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Abstract

This paper incorporates contagious surrender behavior into the valuation and risk

management of participating life insurance contracts, allowing for structural default of

the insurance company. The insurance pool features a financially sophisticated (profes-

sional) policyholder and many retail (non-professional) policyholders. A surrender-

history-dependent intensity process is introduced to capture the non-professionals’

contagious surrender behavior. While contagion aligns the non-professionals’ surren-

der behavior closer to the optimal surrender of the professional, it jeopardizes the

non-professionals’ financial position in favor of equity holders as a strict regulatory

intervention or a riskier investment strategy is imposed.
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1 Introduction

A mass surrender, which features a temporary and drastic raise of surrender rates, and
can be regarded as an equivalent “bank run” event in the insurance sector, namely an
insurance run, has been empirically widely documented. Brewer, Mondschean, and
Strahan (1993) recorded the bankruptcy of two US life insurers, First Executive Corporation
and Travelers Corporation, caused by liquidity shortages due to $900 millions insurance
policy terminations after the two insurers announced their investment losses in 1990. And
one year later, the Mutual Benefit Life Insurance Company was seized by New Jersey
regulators after $500 millions insurance policy runs over three months. Moreover, Brown
and Balasingham (2013) also studied life insurers’ failures and their causes, for example,
Equitable Life (UK, 2000), Mannheimer Insurance (Germany, 2004), and Ethias (Belgium,
2008), and discovered that these insurers all experienced surrender spikes after they
suffered from some financial difficulties. Additionally, in the aftermath of the Asian crisis,
twelve Korean life insurers failed over liquidity problems caused by massive surrenders
during the period 1998-2002 (Brown and Balasingham, 2013).

A mass surrender imposes a significant risk to insurance companies, and the discussion
on triggers of a mass surrender has attracted much attention in insurance literature.
Undoubtedly, changes on financial markets (e.g., raises in interest rates, etc.) and changes
on insurers’ financial performance affect policyholders’ surrender decision making. By
assuming that policyholders are capable of analyzing those changes and react to them by
terminating their contract, a mass surrender can occur. However, in practice policyholders
are not always timely reacting to such changes, see the inclusion of limited monetary
rationality into the insurance policy surrender literature by De Giovanni (2010) and Bernard
and Lemieux (2008). The CEIOPS1 emphasized this issue by pointing out a difference in
surrender risk for heterogeneous policyholders. For example, well-informed institutional
policyholders react quicker to financial changes, which results in better surrender timing
compared to non-professional policyholders. Given that institutional policyholders take
up a small fraction of a policyholder pool, apart from panics which are the cause of bank
runs and can be borrowed to explain insurance runs, the occurrence of a mass surrender
can also imply a surrender-herding phenomenon.2 Here, we summarize panic surrender
behavior and surrender-herding behavior as contagious surrender behavior,3 which has

1The CEIOPS refers to the Committee of European Insurance and Occupational Pensions Supervisors. It
was replaced by the European Insurance and Occupational Pensions Authority (EIOPA) since 2011.

2Liu (2015) provides empirical evidence for insurance purchase herding behavior of policyholders in
insurance markets. Duflo and Saez (2002, 2003) document herding behavior in retirement planning decisions
both experimentally and with field data.

3The concept of contagion is used with different definitions in economics literature. For example, Morris
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not been well studied in insurance literature, in particular in insurance pricing literature.
In the present paper, we introduce a life insurance pricing model with contagious sur-

render behavior among a heterogeneous pool of policyholder. To be specific, we consider
two groups of policyholders in the heterogeneous pool: The first group of policyholders,
whose contracts are handled by a financially professional agent, for example a broker
managing his or her clients’ policies,4 are labeled "professionals". The second group of
policyholders, whom we label "non-professionals", deal with their contract individually
and when they are left alone to make a surrender decision, they only surrender their
contract for exogenous reasons, for example, financial liquidity problems, that is, they use
their policy as an emergency fund (Outreville, 1990). While professional policyholders
fully use their informational advantage to maximize their contract’s monetary value by
surrendering optimally, non-professional policyholders, apart from terminating their con-
tract early for dealing with their own financial problems, observe past surrenders by other
policyholders on the market and may hurry to do the same if their impression on past
surrenders is sufficiently salient. In this paper, we model non-professional policyholders’
contagious surrender behavior from the perspective of insurers by specifying a counting
process with a surrender-history-dependent intensity process. Specifically, we consider
that past surrenders on the market first need to accumulate to a certain level to draw non-
professional policyholders’ attention to other policyholders’ actions. Second, as in practice
it is not revealed to insurers that past surrenders accumulating to a certain level guarantees
a mimicking surrender action of non-professionals, a binary random variable with the
function of indicating the burst of their mimicking surrender actions is included into our
surrender-history-dependent intensity process. Past surrenders alter non-professional
policyholders’ surrender behavior in favor of terminating their contract earlier, resulting
in an increase in surrender intensity. The more salient past surrenders are, the higher the
surrender intensity becomes. Moreover, as the memory of non-professional policyholders
for past surrenders fades over time, our surrender-history-dependent intensity process
also allows non-professionals’ surrender behavior to calm down along time, converging to
a constant surrender reversion level again.

Accordingly, we price life insurance contracts for the two types of policyholders, namely
professionals and professionals, from the perspective of insurers. Since professional
policyholders can optimally terminate their contract, the surrender option carries the

(2000) uses contagion to describe synchronization of strategies in games. By summarizing panic surrender
behavior and surrender-herding behavior as contagious surrender behavior, we have contagion defined as
actions which trigger further actions.

4Another example is a professional insurance dealer who purchases policies of policyholders on life
settlement markets, see Gatzert (2010) and Hilpert, Li, and Szimayer (2014).
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interpretation of an American option, and their contract value is then given by solving
an optimal stopping problem. However, for non-professional policyholders, after they
observe that surrenders on the market accumulate to a certain level, once they start
mimicking those decisions, they obtain surrender benefits, and their contract value is
then given as the expectation of discounted contingent payoffs. Moreover, we allow for
structural default of the insurance company caused by regulatory authorities’ intervention,
which is imposed to reserve a certain amount of capital in the insurance company for
protecting policyholders. We numerically study the impacts of early default regulation
and the insurer’s investment strategy on contract valuation in the setting where contagious
surrenders are triggered by professionals’ actions on the market, while in general, our
model also allows for non-professionals to be self-excited, which then forces professionals
to adapt their surrender behavior. We find that following up professional policyholders’
optimal surrender decisions does not necessarily improve non-professional policyholders’
financial position, and it does not for sure lead to a higher default risk for the insurer
neither. Regulatory authorities’ frequent-enough intervention and the insurer’s risky-
enough investment can stimulate professional policyholders’ surrenders at fairly high
asset values of the insurance company. By paying out relatively low surrender benefits
to the professionals, the company’s asset value per policyholder gets actually pushed
upward, which consequently lowers the company’s default risk and boosts the contract
value. Therefore in this case, it is actually beneficial for non-professional policyholders to
stay in the insurance pool.

