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1 Introduction

In the modeling of covariance matrices, it is often advantageous to parametrize the model so that the

parameters are unrestricted. The literature has proposed several methods to this end, and most of

these methods impose additional restrictions beyond the positivity requirement. Only a handful of

methods ensure positive definiteness without imposing additional restrictions on the covariance matrix,

see Pinheiro and Bates (1996) for a discussion of five parameterizations of this kind.

In this paper, we propose a new way to parametrize the covariance matrix that ensures positive

definiteness without imposing additional restrictions, and we show that this parametrization has many

attractive properties. The central element of the parametrization is the matrix logarithmic transforma-

tion of the correlations matrix, logC, specifically the lower (or equivalently upper) off-diagonal elements

of this matrix, which we denote by γ = γ(C). We show that this transformation is an isomorphic map-

ping between the set of n × n non-singular correlation matrices and Rn(n−1)/2, and we propose a fast

algorithm for the computation of the inverse mapping. In the bivariate case γ(C) is identical to the

Fisher transformation, and we document that γ(C) also has attractive properties in higher dimen-

sional cases, so that γ(C) may be viewed as the generalization of Fisher’s Z-transformation beyond the

bivariate setting.

Our theoretical results have many applications for the modeling of covariance matrices. First, a non-

singular n×n covariance matrix can be expressed as a unique vector in Rn(n+1)/2, which consists of the

n log-variances and γ. This facilitates the modeling of covariance matrices in terms of an unrestricted

vector in Rn(n+1)/2, where additional structure can be imposed, if so desired. Second, for models with

dynamic covariance matrices, such as multivariate GARCH models and stochastic volatility models, the

parametrization offers a new way to structure multivariate volatility models. Third, the representation

of the correlation matrix facilitates a novel approach to regularizing large covariance matrices. We

find, in a classical setting, that
√
T [γ(Ĉ) − γ(C)] is approximately normally distributed with nearly

uncorrelated elements. This is a desirable property for several regularization methods, including James-

Stein shrinkage, and this property could be valuable for hypothesis testing. Fourth, the representation

is also convenient in applications where random draws of a covariance matrix are needed. For instance,

the transformation yields a new and simple way to formulate Bayesian priors for correlation matrices.

It is convenient to reparametrize a covariance matrix as an unrestricted vector for several of reasons.

For instance, the distributional properties of estimates obtained with constrained optimization tend to

be more involved than those of unrestricted estimates, and constrained optimization tend to be com-

putationally burdensome. The literature has therefore proposed a number of ways to parameterize a
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covariance matrix in terms of an unrestricted vector. These methods include the Cholesky decomposi-

tion, the spherical trigonometric transformation, transformations based on partial correlation vines, see

Kurowicka and Cooke (2003), and various related methods. For instance, that of Pourahmadi (1999),

which is based on the Cholesky decomposition and the matrix logarithmic transformation of the covari-

ance matrix which is related to the spectral representation. The matrix logarithm has been used in the

modeling of covariance matrices in Leonard and Hsu (1992) and Chiu et al. (1996). In dynamic volatil-

ity models it was used in Kawakatsu (2006) (multivariate GARCH), Ishihara et al. (2016) (stochastic

volatility), and Asai and So (2015) (Dynamic Conditional Correlations). Moreover, Bauer and Vorkink

(2011) used the matrix logarithm for modeling and forecasting of realized covariance matrices. The

transformation also emerges as a special case of Box-Cox transformations, see Weigand (2014) for the

application to realized covariance matrices.

We do not apply the matrix logarithm to the covariance matrix. Instead we will apply it to the

correlation matrix, while the variances can be modeled separately, for instance by taking the logarithm

to each of the variances. A key variable in our analysis is the vector γ = γ(C), which consists of the

lower off-diagonal elements of logC, where C is the non-singular correlation matrix. We will show that

mapping from C to γ is one-to-one, so that the set of non-singular correlation n×nmatrices is isomorphic

with Rn(n−1)/2. We show that the correlation matrix can be reconstructed from γ alone, and propose a

fast algorithm to this end.1 In the special case where C is a 2×2 matrix, the off-diagonal element of logC

is the Fisher transformation of a single correlation, and for higher dimensional correlation matrices,

the finite sample distribution of the vector γ(Ĉ) is well approximated by a Gaussian distribution under

standard regularity conditions.

Modeling the correlation matrix separately from the individual variances is a common approach,

and the new parametrization may be useful in this context. This modeling approach is quite common in

multivariate GARCH models, and is the underlying structure in the Constant Conditional Correlations

model by Bollerslev (1990), the Dynamic Conditional Correlations model by Engle (2002), see also

Tse and Tsui (2002), and the Dynamic Equicorrelation model of Engle and Kelly (2011). The new

parametrization can be used to define a new family of multivariate GARCH models, that need not

impose additional restrictions beyond positivity. However, structure can be imposed, if so desired, and

we detail some examples of this kind in Section 5.

Our results can also be used in dynamic models of multivariate volatility that make use of realized

measures of volatility. Models in this area include those of Liu (2009) and Chiriac and Voev (2011), that
1Code for this algorithm (Matlab, Ox, and Python) is available in the Web Appendix.
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models the elements of realized covariance matrix with simple time series models, the more sophisticated

variants by Golosnoy et al. (2012) and Bauwens et al. (2012), as well as the models by Noureldin et al.

(2012), Hansen et al. (2014), Dumitrescu and Hansen (2017) and Gorgi et al. (2018), that jointly model

the vector of returns and their corresponding realized covariance measures.

The paper is organized as follows. We introduce and motivate the new parametrization of correlation

matrices, γ(C), in Section 2, using the simplest case with a 2×2 covariance matrix as the starting point.

We present the main theoretical results in Section 3, and in Section 4 we highlight useful distributional

properties of the new parametrization. We derive the asymptotic distribution of γ(Ĉ), and simulations

show that the finite sample distribution of γ(Ĉ) is well approximated by a Gaussian distribution with

weakly correlated elements. We present several auxiliary results in Section 5. For instance, we show

that certain structures in correlation matrices result in interesting structures in γ(C), and how the

parametrization can be used to specify priors on correlation matrices. We present the algorithm for

computing γ−1 in Section 6 and study its speed of convergence. We conclude and summarize in Section

7. All proofs are given in the Appendix, and additional results are collected in a Web Appendix, see

Archakov and Hansen (2018).

2 Motivation

In this section, we motivate the proposed method by considering the simple case with a 2×2 covariance

matrix. In this setting, there is a convenient way to represent the covariance matrix, which involves

the Fisher transformed correlation. Having explored the 2 × 2 case we proceed with a discussion of two

distinct ways of generalizing this methods to covariance matrices of higher dimensions, and highlight

the advantages of the transformation proposed in this paper.

Consider a non-singular 2 × 2 covariance matrix

Σ =

 σ2
1 σ12

• σ2
2

 ,
with correlation ρ = σ12/(σ1σ2) ∈ (−1, 1). The mapping of Σ, v = ν(Σ) = (log σ1, log σ2,

1
2 log 1+ρ

1−ρ)′, is

an example of a vector-representation of Σ, for which any covariance matrix maps to a unique vector

in R3, and any vector v ∈ R3 maps to a unique non-singular covariance matrix using (σ1, σ2, ρ) =

(ev1 , ev2 , (e2v3 − 1)/(e2v3 + 1)). This establishes that the set of non-singular 2 × 2 covariance matrices is

isomorphic with R3. Moreover, each element of the vector v is easily interpretable because they relate
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directly to the original parameters, σ1, σ2, and ρ. This approach therefore circumvents the need for

parameter restrictions, as would be required if one instead modeled (σ2
1, σ

2
2, σ12) or (σ2

1, σ
2
2, ρ). Notice

that the last element, v3, is the well known Fisher transformation of the correlation, z(ρ) = 1
2 log 1+ρ

1−ρ .

