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Abstract

We propose a new sequential Efficient Pseudo-Likelihood (EPL) estimator for struc-
tural economic models with an equality constraint, particularly dynamic discrete choice
games of incomplete information. Each iteration in the EPL sequence is consistent
and asymptotically efficient, and iterating to convergence improves finite sample per-
formance. For dynamic single-agent models, we show that Aguirregabiria and Mira’s
(2002; 2007) Nested Pseudo-Likelihood (NPL) estimator arises as a special case of EPL.
In dynamic games, EPL maintains its efficiency properties, although NPL does not.
And a convenient change of variable in the equilibrium fixed point equation ensures
EPL iterations have the same computational simplicity as NPL iterations. Further-
more, EPL iterations are stable and locally convergent to the finite-sample maximum
likelihood estimator at a nearly-quadratic rate for all regular Markov perfect equilib-
ria, including unstable equilibria where NPL encounters convergence problems. Monte
Carlo simulations confirm the theoretical results and demonstrate EPL’s good perfor-
mance in finite samples.
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1 Introduction

Estimation of structural models characterized by equality constraints is a topic of consid-
erable interest in economics, particularly for dynamic discrete choice models and dynamic
discrete games of incomplete information. Broadly, likelihood-based estimation of these
models takes the form

max
(θ,Y )∈Θ×Y

QN(θ, Y )

s.t.G(θ, Y ) = 0,

where QN is the log-likelihood function, θ is a finite-dimensional vector of parameters, Y is
a vector of important auxiliary parameters, and G(θ, Y ) = 0 is the equality constraint. The
parameters θ usually consist of the structural parameters of the model. Common examples
of auxiliary parameters Y include expected/integrated value functions and conditional choice
probabilities. Finally, the equality constraint is often derived from an equilibrium fixed point
condition such as G(θ, Y ) = Y − Γ(θ, Y ) = 0.

One approach to estimating these models is to directly impose the fixed point equation
in estimation by solving for Yθ such that G(θ, Yθ) = 0 for each trial value of θ visited by the
optimization algorithm. In dynamic discrete choice, this approach was pioneered by Rust
(1987) and Pakes (1986) for single-agent models, where the fixed point is unique. Solution
algorithms are available for dynamic games (Pakes and McGuire, 1994, 2001), but due to
the computational complexity it is infeasible at present to nest those within an estimation
routine. Furthermore, in games the model may be incomplete due to multiple solutions, Yθ
(Tamer, 2003).

These dual issues led researchers to extend conditional choice probability (CCP) esti-
mators, first introduced in the seminal work of Hotz and Miller (1993), to the case of dy-
namic discrete games. Of particular interest here is the nested pseudo-likelihood approach of
Aguirregabiria and Mira (2002; 2007).1 They suggest using a k-step nested pseudo-likelihood
(k-NPL) approach, which defines a sequence of estimators, as an algorithm for computing
the nested pseudo-likelihood (NPL) estimator. In single-agent models, Aguirregabiria and
Mira (2002) show that the k-NPL estimator is efficient for k ≥ 1 when initialized with a
consistent estimate in the sense that it is asymptotically equivalent to the (partial) maximum
likelihood estimator. Furthermore, Kasahara and Shimotsu (2012) showed that the sequence

1Some other examples of CCP estimators are described in Hotz, Miller, Sanders, and Smith (1994); Bajari,
Benkard, and Levin (2007); Pakes, Ostrovsky, and Berry (2007); Pesendorfer and Schmidt-Dengler (2008).
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converges to the true parameter values with probability approaching one in large samples.
However, these attractive properties of k-NPL are lost in dynamic games. Aguirregabiria

and Mira (2007) show that k-NPL estimates are in general not efficient for k ≤ ∞, al-
though they show that the∞-NPL estimator outperforms the 1-NPL estimator in efficiency
when both are consistent. Pesendorfer and Schmidt-Dengler (2010), Kasahara and Shimotsu
(2012), Egesdal, Lai, and Su (2015), and Aguirregabiria and Marcoux (2019) show that the
sequence may fail to converge to the equilibrium that generated the data, even with very
good starting values, so that ∞-NPL may not be consistent.

The primary contribution of this paper is to provide a sequential method that extends the
attractive properties of k-NPL in single-agent settings to games. To this end, we introduce
the Efficient Pseudo-Likelihood (EPL) estimator. The estimator is based on replacing the
equality constraint, G(θ, Y ) = 0, with a fixed point condition, Y = Υ(θ, Y ), representing
a Newton step in the direction of Y holding θ fixed. We show that this has the benefit
of imposing the same equilibrium conditions while rendering the second step estimation of
θ orthogonal from the first step estimation of Y . The EPL procedure is also stable for
all regular Markov perfect equilibria, including those where the NPL mapping is unstable.
We discuss several implementations that are asymptotically equivalent. We formulate the
estimator in a setting with a general equality constraint and establish asymptotic equivalence
to maximum likelihood for any number of iterations k ≥ 1, as well as convergence to the
finite-sample maximum-likelihood estimate.

One of the distinctive and attractive features of k-NPL is that it simplifies each optimiza-
tion problem in the sequence when flow utility is linear in the parameters of interest. For
example, when the private information shocks are i.i.d. Type 1 Extreme Value draws, each
optimization problem reduces to static multinomial logit problem. We are able to preserve
this attractive feature in k-EPL by introducing a change of variables in the equilibrium fixed
point equation. Rather than characterizing the equilibrium with choice probabilities (as in
k-NPL), we instead characterize it with choice-specific value functions. This change of vari-
ables is necessary in games because of two issues that arise when using choice probabilities
directly: i) interaction terms between the parameters and the choice probabilities in the
expected flow utilities introduce additional nonlinearities in the objective function; and ii)
applying Newton steps may result in choice probabilities outside the unit simplex.2 However,
the change of variables is unnecessary in single-agent models, and we show that the k-NPL
estimator can be interpreted as an implementation of k-EPL in that setting.

In a related paper, Bugni and Bunting (2019) derive a sequence of consistent and asymp-
2It is also common to work with log choice probabilities, but those are still bounded above by zero,

resulting in a similar problem with Newton steps.
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totically efficient minimum-distance estimators for dynamic discrete choice models—including
dynamic games—which they refer to as k-MD. One basic difference is that our approach is
likelihood-based, although Pesendorfer and Schmidt-Dengler (2008) showed that likelihood-
based estimators can be represented as minimum-distance estimators for dynamic discrete
choice models. Another substantive difference is that k-MD updates are based on the NPL
mapping, which can be unstable at the true equilibrium as previously described, so the k-
MD estimator may suffer from the same convergence problems as NPL as k → ∞.3 The
efficiency gains of k-MD also come at the expense of additional computational time. On the
other hand, the stability of the EPL mapping allows us to prove convergence of k-EPL as
k →∞, and k-EPL does not increase computation time.4

Recently, Aguirregabiria and Marcoux (2019) studied the convergence properties of NPL
and introduced a variation of the NPL algorithm that updates the conditional choice prob-
abilities using spectral methods applied to the NPL mapping. The goal of their algorithm
is to improve convergence properties of NPL for unstable fixed points.5 However, upon con-
vergence, the NPL and spectral NPL algorithms do not produce the maximum likelihood
estimator, and convergence can require many iterations. In contrast, our EPL estimator is
asymptotically equivalent to the MLE at each iteration and converges locally to the MLE
after few iterations in finite samples. We verify these properties in our simulation study
below.

The remainder of the paper proceeds as follows. Section 2 describes the k-EPL estimator
and its asymptotic properties, along with some example applications. Section 3 describes the
generic dynamic discrete choice game of incomplete information. Section 4 provides Monte
Carlo simulations. Section 5 concludes. Proofs appear in the Appendix.

3The analysis of Kasahara and Shimotsu (2012) shows that consistency of k-NPL depends on stability of
the equilibrium (i.e., that it can be computed using standard fixed point iteration). When the equilibrium
is unstable, the use of fixed point iterates to update the choice probabilities between estimation iterations
results in inconsistency of k-NPL for k →∞. Because Pesendorfer and Schmidt-Dengler (2008) showed that
pseudo-likelihood estimates are asymptotically a special case of minimum-distance estimates, we conjecture
that the same properties apply to k-MD, although a rigorous analysis is beyond the scope of this paper.

4The computational times reported for the Monte Carlo experiments of Bugni and Bunting (2019) indicate
that one MD iteration requires substantially more computational time than one NPL iteration. One EPL
iteration, on the other hand, is approximately the same as one NPL iteration in terms of computational time.
Additionally, fewer iterations are required for EPL to converge, resulting in reduced overall computational
burden when iterating to convergence (k →∞).