The only work, as far as we are aware, that models contagious surrender behavior of
policyholders is Barsotti, Milhaud, and Salhi (2016). Following the idea of extending the
Hawkes (1971)-process in Dassios and Zhao (2011), the authors introduce a mathematical
framework which embeds the dependence of policyholders’ surrender behavior on both
macroeconomic conditions and other policyholders’ surrenders in a stochastic surrender
intensity contagion process with external market-driven and internal self-excited jumps.
In their paper, policyholders are assumed to be homogeneous, and by using internal
self-excited jumps in the surrender intensity process, policyholders’ surrender probability
changes after each single other policyholder surrender, which simplifies policyholders’
copycat behaviors in reality. By relaxing the assumption of homogeneity of policyholders
and recognizing that in reality policyholders’ copycat behaviors can appear only after past
surrenders have accumulated to a certain level, our present paper for the first time presents
close-to-reality structural changes of a heterogeneous pool of policyholders with copycat
behaviors over time. In addition, the paper of Barsotti, Milhaud, and Salhi (2016) takes
on insurers’ risk management perspective and focuses on estimating default risk with
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different measures, whereby it does not give insights into pricing life insurance policies
with contagious surrender behavior taken into account.

Moreover, recently, contagion modeling based on extensions of the Hawkes process,
see Hawkes (1971), as an alternative to Levy processes has gained much attention in
finance. For example, Aït-Sahalia, Laeven, and Pelizzon (2014) develop a credit risk swap
pricing model with credit default events described by both self-excited and cross-excited
Hawkes processes, also called multivariate Hawkes jump processes. In the papers of
Aït-Sahalia, Cacho-Diaz, and Laeven (2015) and Aït-Sahalia and Hurd (2016), multivariate
Hawkes jump processes are modeled together with diffusion. This so-called multivariate
Hawkes jump diffusion is then used to capture the dynamics of asset returns with financial
contagion effects on markets. Boswijk, Laeven, and Yang (2018) explore the empirical
implications of a self-excited Hawkes jump process in an option pricing model. All those
papers employ self-excited and cross-excited Hawkes processes to model contemporaneous
financial contagion on markets, whereas our paper studies policyholders’ contagious
surrender behavior, being subject to past surrenders accumulated to a certain level and
"impulse"-behavior-type uncertainty, which restricts us from directly using a self-exciting
or cross-exciting component in a contagion process, but requires designing a new surrender-
history-dependent contagion process.

2 Model Framework

This section presents the model framework of surrender contagion by reviewing the
economy’s financial and insurance markets followed by policyholders and equity holders.
Policyholders differ in the way of handling their contract, by which we mean that some
of them make their surrender decision based on professional agents’ advice, and the rest
of them make their surrender decision on their own. In our model, we assume that there
is a representative professional agent who handles the contracts of some policyholders,
and under this assumption we consider that these policyholders are financially rational in
making their surrender decision and call them professionals.5 The rest of policyholders,
on the contrary, are named as non-professionals, and in our model we assume that when
the non-professionals are left alone to make their surrender decision, they surrender their
contract only for exogenous reasons, for example, for dealing with their own liquidity

5In order to focus on mimicking surrender behaviors of non-professional policyholders after enough-
many rational policyholders’ surrender move, we abstract from the complex reality where there will be
more than one agent handling policyholders’ contracts and also some professionals who are capable of
making rational surrender decisions on their own, and probably some strategic surrender decisions among
financially rational policyholders on the market.
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Table 1: Insurance company’s balance sheet at t = 0.

Assets Liabilities & Equity

A0 L0 ≡ P0(Zpro + Znon)
E0

shortage problems.

2.1 Financial and Insurance Markets

In the present paper, we fix a filtered probability space (Ω,F , F, Q), where F = (Ft)t≥0

reflects the information on both the financial market and the insurance market. We
consider an insurance company which is initially founded by professional policyholders,
non-professional policyholders, and equity holders, at time t = 0.

Each policyholder pays a same premium P0 to purchase an identical participating
life insurance policy embedded with a surrender option which can be exercised anytime
before the contract’s maturity date T. We use Zpro and Znon to denote the initial number of
policies held by the professional and non-professional policyholders, respectively. Hence,
Z = Zpro +Znon is the initial total number of outstanding policies and the total contribution
from the policyholders then sums up to L0 = P0 Z. Additionally, the equity holders inject
a total initial payment of E0. Therefore, the company’s initial asset value is A0 = L0 + E0.
We summarize the insurance company’s financial status at t = 0 in a balance sheet in
Table 1.

We consider that at time t = 0 the company invests all its initial assets A0 in traded
risky and risk-free securities on the financial market, which is assumed to be arbitrage-free,
so that a risk-neutral probability measure Q exists. For simplicity, we model the financial
and insurance markets directly under this risk-neutral measure. We assume that during
the time when no liquidation of the company’s asset portfolio is required, that is, while no
policyholder terminates his or her contract prematurely, the insurance company’s asset
value follows a geometric Brownian motion. As policyholders decide to surrender the
contract before maturity, they receive surrender benefits, which will reduce the asset value
of the company correspondingly. For simplicity, we assume that the company fixes its
investment strategy at the initial time t = 0 and follows it during the insuring period.

Now, let Nt denote the total number of surrenders up to time t, and S(t, At−, dNt)

denote the surrender benefits paid to policyholders who surrender their contract at time t,
which is a function of t, the company’s asset value shortly before time t, that is, At−, and the
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number of surrenders at time t, that is dNt.6 Under the risk-neutral probability measure Q,
the company’s asset price process A = (At)t≥0 satisfies the following stochastic differential
equation

dAt = rAt dt + σAt dWt − S(t, At−, dNt)dNt , (1)

where W is a standard Brownian motion, and r ∈ R and σ > 0 refer to the risk-free rate of
return and the volatility of the asset price process, respectively.7

2.2 Payment Structure of Participating Life Insurance

In this paper, we consider point-to-point participating life insurance contracts embedded
with a surrender option, which have a similar payoff structure as in Briys and de Varenne
(1994), Grosen and Jorgensen (2002), and Cheng and Li (2018). For simplicity, we abstract
from the death event of the policyholders in order to allow us to focus on their contagious
surrender behaviors. If policyholders hold their contract till maturity T, namely, they stay
in the insurance pool till maturity, first, they are entitled to minimum guaranteed benefits,
Grg

T = P0ergT, where rg is the minimum guaranteed interest rate. Second, after serving all
minimum guaranteed claims to the policyholders, a share of the company’s profits is also
promised by the insurer to them, which takes the form of δ[αT AT − Grg

T ]+, αT = P0
A0−P0NT

.
δ is the profit participation rate and αT is the share of the company’s asset value attributed
to the policyholders left in the pool according their initial contribution for calculating the
asset surplus. Third, if the company’s assets fall short of the policyholder’s minimum
guaranteed claims, they are split equally between the remaining policyholders, yielding
individual payoffs AT

Z−NT
. To sum up, policyholders who hold their contract till maturity T

receive maturity benefits, which are also called survival benefits and have the form of