This approach to modeling a bivariate process was used in Hansen et al. (2014) who proposed a

multivariate Realized GARCH model. In their model, the vector v is driven by a vector autoregressive

model, and the inverse transformation guarantees a non-singular (conditional) covariance matrix in

every period.

For a parametrization of a covariance matrix, the following properties are desireble:

1. Any covariance matrix, Σ, maps to a unique vector v = ν(Σ) ∈ Rd

2. Any vector v ∈ Rd maps to a unique covariance matrix Σ = ν−1(v).

3. The parametrization, v = ν(Σ), is “invariant” to the ordering of the variables that define Σ.

For practical implementation it will also be desirable that both ν(·) and ν−1(v) are computationally

“simple”, ideally in closed-form, and that the elements of v are easily interpretable.

For a 2 × 2 covariance matrix the parametrization, v = (log σ1, log σ2,
1
2 log 1+ρ

1−ρ)′, has all of the

above properties, which is not the case for other methods. For instance, the Cholesky representation

is not invariant to the ordering of variables, nor are the resulting elements easily interpretable. The

transformation based on the matrix logarithm of the covariance matrix, log Σ, has the three properties

listed above, but the resulting elements are more difficult to interpret, because they are non-linear

functions of all variances and all covariances. An interesting question is whether the method for

2 × 2 matrices, which is based on the Fisher transformation, can be generalized to higher-dimensional

covariance matrices. And if so, how many of the above properties can be preserved.

As a way to generalize the transformation beyond 2 × 2 matrices, we first consider the simple ap-

proach, where the Fisher transformation is applied to each of the correlations. This idea was explored

in Dumitrescu and Hansen (2017). A drawback of this approach is that the element-wise Fisher trans-

formed correlations do not vary freely in Rd as can be demonstrated with a 3 × 3 with correlation

matrix,

C =


1 • •

ρ21 1 •

ρ31 ρ32 1

 .

The three Fisher transformed correlations can be represented by the vector φ = (φ1, φ2, φ2)′ = (z(ρ21),

z(ρ31),z(ρ32))′, but these do not vary freely in R3. This follows from the simple observation that
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φ̃ = (−2, 0, 1
2) does not correspond to a valid correlation matrix, for the simple reason that

det


1 • •

z−1(−2) 1 •

z−1(0) z−1(1
2) 1

 = det


1 • •

−0.964 1 •

0 0.462 1

 ' −0.143 < 0.

So the element-wise Fisher transformation fails to meet the second objective listed above.

Returning to the case with a 2 × 2 correlation matrix. We observe that the Fisher transformation

appears as the off-diagonal elements when we take the matrix-logarithm to a 2 × 2 correlation matrix:

log

 1 •

ρ 1

 =

 1
2 log(1 − ρ2) •

1
2 log 1+ρ

1−ρ
1
2 log(1 − ρ2)

 .
In this paper, we will argue that a natural extension of the Fisher transformation is defined by the

off-diagonal elements of the matrix-logarithm of the correlation matrix, G = logC. For an n × n

correlation matrix this will result in n(n − 1)/2 distinct off-diagonal elements. In Section 4, we study

the asymptotic and finite sample properties of these off-diagonal elements, and find that the elements

of this transformation are only weakly correlated, and well approximated by a Gaussian distribution in

finite samples.

The transformation of an n × n covariance matrix, Σ, into n log-variances and the n(n − 1)/2

off-diagonal elements of G = logC satisfies the three objectives stated above, as we will show in

Section 3. The computational aspect of this transformation is simplified by an algorithm that converges

quickly, as we demonstrate in Section 6. Some elements of the transformation are one-to-one with the

individual variances, and these elements are therefore easily interpretable. The remaining elements of

the transformation – the off-diagonal elements of G – are not simple to interpret individually, because

they depend on all correlations in a nonlinear manner. However, interesting structures are preserved

in G = logC, for certain types of models, including covariance stationary time-series, where C is a

symmetric Toeplitz matrix, and models where C has a (block) equi-correlation structure. We detail

this in Section 5.1.

3 Theoretical Framework

In this Section, we present the main theoretical results. The most challenging step is to show the exis-

tence and uniqueness in Theorem 1, which establishes that the set of covariance matrices is isomorphic
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with Rn(n+1)/2. First we introduce the necessary notation.

3.1 Notation

The operator, diag(·), is used in two ways. When the argument is a vector, v = (v1, . . . , vn)′, then

diag(v) denotes the n×n diagonal matrix with v1, . . . , vn along the diagonal, and when the argument is

a square matrix, A ∈ Rn×n, then diag(A) extracts the diagonal of A and returns it as a column vector,

i.e. diag(A) = (a11, . . . , ann)′ ∈ Rn.

The matrix exponential is defined by eA =
∑∞

k=0
Ak

k! for any matrix A. For a symmetric matrix,

A, with eigendecomposition, A = QΛQ′, we have eA = Qdiag(eλ1 , . . . , eλn)Q′. Here λ1, . . . , λn are

the eigenvalues of A, and Λ = diag(λ1, . . . , λn), while Q is an orthonormal matrix, i.e. Q′Q = I. The

general definition of the matrix logarithm is more involved, but for a symmetric positive definite matrix,

we have that logA = Q log ΛQ′, where log Λ = diag(log λ1, . . . , log λn).

We use vecl(A) to denote the vectorization operator of the lower off-diagonal elements of A (so

this operator excludes the diagonal elements unlike the related vech(·) operator). We will use this

operator to extract the off-diagonal elements of matrices. For a non-singular correlation matrix, C, we

let G = logC denote the logarithmically transformed correlation matrix, and let F be the matrix of

element-wise Fisher transformed correlations (whose diagonal is unspecified). The vector of correlation

is denoted by % = veclC, and the corresponding elements of G and F are denoted by γ = veclG and

φ = veclF , respectively.

Definition 1 (New Parametrization of Correlation Matrices). For a non-singular correlation matrix,

C, we introduce the following parametrization:

γ(C) := vecl(logC).

To illustrate the mapping, consider the case with a 3 × 3 matrix, where we have

G = logC =


G11 G12 G13

G12 G22 G23

G13 G23 G33

 , and γ(C) =


G12

G13

G23

 .

So γ(C) discards the diagonal elements of logC. A relevant question is whether one can reconstruct a

correlation matrix from an arbitrary vector γ, and, if affirmative, whether the reconstructed correlation

matrix is unique. In the situation with a 3 × 3 correlation matrix, the question is whether there, for
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any vector γ = (γ1, γ2, γ3)′, exists a vector, x(γ) = (x1, x2, x3)′, so that

exp


x1 γ1 γ2

γ1 x2 γ3

γ2 γ3 x3

 ,

is a correlation matrix, and the second question is whether the solution, x(γ), is unique.

To formalize the problem of reconstructing a correlation matrix from an arbitrary vector γ, we

introduce the following operator that replaces the diagonal of a matrix. For an n × n matrix, A, and

any vector x ∈ Rn we let A[x] denote the matrix A where x has replaced its diagonal. So it follows

that vecl(A) = vecl(A[x]) and that x = diag(A[x]). For instance, in the 3 × 3 case we have

A[x] =


x1 A12 A13

A21 x2 A23

A31 A32 x3

 .