5Stability here refers to the spectral radius of the NPL operator. In the population or in finite samples,
the NPL operator may have spectral radius larger than one for some equilibria. Conversely, the spectral
radius of the EPL operator is zero in the population and near zero in finite samples due to its use of Newton
steps.

4



2 The k-EPL Estimator

This section describes the k-EPL estimator and provides a simple example application to
illustrate its performance relative to k-NPL.

2.1 Description and Properties of k-EPL

We begin by describing the model and discussing full maximum likelihood estimation. Let wi
for i = 1, . . . , N denote the observations. The model is parameterized by a finite-dimensional
vector, θ ∈ Θ ⊂ R|Θ|, and a constraint G(θ, Y ) = 0 where Y ∈ Y ⊂ R|Y| and G : Θ × Y →
R|Y|. The true parameter values are θ∗ and Y ∗, with G(θ∗, Y ∗) = 0. Note that there may
be other values of Y satisfying the constraint at θ∗, but we will assume that the data are
generated from only one such value, a common assumption in the literature. Define

QN(θ, Y ) = N−1

N∑
i=1

qi(θ, Y ) = N−1

N∑
i=1

ln f(wi | θ, Y )

and let Q∗(θ, Y ) = E[QN(θ, Y )].

Assumption 1. (a) The observations {wi : i = 1, . . . , N} are i.i.d. and generated by a
single equilibrium (θ∗, Y ∗). (b) Θ and Y are compact and convex and (θ∗, Y ∗) ∈ int(Θ×Y).
(c) QN(θ, Y ) and Q(θ, Y ) are twice continuously differentiable. They have unique maxima
in Θ×Y subject to G(θ, Y ) = 0, and the maximum occurs at (θ∗, Y ∗) for Q. (d) G(θ, Y ) is
thrice continuously differentiable and ∇YG(θ∗, Y ∗) is non-singular.

Assumptions 1(a)-(c) echo standard identification assumptions. Non-singularity of the
Jacobian in (d) is the defining feature of regular Markov Perfect Equilibria in the sense of
Doraszelski and Escobar (2010). We now define(

θ̂MLE, ŶMLE

)
= arg max

(θ,Y )∈Θ×Y
QN(θ, Y )

s.t. G(θ, Y ) = 0.

Now, suppose that ∇YG(θ, Y ) exists and is non-singular for all (θ, Y ) ∈ Θ×Y and define
Υ(θ, Y ) to be a Newton step on Y holding θ fixed:

Υ(θ, Y ) ≡ Y −∇G(θ, Y )−1G(θ, Y ). (1)

Notice that the set of fixed points of Y = Υ(θ, Y ) and the set of roots of G(θ, Y ) = 0

are equivalent, so we can substitute the fixed point constraint for the equality constraint.
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Furthermore, from an initial value Y0 we could solve for a root Yθ via Newton-Kantorovich
iterations of the form:

Yk+1 = Υ(θ, Yk) = Yk −∇YG(θ, Yk)
−1G(θ, Yk).

When Y0 is within the basin of attraction of a solution, the Newton-Kantorovich iterates will
converge and will do so at a quadratic rate.6 These properties, along with some others, are
detailed in the following lemma.

Lemma 1. Let Υ denote the Newton operator defined in (1). Under Assumption 1, if
∇YG(θ, Yθ) is non-singular, then the following properties hold:

1. Roots of G and fixed points of Υ are identical: Υ(θ, Yθ) = Yθ if and only if G(θ, Yθ) = 0.

2. ∇θΥ(θ, Yθ) = ∇θYθ.

3. ∇Y Υ(θ, Yθ) = 0 (Zero Jacobian Property).

4. There exists some δ > 0 such that iterations of the form Yk+1 = Υ(θ, Yk) converges
to Yθ when the starting value, Y0, is an element of Bδ = {Y ∈ Y : ||Y − Yθ|| ≤ δ}.
Furthermore, the rate of convergence is quadratic.

Lemma 1 is the key result of this section, which will become apparent as the exposition
proceeds. In particular, we are interested in applying the results at (θ∗, Y ∗). For now, we
note that Result 3 of Lemma 1 is analogous to the “zero Jacobian” property from Proposition
2 of Aguirregabiria and Mira (2002), which was the key to their efficiency results.

In order to motivate our sequential estimator, we will consider alternatives to the original
population maximum likelihood problem. First, consider an alternative maximization prob-
lem where the equality constraint G(θ, Y ) = 0 is replaced with the equivalent fixed point
constraint Y = Υ(θ, Y ):

(θ̃, Ỹ ) = arg max
(θ,Y )∈Θ×Y

Q(θ, Y )

s.t. Y = Υ(θ, Y ).

or more succinctly,
6In some applications, Newton-Kantorovich iterations will converge from any initial guess, Y0. One such

example is the integrated value function in single-agent dynamic discrete choice with a finite state (and
action) space. Aguirregabiria and Mira (2002) and Dearing (2019) provide two different proofs of this result.
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θ̃ = arg max
θ∈Θ

Q(θ,Υ(θ, Yθ)).

Suppose that this has a unique solution. Then, we can use Lemma 1 to show that the first
order condition is satisfied at θ = θ∗, implying that θ̃ = θ∗ and Ỹ = Y ∗, so that the solution
is equivalent to the population maximum likelihood estimate. This equivalence is the crux
of our efficiency results later on.

Now, suppose that Y ∗ is known but that θ∗ is unknown. Then we redefine θ̃ as the
solution to yet another alternative problem:

θ̃ = arg max
θ∈Θ

Q (θ,Υ(θ, Y ∗)) .

Again, if the problem has a unique solution, then θ̃ = θ∗. However, this problem is infeasible
for two reasons. First, the population function Q(θ, Y ) is unknown. Instead, we use the
sample analog, QN . Second, Y ∗ is also unknown. Instead, we can substitute a consistent
estimate.

Although the form of Υ we have used so far is useful in motivating our estimator, using
it in practice would lead to unnecessary computational burden. Instead, Algorithm 1 below
defines our sequential estimation procedure with a more practical form of Υ which carries
out a quasi-Newton step given a compound parameter vector γ = (θ̆, Y ):7

Υ(θ, γ) ≡ Y −∇YG(θ̆, Y )−1G(θ, Y ). (2)

Econometrically, this change makes no substantive difference because we still have the zero
Jacobian property: ∇γΥ(θ, γθ) = 0, where γθ = (θ, Yθ). We elaborate on other possible
choices of Υ later, in Theorem 3.

Algorithm 1. (k-step Efficient Pseudo-Likelihood, or k-EPL) Let Υ be defined as in (2).

• Step 1: Obtain strongly
√
N-consistent initial estimates, γ̂0 = (θ̂0, Ŷ0).

• Step 2: For k ≥ 1, obtain parameter estimates iteratively:

θ̂k = arg max
θ∈Θ

QN (θ,Υ(θ, γ̂k−1))

7This definition of Υ is an approximate Newton step, rather than an exact one. We have found this
definition to be more useful, although the researcher could still use full Newton steps if desired. The intuition
from full Newton steps also applies to approximate Newton steps, so the change is made for computational
reasons and does not affect the theoretical econometric results.
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and update the auxiliary parameters:

Ŷk = Υ(θ̂k, γ̂k−1).

• Step 3: Increment k and repeat Step 2 until desired value of k is reached or until
convergence.

We claimed in the introduction that the k-EPL algorithm gives a sequence of asymptot-
ically efficient estimators that converge in large samples. We now state this result formally
in the following Theorem.

Theorem 1. (Asymptotic Properties of k-EPL) Under Assumption 1, the k-EPL estimates
computed with Algorithm 1 satisfy the following for any k ≥ 1:

1. (Consistency) γ̂k = (θ̂k, Ŷk) is a strongly consistent estimator of (θ∗, Y ∗).

2. (Asymptotic Equivalence to MLE)
√
N(θ̂k − θ∗)

d→ N (0,Ω∗−1
θθ ), where Ω∗θθ is the infor-

mation matrix evaluated at θ∗.

3. (Large Sample Convergence) There exists a neighborhood of γ∗ = (θ∗, Y ∗), B∗, such
that limk→∞ γ̂k = γ̂MLE almost surely for any γ̂0 ∈ B∗.

The results of Theorem 1 are similar to some results in the literature on iteratively
estimating single-agent dynamic discrete choice models and depend heavily on the “zero
Jacobian” property (Result 3 of Lemma 1). The zero Jacobian property ensures that γ̂k =

(θ̂k, Ŷk) is asymptotically orthogonal to γ̂k−1. This means that using γ̂k−1 is asymptotically
equivalent to using γ∗ = (θ∗, Y ∗) at each step. Intuitively, an EPL step is very similar to a
Newton step on the full maximum likelihood problem. This drives the consistency (Result
1) and asymptotic equivalence to MLE (Result 2) of each step. Result 3 in the theorem
is similar to Kasahara and Shimotsu (2012, Proposition 1) and shows convergence in large
samples.