Φ(T, AT, NT) = Grg
T + δ

[
αT AT − Grg

T

]+
−
[

Grg
T −

1
Z− NT

AT

]+
. (2)

If policyholders exercise the surrender option written in their contract before maturity T,
surrender benefits are paid out, which do not contain a bonus payment. At surrender,
policyholders receive a payment based on a minimum guarantee, which is Grs

t = P0ers t,
where rs is the guaranteed interest rate in the surrender case. For penalizing policyholders

6We will discuss about the payment form of the surrender benefits in the next subsection.
7This asset price process is assumed as long as the company is on-going. As we later in Section 2.4

introduce an external regulator’s intervention, we will see that once the company is shut down by a regulator,
all company’s assets are liquidated and distributed to the company’s stakeholders. Hence, the asset price
process given in Equation (1) is subject to a regulator’s early default intervention, that is, at early default
time, the company’s asset value turns to be zero.
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for early terminating their contract, a penalty parameter κt, which is assumed to be a
decreasing function of time t, is applied as a discount on the minimum surrender guarantee.
Moreover, similar to the survival case, we consider that when the insurer does not have
enough assets to cover surrender benefits, the policyholders who surrender the contract at
time t equally share what is left in the company and the company declares bankruptcy. 8

To sum up, at time t < T when the surrender option is exercised, policyholders receive
surrender benefits which take the form of

S(t, At−, dNt) = (1− κt)Grs
t −

[
(1− κt)Grs

t −
1

dNt
At−

]+
, (3)

where dNt = Nt − Nt− refers to the number of surrenders at time t.9

2.3 Contagious Surrender Behavior

As we have mentioned in the beginning of Section 2, in the insurance pool, there are
two types of policyholders, namely policyholders whose contracts are managed by a
professional agent and therefore whom we consider to be professionals, being capable of
terminating their contract at the optimal time, and non-professional policyholders who
handle their contract on their own. Let τP denote the optimal surrender time, at which
the professionals surrender their contract. If the professionals do not surrender before
maturity T, we set τP to T, therefore, we have τP ∈ (0, T]. Before time τP, all surrenders
are caused by non-professional policyholders. The process Nnon

t counts non-professional
policyholders’ surrenders till time t. Hence, the number of total surrenders Nt is equal
to Nnon

t for t ∈ [0, τP), and at time τP, the total surrenders consist of two parts, that is,
dNτP = dNnon

τP
+ Zpro. To sum up, the number of total surrenders satisfies

dNt = dNnon
t + Zpro1{t=τP} , N0 = n. (4)

We now turn to model the surrender behavior of non-professional policyholders, who
we consider to be not capable of valuing their contract for carrying out a financially optimal

8There must be other surrender benefit forms which can be considered in the case when the company’s
asset value is insufficient at any surrender time t. For example, in order to protect policyholders who
are still holding the contract, the insurer uses only the asset value after deducting the minimum survival
guarantees promised to those contract-holding policyholders to pay surrender benefits. Since in our paper,
we focus on contagious surrender behaviors of policyholders, in particular, non-professional policyholders,
having the surrender benefit form presented in our model with minimum protection from the insurer to the
policyholders left in the pool makes our study and explanation of results comparable to contagious deposit
withdraws.

9For dNt = 0, we set S(t, At−, dNt) = 0 to ensure that the latter is well-defined.
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surrender decision. Instead, they surrender their contract only for personal exogenous
reasons. From a financial point of view, surrenders of non-professional policyholders are
purely random. We model them through single jump Poisson processes Ni = (Ni

t)t≥0 with
associated intensity processes of the form λt1{Ni

t=0}, for i = 1, . . . , Znon. Accordingly, the
counting process Nnon

t is given by the accumulated single jump Poisson processes, that is,
Nnon

t = ∑Znon

i=1 Ni
t , and, thus, its associated intensity process is Λt = (Znon − Nnon

t )λt.10

Moreover, in our paper, we consider that the non-professionals’ surrender decision can
be influenced by the surrender activity of their peers holding the same policy. For example,
if the number of recent surrenders on the market, denoted by Mt, exceeds a certain level B,
this active surrender event can become public due to media coverage or statements of
supervisory authorities. As a result, non-professionals might follow up and surrender
more frequently since they believe that the resulting financial distress for the insurance
could harm their policies. This, again, maintains the public attention on high surrender
rates, so that non-professionals stick to their excessive surrender behavior. We refer this
scenario as surrender contagion. Of course, it can also be that non-professionals believe in
the financial stability of the insurance, so that their surrender intensity remains unaffected
although they take note of the public attention on the past active surrender activity. In this
case, the recent active surrender event fails to hit non-professionals’ nerve to run, and for
simplicity, in this scenario we assume that the past surrender activity Mt and the public
then wait for the next active surrender event.

Mathematically, as the past surrender activity Mt hits the so called contagion threshold
B at time t, in our model, the Bernoulli random variable Bt announces with probability
Pr(Bt = 1) = p the occurrence of surrender contagion. If surrender contagion remains
absent, we reset the surrender history Mt to zero. Let τ(n) denote the n-th time at which Mt

is reset. Before the first reset, the surrender history is simply given by the discounted past
surrenders, that is, Mt =

∫ t
0 e−β(t−s) dNs for t < τ(1). Now, suppose the process Mt was

reset n times, which means that the surrender history takes into account only surrenders
that occurred after the last reset, that is, for t > τ(n). Accordingly, we compose Mt of
processes M(n)

t that capture the surrender history between the n− 1-th and n-th reset, that
is, Mt = ∑∞

n=1 1t∈[τ(n−1),τ(n))M(n)
t . Formally, those processes are defined by

M(n)
t =

∫
[τ(n−1)∧t, τ(n)∧t]

e−β(t−s) dNs , for n ∈N,

where, τ(n) = inf{t ≥ 0 | M(n−1)
t ≥ B, M(n−1)

t− < B, Bt = 0} denotes the n-th time

10For technical justifications, see Lemma 7.1.1 in Bielecki and Rutkowski, 2004.
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at which the non-professionals’ surrenders are not affected by the surrender history Mt

hitting the critical contagion threshold B, while τ(0) = 0.
Note that, with this definition non-professional policyholders’ contagious surrender

behavior is successfully triggered if the surrender history process Mt crosses the contagion
threshold B. The excess surrender intensity caused by contagion is denoted λc, so that we
define the surrender intensity for non-professionals by

λt = λ(Mt) = λ0 + λc1{Mt≥B} , for t ≥ 0 , (5)

where λ0 ≥ 0 is the constant exogenous surrender intensity level.

