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1 Introduction

As end consumers, most of the goods and services we purchase are priced according to rela-

tively simple rules. Some services such as phone plans are even sold at a fixed monthly fee,

(almost) independently of usage. More generally, many market segments clear according to

price schedules that only partially reflect the structure of supply costs. This widespread re-

liance on simple rates sharply contrasts with the fundamental theorems of welfare economics,

which define “commodities” as goods or services differentiated by their location, date and

contingency of delivery, and traded accordingly at state-contingent prices.

The practical challenges raised by a strict application of the Arrow-Debreu theorems have

of course been discussed in many occasions. For example, in his debate with R. Coase on

marginal cost pricing, W. Vickrey acknowledges the practical necessity of using simple rates:

“it is at least doubtful whether any advocate of marginal cost pricing has ever seriously pro-

posed that prices should slavishly follow marginal costs in every detail, without making some

allowance for administrative costs involved in such detailed rate structures and for the fact

that, beyond a certain point, the consumer may become so confused that the more intricate

rate schedule would cease to function effectively as a guide to consumer choice, thus losing

its raison d’être” (Vickrey, 1948). Relatedly, Radner (1968) notes a few years later that the

“Arrow-Debreu world has been criticized as a model of reality, or even as a normative model

of planning, for requiring the existence of too many markets.”

These observations raise an important question which has received surprisingly little at-

tention: how simple should simple price schedules be? Increasing rate complexity indeed

often requires costly investments (technology upgrades, lobbying, etc.), and such costs may

at some point outweigh the expected benefits from using more sophisticated price schedules.

This paper develops a simple framework to address this issue. It proposes a very tractable

method to design simple rate schedules under a large family of exogenous constraints, which

makes it possible to assess the relative efficiency gains from using more sophisticated rates.

If one is willing to make quantitative assumptions about demand characteristics, the abso-

lute value of the opportunity cost induced by the exogenous constraints enforced may be

estimated. This cost may then be compared to the cost of the efforts (e.g. R&D, lobbying)

needed to remove technological or political barriers. Conveniently, the proposed framework

proves easily implementable using basic machine learning techniques and typically available

data. As an example of application, we discuss retail electricity pricing in both France and
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California. It is shown that simple rates known as “time-of-use” only grasp a modest share

of possible efficiency gains, and that significantly increasing their complexity does not pay

off. Indeed, the inherent inefficiencies embedded in this family of tariffs prevent them from

improving welfare beyond a certain level.

While other applications of our framework can easily be envisioned (e.g. Pigouvian tax-

ation or financial product design), public utility pricing is probably the most relevant one.

It indeed combines all the common rationales for using simple rate structures. First, rates

are faced by end consumers who may not want to incur the cognitive costs of understanding

complex price schedules.1 Second, metering and billing water, natural gas or electricity with

a fine granularity require non-trivial investments.2 Third, political considerations usually

impose a variety of exogenous constraints on rate design. For instance, one may enforce

identical prices across a given geographical area, or forbid price variations upon certain con-

tingencies. Among public utility sectors, the electricity industry is a particularly relevant

area to apply our framework. It indeed plays a key role in the fight against climate change

and is experiencing significant transformations both in the structure of supply costs (e.g.

increasing share of wind and solar generation) and in demand characteristics (e.g. elec-

tric vehicles, batteries). Failing to adapt to this new environment may induce very costly

inefficiencies, which is giving birth to many debates, such as the relevance of rolling out

smart-meters (Joskow, 2012; Léautier, 2014) or the inefficiencies created by policies such as

net-metering or increasing-block tariffs.

Not surprisingly, this paper builds on a huge literature to which it is hard to do justice.

This paragraph provides a tentative – and necessarily incomplete – overview of related work.

First, the design of second-best rates must rely on a well-defined measure of welfare. Start-

ing with Dupuit (1844), a large literature has considerably improved the definition of such

a metric, with notably contributions from Walras, Hicks, Hotelling, Samuelson, or Debreu

(1954). While theoretically appealing, the obtained measures typically involves unrealistic

information requirements, compromising empirical applications. The derivation of local ap-

proximations, either in a partial (Ramsey, 1927) or a general (Boiteux, 1951b; Kolm, 1969)

equilibrium framework,3 paved the way to empirical applications, a path taken by Harberger

1Joskow and Tirole (2005) however note that rational inattention is not per se a valid rationale for using
simple rate structures.

2When Georges Westinghouse started selling electricity using an alternative-current system, the technology
to meter consumption did not even exist.

3Diamond and McFadden (1974) and Kay (1980) later revisited these contributions through the lens of the
expenditure function, while also discussing local approximations of welfare in the neighborhood of suboptimal

3



(1964, 1971) and many followers since then (Chetty, 2009). Second, one can envision several

reasons why the first-best outcome cannot be achieved, which are explored in the litera-

ture on second-best policies. Unfortunately, the analysis of second-best problems is not,

and arguably cannot be, as holistic as the theory of the first-best (Lipsey and Lancaster,

1956; Davis and Whinston, 1965; Bohm, 1967). In particular, one should carefully define the

set of feasible policies as well as additional constraints that prevent the achievement of the

first-best outcome.4 Many different settings may then be envisioned, for which the merits

of piecemeal policies have to be assessed.5 Incomplete markets are a class of second-best

problems of particular interest here. This literature takes note of the fact that real-life assets

traded in financial markets typically consist in bundles of atomistic “state claims” or Arrow-

Debreu commodities.6 If the dimension of the vector space generated by the contingent

returns on tradable assets is lower than the number of underlying Arrow-Debreu commodi-

ties, markets are incomplete (Sharpe, 2011; Carvajal et al., 2012). Relatedly, Radner (1968,

1972) studies a distinct class of problems where market incompleteness arises because of

cognitive limitations, which impose restrictions on agents’ information structure. Finally,

the present paper relates to a large literature on imperfect taxation and pricing, and notably

to the framework developed by Jacobsen et al. (2019), which is described in more details

below. Within this literature, imperfect pricing of electricity has recently attracted partic-

ular attention,7 although relevant theoretical insights can be traced back to the debates on

marginal cost pricing (Coase, 1946; Vickrey, 1948) and the subsequent development of the

theory of peak-load pricing (Boiteux, 1949, 1951a; Steiner, 1957; Turvey, 1968). Indeed, in

the wake of the California electricity crisis, several studies have looked at the efficiency of

various types of residential rates.8 One approach has been to rely on simulations to assess the

equilibria as in Dixit (1975).
4Guesnerie (1975) lists three reasons why the first-best outcome may not be reached. First, some markets

may not be organized or cleared (e.g. incomplete markets, externalities, etc.). Second, lump-sum transfers
may not be feasible. Third, market power distortions may be present. This paper is motivated by the first
rationale.

5For example, Ramsey (1927) and Boiteux (1956) study a situation where an entity must raise a given
amount of revenue using linear taxes instead of lump sum transfers. More generally, the taxation literature
has studied different situations where a subset of commodities may not be taxable, either at the individual
(Corlett and Hague, 1953; Diamond and Mirrlees, 1971a), industry (Boiteux, 1956; Guesnerie, 1975) or
country (Viner, 1950; Meade, 1955) level.

6For example, in the absence of contingent markets, a given good may be seen as a bundle of all the
Arrow-Debreu commodities under all contingencies that may materialize (Newbery and Stiglitz, 1982).

7Interestingly, this fact somewhat echoes the historical development of the other areas of the literature
we reviewed. Indeed, important contributions to the theory of second-best were motivated by problems
faced by the electricity industry (Drèze, 1964). This industry also happens to face incomplete markets issues
(Newbery, 2016; De Maere d’Aertrycke et al., 2017).

8On the supply side, Wolak (2011b) also estimates the decrease in short-term generation costs enabled by
more granular pricing on the spatial dimension.
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welfare consequences of moving away from flat rates (Borenstein and Holland, 2005; Holland

and Mansur, 2006; Borenstein, 2013). Another has been to use field or natural experiments

to measure consumers’ response to various shades of dynamic pricing (Faruqui and Sergici,

2010; Wolak, 2011a; Jessoe and Rapson, 2013; Ito et al., 2013; Ito, 2014). Several recent

papers discuss the inefficiencies arising from imperfect electricity pricing (Borenstein and

Bushnell, 2018; Mcrae and Wolak, 2019), or suggest ways to optimize second-best policies

(Blonz, 2016).

This paper studies the problem faced by a given entity (e.g. a utility) that must design,

for a given market segment, a linear pricing schedule while relying on a limited number of

prices and facing additional exogenous constraints. While this problem has been hinted at

by Kolm (1969) or Guesnerie (1980),9 it has not – to the best of my knowledge – received a

systematic treatment. This gap in the literature on second-best problems is thus addressed.

This work also contributes to the literature on incomplete markets by endogenously de-

signing sets of composite commodities sharing a common average price, while the existing

literature usually considers that the composition of security bundles is exogenous. On the

empirical front, this paper provides complementary insights to the work by Jacobsen et al.

(2019). In particular, the structure of second-best price schedules is made endogenous to the

optimization problem, which enables us to consider many different exogenous constraints in

a systematic manner. As example applications, we document the achievable welfare gains

from various approaches to refine residential rates in both France and California. In Cali-

fornia, our framework also provides a salient illustration of the on-going massive shift in the

optimal second-best rates notably induced by the increasing share of solar generation.

