eX Jee&
< sup |p(2)] f(@'|x,a*(e))g(e)da'de
xeX’ r'eX Jee&
= sup |¢ J dEg ) Z [e(a)+v(z,a)=arg max; e(])+v(x,])]f (l‘,|$,a)d$,
relX’! ae A 2
E/—/ -
=1 2 =1
< [¢(@) oo,

as long as X’ € X. Therefore, I'(¢) : Foy — Foo. Moreover, for two elements ¢; and ¢y from Fo,

P60 - Tl <8 [ (@) - ala) o a"()gle)is'de
ee€ Ja'eX
<Blon=ialle [ | r@leagte)aa’de
= Blo1 — d2lw



and I' : Foy — Fy is a contraction mapping.

Step 2. Proof for k = 2. First, let us show that for any function ¢(z) € Fa, I'(¢) € Fa holds.

IT(@)]2 = BIE[¢(2)|2][l2 <' BIES(")2 =" BlEG(2)]2,

where i is by the property of conditional expectation and i is by stationarity. Therefore, I'(¢) :

Fo — Fa. Moreover, for two elements ¢; and ¢o from Fo,

IT(¢1) = T(¢2)ll2 < Blld1 — @22,

and I' : Fo — F3 is a contraction mapping.

Define the following operators that map Fp — Fy:
Api= 68| oa)f(@le,a)ds’ Y, plalo) (21)
X aeA
and
Ap = ¢ — M o(a') f (o' |z, a)dz’ Y plalz). (22)
X! aeA

Then, V(x;p; fo) solves the integral equation of the second kind:
AV (w3 5; fo) = U(;p)
and V' (x; po; fo) solves
AV (@3 po; fo) = U (a3 po)-

Lemma [4] and |5 show that |V (x;9; fo) — V(23 po; fo)[k = OXgea 1P(alz) — plalz)|k).

Lemma 4 (Verification of the regularity conditions).
The following statements hold. (1) Fither k = o0 and X' < X or Assumption || holds with k = 2.
(2) Assumptions[d [A], [B] hold.
~1 1 1
1. ||A Hk < m < m

2. AN (A = A)|), = o(1)

Proof. Step 1. Proof of (1). Let us show that Yk € {2,00} ||(I — A)|r < B < 1. Then, A~! is the

sum of geometric series A™! = % (I — A)! and has a bounded norm: [A™!| < m < ﬁ



o Case k = co.For any ¢ € Fup, [(I — A)¢| = B|E[¢(2")[z]| < Bsupyea [o(2")] < Blo].-
e Case k = 2. Suppose Assumption [I| holds. For any ¢ € F»,

I(I = Aol = BIE[S(2")|]| < BIE[¢(z)]] = |E[6(2)]]-

Proof of (2): Fix ¢(x) € Fy. Fix an action 1 € A = {1,2,...,J}. We plug p(1l]z) :== 1 —
7 p(alz) and p(1]z) =1 — zgﬂ plalz) into (21) and (22).

= (A= A)g(z) = (p(alz) — p(alz)) f(ﬁ (2|z,a) — f(2|x,1))dz
Case k =
il < 8 2 sup [plala) — plala)|sup)| [ 6(') (/o' ) = (&'l 1))’
a= 22?6 xre
<8 2 sup p(alz) — plalz)| sup |¢(a")|| sup j (@, a) — f(a']er, 1)))da’
a— 2x€ reX’ reX
s sup [plala) — plala)]|9] supf| 2'|z,a) — f(z'|z, 1))da’ = o(1)
a= 2:B€
Case k = 2.
1A - A)p()]| < I8 Z |B(alz) - plalz)) j (@) (f (@), a) — ('], 1)
<i g8 2 |B(alz) - plala))]2] f o) (f (@], a) — F ('], 1)

<" JB|g(’ HzZH (alz) — p(al2))[2)(f (2'|z, a) = f(2"]a, 1)) 2

<" |lg(@)]2[BJ Z |(Balz) — plal2)) ]2 (f (2", a) = f(a']z, 1))]2] = o(1),

where i-7ii is by Cauchy-Scwartz, and v |¢(z’)|2 = [¢(x)]2 is by Assumption

Lemma 5 (Second-order effect of CCPs).

The following statements hold. (1) Fither k = o0 and X’ < X or Assumption 1| holds with k = 2.
(2) Assumptions[q [A], [B] hold. (3) Either J =2 (binary case) or the unobserved shock €(a),a € A

has i.1.d. extreme value distribution. Then, the following bounds hold:

|V (2;5; fo) = V(@ po; fo)llk = O( D IP(alz) — p(alx)[7) (23)

aeA



Proof. We apply Theorem@with A defined in , A defined in , E — U(x;p) and € = U(z; p).