2.4 Early Default of the Insurance Company

Motivated by real-world solvency rules, for example, the Swiss Solvency Test and Sol-
vency II, in our paper, we consider that there exists an external regulator, who continuously
monitors insurance company’s financial status and closes it when it is necessary. We as-
sume that an early default barrier based on the minimum interest rate guarantees promised
to policyholders is imposed by the regulator, which has the form of

Dt = θ Grg
t (Z− Nt) , (6)

where Grg
t was the minimum interest rate guarantee promised to each policyholder up to

time t, Z− Nt refers to the number of remaining policyholders in the insurance pool at
time t, and θ ≥ 0 is a default multiplier. As the company’s asset value drops to or below
the early default barrier Dt, the regulator intervenes by early closing the company. In order
to rule out the case that the company is closed immediately after it is founded, θ has to
be smaller than A0

P0 Z . Therefore, we have θ ∈ [0, A0
P0 Z ). The higher the default multiplier,

the more likely the insurance company is going to be closed, and the more intensively
the regulator intends to protect policyholders. We use τD to denote the early default time,
which is given by τD = inf{t ≥ 0 | At ≤ Dt}. At default, policyholders who are still in the
pool receive default benefits, which take the form of

Υ(t, At, Nt) = min
(

Grg
t ,

1
Z− Nt

At

)
. (7)

If the company has enough asset value to cover all minimum interest guarantees promised
to the remaining policyholders, each of them receives the minimum guaranteed amount,
otherwise, all these policyholders equally share what is left in the company.
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3 Two-Step Contract Valuation

Given that the professional policyholders and the non-professional policyholders follow
different contract surrendering rules, specifically the professionals will surrender their
contract at a financially optimal time, however, the non-professionals do not necessarily
do so, their contract values will differ. The lack of optimal surrender decision making
of the non-professionals reduces the expected value of discounted cash flows emerging
from their contract, which leads to a lower contract value than for the professionals. In
this section, we present a two-step contract valuation scheme to price the professional and
non-professional policyholders’ contracts.

3.1 Professional Policyholders’ Contract Valuation

This section presents the first valuation step: Pricing the professional policyholders’ con-
tract on a market with surrenders solely from non-professional policyholders. In our
risk-neutral setting, the professional policyholders aim at maximizing their contract’s ex-
pected discounted payoff by timing their surrender optimally, and therefore, we describe
the respective contract valuation as an optimal stopping problem. Since in our model we
assume that all professional policyholders’ contracts are managed by one professional
agent, the professionals follow the same surrender rule, namely the same optimal stopping
rule, which allows us to conduct the pricing from the perspective of a representative pro-
fessional policyholder. So, as long as the representative professional policyholder holds the
contract, surrenders appearing on the market are exclusively from the non-professionals.
Then, we modify our insurance market in the way of having it collect only surrenders from
the non-professional policyholders to determine the professional policyholders’ optimal
surrender rule τP and price their contract.

For the moment, we set the surrender time of the representative professional to infinity,
that is τP = ∞, to ensure that surrenders on the market up to time t are exclusively
from non-professionals. In this setting, we then have the non-professional policyholders’
surrender counting process Nnon

t as the total surrender process, and here we denote it
by N∞

t . By replacing the total surrender process Nt by N∞
t , we update the insurance

company’s asset price process At and the surrender history process Mt accordingly, and
denote them by A∞

t and M∞
t , respectively. We summarize all processes above and the time

parameter in X∞ = (X∞
t )t≥0 = (t, A∞

t , M∞
t , N∞

t )t≥0 with X∞
t = x = (t, a, m, n) ∈ E, where

E = [0, T]×R+ ×R+
0 ×N0.

Next, we define the contract value for the representative professional policyholder by
solving an optimal stopping problem. Let T (t) be the set of stopping times t < τ < T
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that represent all admissible surrender strategies of the representative professional, and,
let Ex denote the expected value conditioned on X∞

t = x.11 Then, the representative
professional’s contract value is defined as the supremum over all expected discounted
payoffs which are accessible by the admissible surrender strategies τ, that is,

vpro(x) = sup
τ∈T (t)

Ex

[
e−r(τ∧τD−t)

(
S(τ, A∞

τ , Zpro)1{τ<τD∧T}

+ Υ(τD, A∞
τD

, N∞
τD
)1{τD≤τ,τD<T} + Φ(T, A∞

T , N∞
T )1{T=τ∧τD}

)]
.

(8)

We rewrite the above optimal stopping problem in a more familiar form by using a
reward function which we define as

g(X∞
t ) =S(t, A∞

t , Zpro)1{t<T, At>D(t,Nt)} + Υ(t, A∞
t , N∞

t )1{t<T, At≤D(t,Nt)}

+ Φ(t, A∞
t , N∞

t )1{t≥T} ,
(9)

By considering (X∞
s∧τD

)s≥t as the underlying process for the optimal stopping problem, we
have

vpro(x) = sup
τ∈T (t)

Ex

[
e−r(τ∧τD−t)g(X∞

τ∧τD
)
]

. (10)

For technical tractability, we assume vpro to be lower semi-continuous. Then, there exists
a smallest admissible optimal surrender rule τP = inf{t ≥ 0 | X∞

t ∈ P} with P = {x |
vpro(x) = g(x)}, see Peskir and Shiryaev (2006, Section 1). The optimal stopping region P
includes the early default region D = {x ∈ E | t < T, a < D(t, n)} and each terminal state
with t = T, implying τP ≤ τD ∧ T. At early default or maturity, that is, τP = τD or τP = T,
the representative professional policyholder receives the default benefits or the survival
benefits, respectively.12 The value function of the above optimal stopping problem is given
as the solution of the free boundary value problem, which we summarize in Result 3.1,
and its derivation is provided in Appendix A.1.

Result 3.1. Let the value function vpro be sufficiently smooth. Then, it satisfies

L∞
X vpro(x) = r vpro(x) , for vpro(x) > g(x) , (11)

vpro(x) = g(x) , else , (12)

11Note, that T (t) are stopping times of the process (X∞
s )s≥t.

12Notice that for time t < τP, we have X∞
t = Xt. At time τP, the asset price drops by the amount

of surrender benefits paid to the professionals and the remaining processes adjust accordingly, that is,
AτP = A∞

τP
− S(τP, AτP−, Zpro)Zpro, MτP = M∞

τP
+ Zpro and NτP = N∞

τP
+ Zpro.
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where L∞
X is the infinitesimal generator of (X∞

t )t≥0. For all (t, a, m, n) = x ∈ E with vpro(x) >
g(x) and n ≤ Znon the generator applied to the contract value takes the form of

L∞
X vpro =

∂vpro

∂t
+ r a

∂vpro

∂a
+

1
2

a2σ2 ∂2vpro

∂a2 − β m
∂vpro

∂m
+(Znon − n) λ(m)∆vpro ,

(13)

where

∆vpro(x) =1m∈[B−1,B)(pvpro(t, a− S(t, a, 1), m + 1, n + 1)

+ (1− p)vpro(t, a− S(t, a, 1), 0, n + 1))

+ 1m/∈[B−1,B)(v
pro(t, a− S(t, a, 1), m + 1, n + 1)− vpro(t, a, m, n)) .