The rest of the paper is organized as follows. Section 2 develops our theoretical frame-

work and shows how second-best prices may be computed using simple machine learning

techniques. Section 3 uses this framework to design second-best retail electricity rates in

France. Section 4 carries a similar analysis for California. Section 5 concludes.

2 From theory to practical implementation

This section defines and solves the second-best problem studied in this paper. In order to

clarify how our framework relates to the existing literature, we first rely on a fairly general

9Guesnerie (1980) concludes his study by noting that “in practice there exist only a few differentiated tax
rates associated with a few groups of commodities. Taxation concerns aggregate commodities when pricing
policies are concerned with elementary goods. This feature, which has been ignored in this paper, should be
incorporated in further studies on the coordination of pricing and taxation policies.”
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problem statement and then specialize to partial equilibrium, a simplification likely to be

made in most empirical applications.

2.1 Theoretical framework

Let j ∈ {1, .., J, J + 1, ..., J̄} index the Arrow-Debreu commodities of the economy. We con-

sider the problem faced by a social planner who can set the vector of prices p ≡ {p1, ..., pJ}
for the first J commodities. These prices are faced by consumers in the market segment of

interest. Either by reference to a general equilibrium model (Boiteux, 1951b; Debreu, 1954;

Kay, 1980) or to an explicit objective function (Ramsey, 1927; Harberger, 1964) one can

define a vector of welfare-maximizing prices p∗
J̄
≡ {p∗1, ..., p∗J̄}.

Since we have mind applications to market segments representing only a fraction of

the total market, we assume constant returns-to-scale in production. While not absolutely

needed,10 this simplifying assumption is commonly made (see for example Corlett and Hague

(1953); Harberger (1964); Baumol and Bradford (1970); Diamond and Mirrlees (1971a,b);

Diamond and McFadden (1974)) since it allows to focus only on the price system faced by

consumers. Assuming optimal lump-sum redistribution and small deviations from optimal

prices, a second-order Taylor approximation of the deadweight-loss arising because of the

use of suboptimal prices p1, ..., pJ̄ is (Kay, 1980):

−1

2

J̄∑
i=1

J̄∑
j=1

(pi − p∗i )(pj − p∗j )
∂xi
∂pj

(1)

where xi(p,u) is the compensated demand for commodity i. Welfare measures proposed in

the literature vary regarding the exact point at which ∂xi
∂pj

should be evaluated, or remain

ambiguous about it.11 This ambiguity usually does not matter in practice since compensated

demand functions are generally assumed to be linear, either to get global results (Ramsey,

1927; Harberger, 1964), or as a local approximation driven by limitations in the statistical

power achievable with available data.

To simplify notations, we assume that J̄ = J + 1 so that there is a single commodity

in the rest of the economy. Unless indicated otherwise, this good is assumed to be the

numeraire in a partial equilibrium setting. Although our welfare measure can have deeper

10See for example Boiteux (1951b) or Kay and Keen (1988) for a symmetric treatment of producers and
consumers.

11Kay (1980) recommends to use the prices and utility levels of the distorted situation considered.
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foundations, it is worth focusing on the partial equilibrium case for two reasons. First, it

constitutes a simplification relevant for most empirical applications. Second, it will enable

us to draw connections more easily with the rest of the literature.

Consumer k chooses a bundle (x1, x2, ..., xJ+1) so as to maximize her utility function

given her available income wk and prices (p1, p2, ..., pJ) :

max
(x1,x2,...,xJ+1)

Uk(x1, x2, ..., xJ) + xJ+1

s.t.
J∑
j=1

pjxj + xJ+1 ≤ wk

The system of first-order conditions ∂xjU
k(x1, x2, ..., xJ) = pj defines consumer k indirect

demand:

xk(p) ≡ (xk1(p), ..., xkJ(p)) ≡ argmax
(x1,x2,...,xJ )

Uk(x1, x2, ..., xJ)−
J∑
j=1

pjxj (2)

The aggregate indirect demand in the market segment of interest is then the sum of individual

indirect demands:

x(p) =
∑
k

xk(p) (3)

Producers are assumed to have locally constant returns-to-scale with marginal costs p∗.

Pareto optimality then requires the maximization of:

W (p) ≡
∑
k

Uk(xk(p))− px.(p)︸ ︷︷ ︸
Consumers’ surplus

+ (p− p∗).x(p)︸ ︷︷ ︸
Producers’ surplus

=
∑
k

Uk(xk(p))− p∗.x(p) (4)

Using the first-order conditions of consumers’ problem, the first-order condition with respect

to pj for surplus maximization can be written:

∂W

∂pj
(p) =

J∑
i=1

(pi − p∗i )
∂xi
∂pj

(p) = 0 (5)

These conditions are indeed met when pj = p∗j for all j. Second-order derivatives are:

∂2W

∂pj′∂pj
(p) =

∂xj′

∂pj
(p) +

J∑
i=1

(pi − p∗i )
∂2xi

∂pj′∂pj
(p) (6)
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Focusing on small deviations in the neighborhood of p∗ (or assuming linear indirect demand

functions) we finally get:

W (p) 'W (p∗) +
1

2

J∑
i=1

J∑
j=1

(pi − p∗i )(pj − p∗j )
∂xi
∂pj

(p∗) (7)

The second term is indeed the deadweight-loss measure of equation (1).

Hence, our second-best problem of interest has the following structure:

max
p

1

2

J∑
i=1

J∑
j=1

(pi − p∗i )(pj − p∗j )
∂xi
∂pj

(p∗) ≡ 1

2
(p− p∗)TH(p− p∗)

s.t.

constraint C

where H ≡
(
∂xi
∂pj

(p∗)
)
ij

denotes the matrix of indirect demand derivatives and constraint C
is discussed below. Three points are worth emphasizing. First, the matrix H is symmetric

as the Hessian matrix of a well-behaved function and a special case of the Slutsky matrix.

Second, for convex economies, an assumption likely to be made to be able to define p∗ in the

first place, H will be semi-definite negative meaning the objective function takes non-positive

values. Third, the formulation of the problem assumes linear pricing, implicitly restricting

the class of second-best problems studied. Extension to non-linear pricing is discussed below.

The theoretical framework discussed so far is fairly general and must be further spe-

cialized. One may for example assume constraint C to be (p − p∗).x(p) ≥ R which is the

second-best problem studied by Ramsey (1927) and Boiteux (1956). A second-best problem

closer to the problem studied in this paper can be found in Jacobsen et al. (2019). Their

paper presents an elegant approach to “quantify the efficiency costs of constraints on the

design of externality-correcting tax schemes, or more generally the costs of imperfect pric-

ing, using simple regression statistics”. They consider a situation where the social planner

faces restrictions in the vector of taxes that he may choose. In their framework, a tax tj on

commodity j corresponds to the price wedge pj−p∗j considered here. They further define an

exogenously-given vector f ≡ {f1, ..., fJ} which they interpret as an observable characteristic

that is used in practice to proxy for the externality. Given these definitions, they study the

situation where the constraint C requires the tax schedule to be a linear combination of f :
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tj = α+ βfj

(constraint C of Jacobsen et al. (2019))

where α and β are two constants. If one denotes e ≡ {1, ..., 1}, this constraint may be

rewritten as:

(p− p∗) ∈ Re + Rf

that is (p − p∗) must belong to the two-dimensional vector space generated by e and f .

Jacobsen et al. (2019) approach thus naturally extends to the family of constraints C:12

(p− p∗) ∈ E where E is a vector space of dimension n < J

In Jacobsen et al. (2019), the set E is exogenously given and consists in the vector space

generated by the observables that may be used to enforce the public policy of interest. The

methodology developed in the present paper provides complementary insights by allowing

the social planner to select the optimal vector space E. We further enable the social planner

to enforce a large family of exogenous constraints on the set within which E may be picked.

The rest of this section formalizes these statements.

2.2 Second-best problem of interest (unconstrained case)

We study a situation where the social planner cannot use more than an exogenously given

number N of distinct prices in his rate schedule. We assume N to be much lower than J ,

meaning markets are incomplete for the considered segment. A typical situation where such

a constraint C arises is retail utility pricing. In this context, consumption is usually aggre-

gated over long periods of time and is charged a constant per-unit price for each period.13

Many other applications fit this framework: small businesses infrequently update their rate

schedules; insurance contracts usually specify families of contingencies instead of atomistic

ones; most public transportation systems use homogenous prices across zones instead of

charging on a point-to-point basis, etc. Importantly, because we are studying a given mar-

ket segment, the use of coarse prices does not prevent the underlying Arrow-Debreu markets

to clear. For example, a wholesale market, a reinsurance market, or competing modes of

transportation may ensure market clearing.

12Note that this family of constraints is formally similar to the assumption of incomplete markets in the
finance literature.

13Joskow (1976) notes that defining such periods is a complex and important issue for electricity rates.
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Incomplete markets are usually considered to arise because of rigidities in quantities, in

the sense that traded assets are composite commodities defined as fixed bundles of underlying

Arrow-Debreu commodities or “state claims”. By contrast, the approach proposed here

consists in fixing the average prices of composite commodities that are defined as any bundle

chosen from endogenously defined sets of underlying Arrow-Debreu commodities. Indeed,

since each Arrow-Debreu state has a positive probability to materialize, a rate schedule

implicitly maps each state to one of the N prices {p̄1, ..., p̄N}. Formally, we may represent

an unconstrained rate as a function ι such that:

ι : {1, ..., J} → R
j 7→ pj

where pj is the price that consumers face in state j. Using this notation, the second-best

problem of interest is then:

max
ι(.)