While our large sample results are encouraging, there is also the question of finite sample
performance. We obtain favorable local results, as detailed in the next theorem. The only
additional requirement is that the Jacobian of the equality constraints, G, with respect to
Y is nonsingular at the MLE estimate.

Assumption 2. ∇YG(θ̂MLE, ŶMLE) is non-singular.

Theorem 2. (Finite Sample Properties) Under Assumptions 1 and 2,

1. The MLE is a fixed point of the EPL iterations: if γ̂k−1 = γ̂MLE, then γ̂k = γ̂MLE.
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2. For all k ≥ 1,

γ̂k − γ̂MLE = Op(N
−1/2||γ̂k−1 − γ̂MLE||+ ||γ̂k−1 − γ̂MLE||2).

3. W.p.a. 1 as N → ∞, for any ε > 0 there exists some neighborhood of γ̂MLE, B, such
that the EPL iterations define a contraction mapping on B with Lipschitz constant,
L < ε.

The first result of Theorem 2 establishes that the MLE is a fixed point of the EPL
iterations in a finite sample, similar to Aguirregabiria and Mira (2002, Proposition 3) for
single-agent NPL. The second result gives a theoretical explanation of why we should expect
iteration to yield improvements in finite samples. This result is analogous Proposition 2 of
Kasahara and Shimotsu (2008), but their result was only for NPL in the single-agent case.
Following the same logic, suppose the initial estimates are such that γ̂0 − γ∗ = Op(N

−b) for
b ∈ (1/4, 1/2], so that ||γ̂0− γ̂MLE|| = Op(N

−b).8 Repeated substitution gives ||γ̂k− γ̂MLE|| =
Op(N

−(k−1)/2−2b). In particular, in the case where the state space is finite and frequency
estimates are used, b = 1/2 and ||γ̂k− γ̂MLE|| = Op(N

−(k+1)/2), noting that N−(k+1)/2 → 0 as
k →∞ forN > 1. Our own Monte-Carlo simulations in Section 4 exhibit such improvements.

The third result in Theorem 2 allows us to consider EPL iterations as a computationally
attractive algorithm for computing the MLE. It establishes that we can expect the EPL
iterations to be a local contraction around the MLE with a very fast convergence rate. For
the population objective function, the convergence rate is quadratic. However, we only
have samples, so we should expect the convergence rate to be linear with a small Lipschitz
constant, implying that we’ll need only a few iterations to achieve convergence. So, we can
use EPL iterations to compute the MLE even when a consistent γ̂0 is unavailable. We can
simply use multiple starting values, iterate to convergence, and use the converged estimate
that provides the highest log-likelihood. We illustrate this usage of EPL in our Monte Carlo
experiments in Section 4.

Aside from EPL, there are two potential alternative algorithms for computing the MLE:
the nested fixed-point (NFXP) algorithm á la Rust (1987) and the MPEC approach proposed
by Su and Judd (2012) and extended to dynamic games by Egesdal et al. (2015). The NFXP
algorithm searches over θ in an outer loop and finds Y (θ) such that G(θ, Y ) = 0 in an inner
loop. MPEC leverages modern optimization packages to search over θ and Y simultaneously,
only imposing that G(θ, Y ) = 0 at the solution. The algorithm of choice will depend on the
structure of the model.

8For b ∈ (1/4, 1/2], we have γ̂0 − γ̂MLE = γ̂0 − γ∗ − (γ̂MLE − γ∗) = Op(N−b) +Op(N−1/2) = Op(N−b) .
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While this section discusses the EPL algorithm in the context of a general constrained
maximum-likelihood problem, we are ultimately focused on estimating dynamic discrete
choice games of incomplete information. As discussed in the introduction, NFXP is com-
putationally unattractive—or even infeasible—in such games.9 MPEC, however, remains
feasible and performs well, as demonstrated by Egesdal et al. (2015). The key difference
here between MPEC and EPL is that EPL will be able to heavily exploit the structure
of the problem.10 In Section 3, we show that—much like NPL in single-agent models—
common modeling assumptions lead to EPL iterations that break down into two easily-
computed parts: solving a (potentially large-scale) linear system, followed by solving an
unconstrained, globally concave maximization problem. Neither of these operations require
sophisticated optimization software; and repeating them just a few times may ultimately be
more computationally attractive than using MPEC to simultaneously solve for all variables
in a non-concave, large-scale, constrained maximization problem.

We have already mentioned that the choice of Υ used in the algorithm could be replaced
with full Newton steps without affecting the asymptotic results. These are only two of several
choices that yield the same asymptotic results, as shown in the next theorem.

Theorem 3. (Asymptotically Equivalent Definitions of Υ) The results of Theorems 1 and 2
hold when Υ is defined as any of the following, where γ̂k−1 = (θ̂k−1, Ŷk−1):

1. Υ(θ, γ̂k−1) = Ŷk−1 −∇YG(θ̂k−1, Ŷk−1)−1G(θ, Ŷk−1).

2. Υ(θ, γ̂k−1) = Ŷk−1−Z(θ̂k−1, Ŷk−1)−1G(θ, Ŷk−1), where Z is a continuously differentiable
function and Z(θ, Yθ) = ∇YG(θ, Yθ) for all θ.

3. Υ(θ, γ̂k−1) = Ŷk−1 −∇YG(θ, Ŷk−1)−1G(θ, Ŷk−1).

The first definition of Υ in the theorem is the one we have worked with so far, defined
earlier in (2). The second definition is a generalization of the first and can allow researchers
to circumvent the need for an initial θ̂0 if they can find some Z(θ̂k−1, Ŷk−1) = Z(Ŷk−1) or
even Z(θ̂k−1, Ŷk−1) = A that has the required properties.11 We will show later on that this
definition can be used in single-agent dynamic discrete choice models. The third definition,
which is an exact Newton step from (1), is likely the least useful because it requires inverting
GY (θ, Ŷk−1) at multiple values of θ, which can be computationally burdensome and also will

9We note that NFXP still performs well in single-agent dynamic models. See Doraszelski and Judd (2012)
and Arcidiacono, Bayer, Blevins, and Ellickson (2016) for details on the computational burden of computing
equilibria in discrete-time dynamic discrete games.

10Egesdal et al. (2015) exploit sparsity patterns in their MPEC implementation but do not further exploit
other features of the problem structure.

11Of course, Z(θ̂k−1, Ŷk−1) = ∇YG(θ̂k−1, Ŷk−1) is an option, so definition 2 includes definition 1.
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introduce additional nonlinearities in the objective function for optimization.12 However, we
include it for completeness. For all of the definitions of Υ in the theorem, the results of
Lemma 1 hold when all appropriate terms are replaced with (θ∗, Y ∗) or (θ̂MLE, ŶMLE). So,
the proof techniques from Theorems 1 and 2 can be used to prove Theorem 3.

2.2 Example: A Static Game with an Unstable Equilibrium

As a simple illustration of the performance of k-EPL, we consider estimating the static game
of incomplete information from Pesendorfer and Schmidt-Dengler (2010). This example is
particularly interesting because it was constructed as an example where converged NPL
(k → ∞) is inconsistent. We discuss only some relevant details of the model and refer the
reader to Pesendorfer and Schmidt-Dengler (2010) for a full description.

There are two agents (players), j ∈ {1, 2}, and two possible actions, a ∈ {0, 1}. The
structural parameter is a scalar: θ ∈ [−10,−1]. The choice probabilities are Pr(aj = 1 |
θ, P−j) = 1 − Fα(−θP−j), where 0 < α < 1. Fα is an approximate uniform distribution
with Fα(x) = x for x ∈ [α, 1 − α) and a more complicated form for x ∈ R \ [α, 1 − α) to
guarantee that it is a proper distribution function with full support. The probability mass
in the uniform region can be made arbitrarily close to 1 by taking α→ 0. Given a value of
θ, the model has three equilibria for α sufficiently close to zero. The equilibrium generating
the data is described by the following fixed point equation:[

P1

P2

]
=

[
1 + θP2

1 + θP1

]

=

[
1

1

]
+

[
0 θ

θ 0

][
P1

P2

]
,

or more compactly, P = Ψ(θ, P ). This linear system has a unique solution if and only if
θ 6= −1, and the solution is P1 = P2 = 1

1−θ . The k-NPL iterates are defined by

θ̂NPL
k = arg max

θ∈[−10,−1]

N−1

N∑
i=1

qi(θ, P̂k−1),

P̂k = Ψ(θ̂NPL
k , P̂k−1).

We note that qi(θ, P̂k−1) is the log of a linear function of θ, a point we will return to later.