(14)

Moreover, the value function vpro, see its definition in (10), is subject to the following two fixed
boundary conditions:

vpro(x) = g(x) = Υ(t, a, n) , for all (t, a, n, m) = x ∈ D and (15)

vpro(x) = g(x) = Φ(T, a, n) , for all (t, a, n, m) = x ∈ E with t = T . (16)

3.2 Non-Professional Policyholders’ Contract Valuation

In this section, as our second valuation step, we take the perspective of a representative
non-professional policyholder and price his contract by taking account of the optimal
mutual surrender strategy of the professionals. Without loss of generality, let the jump
time τ1 of N1 denote the representative non-professional policyholder’s surrender time.13

We use N∗t to denote the underlying dynamics with respect to the total number of surren-
ders on the market facing the representative non-professional policyholder, namely the
surrender counting process excluding the surrender of the representative non-professional
policyholder. By taking account of the surrender action of all professionals at τP, we
have dN∗t = ∑Znon

i=2 dNi
t + Zpro1{t=τP}. The same as in Section 3.1, we can update the

asset price process as well as the surrender history process facing the representative non-
professional policyholder by substituting the total number of surrenders Nt with N∗t ,
and we use X∗t = (t, A∗t , N∗t , M∗t ) to denote these updated underlying dynamics, which
satisfies X∗t = Xt for t < τ1.14

13Same as for the professional policyholders’ surrender time τP, we set the non-professional policyholders’
surrender time τi to T if they do not surrender until time T. Hence, we have τ1 ∈ (0, T].

14Note that at the representative non-professional’s surrender time τ1, the drop of the asset price caused
by his own surrender is not taken into account for determining his surrender payout, but Aτ1−, and we have
Aτ1 = A∗τ1

− S(τ1, Aτ1−, 1), Mτ1 = M∗τ1
+ 1 and Nτ1 = N∗τ1

+ 1.
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The respective policy value for some initial market state x = (t, a, m, n) ∈ E with
n < Znon is given by

vnon(x) = Ex

[
e−r(τ1∧τD−t)g(X∗τ1∧τD

) | N1
t = 0

]
, (17)

where Ex denotes the expectation conditioned on X∗t− = x. The above value function
satisfies a nested characterization in terms of two standard boundary value problems
given in the following result, where ṽnon describes the contract value of our representative
non-professional policyholder given that all professional policyholders have surrendered
already. Appendix A.2 provides a derivation of Result 3.2.

Result 3.2. Let the policy value function vnon be sufficiently smooth. Then, it satisfies

∂vnon

∂t
+ r a

∂vnon

∂a
+

1
2

a2 σ2 ∂2vnon

∂a2 − β m
∂vnon

∂m
+ (Znon − n− 1) λ(m)∆vnon(x) + λ(m)(S(t, a, 1)− vnon) = rvnon ,

(18)

with boundary conditions (15), (16), where we define ∆vnon(x) as in (14). Further,

vnon(x) = ṽnon (t, a− S(t, a, Zpro)Zpro, m + Zpro, n + Zpro) (19)

for (t, a, m, n) = x ∈ P \ D, where ṽnon satisfies

∂ṽnon

∂t
+ r a

∂ṽnon

∂a
+

1
2

a2 σ2 ∂2ṽnon

∂a2 − β m
∂ṽnon

∂m
+ (Z− n− 1) λ(m)∆ṽnon(x) + λ(m)(S(t, a, 1)− ṽnon) = rṽnon ,

(20)

with boundary conditions (15) and (16) but without (19), where, again, we define ṽnon as in (14).

4 Numerical Analysis

This section presents the numerical computation of the contract values from the perspective
of both policyholder types corresponding to the two-step contract valuation procedure
from the previous section. For computing professional policyholders’ contract, we employ
the Least Squares Monte Carlo method by Longstaff and Schwartz (2001) with monomials
as basis functions to compute contracts’ continuation value for making surrender decisions,
following Glasserman (2004). As result, we obtain pathwise realizations of the optimal
surrender rule applied by professionals. The simulated paths of the first valuation step
together with the optimal surrender rule are then used to determine the price of non-
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Table 2: Model parameters for the base case simulation.

Parameter Value Parameter Value

Risk-free rate r = 2% Guaranteed rate rg = rs = 2%
Risky asset volatility σ = 20% Maturity T = 20
Default multiplier θ = 70% Premium P0 = 100
Initial equity E0 = 10, 000 Participation coefficient δ = 90%
Surrender fees κ: Lin. decay: 10% to 0% Non-professional policyholders Znon = 900
Professional policyholders Zpro = 100 Contagion probability p = 50%
Critical surrender boundary B = 100 Initial surrender intensity λ0 = 3%
Contagion impact λc = 1.2 Surrender discount rate β = 75%
Number of time steps 240 Number of paths 1,000,000

professionals’ contracts with a classical Monte Carlo approach. Using the fair values of the
professional and non-professional contracts, we calculate the fair equity value for equity
holders. Both the Least Squares Monte Carlo and classical Monte Carlo algorithms work
on the same equidistant Euler discretization.

This section proceeds by outlining the base case parametrization which serves as a
benchmark. Then, we present the impacts of surrender contagion on the insurance com-
pany’s asset value and the surrender decision making by non-professional policyholders
in three sample scenarios. The following subsection provides comparative statics for the
contagion process. It studies the impacts of non-professionals’ tendency to surrender con-
tagiously on the pricing of both professional and non-professional policyholders’ contracts.
The final sections analyze the impact of regulatory intervention and volatility on both
contract values and the equity value.

4.1 Model Parametrization and Base Case

The base case concerns a financial market featuring a risk-free rate of r = 2% and a
volatility of the risky asset of σ = 20%. The insurance company has initial equity of 10,000
and faces 900 non-professional policyholders. Additionally, there are 100 professional
policyholders whose policies are managed by one professional agent. All policies sold
to the policyholders are identical, which cost P0 = 100 and mature in T = 20 years. The
policyholders are entitled to a constant guaranteed interest rate for both the survival and
surrender cases, that is, rg = rs = 2%. They also participate in the company’s profits with
a participation coefficient of δ = 90%. There exists an external regulator who steps in
once the company’s asset value falls below θ = 70% the minimum interest rate guarantees.
Table 2 summarizes the parameter values in the base case.
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(a) Asset value (b) Surrenders

Figure 1: Scenario 1 – Neither Contagion, Professional Surrender nor Default. This figure displays the
asset and surrender development for a sample path with base case parameters that features neither contagion,
professional surrender, nor default. Panel (a) shows the original asset price (solid line) and surrender-adjusted
asset price process (dashed line) of the insurance company. The gray line indicates the point of regulatory
intervention. Panel (b) presents the number of total surrenders (solid line) and the discounted surrender
history (dashed line). The gray line shows the contagion threshold for the surrender history, indicating
contagion.

4.2 An Example of Surrender Contagion

This section turns to the mechanics of the surrender-history-dependent contagion pro-
cess. Non-professional policyholders’ contagious surrenders can severely influence the
insurer squeeze it into early bankruptcy in an extreme case. As an illustration, we present
three possible scenarios. They differ in the occurrence of professionals surrender and non-
professional policyholders’ contagious surrender behavior and its impacts on the operation
of the insurance company. First, there could be neither professional policyholders’ surren-
ders nor a contagion, leaving the overall development of the insurance company’s assets
unimpaired besides non-professional policyholders’ unsystematic exogenous surrenders.
Second, professionals observe an unfavorable asset performance of the insurance company
and all decide to surrender their contract at that time. It does not trigger contagion Later, it
may or may not cause regulatory intervention. Third, as in the second case, professionals
deem the surrender appropriate at a point before maturity. In this case, it also triggers
contagion. The regulator may or may not intervene at a later point.