1

2

J∑
i=1

J∑
j=1

(ι(i)− p∗i )(ι(j)− p∗j )
∂xi
∂pj

(p∗)

s.t.

#{ι ({1, ..., J})} = N

(8)

where #{ι ({1, ..., J})} denotes the cardinal of the image of the set {1, ..., J} through func-

tion ι.

While the formulation in (8) is useful to clarify how our setting relates to second-best

problems in general, a more intuitive description is to divide the problem in two steps. First,

the social planner must define the sets of “composite commodities” that will be sold at a

constant average price. They are defined as mutually exclusive subsets of {1, ..., J}. Second,

the average price of each set of composite commodities must be optimized. Formally, if one

denotes SJN the set of N -set partitions of {1, ..., J}, which we characterize as the set of the

injunctive functions s mapping {1, ..., J} to {1, ..., N},14 our problem of interest is:

max
s∈SJN

 max
p̄1,...,p̄N

1

2

J∑
i=1

J∑
j=1

(p̄s(i) − p∗i )(p̄s(j) − p∗j )
∂xi
∂pj

 (9)

Note in particular that for a given s that partitions {1, ..., J} into N sets S1, S2, ... SN , the

inner maximization problem may be rewritten:

14s(j) = n then means that state j belongs to the nth set of the corresponding partition.
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max
p

1

2

J∑
i=1

J∑
j=1

(pi − p∗i )(pj − p∗j )
∂xi
∂pj

s.t.

p ∈
∑N

n=1 R1Sn

where 1Sn is a vector whose ith coordinate takes the value 1 if i ∈ Sn and 0 otherwise.

In other words, up to an affine transformation, the inner maximization problem is the

second-best problem studied in Jacobsen et al. (2019). This observation clarifies in which

sense this paper provides complementary results to theirs. Having made this clarification,

the rest of the paper will use the formulation given in equation (9), which proves more

convenient to handle.

2.3 Computing second-best prices

We start by showing how our problem may be solved when the underlying Arrow-Debreu

commodities are independent. Doing so, we note that practical implementations can rely on

basic machine learning techniques. We then propose a default heuristic for situations where

significant substitution or complementarity patterns exist.

2.3.1 Independent Arrow-Debreu commodities

This paragraph makes the following assumption:

Assumption 1 (independent commodities) Underlying Arrow-Debreu commodities are

independent, that is ∂xi
∂pj

= 0 for i 6= j.

Under Assumption 1, expression (9) simplifies to:

max
s∈SJN

 max
p̄1,...,p̄N

1

2

J∑
j=1

(p̄s(j) − p∗j )2∂xj
∂pj


Proposition 1 (unconstrained independent case)

The second-best price schedule (p̄1, ..., p̄N ) is given by the N-step function that best approx-

imates the inverse of the cumulative distribution function of first-best prices p∗j weighted by

|∂xj∂pj
|, when errors are penalized in a quadratic fashion.

From an implementation perspective, second-best prices are obtained by applying a weighted

k-means clustering algorithm to the distribution {p∗j}j of first-best prices, with N clusters,

weights given by {|∂xj∂pj
|}j and using the Euclidian distance.
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Proof.

See Appendix A.1.

The result of Proposition 1 may look familiar to readers used to the literature on non-

linear pricing.15 This literature relies on mechanism design theory to compute price schedules

that vary continuously with the quantity sold. A well-known result is that approximating

this price schedule with a handful of two-part tariffs is usually enough to grasp most of the

gains achievable through non-linear pricing. The similarity between this result and Propo-

sition 1 is not spurious. Indeed, Wilson (1993) describes how one may think of non-linear

pricing as monopoly pricing applied to each quantity increment of demand. The slope of the

optimal continuous tariff then provides a distribution of optimal marginal prices for each

infinitesimal quantity increment. These quantity increments can be seen as analogous ob-

jects to the Arrow-Debreu commodities considered in the present paper. Non-linear pricing

however involves either a different objective function for the optimizing entity (profit max-

imization) or an additional exogenous constraint of different nature (e.g. budget balance),

not to mention significantly higher information requirements.

Quite conveniently, Proposition 1 can easily be applied to very large datasets, and thus

used in situations with a large number of Arrow-Debreu commodities. Indeed, individual

observations p∗j may be first aggregated into a distribution with only a few thousand weighted

bins, where weights Wi are given by the sum of the {|∂xj∂pj
|}j for the p∗j falling into a given

bin. A weighted k-means algorithm may then be applied to the obtained distribution.

2.3.2 General case

Given the difficulty of estimating cross-elasticities, the assumption of independent Arrow-

Debreu commodities is likely to be a necessary approximation in many empirical applications.

In some cases, however, one may have an idea about – or be willing to test the consequences

of – credible substitution and complementarity patterns. Going back to expression (9), one

may first note that solving the inner problem should not raise any difficulty.

Lemma 1 (inner problem)

For a given partition s in SJN , the optimal price vector (p̄1, ..., p̄N ) of the composite com-

modities defined by s is the solution of a linear system.

Proof. For a given partition s ∈ SJN , the problem:

15I am grateful to Estelle Cantillon for pointing to this connection.
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max
p̄1,...,p̄N

1

2

∑
i,j

(p̄s(i) − p∗i )(p̄s(j) − p∗j )
∂xi
∂pj

yields the first-order conditions:

For n ∈ {1, ..., N},
∑

i∈s−1(n)

∑
j

(p̄s(j) − p∗j )
∂xi
∂pj

= 0

which is a linear system of N equations and N unknowns.

A greedy approach would thus be to apply Lemma 1 to all the possible partitions of

{1, ..., J} and pick the one with the lowest implied deadweight loss. Unfortunately, the num-

ber S(J,N) of ways to partition a set of J objects into N non-empty subsets, which defines

a sequence known as Stirling numbers of the second kind, asymptotically grows as NJ

N ! , that

is much too fast to use a greedy approach.

Depending on the specific structure of the problem at hand, different heuristics may be

used to reduce the subset of partitions over which one should optimize. In particular, the

matrix {∂xi∂pj
}ij will be sparse, and diagonal elements are likely to dominate.16 This suggests

a default two-step heuristic described in the following proposition.

Proposition 2 (heuristic for the unconstrained general case)

When the Arrow-Debreu commodities cannot be considered as independent, a default heuris-

tic may be defined as:

• Apply Proposition 1 replacing the matrix {∂xi∂pj
}ij by the diagonal matrix whose ith

diagonal element is ∂xi
∂pi

(i.e. ignore non-diagonal elements);

• Apply Lemma 1 to the full matrix {∂xi∂pj
}ij, taking as given the partition obtained in the

first step.

Testing this heuristic on random matrices with dominant diagonal elements yields en-

couraging results (see Appendix A.2).

In the absence of additional structure, Propositions 1 and 2 may yield impractical results.

Indeed, since no restrictions have been put so far on acceptable partitions of {1, ..., J}, the

obtained sets of composite commodities may exhibit very complex patterns. For example,

16“In dealing with practical problems, the presumptive dominance of the diagonal elements in the matrices
of reaction coefficients can be put to good use” (Harberger, 1964).
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assuming commodities are only differentiated by time of delivery, and that the rate designer

sets N = 3 in the hope to get a simple rate structure, nothing prevents the obtained price

schedule from changing every hour in a pattern {p̄1, p̄2, p̄3, p̄1, p̄2, p̄3, ...}. Arguably, in many

applications, such a pattern may not be suitable. The next section thus shows how a broad

family of additional exogenous constraints may seamlessly be enforced.

2.4 Enforcing additional constraints on second-best prices

In most applications, additional constraints on feasible second-best prices exist. For example,

one may want prices to remain constant during long enough periods not to confuse customers.

The availability and/or cost of the technology needed to enforce a given price schedule may

add further constraints. Finally, political considerations sometimes impose another layer of

constraints. While there may be other situations of interest, we now show how our framework

can be extended to account for constraints of the type “commodity i must be sold at the same

price as commodity j”. Many constraints of practical relevance fall into this category. For

example, one may want prices to remain constant for all working hours of a given working

day, or to be identical within a given county. Formally, this family of constraints translates

into the existence of a finest partition s ≡ {S1, ..., SM} that must be a possible refinement

of the partition used to define the sets of composite commodities. In other words, the set of

feasible partitions is restricted to the set SJN defined as:

SJN ≡ {s ∈ SJN | ∀m ∈ {1, ...,M}, {i1, i2} ∈ Sm ⇒ s(i1) = s(i2)} ⊂ SJN

Assumption 2 (finest partition) The additional constraints on feasible second-best prices

may be formalized as the existence of a finest partition s ≡ {S1, ..., SM} that must be a

possible refinement of the partition that ends up defining the optimal sets of composite com-

modities.