12More precisely, it only requires solving the linear system GY (θ, Ŷk−1)b = G(θ, Ŷk−1) for b. However, the
point about computational burden remains.
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Pesendorfer and Schmidt-Dengler (2010) consider the case where θ∗ = −2, implying P ∗1 =

P ∗2 = 1
3
. They show that as N →∞, θ̂NPL

∞
p→ −1. Rather than repeat their full explanation

of this result, we instead focus on explaining why the sequence does not converge to θ∗ = −2.
The reason is, essentially, because the equilibrium is unstable. Notice that

∇PΨ(θ∗, P ∗) =

[
0 −2

−2 0

]
,

which has eigenvalues λ = ±2, implying that the equilibrium is unstable. Kasahara and
Shimotsu (2012) show that the non-convergence issue in k-NPL can be rectified by esti-
mating separate parameters for each player. However, such an adjustment may not induce
convergence in more general settings.

Consider, instead, estimating θ∗ with k-EPL. We still want qi to be the natural log of
a function that is linear in θ, and this will require a change of variables in the equilibrium
fixed point equation. Define vj = θP−j and consider the following re-characterization of the
fixed point equation: 

P1

P2

v1

v2

 =


1 + v1

1 + v2

θP2

θP1


⇒

[
v1

v2

]
=

[
(1 + v2)θ

(1 + v1)θ

]
.

So, we can define Y = (v1, v2) and therefore

G(θ, Y ) = Y −

([
0 1

1 0

]
Y +

[
1

1

])
θ

= Y − (AY + b) θ

Because θ is a scalar, G(θ, Y ) is linear in θ and Y separately (holding the other fixed)
but not jointly. Linearity in Y is important because G(θ, Y ) = 0 can be solved with a
single Newton-Kantorovich iteration from any starting value. So, we expect that this global
one-step convergence will result in very good behavior of k-EPL. Additionally, we see that
∇YG(θ, Y ) = I − Aθ and we can easily verify that this is invertible if and only if θ 6= −1.
And since vj = θP−j, we can also define qi(θ, Y ) = qi(v), so that θ only influences qi through
Y (θ) = v(θ). This modification is made without loss of generality in full MLE subject to
the equilibrium constraint, so it is also valid here.
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We define Υ(θ, γ̂k−1) = Ŷk−1 − ∇YG(θ̂k−1, Ŷk−1)−1G(θ, Ŷk−1), the “default” Definition
1 in Theorem 3. Because G(θ, Y ) is linear in θ, Υ is also linear in θ. This means that
q̂i(θ,Υ(θ, γ̂k−1)) = q̂i(Υ(θ, γ̂k−1)) is the log of a linear function of θ, so there are no additional
nonlinearities in the objective function, relative to k-NPL. If we instead tried to use Y =

(P1, P2), then we would still get Υ linear in θ, but qi would then depend on θΥ(θ, Y ), which
is non-linear in θ.

All that remains now is to obtain Ŷ0 and θ̂0. Notice that the best response equations
imply θ =

Pj−1

P−j
for j ∈ {1, 2}. So first, we obtain frequency estimators P̂1,0 and P̂2,0. We

then use these to construct

θ̂0 =

P̂1,0−1

P̂2,0
+ P̂2,0−1

P̂1,0

2
,

v̂j,0 = θ̂0P̂−j,0.

We run Monte Carlo simulations of this model to illustrate the performance of the es-
timators. We simulate 500 samples, each with 5,000 observations. We estimate the model
using MLE, ∞-EPL, and ∞-NPL.13 The results are summarized in Table 1. The MLE
and ∞-EPL estimates achieve mean −2.0017 and −2.0014, respectively, and mean squared
error (MSE) 0.0017 and 0.0017. The two-sample Kolmogorov-Smirnov p-value is equal to
1. Furthermore, k-EPL obtained convergence at k = 2 in all 500 datasets. This is unsur-
prising: with so many observations and only two players/actions, we get very precise initial
estimates, so iteration converges very quickly. The slight difference in means and MSE are
likely due to a combination of the tolerance used in estimation and non-linearity in the full
MLE objective function.

Table 1: Pesendorfer and Schmidt-Dengler (2010) Monte Carlo Results
Estimator Mean MSE

MLE -2.0017 0.0017
∞-EPL -2.0014 0.0017
∞-NPL -1.0342 0.9651

On the other hand, ∞-NPL performs poorly, as is to be expected since this model was
constructed as an example where ∞-NPL is inconsistent. The estimate has a mean of
−1.0342 and MSE of 0.9651. Almost all of the MSE is due to the asymptotic bias, so the
estimate is reliably converging to the wrong number.14

13By ∞-EPL and ∞-NPL, we mean that we iterate until ||θ̂k − θ̂k−1||∞ < 10−6. We allow for up to 20
iterations. Estimation was performed with Matlab R2017a using fmincon. The default tolerance of 10−6 is
used for the solver.

14There were 17 samples for which NPL converged in 3 or fewer iterations. The mean and MSE for these
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In addition to demonstrating the good performance of k-EPL, this example also intro-
duces the change of variables that will be used in dynamic games. Notice that vj is essentially
a choice-specific value function; we only need to know vj to calculate the choice probability
for player j. We showed that the change of variable is needed to avoid additional nonlinear-
ities in the objective function relative to k-NPL here, and the same will be true in dynamic
games.

2.3 Single-Agent Dynamic Discrete Choice

We’ll now show that k-NPL in a single-agent dynamic discrete choice model is a special case
of k-EPL. Here, we can work directly in probability space using the fixed point condition,

P = Ψ(θ, P ),

with Ψ(θ, P ) defined as in Aguirregabiria and Mira (2002). Define Y ≡ P , so that G(θ, Y ) =

Y −Ψ(θ, Y ) and
∇YG(θ, Y ) = I −∇Y Ψ(θ, Y ).

Now, consider implementing k-EPL with Definition 2 from Theorem 3: Υ(θ, γ̂k−1) =

Ŷk−1−Z(θ̂k−1, Ŷk−1)−1G(θ, Ŷk−1), where Z(θ, Yθ) = ∇YG(θ, Yθ) for all θ. Proposition 2 from
Aguirregabiria and Mira (2002) shows that ∇PΨ(θ, Pθ) = 0. Thus, ∇YG(θ, Yθ) = I for all θ
since Y ≡ P . So, we set Z(θ, Y ) = I and obtain

Υ(θ, γ̂k−1) = Ψ(θ, Ŷk−1).

Finally, we have that qi(θ,Υ(θ, γ̂k−1)) = ln Ψ(θ, Ŷk−1)(wi) = ln Ψ(θ, P̂k−1)(wi) because be-
cause Y ≡ P . So, this implementation of k-EPL is identical to k-NPL.

This equivalence of k-NPL to k-EPL in single agent models is unsurprising for a couple
reasons. First, we stated in the introduction that the motivation for k-EPL is to extend the
nice properties of k-NPL from single-agent models to dynamic games. So, there should be, at
the very least, substantial conceptual overlap between the techniques. Second, Aguirregabiria
and Mira (2002, Proposition 1(c)) show that their policy iterations are equivalent to Newton
iterations on the value function in single-agent models. Since k-EPL is built around Newton
iterations, such an equivalence is again suggestive of the relationship shown in this section.

samples were −1.9932 and 0.0012, respectively. For the other 483 samples, convergence took at least 12
iterations. These had a mean and MSE of −0.9991 and 0.9991, respectively. Aguirregabiria and Marcoux
(2019) explain why the estimates converge to “good” values in some samples even though the equilibrium
generating the data is unstable.
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3 Dynamic Discrete Games of Incomplete Information

Here we describe a canonical stationary dynamic discrete game of complete information in
the style of Aguirregabiria and Mira (2007) and Pesendorfer and Schmidt-Dengler (2008),
although our notation is closer to that of Bugni and Bunting (2019). Time is discrete,
indexed by t ∈ {1, 2, . . . ,∞}. In a given market, there are J firms operating, indexed by
j ∈ J = {1, 2, . . . , |J |}. Given a vector of state variables observable to all agents and
the econometrician, xt, and its own private information εjt , each firm chooses an action,
ajt ∈ A = {0, 1, 2, . . . , |A|}. Action zero is the outside option when applicable. All players
choose their actions simultaneously.

Agents have flow utilities (profits), ũjat(θu, xt, a
−j
t , εjat), where a

−j
t are the actions of the

other players. States transition according to p(xt+1, εt+1 | at, xt, εt; θf ), and the discount
factor is β ∈ (0, 1). Agents choose actions to maximize expected discounted utility,

E

{
∞∑
s=0

βs−tũjas(θ, xs, a
−j
s , εjs)

∣∣∣∣xt, εjt
}
.

The primary parameter of interest is θ = (θu, θf ). Furthermore, we impose the following
standard assumptions on the primitives.

Assumption 3. (Additive Separability) ũjat(θu, xt, a
−j
t , εjat) = ū(θu, xt, a

−j
t ) + εjat.