The interesting case, in the present context, is the case where the off-diagonal elements of A are given

by the elements of γ.

3.2 Main Theoretical Results

First we state the key result that γ(C) is an isomorphic mapping between Cn and Rn(n−1)/2, where Cn

denotes the set of non-singular correlation matrices. An implication is that any vector in Rn(n−1)/2 is

mapped into a unique correlation matrix. This is a desirable property, because it eliminates concerns

about positive definiteness, which is automatically guaranteed.

Theorem 1. For any real symmetric matrix, A ∈ Rn×n, there exists a unique vector, x∗ ∈ Rn, such

that eA[x∗] is a correlation matrix.

So any vector in Rn(n−1)/2 maps to a unique correlation matrix, and since any correlation matrix

maps to γ = γ(C) ∈ Rn(n−1)/2, we have establishes a one-to-one correspondence between Cn and

Rn(n−1)/2. It is possible that the results could be generalized to cover singular correlation matrices by

extending the domain of γ to include ±∞, but we do not explore this possibility in this paper.

The proof of Theorem 1 is given in the Appendix, but we outline the structure of the proof here,

because it provides the intuition behind the algorithm that is used to reconstruct a correlation matrix
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from an arbitrary vector, γ, of proper dimension.2

From the properties of the matrix exponential, it follows that eA[x] will be positive definite for any

vector, x. A solution is therefore characterized by the identity

diag(eA[x∗]) = ι, (1)

where ι = (1, . . . , 1)′ is the vector of ones. Since (1) is a nonlinear matrix equation, involving n equations

with n unknowns (the elements of x∗), it may have a unique solution. This is, however, not self-evident,

because (1) is a system of nonlinear equations. Theorem 1 settles this issue and informs us that for

any symmetric matrix A, a solution exists and the solution is unique.

The proof is based on the following mapping g : Rn y Rn,

g(x) = x− log diag(eA[x]),

where the vector log diag(eA[x]) is a vector of zeros if eA[x] is a correlation matrix. So the requirement is

that g(x∗) = x∗, so that x∗ is a fixed-point for g. Hence, Theorem 1 is equivalent to the statement that

a fixed-point exists and is unique for any matrix A. This, in turns, follows by showing the following

result and applying Banach fixed-point theorem.

Lemma 1. The mapping g is a contraction for any symmetric matrix A.

The proof of Lemma 1, which is given in the appendix, entails deriving the Jacobian for g and

showing that all its eigenvalues are less than one in absolute value.

3.3 Invariance to Reordering of Variables

The mapping, γ(C), is invariant to the reordering of variables that define C, in the sense that a

permutation of the variables that define C will merely result in a permutation of the elements of γ.

The formal statement is as follows.

Proposition 1. Suppose that Cx = corr(X) and Cy = corr(Y ), where the elements of X is a permu-

tation of the elements of Y . Then the elements of γx = γ(Cx) is a permutation of the elements of

γy = γ(Cy).
2If γ ∈ Rd then we need d = n(n − 1)/2 for some integer n, i.e., we need 1

2 (1 +
√

1 + 8d) to be an integer.
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3.4 An Algorithm for Reconstructing the Correlation Matrix

Evidently, the solution, x∗, must be such that log diag(eA[x∗]) = 0 ∈ Rn. This observation motivates

the following iterative procedure for determining x∗:

Corollary 1. Consider the sequence,

x(k+1) = x(k) − log diag(eA[x(k)]), k = 0, 1, 2, . . .

with an arbitrary initial vector x(0) ∈ Rn. Then x(k) → x∗, where x∗ is the solution in Theorem 1.

It is possible that the algorithm could be improved further by using the Jacobian for g, which is

derived in the Appendix. But in practice we find that the simple algorithm, proposed in Corollary 1,

converges very fast. This is demonstrated in Section 6 for matrices with dimension up to n = 100.

4 γ̂ is Approximately Gaussian with Weakly Correlated Elements

In this section, we study the asymptotic and finite sample properties of γ̂ = γ(Ĉ) in a classical setting

and compare them with those of %̂ and φ̂. First we derive their limit distributions in a classical setting,

then we study the finite sample properties using simulation methods. The overall conclusion is that γ̂

is well approximated by a Gaussian distribution with weakly correlated elements.

In our analysis we can take the correlation matrix C to be the covariance matrix, because of a

certain scale invariance. Suppose that Σ = var(X) and C = corr(X) then C is also the correlation

matrix of DX, if D = diag(d1, . . . , dn), dj 6= 0 for all j = 1, . . . , n. Consequently, Ĉ, and hence %̂, φ̂,

and γ̂, have the same scale invariance, and we can therefore, without loss of generality, focus on the

case where the diagonal elements of Σ are all one, i.e. Σ = C.

To illustrate certain results we will often make use the following Toeplitz structure for the correlation

matrix,

C =



1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1 · · · ρn−3

...
...

... . . . ...

ρn−1 ρn−2 ρn−3 · · · 1


, (2)

where ρ ∈ (−1, 1) regulates the degree of correlation. The variables are uncorrelated when ρ = 0, and
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the pairwise correlation increases as ρ increases from 0 to 1. The asymptotic distributions derived next

do not rely on any particular structure for C.

4.1 Asymptotic Properties

In this section we derive the asymptotic distributions of φ̂ and γ̂ by deducing them from those of Ĉ.

Thus we consider a situation where the empirical correlation matrix is such that
√
T (Ĉ−C) d→ N(0,Ω),

as T → ∞, for some asymptotic covariance matrix, Ω = avar(vec(Ĉ)). Evidently, Ω is a reduced rank

matrix, because Ĉ is symmetric and has ones along the diagonal. A convenient closed-form expression

for Ω can be obtained under certain assumptions, such as that in Neudecker and Wesselman (1990),

see also Nel (1985) and Browne and Shapiro (1986).

For %̂ = vecl(Ĉ) it follows directly that

√
T
(
%̂− %

)
d→ N

(
0, ElΩE′

l

)
, as T → ∞, (3)

where El is an elimination matrix, characterized by vecl[M ] = Elvec[M ] for any square matrix M (of

dimension n× n).

The asymptotic distributions of the element-wise Fisher transformed correlations, φ̂, and the new

parametrization, γ̂ = γ(Ĉ), can be derived using (3) and the delta method.

For the element-wise Fisher transform, the asymptotic distribution reads

√
T
(
φ̂− φ

)
d→ N

(
0, ElDcΩDcE

′
l

)
, (4)

where Dc = diag
(

1
1−c2

i
, 1

1−c2
2
, . . . , 1

1−c2
n2

)
and ci is an i-th element of c = vec(C), whereas the asymptotic

distribution of the new parametrization of C takes the following form,

√
T
(
γ̂ − γ

)
d→ N

(
0, ElA

−1ΩA−1E′
l

)
, (5)

where A is a Jacobian matrix, such that dvec(C) = Advec
(
log(C)

)
. The expression for A is given in

the Appendix, see (A.3)-(A.4), and is taken from Linton and McCrorie (1995).