The problem of interest then becomes:

max
s∈SJN

 max
p̄1,...,p̄N

1

2

J∑
i=1

J∑
j=1

(p̄s(i) − p∗i )(p̄s(j) − p∗j )
∂xi
∂pj

 (10)

Again, we start by looking at the situation where Assumption 1 holds, that is we assume

that Arrow-Debreu commodities are independent. For each set Sm belonging to the finest

partition {S1, ..., SM} we define:
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p̂∗m ≡

∑
i∈Sm

∂xi
∂pi

p∗i

∑
i∈Sm

∂xi
∂pi

Without loss of generality, the subsets {S1, ..., Sj} are assumed to be indexed such that

p̂∗1 ≤ p̂∗2 ≤ ... ≤ p̂∗M . We further denote:

W0 ≡ 0 and Wm ≡
∑
j∈Sm

|∂xj
∂pj
|

Finally, we construct the function Ĝ−1 as:

Ĝ−1(z) =
M∑
m=1

p̂∗m1∑m−1
k=0 Wk≤z<

∑m
k=0Wk

Proposition 3 (constrained independent case)

The second-best price schedule (p̄1, ..., p̄N ) is given by the N-step function that best approx-

imates Ĝ−1, when errors are penalized in a quadratic fashion.

From an implementation perspective, second-best prices are obtained by applying a weighted

k-means clustering algorithm to the distribution of prices {p̂∗m}m, with N clusters, weights

{Wm}m, and using the Euclidian distance.

In addition, welfare losses may be decomposed as the sum of two terms:

• A first term 1
2

∑M
m=1

∑
j∈Sm

(
p̂∗m − p∗j

)2 ∂xj
∂pj

measures the welfare losses arising because

of the exogenous constraint of enforcing a finest partition of Arrow-Debreu states. In a

sense, this term measures the social cost of the finest partition used, that is the minimal

deadweight loss that must be incurred because of this exogenous constraint.

• A second term, consisting in the remaining welfare losses, measures the additional

inefficiencies arising because of the limited number of prices used in the rate schedule.

Proof.

See Appendix A.3.

As illustrated by our empirical applications, Proposition 3 is likely to be a very helpful

tool in practice. Indeed, when Assumptions 2 is met, one may apply the exact same ap-

proach as in the absence of additional constraints by replacing the underlying Arrow-Debreu
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commodities with the composite commodities built from the enforced finest partition. These

composite commodities should be considered to have “first-best” prices p̂∗m and “indirect de-

mand slopes” −Wm. Appendix B discusses in details a toy example to provide more intuition

about the logic behind Proposition 3.

When Assumption 1 is not met, combinatorial issues arise again unless the finest partition

is so coarse that #{SNX} is small. The discussion of paragraph 2.3.2 applies equally.

2.5 Presence of distortions elsewhere in the economy

In some applications, ignoring the distortions that exist in other markets may significantly

bias welfare estimations, and thus the obtained rates. Goulder and Williams (2003) notably

highlight the possibility of significant interactions between a commodity tax and distortions

in the labor market. To take such general equilibrium interactions into account, we use

expression (1) as our welfare measure in this paragraph. Let J +1 be a commodity in an ex-

ternal market (e.g. labor) subject to an exogenous distortion τJ+1. We assume commodities

1 to J to be independent. The welfare measure to be optimized is then:

−1

2

J∑
j=1

(pj − p∗j )2∂xj
∂pj
−

J∑
j=1

(pj − p∗j )τJ+1
∂xj
∂pJ+1

− 1

2
τ2
J+1

∂xJ+1

∂pJ+1

Since the considered entity optimizes on {p1, ..., pJ}, it can ignore the last term in the above

equation and rewrite it as:

−1

2

J∑
j=1

pj − p∗j + τJ+1

∂xj
∂pJ+1

∂xj
∂pj

2

∂xj
∂pj

+
1

2

J∑
j=1

(
τJ+1

∂xj
∂pJ+1

)2

∂xj
∂pj

Since
∂xj
∂pj

is evaluated at p∗j , the second term may be ignored which leaves us with:

−1

2

J∑
j=1

pj − p∗j + τJ+1

∂xj
∂pJ+1

∂xj
∂pj

2

∂xj
∂pj

(11)

The presence of significant distortions elsewhere in the economy may thus be conveniently

handled through a shift in the distribution of p∗, replacing p∗j by p∗j − τJ+1

∂xj
∂pJ+1
∂xj
∂pj

.

The rest of the paper applies our framework to retail electricity pricing in both France

and California.
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3 Application 1 - residential electricity pricing in France

3.1 Background

By the laws of physics, supply and demand of electricity must be balanced in real time.

To complicate things further, storing large amounts of electricity is very costly and power

plants are subject to unplanned outages. Real-time balancing hence relies on assets la-

belled as “dispatchable”, meaning that they have the ability to change their power produc-

tion/consumption both on demand and relatively quickly. Power plants represent the vast

majority of such assets, and have schematically specialized into “high capital cost/low vari-

able cost” and “low capital cost/high variable cost” plants in order to cost-efficiently match

demand (Boiteux, 1949). Connecting diversified loads to a large electricity network also

allows to get smoother demand profiles, but grid expansion is constrained by high capital

costs and low acceptability from local populations. As a consequence, the marginal cost of

supplying a given kWh of electricity may fluctuate by several orders of magnitude depending

on the time, location and contingency of delivery.

In France, wholesale electricity prices are not differentiated by location. Most trades

take place in a country-wide zonal “spot” market17 where prices vary by the hour and can

span from negative values to several thousands of euros per MWh. Residential consumers

however do not face spot prices. They are instead billed according to simpler rates, to

be chosen among a handful of options which are to a large extent designed by a single

entity. Indeed, although retail markets are open to competition, most households have so

far chosen to stick to a regulated tariff set by the national energy regulator.18 Hence, the

vast majority of residential consumers currently face either a flat rate tariff called “base”

with a marginal price of 147 e/MWh,19 or a two-period time-of-use (TOU)20 tariff called

“heures pleines/heures creuses” with an off-peak price of 123 e/MWh and a peak price of

158 e/MWh. As smart meters are being rolled-out nationwide since 2015,21 the French retail

market is thus entering an interesting period where, although the technical infrastructure

to use complex price schedules is becoming available, the existing status quo does not take

advantage of these new degrees of freedom. The framework developed in this paper can thus

17Technically speaking, the “spot” market is actually a day-ahead forward market.
18As of December 31, 2018, 25.3 millions households out of 32.7 millions were billed according to a regulated

tariff (Commission de Régulation de l’Energie, 2019).
19As of May 2019. More precisely, the marginal price is 145.2 e/MWh for customers who subscribed 6

kVA or less, and 147 e/MWh for customers who subscribed higher power connections.
20A TOU rate defines ex ante several time periods. Electricity is then charged at period-specific constant

prices.
21A full roll-out is expected to be completed by 2021.
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be used to assess where the highest efficiency gains are likely to come from.

3.2 Data

The data we use come from two sources. First, hourly spot prices between 2012 and 2016 are

recovered from EpexSpot. Second, hourly gross electricity consumption is downloaded from

the open data platform of French network operators. Table 1 provides relevant summary

statistics.

Variable Spot price (e/MWh) Gross consumption (GW.h)

Mean 40.00 54.61
Standard deviation 23.93 12.08

Min -200 29.68
Max 1938.5 101.65

Number obs. 43848

Table 1: Summary statistics of data used for France (period 2012-2016)

3.3 Assumptions

Since national aggregate consumption has been roughly flat during the period 2012-2016, we

consider each year as a different random realization of possible spot prices. We thus define

underlying Arrow-Debreu commodities as being indexed by {h, y} where the hour h is a

proxy for the time dimension, and the year y a proxy for the contingency dimension.

We then use the distribution of spot prices as a proxy for the distribution of first-best

prices p∗. The assumption of exogenous spot prices is motivated by two reasons. First, we

are interested in rates that only apply to a market segment, and not to the whole market.

Second, in a similar application for PJM, Jacobsen et al. (2019) found that accounting for

convexities in the cost function did not have a big impact on their results. A more accu-

rate proxy for social marginal costs would of course account for network costs and unpriced

externalities as in Borenstein and Bushnell (2018). Since our main goal is to illustrate how

our framework may be applied in practice, we abstract from these considerations.

We assume that the Arrow-Debreu commodities are independent. This assumption is

likely to prove relatively weak in our context. Indeed, our goal is to compute second-best

tariffs consisting in only a handful of prices. As a consequence, consumers will face a constant

price during extended periods of time, meaning substitution and complementarity patterns
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will have less opportunity to play a significant role compared to a situation where households

would face many different prices. Two specifications for aggregate demand are used. The first

one assumes that
∂xj
∂pj

is constant across states, meaning that the indirect demand function is

locally linear with a constant slope. Variations in demand are then driven by shocks shifting

the level of the intercept.22 The second specification assumes that
∂xj
∂pj

is proportional to

gross consumption, which corresponds to a linear approximation of an isoelastic demand.

Indeed, in the neighborhood of p0,23 we have for an isoelastic demand with elasticity ε:

∂xj
∂pj
' ε

p0
xj

Since we do not directly observe the gross consumption xj of the market segment of interest,

we assume it is proportional to national gross consumption.

The final set of assumptions relates to the definition of the finest admissible partition.

In what follows, it is assumed as an illustration that tariffs may only discriminate between:

• Seasons: January to March, April to June, July to September, October to December;

• Types of day: working day and weekend;24

• Hours of the day: blocks of three consecutive hours (0 am to 3 am, 3 am to 6 am, ... ,

9 pm to 0 am).

When designing time-of-use tariffs, we further assume that price differentiation along the

contingency dimension is not possible.