Assumption 4. (Conditional Independence) p(xt+1, εt+1 | at, xt, εt; θf ) = g(εt+1)f(xt+1 |
at, xt; θf ), where g(εt+1) has full support and is thrice-continuously differentiable.

Assumption 5. (Independent Private Values) Private values are independently distributed
across players.

Assumption 6. (Finite Observed State Space) xt ∈ X = {1, 2, . . . , |X |}.

Assumptions 3–6 here correspond to Assumptions 1–4 in Aguirregabiria and Mira (2007),
although our conditional independence assumption also includes an additional full support
assumption, along with some differentiability assumptions.

The operative equilibrium concept here will be that of a Markov-perfect Nash equilibrium.
We will consider stationary equilibria only, so from here we drop the time subscript. Because
moves are simultaneous, the actions of player j do not depend directly on a−j ∈ AJ−1, but
rather on P−j ∈ ∆J−1, where P−j is its belief about the other players’ probability of playing
the corresponding actions and ∆ is the unit simplex in R|A|−1. So, from here on out we will
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work with the following utility function:

uja(θu, x, P
−j) =

∑
a−j∈AJ−1

P−j
a−j ū(θu, x, a

−j).

Now consider the vector of player j’s (expected) choice-specific value functions, vj ∈
R|X |×|A|, and define the corresponding choice probabilities as Λj(vj). In equilibrium, the
choice probabilities will be P j

a = Λj
a(v

j). And let

Λ−j(v−j) = (Λ1(v1), . . .Λj−1(vj−1),Λj+1(vj+1), . . . ,Λ|J |(v|J |)),

so that in equilibrium P−j = Λ−j(v−j). Furthermore, define the function

Φj
a(θ, v

j, v−j) = uja(θ,Λ
−j(v−j)) + βF j

a (θ,Λ−j(v−j))S(vj),

where Φ : Θ × R|J |×|X |×|A| → R|J |×|X |×|A| and S(·) is the social surplus function. This
function allows us to characterize the equilibrium fixed point equation with a convenient
change of variables as v = Φ(θ, v).

Lemma 2. (Representation Lemma) Choice-specific value functions characterize an equilib-
rium for θ if and only if vj = Φj(θ, vj, v−j) for all j ∈ J . More compactly,

v = Φ(θ, v).

Lemma 2 describes our change of variables that will be used to implement Algorithm
1 in estimation. This is in contrast to the representation lemma from Aguirregabiria and
Mira (2007), which uses choice probabilities to characterize the equilibrium. In short, there
is a one-to-one mapping between choice probabilities and (expected) choice-specific value
functions, conditional on the (conditional) flow utilities and transition probabilities. We use
this representation to define our constraints with Y = v and

G(θ, v) = v − Φ(θ, v).

So, why do we choose this particular representation of the equilibrium? There are two
reasons. The first is to preserve a nice property of the pseudo-likelihood problem in k-NPL:
linearity in θ of the (pseudo-)choice-specific value functions used to compute the pseudo-
likelihood function. That is, when uja(θ, P−j) is linear in θ and F j

a does not depend on θ, the
computational burden of the pseudo-likelihood maximization in each k-NPL iteration reduces
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to that of a linear-in-parameters static model.15 In Section 2.2, we showed that this property
won’t hold for k-EPL when we use a fixed point in probability space, even in a static model.
However, it will hold when we use the representation in choice-specific value function space.
The key here is the linearity of Φ(θ, v) in θ under these conditions. By defining Y = v and
G(θ, v) = v−Φ(θ, v), we get linearity of G(θ, v) in θ. And finally, we have Υ(θ, γ̂k−1) = Ŷk−1−
∇G(θ̂k−1, v̂k−1)−1G(θ, v̂k−1), which is also linear in θ. The function Υ(θ, γ̂k−1) determines
the choice-specific value functions used to compute the pseudo-likelihood, so these will be
linear in θ. Furthermore, only choice-specific value functions are needed to compute choice
probabilities, so that Q(θ, Y ) = Q(v). Thus, each step of our estimator uses Q(Υ(θ, γ̂k−1)),
so that θ only enters the objective function indirectly through Υ(θ, γ̂k−1).

The second reason we use this particular representation of the choice-specific value
functions is because of concerns with validity of the (quasi-)Newton steps computed with
Υ(θ, γ̂k−1). If we use the fixed point in probability space to define Y and G(θ, Y ), then we
will encounter problems if Υ(θ, γ̂k−1) does not map into the interior of the unit simplex over
which the probabilities are well-defined, especially when we iterate. Using choice-specific
value functions alleviates this concern because they can reside anywhere in R|J |×|X |×|A|.

4 Monte Carlo Simulations: Dynamic Game from Pe-

sendorfer and Schmidt-Dengler (2008)

We now turn our attention a series of Monte Carlo experiments where we estimate the model
from Pesendorfer and Schmidt-Dengler (2008). There are two firms indexed by j ∈ {1, 2}
who choose an action in each market i, denoted aij ∈ {0, 1}, where 1 is entry and 0 is
exit. The observed state variable xi = (xi1, xi2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} represents the
incumbency status of firms 1 and 2, respectively. Flow utilities are period profits:

ũj(xi, aij = 1) = θ∗M + θ∗Cai,−j + θ∗EC(1− xij) + εj1,

ũj(xi, aij = 0) = θ∗SVxij + εj0,

where θ∗EC represents the entry cost, θ∗SV is the scrap value, θ∗M is the monopoly profit, and
θ∗C is the effect of competition on profit. The discount factor is β∗ ∈ (0, 1). The data
are generated using the parameter values (θ∗M, θ

∗
C, θ

∗
EC, θ

∗
SV, β

∗) = (1.2,−2.4,−0.2, 0.1, 0.9).
15Usually, we have θ = (θu, θf ), F j

a (θf , P
−j), and linear-in-parameters uja(θu, P

−j). We then implement
a “two-step” estimator where θ∗f is estimated in a first stage and θ∗u is estimated via k-NPL. Computational
burden of each k-NPL estimation step then reduces to that of estimating a static model plus an additional
matrix inversion.
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The private shocks have distribution εja ∼ N(0, 0.5). We note that this is a slightly different
parameterization of the model than the one used by Pesendorfer and Schmidt-Dengler (2008),
but it is straightforward to show that the resulting flow utilities and hence the equilibria are
the same.

There are multiple equilibria in the game, and we generate data from equilibria (i), (ii),
and (iii) from Pesendorfer and Schmidt-Dengler (2008). The NPL mapping is unstable for
two of the three equilibria, but the EPL mapping, having spectral radius zero, is stable for
all three equilibria. Specifically, equilibrium (i) is asymmetric and NPL-stable, equilibrium
(ii) is asymmetric and NPL-unstable, and equilibrium (iii) is symmetric and NPL-unstable.
In their Monte-Carlo simulations, Pesendorfer and Schmidt-Dengler (2008) find that k-NPL
performs well for equilibrium (i) but becomes severely biased for equilibria (ii) and (iii) as
k grows, which is in line with the convergence analysis of Kasahara and Shimotsu (2012).16

However, we expect that EPL will perform well for all three equilibria.
We estimate (θ∗M, θ

∗
C, θ

∗
EC) and assume the other parameter values are known and held

fixed at θ∗SV = 0.1 and β∗ = 0.9. We present results for estimation using NPL and EPL.
The initial estimates of the conditional choice probabilities are sample frequencies, P̂ j

x,a.
We generate the data by first taking N ∈ {250, 1000} i.i.d. draws from the stationary
distribution of the observed state, x, for each equilibrium. One interpretation of this sampling
procedure is that each of the draws from the stationary distribution of x represents an
independent market. For each of these N draws we then sample actions for each player
using the equilibrium choice probabilities. We carry out 1000 replications for each sample
size. For ∞-NPL and ∞-EPL we terminate the algorithm when |θ̂k − θ̂k−1| < 10−6 or after
100 iterations. Computational times reported are minutes of “wall clock” time required to
carry out the full set of replications.17

In order to implement EPL in this context, we use the fixed-point constraint in choice-
specific value function space, defined in Section 3. Computing ∇vG(θ̂k−1, v̂k−1) for k = 1

requires initial estimates (θ̂0, v̂0). We use θ̂0 = θ̂1-NPL, the estimate from 1-NPL, which is
similar to the way Pesendorfer and Schmidt-Dengler (2008) use θ̂1-NPL to obtain an estimate
of the efficient weighting matrix used in their minimum-distance estimator. For each player,
we then set v̂j0,x,a = vja = uja(θ̂0, P̂

−j) + βF j
a (P̂−j)Γj(θ̂0, P̂ ), where

Γj(θ, P ) =
(
I − βF j(θ, P )

)−1
∑
a

P j(a) ∗
(
uja(θ, P

−j) + ea(P
j)
)

16Pesendorfer and Schmidt-Dengler (2008) use the terminology “k-PML” for k-NPL and iterate until
k = 20.