In a classical setting where Ĉ is computed from i.i.d. Gaussian distributed random variables,

the diagonal elements of the asymptotic variance matrix in (4) will all be one, as this is one of the

characteristic of the Fisher transformation. This is not quite the case for the asymptotic variance

matrix of γ̂, but the expression (5) defines ways to modify γ̂, for instance by scaling the elements of γ̂

to have unit variance. We do not pursue this possibility in this paper.
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The two expressions for the asymptotic variances, avar(φ̂) = ElDcΩDcE
′
l and avar(γ̂) = ElA

−1ΩA−1E′
l,

are not easily compared in general, but once Ω is specified it becomes straight forward. Here we will

compare them in the situation where Ĉ is computed from Xt ∼ iidN3(0, C), and C has the Toeplitz

structure in (2). We present the asymptotic variances and correlations of the vectors, %̂, φ̂ and γ̂, for

the cases where ρ = {0, 0.5, 0.9, 0.99}.

C avar(%̂) avar(φ̂) = avar(γ̂) acorr(γ̂)

acorr(%̂) = acorr(φ̂)

(
1 • •
0 1 •
0 0 1

) (
1.000 • •

0 1.000 •
0 0 1.000

) (
1.000 • •

0 1.000 •
0 0 1.000

) (
1.000 • •

0 1.000 •
0 0 1.000

) (
1.000 • •

0 1.000 •
0 0 1.000

)
(

1 • •
0.5 1 •
0.25 0.5 1

) (
0.562 • •
0.316 0.879 •
0.070 0.316 0.562

) (
1.000 • •
0.450 1.000 •
0.125 0.450 1.000

) (
0.966 • •
0.018 0.962 •
0.021 0.018 0.966

) (
1.000 • •
0.018 1.000 •
0.021 0.018 1.000

)
(

1 • •
0.9 1 •
0.81 0.9 1

) (
0.036 • •
0.046 0.118 •
0.015 0.046 0.036

) (
1.000 • •
0.698 1.000 •
0.405 0.698 1.000

) (
0.817 • •
0.081 0.860 •
0.093 0.081 0.817

) (
1.000 • •
0.097 1.000 •
0.114 0.097 1.000

)
(

1 • •
0.99 1 •
0.98 0.99 1

)
1

10

(
0.004 • •
0.006 0.016 •
0.002 0.006 0.004

) (
1.000 • •
0.745 1.000 •
0.490 0.745 1.000

) (
0.756 • •
0.106 0.793 •
0.134 0.106 0.756

) (
1.000 • •
0.137 1.000 •
0.178 0.137 1.000

)

Table 1: Asymptotic covariance and correlation matrices for %̂, φ̂ and γ̂, (3)-(5) for the case where C
has the Toeplitz structure in (2) with ρ = 0, ρ = 0.5, ρ = 0.9, and ρ = 0.99. The diagonal elements
of the asymptotic variance matrix for φ̂ are all one, so it is also the asymptotic correlation matrix for
φ̂. Because φ̂ is an element-by-element transformation of the corresponding elements of φ̂, it is also the
asymptotic correlation matrix for %̂.

The asymptotic variance and correlation matrices are reported in Table 1. The asymptotic variance

of the correlation coefficient, %̂j , is (1 − %2
j )2, which defines the diagonal elements of avar(%̂), and the

element-wise Fisher transformation ensures that avar(φ̂j) = 1 for all j = 1, . . . , n. However, we observe

a high degree of correlation across the elements of φ̂. The asymptotic correlation matrix for φ̂ is, in fact,

identical to that of the empirical correlations, %̂, because the transformation is an element-by-element

(Fisher) transformation, causing the Jacobian Dc = dφ/d% to be a diagonal matrix. Consequently the

asymptotic correlations are unaffected by this transformation. While the diagonal elements of avar(φ̂)

are invariant to C, this is not quite the case for the diagonal elements of avar(γ̂). However, the diagonal

elements are not nearly as sensitive as is the case for avar(%̂), and the main advantage of γ̂ is that the

asymptotic covariances across elements are relatively small, in particular when |ρ| ≤ 0.5.
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4.2 Finite Sample Properties

We study the finite sample properties in a classical setting where Ĉ is computed from the sample

covariance matrix, Σ̂ = 1
T

∑T
t (Xt − X̄)(Xt − X̄)′, with X̄ = 1

T

∑T
t=1Xt, and where Xt ∼ iidN(0,Σ).

As discussed earlier, we can without loss of generality consider the case where the diagonal elements of

Σ are all one, i.e. Σ = C.

The Fisher transformation is also known as Fisher’s Z-transform. In standard problems, where ρ̂

is the empirical correlation coefficient, the Fisher transformation is, in part, motivated by z(ρ̂) −z(ρ)

being better approximated by a Gaussian distribution than is ρ̂− ρ.

In this section, we undertake a simulation study, where we analyze the finite sample properties of

γ̂, and compare them to those of the element-wise Fisher transformed correlations. First, we simulate

a trivariate system, where Xi ∼ iidN3(0,Σ), i = 1, . . . , T where Σ = C is given as in (2). Here we will

present results for the case where T = 40 and ρ = 0.9. Additional results, based on different designs,

are presented in the Web Appendix. In this design, %̂, φ̂, and γ̂ are 3-dimensional, because the marginal

distributions of the three elements within each of the vectors are very similar, we only present results

for the first element of these vectors, %̂1, φ̂1, and γ̂1. Results for all three elements are presented in the

Web Appendix.

Figure 1 shows the finite sample distributions for %̂1, φ̂1, and γ̂1, for the case where T = 40, and

C is given from (2) with ρ = 0.9. The left panels illustrates the well known results that the finite

sample distribution of the empirical correlation is poorly approximated by a Gaussian distribution, in

particular in a situation such as this one, where the population value, %1 = 0.9, is relatively close to one.

The middle panels present the analogous results for the element-wise Fisher transformed correlation,

φ̂1, and the right panels the results for γ̂1. The finite sample distribution of both φ̂1 and γ̂1 are well

approximated by the Gaussian distribution. This was clearly expected for the Fisher transformation,

φ̂1, but somewhat unexpected for γ̂1. In fact, the QQ-plots, including several reported in the Web

Appendix, indicate that the Gaussian approximation is slightly better for γ̂ than for φ̂. A plausible

explanation for this discrepancy is that the individual Fisher transformed correlations are subject to

cross restrictions.
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Figure 1: The finite sample distribution (upper) and QQ-plots (lower) of the first elements of the vectors %̂,
φ̂, and γ̂. Results for the marginal distributions of %̂1, φ̂1, and γ̂1, are in the left, middle, and right panels,
respectively. The simulation design has Ĉ computed from T = 40 independent vectors that are distributed as
N3(0, C), where C has the structure in (2) with ρ = 0.9. The results are based on 100,000 simulations. The
QQ-plots are the quantiles of the standardized empirical distribution plotted against quantiles of the standard
normal distribution.

Having established that the marginal distribution of γ̂ is well approximated by a Gaussian distribu-

tion, in line with the properties of φ̂, we turn our attention to features of the joint distributions. Using

the same simulation design as in Figure 1 we now present the three bivariate distributions that emerge

from the three empirical correlations, the corresponding three Fisher transformed correlations, and the

three elements of γ̂. Contour plots (non-parametrically estimated) for these bivariate distributions are

given in Figure 2. The dependence between empirical correlations is evident, and this cross dependence

carries over to the element-wise Fisher transformed correlations. In contrast, the dependence between

the elements of γ̂ is much weaker. The contour plots for the bivariate distributions of γ̂ resemble those

of a bivariate Gaussian distribution with little correlation between the two variables. This highlights an

unexpected benefit of the proposed transformation which appears to hold more generally, as suggested

by results from additional simulation designs that are presented in the Web Appendix. In the Web

Appendix, we show that γ̂ greatly reduces the finite sample skewness, as is the case for the marginal

distributions of the elements of φ̂.
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Figure 2: Contour plots of the bivariate distributions. The left panels are those for the empirical correlations,
%̂, the middle panels are for the element-wise Fisher transformed correlations, φ̂, and the right panels are those
for new parametrization of the correlation matrix, γ̂. The contour plots are based on 100,000 random draws,
where each of the correlation matrices were based on T = 40 i.i.d. variables distributed as N3(0, C), where C
has the structure in (2) with ρ = 0.9.