3.4 Results

While an optimal flat rate is found to charge 40 e/MWh (resp. 42.5 e/MWh) under the

assumption of a constant-slope (resp. isoelastic) demand,25 a two-period TOU tariff meeting

the constraints enforced by our finest partition is found to charge a rate of 29.1 e/MWh (resp.

31.4 e/MWh) off-peak and of 48.3 e/MWh (resp. 50.9 e/MWh) on-peak. Interestingly,

the ratio of on-peak to off-peak prices is found to be 1.6-1.7 while the ratio used in current

tariffs in only of 1.3. This milder ratio is likely to be driven by the other components of the

electricity bill, namely network fees and taxes. Figure 1 depicts the obtained price schedule

22This specification is for example used in Léautier (2014).
23Consumers currently face either a constant price p0, or two prices mildly differentiated around p0
24We assume working days to be Monday to Friday and do not label explicitly every single French national

holiday.
25Energy procurement indeed only represents about a third of residential consumers’ bills, the rest consisting

in taxes and grid access fees.
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under the assumption of an isoelastic demand.26 Consistently with Figure 1, the current

TOU rate defines the off-peak period as night time. In addition, a recent innovation in elec-

tricity rates has been to offer tariffs where the off-peak period extends to the whole weekend.

Season Type of day 0-3am 3-6am 6-9am 9-12pm 12-3pm 3-6pm 6-9pm 9-12am

Jan-Mar
Working day

Weekend

Apr-Jun
Working day

Weekend

Jul-Sep
Working day

Weekend

Oct-Dec
Working day

Weekend

Figure 1: Obtained rate schedule (isoelastic demand) for a two-period time-of-use tariff
(blue: off-peak period; red: peak period)

The relative efficiency gains to move from a flat rate to a two-period time-of-use tariff

is estimated to be 16% for a constant-slope demand (resp. 12% for an isoelastic demand).

Figure 2 shows however that the incremental benefits from further increasing the number

of TOU periods vanish quickly: using more than four or five periods provides virtually no

additional efficiency gains. Applying Proposition 3, it thus appears that most (∼ 80%) of

the inefficiency losses incurred are driven by the finest partition we chose.

Where do the additional efficiency gains to move from a two-period to a three-period

TOU tariff come from? The rate schedule obtained for a three-period tariff (Figure 3) shows

that they would mainly arise from the ability to reflect seasonal variations in spot prices,

and more specifically higher prices during winter working days. Converting these relative

efficiency gains into absolute numbers requires to assess the order of magnitude of the flat-

rate benchmark deadweight loss. This exercise relies more heavily on the assumptions made

about
∂xj
∂pj

, and is thus inherently more speculative. To provide a rough estimate, if one

assumes an isoelastic demand with ε = −0.1,27 and notes that the residential sector only

accounts for about 35% of the national gross consumption (RTE, 2019), the order of magni-

tude of the (short-run) inefficiencies arising because of the use of a flat rate is a few tens of

million euros per year.28 This estimate is consistent with the findings of Holland and Mansur

26TOU periods obtained under the assumption of a constant-slope demand are almost identical.
27This value is commonly used as an estimate of the short-run price elasticity for electricity (Borenstein

and Holland, 2005; Holland and Mansur, 2006).
28The point estimate of the flat-rate deadweight loss computed over the period 2012-2016 is 90 Me/year.
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Figure 2: Efficiency gains from increasing the number of Time-of-Use periods (France)

(2006), but is however likely to understate long-term inefficiencies (Borenstein, 2005; Boren-

stein and Holland, 2005).

Season Type of day 0-3am 3-6am 6-9am 9-12pm 12-3pm 3-6pm 6-9pm 9-12am

Jan-Mar
Working day

Weekend

Apr-Jun
Working day

Weekend

Jul-Sep
Working day

Weekend

Oct-Dec
Working day

Weekend

Figure 3: Obtained rate schedule (isoelastic demand) for a three-period time-of-use tariff
(blue: off-peak period; white: shoulder period; red: peak period)

Figure 2 may look to some extent discouraging. It indeed suggests that even sophisti-

cated time-of-use tariffs are unlikely to get more than 20% of the possible efficiency gains

relative to a flat-rate benchmark. The failure of TOU tariffs to grasp a higher share of

achievable efficiency gains is intrinsic to their ex ante nature. Indeed, they cannot signal

to consumers the high scarcity events that follow very rare contingencies. By contrast, the

This value is however very sensitive to tail events (see below). Reporting the order of magnitude rather than
an exact number hence seems more appropriate.
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electricity system is usually most under stress because of stochastic shocks such as the outage

of a big power plant or a cold wave. In the move from two to three price instruments, it is

thus worth exploring the relative merit of a critical-peak-pricing (CPP) tariff. CPP tariffs

allow the utility to raise the price of electricity ex post, typically on a day-ahead notice, but

only for a limited number of days per year. This is not a new idea: such a tariff, called

“Effacement Jours de Pointe” (EJP) was launched in France as early as 1982 by EDF. A

more recent tariff called “Tempo” is built around the same idea. However, the take-up rate

of CPP tariffs is now low and they are no more advertised to consumers.

To estimate the potential efficiency gains from a CPP price schedule, we proceed in

two steps. First, we rank first-best prices p∗j in decreasing order and truncate the ordered

distribution at the price p∗†(Nh) such that no more than Nh hours in a given year have a

price p∗j > p∗†(Nh). This constraint reflects the fact that, although a CPP tariff is able to

discriminate between different contingencies ex post, the number of critical events in a given

year will be capped to some threshold Nh.29 The critical-peak price p̄CPP is obtained as a
∂xj
∂pj

-weighted average of the p∗j greater than p∗†(Nh). Second, a two-period time-of-use rate

is computed for the subset of states with p∗j < p∗†(Nh). These two steps can be iterated to

adjust Nh. Somewhat surprisingly, because the distribution of spot prices is very skewed

to the right due to a few very high prices over the period 2012-2016, the highest efficiency

gains are found for CPP tariffs with a very low Nh. For example, a CPP tariff that may

be called at most 5 hours per year is found to provide over 50% efficiency gains compared

to the flat-rate benchmark. However, the corresponding event price exceeds 1000 e/MWh,

that is 25 times the flat rate tariff. In addition, such a tariff is very sensitive to the tail of

the distribution of p∗, which is inevitably poorly captured with only five years of data. We

thus report results with Nh = 200 hours. This choice would translate into a critical-peak

price of 120 e/MWh (resp. 124 e/MWh) under the assumption of a constant-slope demand

(resp. isoelastic demand). Efficiency gains of about 15-16% relative to a two-period TOU.

By contrast, a three-period TOU tariff only achieves 5-6% efficiency gains relative to the

same benchmark.

Our application to retail electricity pricing has shown how our framework can be used

to compute second-best pricing schedules under two main exogenous constraints: (i) using

simple rates; and (ii) having a limited ability to reflect contingencies. Our next application to

29Additional constraints about critical-event periods, such as imposing a high price for the whole day, can
easily be enforced in the same spirit as in Proposition 3 (one would them trim the right tail of “first-best”
prices for the finest partition sets p̂∗m). Since we are only interested in the order of magnitude of the potential
gains here, we do not add such constraints to simplify the exposition.
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California will further illustrate (iii) the extent to which important changes in the generation

mix can impact the stability over time of optimal TOU rates; and (iv) how our framework

may be used in the context of spatially differentiated first-best prices.

4 Application 2 - residential electricity pricing in California

4.1 Background

Since April 2009, California has adopted a nodal design for wholesale electricity markets. The

California Independent System Operator (CAISO) routinely computes locational marginal

prices (LMPs) for several thousand transmission grid nodes. However, the retail market seg-

ment has not been liberalized, and three investor-owned utilities (IOUs) – Pacific Gas and

Electric, Southern California Edison and San Diego Gas and Electric – are granted regional

monopolies to supply the vast majority of consumers. California retail consumers thus do

not face LMPs for two main reasons. First, utilities themselves do not directly face LMPs.

Their load is instead aggregated into three “Default Load Aggregation Points” (DLAP) and

bid in and settled at DLAP prices. Second, retail rates are fixed through an administrative

process and do not simply pass through wholesale prices.