17Experiments were carried out using MATLAB R2018a on a 2017 iMac Pro in parallel using 18 Intel
Xeon 2.3 GHz cores.
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maps (θ, P ) into an ex-ante value function for player j, as in Aguirregabiria and Mira (2007,
p. 10).

4.1 Results for NPL-Stable Equilibrium (i)

Table 2 shows results for equilibrium (i), for which NPL is stable and consistent. We consider
both the one-step (k = 1) NPL and EPL estimators as well as the converged estimators
(k = ∞). For k = ∞, we report the total estimation time across all datasets, as well
as the median and interquartile range (IQR) of the number of iterations. For the large
sample experiments, we obtained convergence in fewer than 100 iterations for all algorithms
in almost all datasets, with ∞-NPL and ∞-EPL failing to converge in only 5 and 1 out of
1000 datasets, respectively. Convergence rates were somewhat lower, especially for ∞-NPL,
with the smaller sample size. Our reported results include all datasets, including those where
we obtain non-convergence.

Table 2: Monte Carlo Results for Pesendorfer and Schmidt-Dengler (2008) NPL-Stable Equi-
librium (i)

Obs. Parameter Statistic 1-NPL 1-EPL ∞-NPL ∞-EPL

N
=

25
0

θM = 1.2
Mean Bias -0.0579 -0.0277 -0.0158 0.0277

MSE 0.0461 0.0376 0.0368 0.0312

θC = −2.4
Mean Bias 0.1120 0.0425 0.0294 -0.0482

MSE 0.1642 0.1061 0.0585 0.0512

θEC = −0.2
Mean Bias -0.0393 -0.0205 -0.0270 -0.0039

MSE 0.0494 0.0338 0.0116 0.0045
Converged % 92.6% 97.5%

Iterations Median 70 8
IQR 28 2

Time (min.) Total 0.4481 0.1047

N
=

10
00

θM = 1.2
Mean Bias -0.0165 -0.0050 -0.0044 0.0033

MSE 0.0116 0.0107 0.0083 0.0059

θC = −2.4
Mean Bias 0.0340 0.0119 0.0076 -0.0052

MSE 0.0423 0.0320 0.0106 0.0076

θEC = −0.2
Mean Bias -0.0127 -0.0061 -0.0059 -0.0012

MSE 0.0123 0.0086 0.0018 0.0008
Converged % 99.5% 99.9%

Iterations Median 70 6
IQR 19 1

Time (min.) Total 0.5847 0.0743

Comparing 1-NPL to 1-EPL in Table 2, we see that 1-EPL has lower mean bias and MSE
for all three parameters of interest. However, both of these are outperformed by estimators
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iterated to convergence, illustrating the gains from such iterations in finite samples. For the
larger sample size ∞-EPL has the lowest bias, MSE, number of iterations, and computation
time. Even for this equilibrium where NPL is expected to perform well, the efficiency of
EPL yields improvements. Time per iteration is similar for NPL and EPL by design, so the
lower computational times are driven by the significant reduction in the number of iterations
to convergence.18 In this case for the smaller sample size, the results are more mixed. The
mean bias of EPL is higher (in absolute value) for two parameter values, but the MSE is
lower for all three. However, as before, convergence is much faster.

4.2 Results for NPL-Unstable Equilibrium (ii)

Table 3: Monte Carlo Results for Pesendorfer and Schmidt-Dengler (2008) Equilibrium (ii)
Obs. Parameter Statistic 1-NPL 1-EPL ∞-NPL ∞-EPL

N
=

25
0

θM = 1.2
Mean Bias -0.1322 -0.1461 -0.2099 -0.0309

MSE 0.0902 0.0988 0.0622 0.0740

θC = −2.4
Mean Bias 0.2793 0.2617 0.6719 0.0717

MSE 0.4643 0.5121 0.4804 0.4106

θEC = −0.2
Mean Bias -0.0777 -0.0764 -0.3110 -0.0441

MSE 0.1058 0.1270 0.1117 0.1076
Converged % 96.1% 100%

Iterations Median 34 9
IQR 10 3

Time (min.) Total 0.3011 0.0785

N
=

10
00

θM = 1.2
Mean Bias -0.0432 -0.0385 -0.2093 -0.0013

MSE 0.0210 0.0205 0.0480 0.0155

θC = −2.4
Mean Bias 0.0952 0.0612 0.6636 0.0047

MSE 0.1162 0.1078 0.4459 0.0829

θEC = −0.2
Mean Bias -0.0269 -0.0122 -0.2983 -0.0039

MSE 0.0283 0.0279 0.0923 0.0222
Converged % 99.7% 100%

Iterations Median 32 7
IQR 6 1

Time (min.) Total 0.3585 0.0946

Turning to equilibrium (ii), for which the NPL fixed point is unstable, we have a very
different picture. The results are presented in Table 3. For ∞-NPL there is substantial bias
in all parameters and seemingly little variation around those biased values. For example,
there is attenuation bias in the competitive effect θC, making it seem less negative. This bias

18Each iteration reduces to solving a linear system and then estimating a static binary probit model.
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does not appear to decrease with the sample size. The bias for∞-EPL is lower by an order of
magnitude in all cases for N = 250 and by two orders of magnitude for N = 1000. Relative
to 1-NPL and 1-EPL, iterating in the finite sample improves the estimates for ∞-EPL but
worsens the estimates for ∞-NPL.

The results for equilibrium (iii) are qualitatively similar to equilibrium (ii) and are pre-
sented in Appendix B. Overall, the results illustrate the good performance of EPL and in
particular∞-EPL. We see that∞-EPL is generally more efficient, is robust to unstable equi-
libria, and converges in fewer iterations than ∞-NPL, resulting in substantial time savings.

4.3 Effects of Noisy, Inconsistent Starting Values

Next, we consider robustness to starting values. Like convergence results for Newton’s
method, our convergence results are local. That is, the starting values (initial estimates)
must be in a neighborhood of the maximum likelihood estimates to guarantee convergence.
We do not claim, nor should we expect, global convergence results in models with multiple
equilibria. This underscores the importance of good initial estimates, i.e., either consistent
estimates or multiple starting values, or both. First we explore using a single, polluted
version of the consistent estimates as the starting value.

Table 4: Monte Carlo Results for Pesendorfer and Schmidt-Dengler (2008) with Noisy Start-
ing Values (N = 250)

Equilibrium (i) Equilibrium (ii)
Parameter Statistic ∞-NPL ∞-EPL ∞-NPL ∞-EPL

θM = 1.2
Mean Bias -0.0827 0.0266 -0.2116 -0.0855

MSE 0.0648 0.0756 0.0630 0.1054

θC = −2.4
Mean Bias 0.1286 -0.0431 0.6738 0.2055

MSE 0.1282 0.2234 0.4832 0.5810

θEC = −0.2
Mean Bias -0.0672 0.0020 -0.3107 -0.0965

MSE 0.0251 0.0073 0.1118 0.1275
Converged % 89.2% 96.6% 99.3% 99.9%

Iterations Median 72 9 34 10
IQR 36 3 11 3

Time (min.) Total 0.4024 0.1217 0.2533 0.0889

In Table 4 we used initial choice probabilities that were an equally weighted average of
the consistent CCP estimates and Uniform(0, 1) noise. We then re-computed each of the
converged estimates — ∞-NPL and ∞-EPL — using these noisy starting values with the
small sample size N = 250. For equilibrium (i), comparing with the consistent starting
values from the top panel of Table 2, we see that the added noise increases the MSE values
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and decreases convergence rates for both estimators, but the increase in bias is smallest for
∞-EPL. Furthermore, the convergence rate of ∞-EPL decreases less than the convergence
rate for ∞-NPL.

For equilibrium (ii) we can compare with the consistent starting values from the top
panel of Table 3. In this case the bias and MSE for ∞-NPL only changed slightly because
the estimates were previously also biased. There is only a slight increase in bias and MSE
as a result of the noisy starting values, but the results are largely the same as before. The
convergence percentage for ∞-NPL actually increased with the added noise, but the itera-
tions still converge to inconsistent estimates. On the other hand, the bias and MSE values
for ∞-EPL increased—especially for θC—while the convergence percentage only decreased
from 100% to 99.9%.

Overall, while good starting values are important, these results show that EPL is also
somewhat robust starting values with fairly severe estimation errors. Note that we do not
actually recommend using only a single starting value if estimation accuracy is a concern.
With that in mind, in the next section we consider moving away from consistent starting
values entirely.