So far we have focused on the case where C is an 3 × 3 matrix. Next we study the finite sample

dependence across elements of φ̂ and γ̂ for matrices of higher dimensions, using the Toeplitz structure

in (2), where the degree of dependence is controlled by the single parameter, ρ. We consider the finite
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sample correlation matrices for φ̂ and γ̂,

Rφ,T (ρ) = corr(φ̂) and Rγ,T (ρ) = corr(γ̂),

and will compute measures of dependence from Rφ,T (ρ) and Rγ,T (ρ). One measure of dependence is

the largest eigenvalue of the correlation matrix, R, because λmax(R) = 1 if and only if R = I. A natural

measure of dependence for an d× d correlation matrix is given by

ψ(R) = (λmax(R) − 1)/(d− 1),

because λmax(R) ' 1+(d−1)r̄, where r̄ is the average correlation of R, see Morrison (1967), who derives

the approximation when the correlations are non-negative and similar in value, and see Friedman and

Weisberg (1981) for a more general interpretation.

We study the finite sample properties when T = 100 for correlation matrices of dimensions, n = 10,

n = 20, and n = 40. In our simulation study we draw T = 100 observations from N(0, C), where C

has the structure in (2) with ρ ranging from 0 to 0.99. In each simulation we compute φ̂ and γ̂, and

compute their corresponding correlation matrices, Rφ,T (ρ) and Rγ,T (ρ), from 10,000 simulations. The

dimension of these correlation matrices are for n = 10, 20, and 40 given by 45 × 45, 190 × 190, and

780 × 780, respectively, since d = n(n− 1)/2.

Besides reporting ψ(Rφ,T (ρ)) and ψ(Rγ,T (ρ)) we also report their smallest and largest off-diagonal

element, and the 10% and 90%-quantiles of the many correlations, to get a sense of the dispersion of

the many elements in Rφ,T (ρ) and Rγ,T (ρ).

The results are reported in Figure 3. Results for the element-wise Fisher transforms, φ̂, are in

the left panels, and the corresponding results for the new parametrization, γ̂, are in the right panels.

The solid lines present the eigenvalue-based measure of dependence, ψ(Rφ,T (ρ)) and ψ(Rγ,T (ρ)), as a

function of ρ. The lightly shaded regions display the range of correlations in Rφ,T (ρ) and Rγ,T (ρ) from

smallest to largest, whereas the darker shaded regions are defined by the 10%-quantile and 90%-quantile

of the off-diagonal elements in Rφ,T (ρ) and Rγ,T (ρ).
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Figure 3: The solid line is the eigenvalue-based measure of dependence in Rφ,T (ρ) (left panels) and in Rγ,T (ρ)
(right panels), as a function of ρ. The upper, middle, and lower panels are for the case where Ĉ is an 10 × 10,
20 × 20, and 40 × 40 respectively. The lightly shaded regions display the full range of correlations, whereas the
darker shaded regions are defined by the 10%-quantile and 90%-quantile of the off-diagonal elements in Rφ,T (ρ)
and Rγ,T (ρ). Evidently, the elements of γ̂ are far less correlated than are the element-wise Fisher correlations,
φ̂.

Figure 3 also shows that there is far less dependence across the elements of γ̂ than is the case for

the element-wise Fisher transformed variables, φ̂, for all values of ρ. While the correlations between

elements of φ̂ are substantially different from zero when ρ approaches one, the correlations between

elements of γ̂ are small and centered about zero. The darker shaded regions include 80% of the
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correlations, and Figure 3 shows that the large majority of correlations for γ̂ are very close to zero,

even as ρ approaches 1, where as the dispersions for correlations related to φ̂ is far larger. Interestingly,

for this design, we see that the correlations between elements of γ̂ are increasingly concentrated near

zero, as the dimension of C increases. The darker shaded region is barely visible for γ̂ when n = 40.

For both φ̂ and γ̂ we observe that the extreme correlations, (the smallest and largest), are similar for

n = 10, n = 20, and n = 40.

A potential use of the weak correlation between the elements of γ̂ is to the problem of regularization

of large covariance matrices, see Pourahmadi (2011) for a review. The observation that the finite sample

distribution of γ̂ seems well approximated by a vector of nearly independent Gaussian random variables,

paves the way for applying shrinkage methods, such as James-Stein shrinkage to γ̂. This approach has

been applied to the element-wise Fisher transformations, φ̂, Lin and Perlman (1985). Unreported

simulation results indicate that the elements of log Σ̂ have similar properties in the homoskedastic case,

where the diagonal elements of Σ are identical, so that regularization may also be applied directly to

vech log Σ̂, as explored in Deng and Tsui (2013).

5 Auxiliary Results and Properties

5.1 Structure for Certain Correlation Matrices

While the elements of γ depend on the correlation matrix in a nonlinear way, there are some interesting

correlation structures that do carry over to the matrix G = logC, and hence γ. First, we consider the

case with an equicorrelation matrix and a block-equicorrelation matrix.

Proposition 2. Suppose C is a positive definite equicorrelation matrix with correlation parameter ρ.

Then, all the off-diagonal elements of matrix G = logC are identical and equal to

γc = − 1
n

log
(

1 − ρ

1 + (n− 1)ρ

)
∈ R, (6)

so that γ = γcι, where ι ∈ Rn(n−1)/2 is the vector of ones.

This result, in conjunction with Theorem 1, establishes that γc is an isomorphic mapping from the

set of equicorrelation matrices to the real line, R, and the inverse mapping (to the common correlation)

is given in closed-form by

ρ(γc, n) = 1 − e−nγc

1 + (n− 1)e−nγc
.
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Note that this yields a correlation coefficient, ρ(γc, n), that is confined to the interval
(
− 1

n−1 , 1
)
, which

is to be expected since this is the range for ρ that produce a positive definite equicorrelation matrix.

It is easy to verify that if C is a block diagonal matrix, with equicorrelation diagonal blocks and

zero correlation across blocks, then G = logC will have the same block structure and (6) can be used

to compute the elements in γ. In the more general case where C is a block equicorrelation matrix, see

e.g. Engle and Kelly (2011), then it can be shown that the logarithmic transformation preserves the

block structure, so that A has the same block structure with the same coefficient in each of the blocks.

So the transformation provides a simple way to model block equicorrelation matrices. We illustrate

this with the following example

C =



1.0 0.4 0.4 0.2 0.2 0.2

0.4 1.0 0.4 0.2 0.2 0.2

0.4 0.4 1.0 0.2 0.2 0.2

0.2 0.2 0.2 1.0 0.6 0.6

0.2 0.2 0.2 0.6 1.0 0.6

0.2 0.2 0.2 0.6 0.6 1.0


⇔ logC =



−.16 .349 .349 .104 .104 .104

.349 −.16 .349 .104 .104 .104

.349 .349 −.16 .104 .104 .104

.104 .104 .104 −.36 .553 .553

.104 .104 .104 .553 −.36 .553

.104 .104 .104 .553 .553 −.36


.

Another interesting class of correlation matrices are the Toeplitz-correlation matrices, which arises

in various models, such as autoregressive time series models. In this case, logC is a bisymmetric matrix.