The first scenario is illustrated in Figure 1 which shows the asset and surrender devel-
opments in two panels. Panel 1(a) draws the unimpaired asset development (solid line)
and the surrender-fees-deducted assets (dashed line) of the insurance company as well
as the default triggering barrier (gray line). Next, Panel 1(b) summarizes policyholders’
surrender results: The solid line shows the absolute number of surrenders by policyhold-
ers, and the dashed line shows the perceived surrenders Mt, which are the accumulated
discounted past surrenders, accounting for the surrender history facing non-professional
policyholders. In gray we have the contagion threshold B. This scenario features a positive
development of the insurance company’s assets, due to which professional policyholders
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(a) Asset value (b) Surrenders

(c) Asset value (d) Surrenders

Figure 2: Scenario 2 – Professional Surrender without Contagion. This figure displays the asset and surren-
der development for sample paths with base case parameters that features no contagion after professionals
surrender. Panels (a) and (c) show the original asset price (solid line) and surrender-adjusted asset price
process (dashed line) of the insurance company. The gray line indicates the point of regulatory intervention.
Panels (b) and (d) present the number of total surrenders (solid line) and the discounted surrender history
(dashed line). The gray line shows the contagion threshold for the surrender history, indicating contagion.

do not surrender their contract during the whole insurance period. Surrenders on the
market are the exogenous surrenders from non-professional policyholders, which accu-
mulate with a rather slow speed. Therefore, the accumulated discounted past surrenders
line never crosses the contagion threshold, and there is no contagion triggered in this
scenario. Accordingly, we observe only limited draw-down on the company’s asset value
in Panel 1(a), which in this scenario accounts only for the exogenous surrenders on the
market, and the draw-down is too small to trigger an early default intervention.

Now we turn to the second scenario illustrated by Figure 2. This scenario features
an unattractive asset development, which causes professional policyholders to initiate
surrender before maturity, see the spike in the total number of surrenders in Panel 2(a)
and Panel 2(c), respectively. Professional policyholders’ surrender action drives up the
perceived surrenders line to cross the contagion threshold B (see the gray line in Pan-
els 2(b) and 2(d)). In this scenario, non-professional policyholders’ surrender do not spiral.
Consequently, the surrender history up to this point is reset. Non-professionals deem this
information irrelevant. For the lower figure, the regulator prevents further asset losses and
intervenes. The insurance company defaults early after professionals’ surrender move. In
the upper case, the company remains solvent despite professionals surrender.
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(a) Asset value (b) Surrenders

(c) Asset value (d) Surrenders

Figure 3: Scenario 3 – Professional Surrender with Contagion. This figure displays the asset and surrender
development for sample paths with base case parameters that features contagion after professionals surrender.
Panels (a) and (c) show the original asset price (solid line) and surrender-adjusted asset price process (dashed
line) of the insurance company. The gray line indicates the point of regulatory intervention. Panels (b) and
(d) present the number of total surrenders (solid line) and the discounted surrender history (dashed line).
The gray line shows the contagion threshold for the surrender history, indicating contagion.

Figure 3 presents the third scenario, which is similar to Figure 2. An unfavorable asset
development causes professional policyholders to cancel their contract at a point before
maturity. In this case, it triggers non-professional policyholders’ contagious surrender
behavior, see the perceived surrenders line crossing the contagion threshold in Panel 3(b)
and Panel 3(b), respectively. Again, the spiraling surrenders and the implied asset drain
can cause regulatory intervention (upper case) or not (lower case).

4.3 Surrender contagion analysis

In this section, we study the impacts of the surrender contagion, represented by the
contagion threshold B, on the fair value of professional and non-professional policyholders’
contacts, the equity value and the insurance company’s default probability. Since we are
not interested in scenarios in which non-professional policyholders’ random surrenders
alone trigger market contagious surrenders, we let the contagion threshold B start varying
from 80 and plot the corresponding contract value of professionals and non-professionals,
contagion probability, and insurer’s default probability till B = 150 at which the surrender
contagion can not be triggered any more.

We see in Panel 4(d) that as the contagion threshold B is smaller or equal to 100, since

17



(a) Professional Contract Values (b) Non-professional Contract Values

(c) Equity Value (d) Contagion Probability

(e) Default Probability

Figure 4: Comparative Statics for the Contagion Threshold. Panel (a) presents the impact of the contagion
threshold B on the contract value of professional policyholders. Panel (b) shows the non-professional
policyholders’ value if contagion is impossible (solid line) or caused by professional surrender (dashed line).
Panel (c) features the equity value without (solid line) and with contagion (dashed line). Panel (d) shows the
probability for contagion if caused by professionals. Panel (e) displays the default probability if contagion is
impossible (solid line) or caused by professional surrender (dashed line). All other parameters follow the
base case.

professionals’ surrenders alone are sufficient for potentially causing market contagious
surrenders, the contagion probability stays constant, being above 30%. As B increases
above 100, non-professionals need to join professionals’ actions to trigger the market
surrender contagion. The higher the contagion threshold, the more non-professional
policyholders’ random surrenders need to contribute to the past surrenders for triggering
the contagion, which results in a decreasing contagion probability in B in Panel 4(d).
When the contagion threshold gets higher, namely above 140, contagion can no longer be
triggered on the market and its probability reaches 0.

To professional policyholders, since the market surrender contagion cannot be triggered
without their surrender actions, the potential contagion event will have no influence on
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their surrender decision making, which implies that it has no impact on their contract
value, see the constant contract value of professional policyholders as the contagion
threshold B varies between 80 and 150 in Panel 4(a). But to non-professional policyholders
who originally surrender their contract purely random on the market, having the chance
of following professional policyholders’ surrender actions, which are optimal in the sense
of securing the contract’s highest payment, can improve their financial position, see
the increase in the contract value of non-professional policyholders as the contagion
threshold B decreases in Panel 4(b). But that comes at the expense of equity holders, see
the corresponding decrease in the equity value in Panel 4(c), and at the same time, heavy
early payments to not only professionals but also following-up non-professionals before
maturity drive up the insurance company’s default probability, see Panel 4(e).

4.4 The influence of default regulation on the contagion effects

This section studies the interaction effects of early default regulation and surrender con-
tagion. Here, the contagion threshold B has the base value of 100. Figure 5 presents
the impacts of the default multiplier θ on the contract value of both professional and
non-professional policyholders, the equity value, the default probability, and the contagion
probability. We consider two scenarios, namely, without surrender contagion, indicated by
the solid line, and with surrender contagion, indicated by the dashed line. Since contagion
has no influence on professional policyholders’ surrender decision making (see Section 4.3),
the contract values of professionals with and without contagion coincide in Panel 5(a).