4.4 EPL as a Computational Procedure (Without Consistent Start-

ing Values)

Rather than rely solely on a single consistent estimate, one can use EPL as a computational
procedure to compute the MLE using multiple starting values (possibly with a consistent
estimate among them). A similar procedure was suggested by Aguirregabiria and Mira
(2007) to compute the NPL estimator by attempting to use the NPL algorithm, with multiple
starting values, to compute all NPL fixed points, and taking the estimate that maximizes
the likelihood. However, for datasets generated by equilibria for which the NPL mapping
is unstable, the initial guess may need to be exactly correct to reach those fixed points.19

EPL, however, is stable and has a faster rate of convergence, with the maximum likelihood
estimator as a fixed point. So, in this section we consider using this approach with EPL to
compute the MLE.

Using the same model as before and focusing on equilibria (i) and (ii), we proceed in the
following way for each of 1000 replications. First, we generated five completely random start-
ing values for the choice probabilities P . For each, we compute and store the corresponding
1-NPL estimate for θ. Then we compute the ∞-NPL and ∞-EPL estimates for each start-

19Aguirregabiria and Marcoux (2019) show that this issue can even arise when the data are generated
from a stable equilibrium.
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Table 5: Monte Carlo Results for Pesendorfer and Schmidt-Dengler (2008) Without Consis-
tent Starting Values

Equilibrium (i) Equilibrium (ii)
Obs. Parameter Statistic ∞-NPL ∞-EPL ∞-NPL ∞-EPL

N
=

25
0

θM = 1.2
Mean Bias -0.0127 0.0295 -0.2035 -0.0083

MSE 0.0359 0.0325 0.0601 0.0812

θC = −2.4
Mean Bias 0.0252 -0.0516 0.6634 0.0088

MSE 0.0566 0.0552 0.4699 0.4649

θEC = −0.2
Mean Bias -0.0255 -0.0034 -0.3078 -0.0122

MSE 0.0113 0.0046 0.1100 0.1228
Converged % 89.8% 97.2% 95.2% 100%

Iterations Median 347 53 176 53
IQR 117 18 46 10

Time (min.) Total 1.9699 0.5606 1.2573 0.4207

N
=

10
00

θM = 1.2 Mean Bias -0.0044 0.0019 -0.2002 -0.0100
MSE 0.0083 0.0057 0.0444 0.0173

θC = −2.4 Mean Bias 0.0076 -0.0027 0.6517 0.0264
MSE 0.0106 0.0065 0.4303 0.0962

θEC = −0.2 Mean Bias -0.0059 -0.0016 -0.2915 -0.0146
MSE 0.0018 0.0008 0.0884 0.0255

Converged % 95.1% 98.7% 99.6% 100%

Iterations Median 362 50 161 52
IQR 83 12 18 8

Time (min.) Total 2.8453 0.6559 1.5548 0.5956

ing value.20 Finally, for both ∞-NPL and ∞-EPL we select from among the five estimates
the one that maximizes the likelihood function. The results in Table 5 are calculated using
the best estimates for each of the 1000 replications. Reported iteration counts, convergence
percentages, and computational times include all 5 starting values over all replications.

Overall, the comparisons between EPL and NPL are qualitatively similar to the case
before with initial consistent estimates. For the NPL-stable equilibrium (i), the small sample
results for bias are mixed, but EPL is faster, converges more often, and has smaller MSE.
In the large sample, EPL always has lower bias and MSE in addition to being more stable
and computationally lighter. Also as before, EPL is robust to the NPL-unstable equilibrium.
These results show that converged EPL can be used as a computational procedure to compute
the MLE without initial consistent estimates, by using multiple starting values and choosing
the best estimates. This is true even for equilibrium data generating processes where using
the same procedure with converged NPL would yield inconsistent estimates.

20As in the previous simulations, we allow for up to 100 iterations per starting value but terminate early
if convergence is achieved.
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5 Conclusion

We proposed an iterative efficient pseudo-likelihood (EPL) estimation algorithm that extends
the attractive econometric and computational properties of the single-agent NPL algorithm
to games. The nice econometric properties arise because EPL uses (quasi-)Newton steps
on the fixed point constraint at each iteration. As a result, EPL is stable for all regular
Markov perfect equilibria, each EPL iteration is asymptotically equivalent to the MLE, and
the iterates quickly converge to the finite-sample MLE with high probability. Computational
advantages follow from defining the equilibrium conditions with choice-specific value func-
tions. Standard modeling assumptions then reduce each EPL iteration to solving a linear
system, followed by solving a globally concave, unconstrained maximization problem. Our
Monte-Carlo simulations show that EPL performs favorably in finite samples and is robust
to data-generating processes where standard NPL encounters serious problems.

One limitation of our analysis is that we did not consider time-invariant unobserved het-
erogeneity in estimating dynamic discrete games. Given the similarities between the proce-
dures, it seems likely that one could modify the EPL algorithm to include such heterogeneity
using techniques similar to Aguirregabiria and Mira (2007, Section 3.5) or Arcidiacono and
Miller (2011). We leave such an extension to future work.
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A Proofs

Proofs are presented in order of appearance in the main text.

A.1 Proof of Lemma 1

Result 1 follows by using G(θ, Yθ) = 0 in the expression for Υ(θ, Yθ). For Results 2 and 3,
first consider partial differentiation of Υ(θ, Y ) as defined in (1):

∇θΥ(θ, Y ) = −(∇YG(θ, Y ))−1∇θG(θ, Y )− ∂∇YG(θ, Y )−1

∂θ
G(θ, Y )

∇Y Υ(θ, Y ) = I − (∇YG(θ, Y ))−1∇YG(θ, Y )− ∂∇YG(θ, Y )−1

∂Y
G(θ, Y )

= −∂∇YG(θ, Y )−1

∂Y
G(θ, Y ).

Now consider implicit differentiation on G(θ, Y (θ)) = 0 yields

Y ′(θ) = −(∇YG(θ, Yθ))
−1∇θG(θ, Yθ).

Results 2 and 3 then follow from G(θ, Yθ) = 0. Result 4 is a widely-known property of
Newton-Kantorovich iterations. See, for example, Theorem 5.1.2 of Kelley (1995).

A.2 Proof of Theorem 1

The proofs of Results 1 and 2 adapt the proofs of consistency and asymptotic normality for
the 1-NPL estimator from Aguirregabiria and Mira (2007) to an inductive proof for k-EPL.21

We do this by showing that strong
√
N -consistency of γ̂k−1 = (θ̂k−1, Ŷk−1) implies the results

for γ̂k = (θ̂k, Ŷk). The proof of Result 3 follows the arguments very similar to those used
in the proofs of Proposition 2 of Kasahara and Shimotsu (2008) and Proposition 7 in the
supplementary material for Kasahara and Shimotsu (2012). Throughout, we rely heavily on
analysis similar to that from the proof of Lemma 1.

It is helpful up-front to define q̃i(θ, γ) = qi(θ,Υ(θ, γ)), Q̃N(θ, γ) = N−1
∑N

i=1 q̃i(θ, γ), and
θ̃N(γ) = arg maxθ Q̃N(θ, γ). Similarly, Q̃∗(θ, γ) = E[q̃i(θ, γ)] and θ̃∗(γ) = arg maxθ Q̃∗(θ, γ).
Then, θ̂k = θ̃N(γ̂k−1) and Ŷk = Υ(θ̂k, γ̂k−1).

21See the proofs of Propositions 1 and 2 in the Appendix of Aguirregabiria and Mira (2007).
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A.2.1 Result 1 (Strong consistency of θ̂k and Ŷk)

We have uniform continuity of Q̃∗(θ, γ) and that Q̃N(θ, γ) converges almost surely and uni-
formly in (θ, γ) ∈ Θ × (Θ × Y) to Q̃∗(θ, γ) . Also, γ̂k−1 converges almost surely to γ∗.
Appealing to Lemma 24.1 of Gourieroux and Monfort (1995), these imply that Q̃N(θ, γ̂k−1)

converges almost surely and uniformly in θ ∈ Θ to Q̃∗(θ, γ∗). Then since θ∗ uniquely max-
imizes Q̃∗(θ, γ∗) on Θ, θ̂k converges almost surely to θ∗ (Gourieroux and Monfort, 1995,
Property 24.2). Continuity of Υk(θ, γ) and the Mann-Wald theorem then give almost sure
convergence of Ŷk to Y ∗.

A.2.2 Result 2 (Asymptotic Distribution of θ̂k and Ŷk)

We will show that consistency of γ̂k−1 leads to asymptotic normality of θ̂k and Ŷk, with their
asymptotic variance the same as the MLE. Using the properties of Υ defined in (2), the
chain rule, and the generalized information matrix equality (Newey and McFadden, 1994, p.
2163) we obtain the following population equalities:

∇θθ′Q̃
∗(θ∗, γ∗) =− Ω∗θθ,

∇θγ′Q̃
∗(θ∗, γ∗) =0.