To take an example:

C =



1 ρ1 ρ2 ρ3

ρ1 1 ρ1 ρ2

ρ2 ρ1 1 ρ1

ρ3 ρ2 ρ1 1


⇔ logC =



∗ a b c

a ∗ d b

b d ∗ a

c b a ∗


.

For k + 1 × k + 1 Toeplitz correlation matrices, one can represent the matrix using just k off-diagonal

elements of logC. In the example above, that would amount to γ = (a, b, c)′, and a correlation matrix

with the proper Toeplitz structure is then obtain by selecting an appropriate value of d, in addition to

the diagonal elements.

5.2 Bayesian Priors on Correlation and Covariance Matrices

The literature has proposed a number of methods to formulate Bayesian priors on correlation matrices,

see Pourahmadi (2011, section 4) for a review. The new parametrization of correlation matrices provides
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a new method for formulating priors over correlation matrices. The results in Section 4 could motivate

the use of a Gaussian prior on γ, which induces a distribution over C(γ).
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Figure 4: The upper panel displays the marginal distribution of correlation coefficients in a 3 × 3 matrix, C(γ),
as induced by γ ∼ N3(0, cI), for c = 0.1, c = 0.5, and c = 1.

5.3 The Inverse and other Powers of the Correlation Matrix

While G = logC is directly tied to the correlation matrix, C, it is straight forward to obtain other

powers of C from A, since Cα = eαG. This can, for example, be used to obtain the inverse covariance

matrix,

Σ−1 = Λ−1e−GΛ−1,

where Λ = diag(σ1, . . . , σn). The inverse is, for instance, of interest in portfolio choice problems and

Σ−1 also yields the partial correlation coefficients.

5.4 Useful Structure for Inference and Dynamic Models

Next we establish a result that shows that dvecl[C]/dvecl[G] has a relatively simple expression. This is

a convenient for inference, such as computation of standard errors, and for the construction of dynamic
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GARCH-type models, such as a score-driven model for γ = veclG, see Creal et al. (2013), and for the

construction of parameter stability tests, such as that of Nyblom (1989).

Proposition 3. Derivatives of the correlations from C with respect to the off-diagonal elements of the

log-transformed correlation matrix G = logC are

dvecl[C]
dvecl[G] = El

(
I −AE′

d

(
EdAE

′
d

)
−1Ed

)
A(El + Eu)′,

where A = dvecC/dvecG and the matrices El, Eu and Ed are elimination matrices, such that veclM =

ElvecM , veclM ′ = EuvecM and diagM = EdvecM for any square matrix M of the same size as C

and G.

Here A is the same matrix that appears in the asymptotic distribution for γ̂, see (5), and its

expression is given in the Appendix, see (A.3)-(A.4).

6 Algorithm for γ−1

In this section, we study how fast the iterative algorithm converges to the solution. The algorithm

reconstructs the correlation matrix C from γ = veclG, by determining the diagonal elements of G, for

which eG is a correlation matrix. We find that the algorithm converges fast, even for high dimensional

matrices. Interestingly, the number of iterations required for convergence depends mainly on the

correlation structure, and to a lesser extent on the matrix size.

We have the following helpful result that informs us that none of the diagonal elements of G are

positive.

Lemma 2. The diagonal elements of G = logC are non-positive.

Given n and ρ we construct C as in (2) and compute G = logC. The diagonal of G is then

replaced with some starting value, x(0). The algorithm recovers G, starting from the matrix G[x(0)] by

applying the iterative algorithm described in Corollary 1. In our simulation experiment we set x(0) to

be random with each element being drawn independently and set to −|Z| where Z ∼ N(0, 100). So the

starting value will often far from the solution. The algorithm has converges once all diagonal elements

of eG[x(k)] are sufficiently close to zero. Since − log diag(eG[x(k−1)]) = x(k) − x(k−1) we can simply define

the algorithm to have converged (at iteration k) once ||x(k) −x(k−1)|| is less than the selected tolerance

threshold, where ‖ z ‖=
√

z′z
n . We set the tolerance threshold to 10−8. For each value of ρ and n, we

run the algorithm with 1000 distinct (random) starting values.
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Figure 5: Convergence of the iterative algorithm with a tolerance threshold 10−8. The black lines correspond
to the average number of iterations required for convergence. The bands correspond to ±2 standard deviations.

The average numbers of iterations required for convergence are depicted in Figure 5. Interestingly,

the number of iterations needed for convergence, only increases modestly as the dimension of the matrix

increases. The shaded bands depict the dispersion in the number of iterations needed for convergence

(average ±2 standard deviations). The dispersion is rather modest, which shows that the algorithm is

relatively insensitive to the choice of an initial vector, x(0). The number of iterations is more influenced

by the actual correlation structure. For correlation matrices with highly correlated variables (ρ = 0.99),

it takes 50-70 iterations for the algorithm to converge. In contrast, for moderately correlated structures

(ρ = 0.5), the algorithm converges in 10-15 iterations.

In the Web Appendix, we present convergence results for the same design with weaker convergence

tolerance thresholds. For instance, using the threshold of 10−4 (instead of 10−8) reduces the number

of required iterations by a factor of about two.

Thus, the proposed algorithm appears to converge sufficiently fast for most practical problems even

if the dimension is large. On average, it took about 0.07 seconds for the algorithm to converge when C

is a 100 × 100 matrix with the Toeplitz structure, where ρ = 0.99 and tolerance requirement is 10−8.

For a less exotic correlation structure (ρ = 0.5) and a relatively small-scale matrix (n = 5), the average

convergence time is only about 3.7·10−4 seconds.3

The algorithm has been implemented in Matlab, Python, and Ox.
3The execution times have been obtained using MATLAB R2017a on a computer with Intel Core i7-6700 (3.40GHz).
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7 Concluding Remarks

In this paper, we have shown that the set of non-singular n×n correlation matrices is isomorphic with

Rn(n−1)/2, so that one can represent a covariance matrix in terms of the n (log-)variances and n(n−1)/2

off-diagonal elements of logC, where C is the correlation matrix, which we denoted by γ. The latter is

closely related to the Fisher transformation of a single correlation. The reason is that the two coincide

when C is an 2 × 2 matrix, and the finite sample properties of γ̂ are well approximated by a Gaussian

distribution. Unlike the element-wise Fisher transformations, φ, the new parametrization produces a

vector, γ, with unrestricted range.

The new parametrization of the correlation matrix, presented in this paper, adds an item to the menu

of methods for modeling correlation matrices, where the new method has a unique set of properties.

Key advantages include a variation-free parametrization, the ability to model variances and correlations

separately, and attractive distributional properties of the transformed correlation matrix, γ(Ĉ). The

main drawback of the new method is that γ−1 is not given in closed-form, albeit this is mitigated by

the proposed algorithm that converges very fast, even for high-dimensional matrices. In the paper,

we have highlighted many possible application of the new parametrization, such as the construction of

multivariate volatility models, inference, regularization of correlation matrices, and specifying Bayesian

priors over correlation matrices.
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Appendix of Proofs

We prove g is a contraction by deriving its Jacobian, J(x), and showing that all its eigenvalues are less

than one in absolute value. To this end we observe that

g(x) = x− log δ(x), where δ(x) = diag(eG[x]). (A.1)

Hence, an intermediate step towards the Jacobian for g, is to derive the Jacobian for δ(x).