Load aggregation across broad geographical areas has motivated a long debate between

the Federal Energy Regulatory Commission (FERC) and the CAISO. In September 2006,

FERC Order on the Market Redesign and Technology Upgrade (MRTU) accepted the DLAP

approach as a simplified temporary measure but requested that the number of Load Aggre-

gation Point (LAP) zones would be increased after three years of experience with the new

market. Subsequent studies and stakeholder processes led by the CAISO in 2010 and 2013

concluded that defining relevant geographical areas smaller than DLAPs but larger than

single nodes would be challenging and involve significant costs. FERC accepted to delay

the deadline to disaggregate DLAPs, but at first refused to completely waive the obligation

to define smaller zones. As new studies reached similar conclusions, FERC finally accepted

on October 2015 CAISO’s request to maintain the status quo. The concerns expressed dur-

ing this debate provide significant motivation for the present work. First, enabling further

load disaggregation was argued to require significant investments.30 Second, benefits were

deemed hard to assess in a reliable manner, and were proxied by looking at several ad hoc

30“Cost estimates total $21.7 million in one-time implementation costs with $2.5 million annually for slight
disaggregation, and $147 million in one-time implementation costs with $12.3 million annually for fully nodal
disaggregation” (CAISO, 2015).
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metrics capturing the dispersion of LMPs.31

Retail electricity rates in California are set by the California Public Utilities Commission

(CPUC), along with other Local Regulatory Authorities. While TOU rates have existed since

the 1970s, they were mainly designed to address summer peak demand and did not foresee

the recent massive increase in production from renewable resources. On July 3, 2015, the

CPUC decided to move completely California residential customers towards updated TOU

tariffs by 2019-2020. In this context, CAISO (2016) investigates what such a tariff may look

like from a system perspective, and proposes a four-period TOU tariff with (i) a super-peak

period between 4pm and 9pm on July and August weekdays; (ii) a peak period between 4pm

and 9pm for all other weekdays, and from 12pm to 4pm during July and August weekdays;

(iii) a super-off-peak period between 10am and 4pm on weekdays in March and April, and

on weekends/holidays in all months except July and August; (iv) an off-peak period for

all other hours (see Appendix C). Their study provides further motivation for the present

work. First, simplicity constraints prevailed: “As counseled by CPUC staff, the CAISO

sought to minimize complexity and time-period variations when evaluating potential TOU

periods and structures” (CAISO, 2016). Second, in the absence of a formalized framework,

the analysis by CAISO focused successively on how net load varies with seasons, then with

geographical areas, then by day of the week, etc. While this approach definitely makes sense,

our framework provides a tool to screen all these features simultaneously.

4.2 Data

As in CAISO (2016), we focus on the service area of the three main IOUs. Day-ahead

hourly prices are recovered for their respective DLAP over the period 2011-2018 from CAISO

website.32 Hourly consumption over the same period for the three Transmission Access

Charge (TAC) zones comes from the same data source and are used to proxy for gross

consumption at the three DLAPs. Finally, day-ahead hourly LMPs for the 23 sub-load

aggregation points (SLAPs) within IOUs service territories are recovered for the period 2011-

31“Quantifying benefits in a meaningful manner is challenging and would require several contentious as-
sumptions to be made. Therefore given the expected negligible benefits, the ISO does not intend to conduct
extensive quantitative studies but rather will speak to the benefits qualitatively” (CAISO, 2015).

32While real-time (RT) LMPs at the node level would represent a better proxy for the underlying social
marginal cost of power, we use DA prices for simplicity since utilities themselves do not face real-time node-
level LMPs. If one assumes that DA prices are close enough to be an indirect-demand-weighted average of
RT prices, a natural extension of Proposition 3 shows that using DA prices instead of RT yields the correct
TOU rate but underestimates welfare losses by an additive term which captures the discrepancy between DA
and RT prices.
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2016 to explore the spatial dimension.33 In the absence of load data at a finer granularity

than TAC zones and of geographical information about nodes locations, the SLAP level was

preferred to physical nodes to illustrate one possible application of our framework in the

presence of spatial variations. Table 2 provides some relevant summary statistics.

Variable Mean (std) Min Max # SLAPs

PG&E
DLAP price ($/MWh) 36.2 (18.8) -17.3 946.4

16
TAC load (GW.h) 11.5 (1.9) 7.8 21.3

SCE
DLAP price ($/MWh) 37.0 (21.9) -28.6 1000.0

6
TAC load (GW.h) 11.9 (2.6) 7.5 25.8

SDG&E
DLAP price ($/MWh) 38.1 (23.0) -71.2 1007.5

1
TAC load (GW.h) 2.3 (0.5) 1.4 4.7

Number obs. 70128

Table 2: Summary statistics of data used for California (period 2011-2018)

4.3 Assumptions

Between 2011 and 2018, utility-scale solar photovoltaic has grown from a negligible share

to about 12% of total electricity generation in California (CAISO, 2019). To illustrate the

impact of this evolution on second-best TOU rates, we divide the data in two samples, 2011-

2014 and 2015-2018. One part of the analysis consists in comparing the obtained results for

each sample, while the other part focuses on the period 2015-2018. Spatial differentiation

is discussed in two steps. First, we estimate the magnitude of the inefficiencies arising from

implementing a zonal TOU tariff instead of IOU-specific tariffs. Second, we assess the rela-

tively efficiency gains from using SLAPs as distinct pricing zones.

Again, we use the distribution of spot prices as a proxy for the distribution of first-best

prices p∗ and assume that Arrow-Debreu commodities are independent. When computing

second-best prices using IOUs as the finest geographical unit, we test the same two speci-

fications of demand as in the previous application (constant-slope and isoelastic demand).

However, since we lack disaggregated load data, only a constant-slope demand specification

is implemented at the SLAP level.

Finally, in order to assess the full potential of TOU tariffs, we enforce a finest partition

that can discriminate between months, types of day (weekends vs working days) and hours

33Due to changes in the definition of some SLAPs in 2017, we restrict the time window to 2011-2016.
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of the day.

4.4 Results

Using data from 2015 to 2018, Figure 4 plots, for each IOU, the relative efficiency gains

achievable by sophisticated TOU tariffs (as defined by the enforced finest partition). De-

spite the freedom left in the definition of TOU periods, achievable gains are found not to

exceed 30% of the inefficiencies arising under a flat-rate tariff.34 Assessing the order of

magnitude of these inefficiencies proves again more speculative. Assuming retail consumers

represent a third of the total load and currently respond to a price of $180/MWh (EIA, 2019)

with a price elasticity ε = −0.1, the order of magnitude of these short-term inefficiencies is

a few tens of millions of dollars per year for the three IOUs combined.35

Figure 4: Efficiency gains from increasing the number of Time-of-Use periods (2015-2018,
California)

Since four periods appear to be enough to grasp the majority of achievable efficiency

gains, we focus on four-period TOU tariffs. For now, we enforce the additional constraint

34Hogan (2014) finds a similar result for the PJM service area. Achievable gains using data from 2011 to
2014 are found not to exceed 35-40%.

35The point estimate is 45 M$/year.
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that the tariff should be the same for all three IOUs. Figure 5 represents the obtained

four-period TOU tariff based on data from 2011 to 2014 (assuming an isoelastic demand).

While the obtained tariff may not be simple enough to be directly implemented as such,

one may in practice gradually impose further structure on the TOU rate (as we for example

did in the previous application) and iterate our approach to get simpler rates. The cor-

responding prices for the different periods are $27.4/MWh, $36.8/MWh, $44.8/MWh, and

$55.3/MWh.36 Somewhat reassuringly, the obtained rate structure is consistent with the

historical rationale for having TOU tariffs in California, which was to address a relatively

spread out summer peak demand. Figure 6 depicts the obtained outcome when using data

from 2015 to 2018. Corresponding prices are $21.6/MWh, $33.7/MWh, $50.9/MWh, and

$81.6/MWh.37 One can observe very sharp changes with notably the emergence of (i) a

“super-peak” period in July and August; and (ii) solar off-peak hours in the spring and

during the weekends, as advocated by CAISO (2016). The narrowness of the “super-peak”

period is however driven by the important price spikes that were experienced in 2017 and

2018.38 If the probability of occurrence of such price spikes is actually less than what is

observed in our sample, a TOU tariff built from a forward-looking probabilistic distribution

of spot prices would exhibit a more spread out peak period.

On Figure 4, the incremental efficiency gain to move from three to four periods appears

to be relatively modest. As in the previous application, one may thus wonder to want extent

a three-period TOU coupled with critical peak events may reach a more efficient outcome.

Similarly, estimates based on only a few years of data should be considered with caution

since we use yearly outcomes to proxy for contingencies. Having this important caveat in

mind, we find that while a four-period TOU rate increases efficiency by about 3% relative to

a three-period TOU rate, making use of critical peak events instead of a fourth time-of-use

period yields about 40% gains relative to the same benchmark.39 Relative to the flat-rate

tariff benchmark, these efficiency gains are estimated to reach about 55%. Additional gains

36Respective prices for a constant-slope demand specification are $24.7/MWh, $33.4/MWh, $42.1/MWh,
and $52.9.

37Respective prices for a constant-slope demand specification are $20.6/MWh, $31.9/MWh, $46.5/MWh,
and $72.7.

38To illustrate this, we computed the incompressible part of the deadweight loss (the first term in Propo-
sition 3) on a yearly basis. While this term keeps a similar order of magnitude for the years 2011 to 2016, it
increases 10 to 30-fold in 2017 and 2018.

39As in the previous application, we report the results for a CPP tariff where peak events are capped
at 200 hours per year. The corresponding critical peak price is $218/MWh (resp. $209/MWh) under the
assumption of an isoelastic (resp. constant-slope) demand. By contrast, the most efficient design is found to
limit critical events to about 60 hours a year, at the political cost of a higher critical peak price of $358/MWh
(resp. $354/MWh).
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Month Type of day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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Figure 5: Obtained California-wide TOU tariff (isoelastic demand, 2011-2014 data)
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Figure 6: Obtained California-wide TOU tariff (isoelastic demand, 2015-2018 data)

from a CPP tariff are also likely to arise in the long run as less generation capacity will be

needed to meet capacity adequacy requirements (Blonz, 2016).

Finally, the framework developed in this paper equally applies to the spatial dimension.
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In their discussion with the FERC, the CAISO (2015) argued that, short of a nodal approach,

a refinement of load aggregation zones was unlikely to yield significant benefits. This claim

may be quantified at two levels of spatial disaggregation. First, at the IOU level, Appendix D

shows the obtained IOU-specific four-period TOU tariffs. The graphical similarity between

IOU-specific rates is confirmed quantitatively. Moving from a California-wide to an IOU-

specific tariff is found to yield efficiency gains of about 1% in both demand specifications.