The conditions of Theorem [g] are verified in Lemma [l

~

(A—A)V(x)+£-¢

J
> [[B(E[V(w’)\% a] = E[V (2')]z,1]) + u(z; a) — u(w; 1)](Plalz) - p(alz))
a=2

+@m@—%@@mw@—@mm—%ummwm}

I
M~

(v(a,z) = v(L,2))(alx) = plalz)) + Y ex(a; p)plala) — ex(as p)p(alz)
aceA

S
U
o

where i is by definition of v(z,a) in (6]). By Assumption[2[B], for each a € A, e, (a;p) is a continuous

infinitely differentiable function of the vector p(-|z) with bounded derivatives. Thus, it suffices to

show that for each action a € {2, ..., J}, for each z € X,
J
Op(ale)€a(a; P)P(alz) — Op(alzyex(1:p)(1 = Y plalz)) + exla;p) — ea(1;p) (24)
a=2

+v(a,z) —v(l,z) =0

Lemma 6 (Derivatives of e;(a;p)).

Equation holds if either of the following statements hold: (a) (Binary case) J = 2 or (b)
(Logistic case).

Proof. Case (a). Binary case.

Case (b). Logistic case. e;(a;p) = v — logp(alr) and v(a,x) — v(1,z) = log zgﬂg Plugging
these quantities into , we obtain

J

v(a, ) = v(1,2) + p(afayex(@; p)(alx) = Op(alryex(1;p)(1 = Y p(al)) + ex(a; p) — ex(15p)

a=2

plalr) _plalz) =~ p(i}r) 1o Plalz)

“ 18 M) T pale) TS, plal) | E p(1a)

=0.

Lemma 7 (Adjustment term for the transition density).

Equation (20) is an orthogonal moment for the transition density f(z'|z,a).

Proof. Now we describe the adjustment term for the transition function f(z'|x) = > 4 f(2'|x, a)po(alz),

where the vector of CCP p(x) is fixed at the true value py(x). We calculate the adjustment term

10



for Ew(x)V (z;7) as the limit of Gateuax derivatives as described in [Ichimura and Newey| (2018)).
Let fo(2,z) be true joint p.d.f of the future and current state. Let h(z’,x) be another joint p.d.f.
Consider the sequence (1 — 7)fo(2, 2) + Th(2’,x),7 — 0. Then, the adjustment term «(x) can be

obtained from the representation
O Bw(z)V(x,7) = fa(x)h(x,x')dx'dm

We find «a(x) in the three steps.
Step 1. We obtain a closed-form expression for 0,V (x,7). Recursive equation at po(zx)

takes the form
Vi) = Oasp) + 5 [ Vs 1) o )’ (25)
Taking the derivative w.r.t 7 gives

0V (x;7)

= 5JV(33/)0¢ log f (2 |z; 7) f (2 |z)da’ + ,BJ&TV(x’;T)f(x’\x)dx’
7=0
= BE[V (z")S(2'|x)|x] + BE[0,V (z'; 7)|z]
=: Bg(z) + BE[0;V (z; T)|x] (26)

where S(2/|z) = 0-log f(2/|z, ) is the conditional score of 2’ given x. Plugging 2’ into and

taking expectation E,/[-|z] gives
BE[0;V (2';7)|z] = BE[g(a")|a] + B*E[0,V (2"; 7)|z] (27)
Adding and and iterating gives
oV (i) = 3 BE[g(an)]. (28)
k=0

Step 2. The expression is hard to work with since it involves the k-th period forward

realization of the state variable. Using Assumption [} we will simplify it as follows
OrBw(x)V (z;7) = Bw(x)o;V (x; 1)

— Ew(z) (Z 5’“E[g(xk)lw]> = 2, B'Bu(@)g(y)

k=0 k=0

=% Z BEEw(x_1)g(x) (Stationarity)
k=0

it B[ 3 B Efw(a_y)lal]g(e) = EA)g(a) (Buation

k=0

11



Step 3. To obtain the adjustment term, we take the derivative w.r.t. 7 inside the function g(z):

;EA(J:)Q(:C) L EA2)V(2)S(2/|2)
i (1 —=7)fo(e', ) + Th(2, )
af (I =7)fo(x) +7h(z) |
n (0@ x) — folz',2)  h(x) — fo(x)
Vi) ( o) o)
M)V (2') (h(a', x) — h(z) fo(a'|2)) da'da

fo(z)dz'dz

fo(w’lx)fo(a:)> da'ds

__iid JA(m)[V(:I:’) —E[V(2)|z]]h(a!, z)da' dz,

where 7 is by (26]), i7 is by definition of S(x'|z = 2S@12) and di is by definition of marginal density
f(z|z)

h(z) = §h(z',z)dz’. Therefore, the adjustment term «(z) is given by
a(z) = BA(@)[V(2') — E[V(2")|z]] (29)
Combining Steps 1-3, we get
O Bw(@)V (3 7) = EA(z)g(x) = ﬁj CE[V(@)le]|h(', 2)de’ da,

where ¢ is by Steps 1 and 2, and i is by Step 3. By Ichimura and Newey| (2018]), the adjustment
term takes the form BA(z)[V (z) — E[V (2/)|z]].