First, independent of surrender contagion, the higher the default multiplier, the more
likely the insurance company is prematurely closed by the regulator, see Panel 5(e), which
harms both professionals and equity holders but benefits non-professional policyholders,
see Panels 5(a), 5(b), and 5(c). While stricter early default regulation constrains profes-
sional policyholders’ surrender actions, which can be confirmed by the decrease in the
contagion probability as the default multiplier increases in Panel 5(d), it supports non-
professional policyholders, who surrender randomly, by closing the insurance company
early and securing them at a fraction of their minimum guaranteed benefits. Moreover, the
regulator’s frequent intervention reduces equity holders’ chance of receiving any residual
capital of the insurance, that is, their probability of receiving a zero payoff increases. There-
fore, regulatory intervention induces a wealth transfer from both professionals and equity
holders to non-professionals, which increases in the strictness of the regulatory rule.

Next, the effects of contagion on the contract value of non-professionals, the equity
value, and the insurance company’s early default probability highly depend on the regu-
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(a) Professional Contract Values (b) Non-professional Contract Values

(c) Equity Value (d) Contagion Probability

(e) Early Default Probability

Figure 5: Default multiplier impact on contagion. Panel (a) presents the impact of the default multiplier θ
on the contract value of professional policyholders. Panel (b) shows the non-professional policyholders’ value
if contagion is impossible (solid line) or caused by professional surrender (dashed line). Panel (c) features
the equity value without (solid line) and with contagion (dashed line). Panel (d) shows the probability
for contagion if caused by professionals. Panel (e) displays the early default probability if contagion is
impossible (solid line) or caused by professional surrender (dashed line). All other parameters follow the
base case.

latory environment, see Panels 5(b), 5(c), and 5(e). Within a lax regulatory environment,
that is, the default multiplier is lower than about 77% in Figure 5, contagion increases
the contract value of non-professionals and the insurer’s early default probability, but it
decreases the equity value, which are consistent to the results that we obtained in Sec-
tion 4.3. However, as the default multiplier increases above about 77%, we see that, on
the contrary, contagion reduces the contract value of non-professionals and the insurer’s
early default probability, but it enhances the equity value. Strict regulatory intervention
stops the positive signaling role of contagion to non-professionals which improves their
financial position by aligning their surrender behavior to professionals’ optimal surrender
strategy. To understand how that happens, we need to discover the impact of the regula-
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(a) Assets at Surrender, θ = 68% (b) Assets at Surrender, θ = 88%

Figure 6: Professional surrender decision. Panels (a) and (b) display the surrender decision of professional
policyholders as a function of time and asset values for a low default threshold θ = 68% and for a high
default multiplier θ = 88%, respectively. The solid black line and gray lines indicate the median asset value
per policyholder, the minimum and maximum asset values per policyholder, respectively, at professionals’
surrender over the term of the insurance contract. The surrender benefits and the early default threshold are
represented by the dashed black line and the dotted gray line, respectively.

tor’s intervention on professional policyholders’ surrender conditions, which eventually
form non-professional policyholders’ contagious surrender conditions.

Figure 6 presents the distribution of the insurance company’s assets, including the
median asset value per policyholder (solid black line) and the minimum and maximum
asset values per policyholder (solid gray lines), the surrender benefits (dashed black line),
and the early default threshold (dotted gray line) over the contract term at professional pol-
icyholders’ surrender in both lax (θ = 68%) and strict (θ = 88%) regulatory environments.
The asset value boundaries at which professionals surrender share the same pattern in
both the lax and strict regulatory environments, which move upward and spread out along
time. Intuitively, as the insurance contract approaches maturity, compared to holding the
contract to participate in the insurer’s profits at maturity, professionals are more likely to
surrender their contract early when they notice the insurance company’s asset value is
dropping in order to secure the minimum guaranteed benefits.

Professional policyholders’ surrender, independent of the regulatory environment,
is optimal from the financial point of view as they take out surrender benefits that are
higher than their contract continuation value, following professionals’ surrenders does
not necessarily guarantee a better financial position for non-professionals. In the lax
regulatory environment, see Panel 6(a), most of the distribution of the company’s assets
at professionals’ surrender lies below the surrender benefits (compare the location of
the dashed black line to the location of the solid black line). In this case, professional
policyholders’ surrenders push the company’s assets per policyholder downward, which
further lowers the contract’s continuation value and calls for an early termination of the
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contract. However, in the strict regulatory environment, see Panel 6(b), the distribution
of the company’s assets at professionals’ surrender lies above the surrender benefits. As
professionals cash out surrender benefits, the company’s assets value per policyholder
gets pushed upward, which then increases the contract’s continuation value and (at least)
reduces the necessity of early terminating the contract. Following professionals’ surrenders
on the market by non-professionals can further enhance the contract’s continuation value,
which eventually renders early termination of the contract not optimal. Moreover, as the
company’s asset value per policyholder is pushed away from the early default threshold
by contagion, its early default probability is automatically lowered.

4.5 The influence of investment risk on the contagion effect

This section turns to the interaction effects of investment risk in the guise of volatility σ

and surrender contagion. Again, the contagion threshold equals B = 100 and the default
multiplier takes value θ = 70%. Figure 7 presents the impacts of the volatility σ, ranging
from 10% to 40%, on the contract value of both professional and non-professional policy-
holders, the equity value, the default probability, and the contagion probability. Similar
to the previous section, the two scenarios under consideration consist of no surrender
contagion, indicated by the solid line, and surrender contagion, indicated by the dashed
line. As previously, contagion does not influence professional’s surrenders.

Professional policyholders benefit from the increase in the volatility as long as it is not
too high, namely, lower than 28%, see Panel 7(a). Facing higher investment risk, profes-
sional policyholders will surrender their contract more likely, which can be confirmed by
the increase in the contagion probability in Panel 7(d), and also earlier, see the forward
moving surrender timing in Figure 8 as σ increases from 12.5% to 30%. Hence, profession-
als more often receive surrender benefits as σ increases, which their share of the potentially
higher expected rate of return of the insurance company more than compensates. However,
when the investment risk of the insurance company increases above 28%, the dominance
of the higher expected rate of return disappears since the insurance company is more likely
running into default with professionals staying in the insurance pool; compare the residual
probabilities in the last bar in Panels 8(b) and 8(d), and in that scenario the professionals
will obtain default benefits instead.