To establish these, first recall that Q̃∗(θ, γ) = E[ln f(w | θ,Υ(θ, γ))] and let γ = (θ̆, Y )

denote the components of γ (to explicitly distinguish θ from θ̆). Then by the generalized
information matrix equality we have

∇θθ′Q̃
∗(θ∗, γ∗) = E[∇θθ′ ln f(w | θ∗,Υ(θ∗, γ∗))]

= −E[∇θ ln f(w | θ∗,Υ(θ∗, γ∗))∇θ ln f(w | θ∗,Υ(θ∗, γ∗))′]

= −Ω∗θθ

and

∇θγ′Q̃
∗(θ∗, γ∗) = E[∇θγ′ ln f(w | θ∗,Υ(θ∗, γ∗))]

= −E[∇θ ln f(w | θ∗,Υ(θ∗, γ∗))∇γ ln f(w | θ∗,Υ(θ∗, γ∗))′]

= 0.

The last equality follows from the chain rule, noting that∇γ ln f(w | θ,Υ(θ, γ)) = 1
f(w|θ,Υ(θ,γ))

∇Y f(w |
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θ,Υ(θ, γ))∇γΥ(θ, γ) with

∇γΥ(θ, γ) = I −∇YG(θ̆, Y )−1∇YG(θ, Y )−

[
∂∇Y G(θ̆,Y )−1

∂θ̆
∂∇Y G(θ̆,Y )−1

∂Y

]
G(θ, Y ). (3)

Since θ̆ = θ = θ∗ andG(θ∗, Y ∗) = 0 at the true parameters, we have∇γ ln f(w | θ∗,Υ(θ∗, γ∗)) =

0.

Turning to the sample objective function, a Taylor expansion of the first-order condition
gives

0 = ∇θQ̃N(θ∗, γ∗) +∇θθ′Q̃N(θ̄, γ̄)(θ̂k − θ∗) +∇θγ′Q̃N(θ̄, γ̄)(γ̂k−1 − γ∗).

Solving and scaling then yields

√
N(θ̂k − θ∗) = −∇θθ′Q̃N(θ̄, γ̄)−1

[√
N∇θQ̃N(θ∗, γ∗) +∇θγ′Q̃N(θ̄, γ̄)

√
N(γ̂k−1 − γ∗)

]
.

By consistency of γ̂k−1 and θ̂k and the Mann-Wald theorem we have ∇θθ′Q̃N(θ̄, γ̄)
p→ −Ω∗θθ

and by the central limit theorem,
√
N∇θQ̃N(θ∗, γ∗)

d→ N(0,Ω∗θθ). For the last term in square
brackets we have

√
N(γ̂k−1 − γ∗) = Op(1) and ∇θγ′Q̃N(θ̄, γ̄) = op(1). Therefore,

√
N(θ̂k − θ∗)

d→ N(0,Ω∗−1
θθ ).

Furthermore, because Ŷk = Υ(θ̂k, γ̂k−1), with Υ twice continuously differentiable in a neigh-
borhood of (θ∗, Y ∗), consistency and asymptotic normality of Ŷk follow immediately. Asymp-
totic equivalence of Ŷk and ŶMLE follow from asymptotic equivalence of θ̂k and θ̂MLE and
the properties of Υ. Strong

√
N -consistency of γ̂0 completes the proof by induction.

A.2.3 Result 3 (Large Sample Convergence)

This result follows from Kasahara and Shimotsu (2012, Proposition 1). The zero Jacobian
property ensures that the required spectral radius is equal to zero: as established in Result
2 above ∇θγQ̃

∗(θ∗, γ∗) = 0, which is strictly less than 1.

A.3 Proof of Theorem 2

By examining the first-order conditions, we can see that θ̂MLE = θ̃N(γ̂MLE), so that ŶMLE =

Υ(θ̃N(γ̂MLE), γ̂MLE). This proves Result 1: the MLE is a fixed point of the EPL iterations.
Now let HN denote the EPL iteration mapping by stacking the updating equations for θ
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and Y so that γ̂k = HN(γ̂k−1):

HN(γ) =

[
H1,N(γ)

H2,N(γ)

]
≡

[
θ̃N(γ)

Υ(θ̃N(γ), γ)

]
.

We then consider the first-order conditions evaluated at γ̂MLE. First we have

∇γH1,N(γ̂MLE) = ∇γ θ̃N(γ̂MLE)
p→ ∇γ θ̃

∗(γ∗) = 0 (4)

because ∇θγ′Q̃
∗(θ∗, γ∗) = 0, as shown in the proof of Theorem 1 (Result 2). Second, we have

∇γH2,N(γ̂MLE) = ∇θΥ(θ̂MLE, γ̂MLE)∇γ θ̃N(γ̂MLE) +∇γΥ(θ̂MLE, γ̂MLE).

recalling that θ̃N(γ̂MLE) = θ̂MLE. The first term converges to zero in probability as in (4).
The second term is zero due to the zero Jacobian property of Υ, as can be seen by evaluating
(3).

The above analysis implies that γ̂MLE = HN(γ̂MLE) and ∇γHN(γ̂MLE)
p→ 0, which are

key to Results 2 and 3. To obtain Result 2, note that the
√
N -consistency of γ̂MLE implies

∇γH(γ̂MLE) = 0 +Op(N
−1/2). So, by a first-order expansion around γ̂MLE,

γ̂k = HN(γ̂k−1)

= HN(γ̂MLE) +∇γHN(γ̂MLE)(γ̂k−1 − γ̂MLE) +Op(||γ̂k−1 − γ̂MLE||2)

= γ̂MLE + (0 +Op(N
−1/2))(γ̂k−1 − γ̂MLE) +Op(||γ̂k−1 − γ̂MLE||2).

It follows that

γ̂k − γ̂MLE = Op(N
−1/2||γ̂k−1 − γ̂MLE||+ ||γ̂k−1 − γ̂MLE||2).

For Result 3, we appeal to continuity of∇γHN(·) and ||·||. For any ε > 0, if ||∇γHN(γ̂MLE)|| <
ε, then there exists some neighborhood around γ̂MLE, B, such that HN(·) is a contrac-
tion mapping on B with Lipschitz constant, L < ε, and fixed point γ̂MLE. We have
∇γHN(γ̂MLE)

p→ 0, so that ||∇γHN(γ̂MLE)|| < ε w.p.a. 1 as N → ∞. Result 3 follows
immediately.

A.4 Proof of Theorem 3

All of the listed Υ functions satisfy the zero Jacobian property, so the results from the
previous proofs carry through.
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A.5 Proof of Lemma 2

We show that v = Φ(θ, v) is a Bellman-like representation of the best-response equilibrium
conditions, P = σ(θ, P ). First, note that P j = Λj(vj) for all j. And we have

Φj
a(θ, v

j, v−j) = uja(θ,Λ
−j(v−j)) + βF j

a (θ,Λ−j(v−j))S(vj).

We see that v−j only influences Φj(·) through its effect on P−j = Λ−j(v−j) and we can then
define φj(θ, vj, P−j) = Φj

a(θ, v
j, v−j). It is straightforward to show that ||∇vjφ

j||∞ = β < 1,
so that φj(·) is a Bellman-like contraction in vj (fixing θ and P−j) with a unique fixed
point. Player j’s best response is σj(θ, P−j) = Λj(vj) where vj = φj(θ, vj, P−j). Imposing
v = Φ(θ, v) is therefore equivalent to imposing P = σ(θ, P ); their sets of fixed points for a
given θ are isomorphic.

B Additional Monte Carlo Results

In Section 4, we report Monte Carlo results for the model of Pesendorfer and Schmidt-
Dengler (2008) for equilibrium (i), which is NPL-stable, and equilibrium (ii), which is NPL-
unstable. Table 6 reports the some results for equilibrium (iii), which is also NPL-unstable,
and therefore the results are qualitatively similar to those for equilibrium (ii) presented in
Table 3.

Table 6: Monte Carlo Results for Pesendorfer and Schmidt-Dengler (2008) Equilibrium (iii)
with N = 1000

Parameter Statistic 1-NPL 1-EPL ∞-NPL ∞-EPL

θM = 1.2
Mean Bias -0.0419 -0.0383 -0.2099 -0.0003

MSE 0.0204 0.0194 0.0480 0.0174

θC = −2.4
Mean Bias 0.0948 0.0625 0.6806 0.0043

MSE 0.1127 0.1000 0.4683 0.0987

θEC = −0.2
Mean Bias -0.0277 -0.0133 -0.3146 -0.0044

MSE 0.0286 0.0265 0.1023 0.0277
Converged % 99.8% 100%

Iterations Median 30 8
IQR 5 2

Time (min.) Total 0.3486 0.1026
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