To simplify notation, we will sometimes suppress the dependence on x for some terms. For instance,

we will write δi to denote the i-th element of the vector δ(x).
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The Jacobian of g(x)

We seek the Jacobian, dg(x) = J(x)dx, and from (A.1) it follows that

[J(x)]i,j = ∂[g(x)]i
∂xj

= 1{i=j} − 1
δi

∂[δ(x)]i
∂xj

,

so that

J(x) = I − [D(x)]−1H(x), (A.2)

where D = diag(δ1, . . . , δn) is a diagonal matrix and H(x) is the Jacobian matrix of δ(x), that we derive

below.

Let G[x] = QΛQ′, where Λ is the diagonal matrix with the eigenvalues, λ1, . . . , λn, of G[x] and Q

is an orthonormal matrix (i.e. Q′ = Q−1) with the corresponding eigenvectors. It is well known, see

e.g. Linton and McCrorie (1995), that

dvec eG[x] = A(x) dvecG[x],

where

A(x) = (Q⊗Q)Ξ
(
Q⊗Q

)′
, (A.3)

is and n2 × n2 matrix and Ξ is the n2 × n2 diagonal matrix with elements given by

ξij = Ξ(i−1)n+j,(i−1)n+j =


eλi , if λi = λj

eλi −eλj

λi−λj
, if λi 6= λj

(A.4)

for i = 1, . . . , n and j = 1, . . . , n. Evidently we have ξij = ξji, for all i and j. Importantly, it also

follows that A(x) is a symmetric positive definite matrix, because all the diagonal elements of Ξ are

strictly positive.

Our interest concerns diag[eG[x]] which is only a subset of the elements of vec[eG[x]]. So we seek,

the matrix H(x),

d δ(x) = H(x) dx,

where H(x) is a principal sub-matrix of A(x), which is obtained by preserving n rows and columns of

A with symmetric indices (i− 1)n+ i, i = 1, . . . , n. A generic element of matrix H(x) is therefore given

by:

26



hij = ∂δ(x)i

∂xj
= (ei ⊗ ei)′(Q⊗Q

)
Ξ
(
Q⊗Q)′(ej ⊗ ej)

=
(
e′

iQ⊗ e′
iQ
)
Ξ
(
Q′ej ⊗Q′ej

)
=
(
Qi,. ⊗Qi,.

)
Ξ
(
Qj,. ⊗Qj,.

)′ (A.5)

=
n∑

k=1

n∑
l=1

qikqjkqilqjlξkl,

where ei is a n× 1 unit vector with one at the i-th position and zeroes otherwise and Qi,. denotes the

i-th row of Q.

An interesting property of J(x) is that J(x)ι = 0, so that the vector of ones, ι, is an eigenvector of

J(x) associated with the eigenvalue 0, i.e. J(x) has reduced rank. Because, the i-th row of J(x) times

ι reads

1 −
n∑

j=1

1
δi

n∑
k=1

n∑
l=1

qikqjkqilqjlξkl = 1 − 1
δi

n∑
k=1

n∑
l=1

qikqilξkl

n∑
j=1

qjkqjl = 1 − 1
δi

n∑
k=1

q2
ikξkk = 0,

due to
∑n

k=1 qikqjk = 1{i=j}.

Proof that g is a Contraction: Lemma 1

We now want to prove that the mapping g(x) is a contraction. In order to show this, it is sufficient to

demonstrate that all eigenvalues of the corresponding Jacobian matrix J(x) are below one in absolute

values for any real vector x. First we establish a number of intermediate results.

Lemma A.1. (i) ey − y − 1 > 0 for all y 6= 0, and (ii) 1 + ey − 2
y (ey − 1) > 0 for y 6= 0.

Proof. The first and second derivatives of f(y) = ey − y− 1 show that f is strictly convex with unique

minimum, f(0) = 0, which proves (i). Next we prove (ii). Now let f(y) = 1 + ey − 2
y (ey − 1). Its first

derivative is given by f ′(y) = eyy−2g(y), where g(y) = y2 − 2y + 2 − 2e−y, so that f ′(y) < 0 for y < 0

and f ′(y) > 0 for y > 0. Since limy→0 f(y) = 0 (by l’Hospital’s rule) the result follows.

From the definition, (A.4), it follows that ξij = ξii = ξjj whenever λi = λj . When λi 6= λj we have

the following results for the elements of Ξ:

Lemma A.2. If λi < λj, then ξii < ξij < ξjj and

2ξij < ξii + ξjj .

27



Proof. From the definition, (A.4), we have

ξij − ξii = eλj − eλi

λj − λi
− eλi = eλi

(
eλj−λi − 1
λj − λi

− 1
)

= eλi
eλj−λi − 1 − (λj − λi)

λj − λi
> 0,

because the numerator is positive by Lemma A.1.i, and so are eλi and λj − λi. This proves ξij > ξii.

Analogously,

ξjj − ξij = eλj − eλj − eλi

λj − λi
= eλj (1 − 1−eλi−λj

λj−λi
) = eλj

−(λi − λj) − 1 + eλi−λj

λj − λi
> 0,

because all terms are positive, where we again used Lemma A.1.i.

Next, consider

ξii + ξjj − 2ξij = eλi + eλj − 2e
λi − eλj

λi − λj
= eλi

(
1 + eλj−λi − 2e

λj−λi − 1
λj − λi

)
> 0,

where the inequality follows by Lemma A.1.ii, because λi 6= λj .

Lemma A.3. J(x) and J̃(x) = I −D− 1
2HD− 1

2 have the same eigenvalues, and J̃(x) can be expressed

as

J̃ =
n−1∑
k=1

n∑
l=k

ϕkl

(
D− 1

2uklu
′
klD

− 1
2
)
,

where ukl = Q·,k �Q·,l ∈ Rn and ϕkl = ξkk + ξll − 2ξkl.

Proof. For a vector y and a scalar ν, we have that

Jy = νy ⇔ J̃w = νw,

where y = D− 1
2w. This follows from

νy = D− 1
2 (νw) = D− 1

2 (J̃w) = D− 1
2 (I −D− 1

2HD− 1
2 )w = (D− 1

2 −D−1HD− 1
2 )w = JD− 1

2w = νy.

Next, we derive the expression for J̃ . Note that

n∑
k=1

q2
ikξkk =

n∑
k=1

q2
ike

λk = Qi,·e
ΛQ′

i,· = [eQΛQ′ ]ii = [eG]ii = δi.
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Thus for a diagonal element, J̃ii, we have (using the expression for hii) that

J̃ii = 1 − hii

δi
= 1
δi

( n∑
k=1

q2
ikξkk −

n∑
k=1

n∑
l=1

q2
ikq

2
ilξkl

)
= 1
δi

( n∑
k=1

q2
ikξkk −

n∑
k=1

q2
ikq

2
ikξkk − 2

n−1∑
k=1

n∑
l=k

q2
ikq

2
ilξkl

)

= 1
δi

( n∑
k=1

q2
ikξkk(1 − q2

ik) − 2
n−1∑
k=1

n∑
l=k

q2
ikq

2
ilξkl

)
= 1
δi

( n∑
k=1

q2
ikξkk

n∑
l=1
l 6=k

q2
il − 2

n−1∑
k=1

n∑
l=k

q2
ikq

2
ilξkl

)

= 1
δi

(n−1∑
k=1

n∑
l=k

q2
ikq

2
il(ξkk + ξll) − 2

n−1∑
k=1

n∑
l=k

q2
ikq

2
ilξkl

)
= 1
δi

n−1∑
k=1

n∑
l=k

q2
ikq

2
ilϕkl.