]
Remark 2.
Adjustment term for w(x) = 1 Let w(x) = 1. Then, \(x) = ﬁ and the adjustment term
takes the form
__h V(z') — E[V ('
a(fﬂ)—l_ﬁ[ (2') — E[V(2')|z]]
Lemma 8 (Lipshitzness of V(z;p; f) in transition density).
Bellman equation implies
IV (@03 f) = V(@ p; fo) oo < 5maXf|V o'|lv,a) — fo(a'|z,a))|da’

pmax 1@z, a) = fo(@|z, a) | [V (') ]1-

IV (@5 p; f) = V(;p; fo)l2 < ﬁmaXflV (2|2, a) — fo(a'|2,a))|dz’
< Bmax|f(2'|z,a) = fola'z, a)|2|V (2")]2-

12



Proof of Theorem[1. Here we present the proof for the estimator p(z) obtained by cross-fitting
with K-folds ()X ;. Let Ex be the event that py(z) € Ty, Vk € {1,2,...,K}. Let {Pn}n>1
be a sequence of d.g.p. such that Py € Py for all N > 1. By Assumption [2] and union bound,
Pp,(En) 21— KAy =1-0(1).

Step 1. On the event &y,
1 ~ 1
- 2 w(z;) V(s p) — - Z w(x;)V(zi;po)| <

iEIk iEIk

i+ Lo

\/ﬁ 9

where

Tig = Gplw(z:)V(xi; p) — w(z)V(xi;po)]

Iop = VnEpy [w(z:)V (i D) I{] — Epy [w(z:)V (25 po)]-
Step 2. On the event £y conditionally on I,

E[Z} | I{] < Epy [(w(:)(V (255 ) — V(i3 p0))* ] < W? Sup E(V (25 p) — V(zi;po))?
PeEIN

< w? sup |6ppea(a; p)|% sup > [p(ale) — po(alz)|?

pETN PETN 4eA
<’L’L WZEQJP?V,

where i is by Lemma [5| and i is by Assumption [2 Therefore, 7; ;, = Op, (pn) by Lemma 6.1 in
Chernozhukov et al.| (2017al).
Step 3.

| Zo1| < sup Efw(a)(V(a;p) = V(zipo))| < [w(@)]s sup |V (;p) = V(;p0) 2

peTN peTN

<" [w(z)]2 sup |@ppea(a; p)loe sup (] [p(alz) — po(x)]3)
PETN aeA

<" WBJp,

where i is by Cauchy-Scwartz, i is by Lemma [5| and i7¢ is by Assumption

Proof of Theorem [3.
E, k[m(zi:3) — m(zi;70)] = Ensxlm(zi3) — m(zi; fo; p: N)]
+ Bk [m(zis fo; B A) — m(zi; foi D Mo)]
+ Ep x[m(2i;5 fo; D; Ao) — m(2i; foi po; Ao)]

=: Rl,k + Rg,k + R3,k-
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I +T)
On the event Ey, for each j € {1,2,3} |R; ;| < % where

T = Vi(Rjx — Epy [RjslI{])
T3 1 = VEp, [Rjxl ]
Below we construct bounds for I{ , and Ig p for j € {1,2,3}.
Step 0. Let us prove for an arbitrary w(z). The specification bias of the transition density
is
EA[m(2;7)] = E[(w(z) — M2))AV (z;p)] + E[M2)AV (2/;p)] = i + i
By Law of Iterated Expectations,
it = BE, [E[A(2)[2"]AV (s p)].
Assumption [1] implies
i = E[(w(2’) — Ma")AV (s p)].
Summing i and ¢ yields follows by the definition of A(z) (16) :
i+ 1 = E[(w(z") — M2) + BE[A=x)|2']) AV (2; p)] = 0.

Therefore, the specification error f(z'|z,a) — fo(2'|z, a) creates zero bias in (20). Thus, the bias of

specification error is proportional to

[E(A() = Ao(2)(V (@505 f) = V(@303 fo))| < BIV ()], Sup |f(@'|z, a) — fo(2'|z, a)lq,
ae
where p,q = 0 : p + ¢ = 1. Therefore, is doubly robust with respect to transition density
f(@'|x,a) and A\(x).
Step 1. Bound on I2l,k- On the event &y, ]I%k] < Sup,ery, [Epy[m(zi;y) — m(2i;p; fo; A)]|- Let
AV (x5 p) = V(aiip; ) = V(i ps fo)-
Epy [m(zi;7) — m(zi;p; fo; N)] =" Epy[AV (2} p) (w(@}) — Ao(a) + E[Ao(wi)]27])]
+Epy [AV (25 p) (Mo(2F) — M) + E[Ao(z:) — A(zi)|])]
<" 0+ Epy [AV (275 p) (Mo(2]) — Aas) + E[do(x) — Awi)]a7)]]
< M @) = Ao(@) 2] AV (23 p) 2 + [E[Ao()|2'] — E[A(2)|2'] 2| AV (23 p) |2