Second, one can investigate whether SLAPs would constitute a more suitable geographical

disaggregation unit. In the absence of load information at the SLAP level, we assume a

constant-slope specification of the indirect demand. Using data from 2011 to 2016 (resp.

2015 to 2016), we find that tailoring SLAP-specific four-tier TOU tariffs yields efficiency

gains of about 2% (resp. 7%) relative to a situation where a uniform TOU is implemented

over all SLAPs. Our results are thus consistent with CAISO (2015) analysis that, except

for physical nodes, the efficiency gains to use smaller administrative zones for rate design

purposes might be relatively modest in California.

5 Conclusion

As end consumers, the rate schedules we face every day are much simpler than state-

contingent prices over a full set of Arrow-Debreu commodities. This paper provides a very

tractable framework to assess the magnitude of the trade-offs involved when designing such

simple rates, and thus to better understand the simplified rate structures that are likely to

emerge in different environments.

We study the second-best pricing problem of an entity (e.g. a utility) that must design a

linear pricing schedule for a given market segment relying on a fixed number of prices, while

facing exogenous “simplicity” constraints. These constraints may be driven by technological,

political or practical considerations. After having clearly formalized this problem and how

it relates to the vast literature on second-best pricing, we show that it may be solved using

basic machine learning techniques and typically available information. Empirical applica-

tions prove in turn easy to implement and fast to run. As a consequence, one can explore

the relative merits of many different ways to increase rate sophistication. When simplicity

constraints derive from technological or political barriers, one can also speculate about the

benefits that may be achieved through R&D or lobbying efforts.

Retail electricity pricing in both France and California are used as example applications.

We show that time-of-use tariffs can only grasp a modest share of potential efficiency gains,
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and that the marginal benefits from increasing tariff complexity are very limited beyond three

to four time-of-use periods. In France, moving from a two-tier to a three-tier TOU rate would

allow to reflect seasonal variations, with higher prices during the winter. In California, the

massive increase in installed capacities of photovoltaic generation is progressively shaping

“super-peak” periods in July and August, as well as off-peak solar hours in the winter and

the spring, as well as during the weekends. In both applications, using critical-peak pric-

ing instead of more sophisticated TOU rates yields much higher efficiency gains, while still

falling significantly short of the first-best real-time-pricing benchmark. The issue of spatial

aggregation of consumers into “zones” is also discussed for California. Our results suggest

that, for this specific example, load disaggregation at the IOU or SLAP level provides little

efficiency gains when residential consumers are to be charged a four-period time-of-use tariff.

While our applications have focused on retail electricity pricing, our theoretical frame-

work is fairly general and may prove useful in other areas such as Pigouvian taxation or

financial product design.
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Appendices

A Proofs

A.1 Proof of Proposition 1

We start by rewriting expression (9) as:

min
p̄1,...,p̄N

min
s∈SJN

1

2

J∑
j=1

(p̄s(j) − p∗j )2|∂xj
∂pj
|


In words, we tackle the two steps of the problem in a reverse order. First, for a given

price vector (p̄1, ..., p̄N ), we compute the optimal sets of composite commodities. Second, we

optimize the prices (p̄1, ..., p̄N ).

Step 1: optimal partition for given average prices

Consider an exogenously given price vector (p̄1, ..., p̄N ). Without loss of generality, we

assume p̄1 < ... < p̄N . If we map the Arrow-Debreu commodity j to the price p̄n, the

corresponding efficiency loss is:

∂xj
∂pj

(p∗j − p̄n)2

It is thus optimal to map the Arrow-Debreu commodity j to the closest p̄n, that is to a set

Sn such that |p∗j − p̄n| is minimal.

Step 2: optimal prices for the sets of composite commodities

Without loss of generality, we assume that p∗1 < ... < p∗J (if pi = pj for some i and j, one

can collapse them into a single commodity with indirect demand derivative ∂xi
∂pi

+
∂xj
∂pj

).

We define the cumulative frequency distribution function of {p∗j}j weighted by
∂xj
∂pj

as:

G(p) ≡
∑

p∗j s.t. p
∗
j≤p
|∂xj
∂pj
| =

sup{i | p∗i≤p}∑
j=1

|∂xj
∂pj
|

In particular, with the notation G(p∗0) ≡ 0, we have:

|∂xj∂pj
| = G(p∗j )−G(p∗j−1)

The “inverse” cumulative frequency distribution may then be defined as:
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G−1(ω) ≡
J∑
j=1

p∗j1G(p∗j−1)<ω≤G(p∗j )

In words, G−1(.) is a step function that takes the value p∗j on the interval
]
G(p∗j−1), G(p∗j )

]
.

This interval is of length |∂xj∂pj
| by definition of G.

From Step 1, and denoting p̄0 ≡ 2 infj(p
∗
j ) − p̄1 and p̄N+1 ≡ 2 supj(p

∗
j ) − p̄N , the opti-

mization problem may be written:

min
p̄1,...,p̄N

1

2

N∑
n=1

∑
p̄n−1+p̄n

2
≤p∗j<

p̄n+p̄n+1
2

(
p̄n − p∗j

)2 |∂xj
∂pj
| (12)

Using the objects previously defined, the objective function may be rewritten:

1

2

N∑
n=1

∑
p̄n−1+p̄n

2
≤p∗j<

p̄n+p̄n+1
2

∫ G(p∗j )

G(p∗j−1)

(
p̄n −G−1(ω)

)2
dω

Since the p∗j are ordered and strictly increasing, for any price π there exists an index j(π)

such that:

p∗j(π) ≤ π < p∗j(π)+1

and by definition of G we have: G(π) = G(p∗j(π)). The above expression may then be

rewritten:

1

2

N∑
n=1

∫ G(p∗
j(

p̄n+p̄n+1
2 )

)

G(p∗
j(

p̄n−1+p̄n
2 )

)

(
p̄n −G−1(ω)

)2
dω

which proves the first part of Proposition 1.

It is worth noting that the proof is much shorter if one is willing to take a less rigorous

approach. Indeed, assuming that G is differentiable, one can directly rewrite from Step 1

the expression for the deadweight loss as:

min
p̄1,...,p̄N

1

2

N∑
n=1

∫ p̄n+p̄n+1
2

p̄n−1+p̄n
2

(p̄n − p)2 dG(p) =
1

2

N∑
n=1

∫ G(
p̄n+p̄n+1

2
)

G(
p̄n−1+p̄n

2
)

(
p̄n −G−1(ω)

)2
dω

which yields the first-order condition:

∫ p̄n+p̄n+1
2

p̄n−1+p̄n
2

(p− p̄n) dG(p) = 0 (13)
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k-means implementation

The first-order conditions of equation (13) may be rewritten:

p̄n =

∫ p̄n+p̄n+1
2

p̄n−1+p̄n
2

pdG(p)∫ p̄n+p̄n+1
2

p̄n−1+p̄n
2

dG(p)

In words, p̄n is the weighted average of the first-best prices p∗j of the states in Sn, the

weights being given by |∂xj∂pj
|. Building on this intuition, for a given partition {S1, ..., SN},

we can define µn as the |∂xj∂pj
|-weighted mean of the prices p∗j of the states that belong to Sn.

From:

min
s∈SJN

 min
p̄1,...,p̄N

1

2

J∑
j=1

(p̄s(j) − p∗j )2|∂xj
∂pj
|


we can then write:

min
s∈SJN

 min
p̄1,...,p̄N

1

2

J∑
j=1

(p̄s(j) − µn + µn − p∗j )2|∂xj
∂pj
|


which by definition of µn simplifies to:

min
s∈SJN

1

2

N∑
n=1

∑
p∗j∈Sn

(p∗j − µn)2|∂xj
∂pj
|+ min

p̄1,...,p̄N

1

2

J∑
j=1

∑
p∗j∈Sn

(p̄n − µn)2|∂xj
∂pj
|


It is then obviously optimal to pick p̄n = µn which simplifies the problem to:

min
s∈SJN

1

2

N∑
n=1

∑
p∗j∈Sn

(p∗j − µn)2|∂xj
∂pj
|

This latter formulation is precisely the definition of a weighted k-means clustering problem.

A.2 Simulations testing the heuristic of Proposition 2

To test the heuristic described in Proposition 2, we generated random 10× 10 matrices with

dominant diagonal elements. More specifically, a random symmetric matrix was first drawn,

and its diagonal elements were then replaced by minus the absolute value of the sum of

the other coefficient on their respective rows. We tested two polar cases where all the non-

diagonal elements had the same sign, either positive or negative. Arguably, such situations

are likely to represent worst-case scenarios in empirical applications.

We then computed second-best prices in two different manners:
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• A greedy approach testing all partitions and keeping the optimal one;

• The heuristic of Proposition 2.

Out of 500 draws, the proposed heuristic found the optimal solution in 20% of the cases.

The inefficiency of the heuristic solution relative to the optimal one was lower than 10%

in more than 85% of runs, and the worst inefficiency due to having chosen a suboptimal

partition was about 50%.

A.3 Proof of Proposition 3

We follow the same two steps as in the proof of Proposition 1.

Step 1: optimal partition for given average prices

Let (p̄1, ..., p̄N ) be a given vector of average prices for the sets of composite commodities.