Similarly for the off-diagonal elements we have

J̃ij = − hij√
δiδj

= − 1√
δiδj

n∑
k=1

n∑
l=1

qikqjkqilqjlξkl = − 1√
δiδj

( n∑
k=1

q2
ikq

2
jkξkk + 2

n−1∑
k=1

n∑
l=k

qikqjkqilqjlξkl

)

= − 1√
δiδj

( n∑
k=1

qikqjk

(
−

n∑
l=1
l 6=k

qilqjl

)
ξkk + 2

n−1∑
k=1

n∑
l=k

qikqjkqilqjlξkl

)

= − 1√
δiδj

(
−

n−1∑
k=1

n∑
l=k

qikqjkqilqjl(ξkk + ξll) + 2
n−1∑
k=1

n∑
l=k

qikqjkqilqjlξkl

)

= 1√
δiδj

n−1∑
k=1

n∑
l=k

qikqjkqilqjlϕkl.

In the derivations above we used that
∑n

k=1 qikqjk = 1{i=j}, since Q′Q = QQ′ = I.

Proof of Lemma 1. Because G(x) is symmetric and positive definite, then so is the principal sub-

matrix, H(x). Consequently, M = D− 1
2H(x)D− 1

2 is symmetric and positive definite. Thus any eigen-

value, µ of M is strictly positive. So if ν is an eigenvalues of J̃(x) = I − D− 1
2HD− 1

2 , then ν = 1 − µ

where µ is an eigenvalue of M , from which it follows that all eigenvalues of J̃ are strictly less than 1.

Consider a quadratic form of J̃ with an arbitrary vector z ∈ Rn. Using Lemma (A.3), it follows

that any quadratic form is bounded from below by

z′J̃z =
n−1∑
k=1

n∑
l=k

ϕkl

(
z′D− 1

2uklu
′
klD

− 1
2 z
)
=

n−1∑
k=1

n∑
l=k

ϕkl

(
z′D− 1

2ukl

)2
≥ 0,

because ϕkl > 0 by Lemma A.2. Hence, J̃ is positive semi-definite and νi ≥ 0, for all i = 1, . . . , n.

Finally, since J(x) and J̃(x) have the same eigenvalues, it follows that all eigenvalues of J(x) lie

within the interval [0, 1), which proves that g(x) is a contraction. �

Proof of Theorem 1. The Theorem is equivalent to the statement that for any symmetric matrix

G, there always exists a unique solution to g(x) = x. This follows from Lemma 1 and Banach’s fixed
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point theorem. �

Proof of Proposition 1. We have Y = PX, for some permutation matrix, P , so that Cy = PCxP
′.

Since a permutation matrix is such that P ′P = PP ′ = I, it follows that

(Cy − I)k = (PCxP
′ − I)k = (P [Cx − I]P ′)k = P ′(Cx − I)kP ′.

Consequently,

Gy = logCy = (Cy − I) − 1
2(Cy − I)2 + 1

3(Cy − I)3 + · · ·

= P [(Cx − I) − 1
2(Cx − I)2 + 1

3(Cx − I)3 + · · · ]P ′

= P [logCx]P ′ = PGxP
′.

Suppose that the i-th and j-th rows of P are the r-th and s-th unit vectors, e′
r and e′

s, respectively,

then we have [Gy]ij = [Gx]rs, and by symmetry

[Gy]ij = [Gy]ji = [Gx]rs=[Gx]sr,

which shows that γy is simply a permutation of the elements in γx. �

Proof of Proposition 2. An equi-correlation matrix can be written as C = (1 − ρ)In + ρUn, where

In ∈ Rn×n is identity matrix and Un ∈ Rn×n is a matrix of ones. Using the Sherman–Morrison formula,

we can obtain the inverse,

C−1 = 1
1 − ρ

(
In − ρ

1 + (n− 1)ρUn

)
. (A.6)

Using (A.6), we can alternatively define G as

G = − log
(
C−1)= − log

(
1

1 − ρ
In

)
− log

(
I − ρ

1 + (n− 1)ρUn

)
. (A.7)

Since the first term in (A.7) is a diagonal matrix, the off-diagonal elements of G are determined only

by the second term. The second term in (A.7) can be rewritten as follows,

log
(
In − ϕUn

)
=

∞∑
k=1

(−1)k+1
(
−ϕUn

)k
k

=
(

1
n

∞∑
k=1

(−1)k+1 (−nϕ)k

k

)
Un = 1

n
log(1 − nϕ)Un, (A.8)

where we denote ϕ = ρ/(1 + (n− 1)ρ) and use the fact that Uk
n = nk−1Un.
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From (A.7) and (A.8), it follows that all the off-diagonal elements of G are identical and take the

value

Gij = − 1
n

log
(

1 − nρ

1 + (n− 1)ρ

)

for all i and j, such that i 6= j. A closed-form result for γ(C) follows immediately since γ(C) = vecl(G).

�

Proof of Proposition 3. From Theorem 1 it follows that the diagonal, x = diagG, is fully character-

ized by the off-diagonal elements, y = veclG = veclG′, and we may write x = x(y). For the off-diagonal

elements of the correlation matrix, z = veclC= veclC ′, we have z = z(x, y) = z(x(y), y), since C = eG,

and it follows that
dz(x, y)
dy

= ∂z(x, y)
∂x

dx(y)
dy

+ ∂z(x, y)
∂y

. (A.9)

With A(x, y) = dvecC/dvecG and the definitions of El and Eu, the second term is given by:

∂z(x, y)
∂y

= ElA(x, y)E′
l + ElA(x, y)E′

u. (A.10)

The expression has two terms because a change in an element of y affects two symmetric entries in the

matrix G. Similarly, for the first part of the first term in (A.9) we have,

∂z(x, y)
∂x

= ElA(x, y)E′
d, (A.11)

and what remains is to determine dx(y)
dy . For this purpose we introduce D(x, y) = diag[eG(x,y)]− ι which

implicitly defines the relation between x and y. The requirement that eG is a correlation matrix, is

equivalent to D(x, y) = 0. Next, let ∂D
∂x and ∂D

∂y denote the Jacobian matrices of D(x, y) with respect to

x and y, respectively. These Jacobian matrices have dimensions n×n and n×n(n− 1)/2, respectively,

and can also be expressed in terms of matrix A(x, y), as follows

∂D

∂x
= EdA(x, y)E′

d,
∂D

∂y
= EdA(x, y)E′

l + EdA(x, y)E′
u.

Note that ∂D
∂x is a principal sub-matrix of positive definite matrix A and, hence, is an invertible matrix.

Therefore, from the Implicit Function Theorem it follows

dx(y)
dy

= −
(∂D
∂x

)
−1∂D

∂y
= −

(
EdA(x, y)E′

d

)
−1
(
EdA(x, y)E′

l + EdA(x, y)E′
u

)
. (A.12)
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The results now follows by inserting (A.10), (A.11) and (A.12) into (A.9). �

Proof of Lemma 2. We have G = Q log ΛQ′, where C = QΛQ′ is the spectral decomposition of the

correlation matrix. Thus a generic element of G can be written as

Gij =
n∑

k=1
qikqjk log λk.

From the Jensen’s inequality it follows that

Gii =
n∑

k=1
q2

ik log λk ≤ log
(

n∑
k=1

q2
ikλk

)
,

where we used that
∑n

k=1 qikqjk = 1{i=j}, because Q′Q = I. Finally, since
∑n

k=1 q
2
ikλk = Cii = 1, it

follows that Gii ≤ log 1 = 0. �
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