<™ 2ANON
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where 4, 4 follows from Remark [T} iii is by stationarity and Cauchy-Scwartz, and v is by Assump-
tion (2L
Step 2. Bound on I 11 ;- First, let us establish the bound on
Epy [m(zi;7) = m(zi;p; fo; M) < Sup Epy A%V (2} p) (Mo(x7) — M) + E[Xo(w:) — Alwi)|27])?
peE/N

< 4 sup Epy A2V (2 p)(Ao(z]) — A(z)))? = O(r’y)

(2
PETN
Therefore, Iik = Opy (17y) conditionally on £y. By Lemma 6.1 of |Chernozhukov et al.| (2017a),
Illk = Opy (ry).

Step 3. Bound on Z3 - On the event En, |72 &l < supyery [Epy[m(2i;p; fo; A) —m(2i; p; fos o)l
Epy [m(2i;p; fo; ) — m(zi5p; fo; Ao)] = Epy (A(z) — Ao(@))(V (2's p; fo) — E[V (2" ps fo)|2]) = 0

Step 4. Bound on 1127 - First, let us establish a bound on
Epy [m(zi;p; fo; A) — m(zi;p; fo; ho)]? < sup E[A() - Mo (@) [V (2" p; fo) — E[V (/s p; fo)]]]
YEL'N

< 4V3N3,

Therefore, Ifk = Opy (2VAN).

Step 5 and 6. On the event &y, ]IQ el < < SUD.ery |Epy [m(zi;p; fo; Ao) — m(zi;70)]]-

E, xm(zi; p; fo; Ao) — m(zi370) = Epgpw(2;)(V (2 p; fo) — V(245 pos fo))

~—

T,k

+ BEnxNo(xi)(V (s p; fo) Y plale) = V(s pos fo) D) polalr))

aceA acA

— BB Xo(@s) (B g [V (5 p; fo)lwi, a] | plalz:)

aeA

— Ey, [V (253 pos fo)|zi, a] 2 polalzi)) = Tk + Jok-
acA

. T} 4T3
On the event Ey, for each j € {1,2} |J; x| < % where

T = Vn(Rjx — Epy [RjklI{])
) = VnEpy [Rj x| If].

Assumption [2] implies the bound

Top <W SUP |V (35 p; fo) — V(zi5p0; fo)|2 = Opy (W BJp%)

peTN
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To bound jll ;> consider the bound on

Epy [w(z:)*(V (24 55 fo) — V(@i; po; fo))*|I5] < W SI;P Epy (V(z55p; fo) = V(23 po; £0))* < W2pR.
pPE/N

Therefore, jﬁk = Opy(Wpn).
Define R(z;p;a) := V(z;p; fo) — E[V(2'; p; fo)|z,a]. Then,
Toge + Tax = Enpro(@i) Y R(wi;p;a)p(alz) — Enp Y Ao(wi) R(xs; po; a)po(ale)
acA acA

=Bk Y, Ao(@i) R(wi; p; a)(plale) — po(alz))
aeA

+ En i Z Ao(@i) (R(wi; p; a) — R(xi; pos a))po(alx) .
aceA

<

~
i

Since E[R(x;;p;a)|xi,a] = 0, E[i|If] = 0 and E[ii|I;] = 0 conditionally on I;. To see that
i = op(pn), recognize that
Epy [2|I5] = sup Epy[( D] Ao(w:) R(wi; p; a) (plalz:) — polalz:)))*| If] < VJpi.
PETN acA
For every a € A,
sup E(R(zs;p; a) — R(wispo;a))® < sup B(V (2} p; fo) — V(2 po; fo))? = o(Ep)
pETN peTN

Epy[id®|I5] = W2E?py;,

and jﬁk =O(Vpn + WEpnN) = o(1).

4 Auxiliary statements

Theorem 9 (Convergence).
Let A: X — Y be a bounded linear operator. Suppose A has a bounded inverse A~!. Let qg solve
Ad =€ and ¢ solve  A¢p = &. Then, for all A such that HA_I(A\ — A)|| < 1, the inverse operators

A=Y exist and are bounded, there holds the error estimate

- A 2 a
l¢ — ol < =~ [(A=A)¢+E-¢]).
1— A1 (A - A) ( )
Proof. See the proof of Theorem 10.1 from Kress (1989). "
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