We want to construct the partition s ∈ SJN that solves:

max
s∈SJN

1

2

M∑
m=1

∑
j∈Sm

(
p̄s(j) − p∗j

)2 ∂xj
∂pj

(14)

In other words, we want to allocate each Sj to a given p̄n for an exogenously given vector

of composite goods’ prices (p̄1, ..., p̄N ).

For a given m ∈ {1, ...,M}, the function Z 7→
∑
j∈Sm

(
Z − p∗j

)2 ∂xj
∂pj

is a degree-two poly-

nomial which reaches its maximum at p̂∗m. Indeed, we purposely defined p̂∗m as:

p̂∗m ≡

∑
j∈Sm

∂xj
∂pj

p∗j

∑
j∈Sm

∂xj
∂pj

By symmetry around this maximum, the optimal partition is obtained by mapping each

set Sm of the finest partition to the price p̄n that minimizes |p̂∗m − p̄n|.

Step 2: optimal prices for the sets of composite commodities

Given the optimal partition found in step 1, the objective function of the problem defined

by expression (14), which we now want to optimize with respect to {p̄1, ..., p̄N}, can be
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written:

1

2

N∑
n=1

∑
p̄n−1+p̄n

2
≤p̂∗m<

p̄n+p̄n+1
2

∑
j∈Sm

(
p̄n − p∗j

)2 ∂xj
∂pj

(15)

We then note that the last sum may be rewritten:

∑
j∈Sm

(
p̄n − p∗j

)2 ∂xj
∂pj

=
∑
j∈Sm

(
p̄n − p̂∗m + p̂∗m − p∗j

)2 ∂xj
∂pj

=
∑
j∈Sm

(p̄n − p̂∗m)2 ∂xj
∂pj

+
∑
j∈Sm

(
p̂∗m − p∗j

)2 ∂xj
∂pj

+ 2
∑
j∈Sm

(
p̂∗m − p∗j

) ∂xj
∂pj︸ ︷︷ ︸

=0 by definition of p̂∗m

= (p̄n − p̂∗m)2
∑
j∈Sm

∂xj
∂pj

+
∑
j∈Sm

(
p̂∗m − p∗j

)2 ∂xj
∂pj

Defining Wm ≡
∑
j∈Sm

|∂xj
∂pj
|, expression (15) may be rewritten:

−1

2

N∑
n=1

∑
p̄n−1+p̄n

2
≤p̂∗m<

p̄n+p̄n+1
2

(p̄n − p̂∗m)2Wm +
1

2

M∑
m=1

∑
j∈Sm

(
p̂∗m − p∗j

)2 ∂xj
∂pj

(16)

This expression has to be optimized with respect to {p̄1, ..., p̄N}. As a consequence, the

second term can be ignored, leaving us with:

−1

2

N∑
n=1

∑
p̄n−1+p̄n

2
≤p̂∗m<

p̄n+p̄n+1
2

(p̄n − p̂∗m)2Wm

This expression is precisely the same as equation (12) if one replaces p∗j by p̂∗m, and the

weights
∂xj
∂pj

by Wi. The same logic as in Proposition 1 hence applies.

Finally, one can note that Equation (16) decomposes welfare losses into two terms:

• An exogenous term arising because of the finest partition constraint:

1
2

∑M
m=1

∑
j∈Sm

(
p̂∗m − p∗j

)2 ∂xj
∂pj

This term represents the minimal amount of welfare losses to be incurred because of

the enforced finest partition.

• An endogenous term arising because of the limited number of price instruments used:
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−1

2

N∑
n=1

∑
p̄n−1+p̄n

2
≤p̂∗m<

p̄n+p̄n+1
2

(p̄n − p̂∗m)2Wm

B Toy example

Consider a retail business that sells apples in two cities C ∈ {A,B}. City B being further

away from production, it happens to be more costly to serve. Supply cost further depends

on the season S ∈ {H,L}, where H stands for the harvesting season. Finally, in a given

year, yields Y ∈ {G,B} may be either “good” or “bad” depending on random shocks such

as weather.

Our simple example thus features eight Arrow-Debreu commodities j ∈ {A,B}×{H,L}×
{G,B}. To fix ideas, we assume the marginal costs of supply are such that:

p∗A,H,G < p∗B,H,G < p∗A,H,B < p∗B,H,B < p∗A,L,G < p∗B,L,G < p∗A,L,B < p∗B,L,B

We hence assume that selling during the harvesting season drives down supply costs “more”

than being in a good year, which itself drives down costs “more” than selling in the cheaper-

to-serve city. For simplicity, we assume that Arrow-Debreu commodities are independent

and that the slope of their inverse demand is the same for all commodities. Figure B.1 plots

the inverse of the (weighted) cumulative distribution function of these first best prices.40

p∗A,H,G

p∗B,H,G

p∗A,H,B

p∗B,H,B

p∗A,L,G

p∗B,L,G

p∗A,L,B

p∗B,L,B

G(.)

Figure B.1: Inverse cumulative distribution function of (weighted) first-best prices

40Assuming that both seasons have similar durations. Regarding contingencies, first-best prices already
account for potential differences in probabilities of occurrence.
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Assume that, in order to avoid having to handle too many price tags, the business owner

considers using only two different prices so that N = 2. By Proposition 1, the second-best

price schedule is then the best approximation of G−1 with a two-step function, which is

depicted on Figure B.2.

G(.)

p̄1

p̄2

Figure B.2: Unconstrained case with N = 2

The obtained price schedule sets a price p̄1 during the harvesting season, and p̄2 during

the rest of the year, capturing the fact that this is the most important dimension explaining

variations in underlying supply costs.

Now assume that the government, genuinely concerned about its citizens’ health, wants to

encourage fruit consumption. Their investigations have revealed that the high price of apples

during the non-harvesting season significantly discourages people from eating apples during

this season. They thus enact a law stating that the price of apples should be constant across

a given year. Within our framework, this exogenous constraint can be taken into account

through the use of the finest partition {SA,G, SB,G, SA,B, SB,B} where:

SA,G ≡ {{A,H,G}, {A,L,G}}; SB,G ≡ {{B,H,G}, {B,L,G}};
SA,B ≡ {{A,H,B}, {A,L,B}}; SB,B ≡ {{B,H,B}, {B,L,B}}

Following the steps of Proposition 3, one may build the objects p̂m and Ĝ(.), which are

depicted in green on Figure B.3.

These objects may then be used to build the final price schedule as shown on Figure B.4.
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p̂A,G

p̂B,G

p̂A,B

p̂B,B

Ĝ(.)

Figure B.3: Constrained case with N = 2: building p̂ and Ĝ

p̄1

p̄2

Ĝ(.)

Figure B.4: Constrained case with N = 2: obtained price schedule

The obtained price schedule has intuitive features. First, the price gap between p̄1 and

p̄2 has decreased because of the inability to reflect seasonal variations in underlying supply

prices. Second, the price schedule has become a “good year/bad year” price schedule, where

a higher price is charged when yields are low in a given year. This is consistent with

the observation that this dimension is the second largest driver of underlying supply cost

variations. Third, this price schedule is less efficient. Up to a multiplicative constant, its

inefficiency may be measured by the sum of square errors between the applied price schedule

(in red) and the supply cost of the underlying Arrow-Debreu commodities (in blue). Our

framework thus allows to assess the welfare opportunity cost of the law enacted by the

government, either in relative terms compared to the previous status quo, or in absolute

terms if one makes quantitative assumptions about the slopes
∂xj
∂pj

.
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C Time-of-use rate proposed by CAISO

Figure C.1: Time-of-use rate proposed in CAISO (2016)
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D Obtained four-period TOU for individual IOUs (isoelastic

demand)

Figures D.1, D.2 and D.3 depicts the obtained TOU at the perimeter of each IOU.

Month Type of day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Jan
Working day

Weekend

Feb
Working day

Weekend

Mar
Working day

Weekend

Apr
Working day

Weekend

May
Working day

Weekend

Jun
Working day

Weekend

Jul
Working day

Weekend

Aug
Working day

Weekend

Sep
Working day

Weekend

Oct
Working day

Weekend

Nov
Working day

Weekend

Dec
Working day

Weekend

Figure D.1: Obtained rate schedule for a PG&E-only TOU (isoelastic demand, 2015-2018
data)

40



Month Type of day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Jan
Working day

Weekend

Feb
Working day

Weekend

Mar
Working day

Weekend

Apr
Working day

Weekend

May
Working day

Weekend

Jun
Working day

Weekend

Jul
Working day

Weekend

Aug
Working day

Weekend

Sep
Working day

Weekend

Oct
Working day

Weekend

Nov
Working day

Weekend

Dec
Working day

Weekend

Figure D.2: Obtained rate schedule for a SCE-only TOU (isoelastic demand, 2015-2018
data)

Month Type of day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Jan
Working day

Weekend

Feb
Working day

Weekend

Mar
Working day

Weekend

Apr
Working day

Weekend

May
Working day

Weekend

Jun
Working day

Weekend

Jul
Working day

Weekend

Aug
Working day

Weekend

Sep
Working day

Weekend

Oct
Working day

Weekend

Nov
Working day

Weekend

Dec
Working day

Weekend

Figure D.3: Obtained rate schedule for a SDG&E-only TOU (isoelastic demand, 2015-2018
data)
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