As non-professional policyholders surrender their contract independently for pure
exogenous reasons, they receive roughly the opposite payoff from professional policyhold-
ers, see the reversed shape of their contract value indicated by the black line in Panel 7(b).
With a rather mild increase in the equity value as σ increases, we see a clear wealth transfer
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(a) Professional Contract Values (b) Non-professional Contract Values

(c) Equity Value (d) Contagion Probability

(e) Early Default Probability

Figure 7: Volatility impact on contagion. Panel (a) presents the impact of the volatility σ on the contract
value of professional policyholders. Panel (b) shows the non-professional policyholders’ value if contagion
is impossible (solid line) or caused by professional surrender (dashed line). Panel (c) features the equity
value without (solid line) and with contagion (dashed line). Panel (d) shows the probability for contagion if
caused by professionals. Panel (e) displays the early default probability if contagion is impossible (solid line)
or caused by professional surrender (dashed line). All other parameters follow the base case.

between professional policyholders and non-professionals. And again, following up pro-
fessional policyholders’ optimal surrenders on the market does not necessarily guarantee
an improvement of non-professional policyholders’ financial position, see the decrease in
their contract value for volatility values above 28% as contagion is included for pricing in
Panel 7(b). Similar to the previous section, we see that in Figure 8 at the higher volatility
value σ = 30%, most of the company’s asset value distribution at professionals’ surrender
lies above the surrender benefits. Professional policyholders’ action pushes up asset value
per policyholder, which then lowers the company’s early default probability, see Panel 7(e).
The contract becomes more valuable to the remaining non-professional policyholders, and
following up professional policyholders in this case will reveal a wealth transfer from
non-professional policyholders to equity holders, see the increase in the equity value for
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(a) Assets at Surrender, σ = 12.5% (b) Surrender Timing, σ = 12.5%

(c) Assets at Surrender, σ = 30% (d) Surrender Timing, σ = 30%

Figure 8: Professional surrender decision. Panel (a) and Panel (c) show the professionals’ surrender
decision as a function of time and the insurance company’s asset value for a low volatility σ = 12.5% and a
high volatility σ = 30%, respectively. The solid black line and gray lines indicate the median asset value
per policyholder, the minimum and maximum asset values per policyholder, respectively, at professionals’
surrender over the term of the insurance contract. The surrender benefits and the early default threshold are
represented by the dashed black line and the dotted gray line, respectively. Panel (b) and Panel 8(d)display
the professionals’ surrender timing for a low volatility σ = 12.5% and a high volatility σ = 30%, respectively.
The last bar represents the probability of the professionals reaching maturity.

higher volatility values in Panel 7(c). Hence, in the presence of contagion, the insurer is
highly motivated to conduct riskier investment, which not only reduces its early default
probability, but also boosts its equity value.

5 Conclusion

In this paper, we introduce a surrender-history-dependent intensity process to describe
policyholders’ contagious surrender behavior observed on insurance markets and study its
impacts on the pricing and risk management of participating life insurance contracts within
a heterogeneous insurance pool. The insurance pool consists of so called professional
policyholders whose contracts are handled by a professional agent and non-professional
policyholders who manage their contract on their own. All professional policyholders
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surrender by following the optimal stopping rule which maximizes their contract value
while non-professionals surrender due to exogenous reasons and surrender contagion.
Within a two-stage valuation scheme, first, an optimal stopping problem describes the
value of professionally managed contacts, which we solve numerically by a Least Squares
Monte-Carlo algorithm. Second, we obtain the contract value of non-professionals by a
simple Monte-Carlo simulation which incorporates the optimal surrender strategy of the
professionals obtained in the first stage.

Our numerical results show that the impacts of contagion on policy and equity values
crucially depend on the strictness of the early default regulatory framework and the insur-
ance company’s investment strategy. In a moderate regulatory framework, professionals’
surrender poses an informative signal to non-professional policyholders. Contagion leads
non-professionals to surrender in states where the surrender benefits exceed their con-
tract’s expected future payoffs, which, reduces the asset value per policyholder, increases
the probability of early default, and, eventually harms the value of equity. However, in
a strict regulatory framework, contagion slightly reduces the value of non-professionals’
contract. Since strict early default regulation induces professionals to surrender (most
of time) in states where the asset value per policyholder lies above the surrender value,
their leave helps the insurer accumulate more assets to be shared between the remaining
non-professional policyholders and equity holders, which lowers not only the probability
of early default but also the value of the surrender option. Following up professionals
triggers a wealth transfer from non-professionals to equity holders. As for investment risk
in the form of volatility, we find that in most cases, namely with relatively low volatility
values, contagion benefits non-professionals by enabling them to profit from following the
professionals’ surrender fast enough, which renders professionals’ surrender as a valuable
signal. However, as the insurer conducts risky investment, the same as in a strict regulatory
framework, we find that contagious surrenders not only shift value from non-professional
policyholders’ contracts to equity, but also lower the company’s early default probability.

Concerning future research, one could calibrate the model to assess the actual impacts
of solvency regulation and capital requirements on the policy as well as equity values.
This could quantify surrender risk more accurately by allowing for contagion dynamics
among heterogeneous policyholders. Moreover, for technical tractability, we assumed one
optimal surrender strategy suggested by a financially professional agent and followed by
all professional policyholders in the present paper. Relaxing the assumption by assuming
multiple financially professional agents, analyzing strategic interactions among them from
a game-theory perspective, and incorporating the strategic interactions into pricing life
insurance policies also deserve much analysis in this line of research.
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A Proofs

A.1 Proof for Result 3.1

With the smoothness assumption on the value function vpro, its characterization in terms
of a free boundary value problem stated in Result 3.1 follows directly from the Markov
approach of optimal stopping, see Peskir and Shiryaev (2006, Section 8). This proof gives
the reader an intuition about the link between the free boundary value problem and the
value function of the corresponding optimal stopping problem.

Let us consider some time t ∈ [0, T]. Conditioned on {t < τD ∧ τP} and by no-arbitrage,
the value process satisfies

rvpro(X∞
t )dt = E[dvpro(X∞

t )|Ft] , (21)

where dvpro(X∞
t ) denotes the forward looking marginal dynamics of the value process.

The Itô formula for semi-martingales provides

vpro(X∞
u )− vpro(X∞

t ) =
∫ u

t

(
∂t + r a∂a +

a2σ2

2
∂2

a − β m∂m

)
vpro(X∞

s )ds

+
∫ u

t
σa∂avpro(X∞

s )dWs

+
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(
1{M∞
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pro(t, A∞
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s− + 1)

+ 1{M∞
s−∈[B−1, B), Bs=1}c vpro(t, A∞

s− − S(t, A∞
s−, 1), 0, N∞

s− + 1)− vpro(X∞
s−)
)

dN∞
s ,

(22)

where, in expectation, the martingale parts vanish, the jumps of N∞
s are averaged out, and

realizations of Bt are weighted by their respective probabilities so that

E[vpro(X∞
u )− vpro(X∞

t )|Ft] = E
[ ∫ u

t

((
∂t + r a∂a +

a2σ2

2
∂2

a − β m∂m
)
vpro(X∞

s )

+ (Znon − n)λ(M∞
t )∆vpro(X∞

s−)
)

ds
∣∣∣Ft

]
.

(23)

As u tends to t, we obtain the differential characterization

E[dvpro(X∞
t )|Ft] =[(

∂t + ra∂a +
a2σ2

2
∂2

a − βm∂m

)
vpro(X∞

t ) + (Znon − n)λ(M∞
t )∆vpro(X∞

t )
]

dt .
(24)

26



Each state x = X∞
t with vpro(x) > g(x) implicitly satisfies t < τD ∧ τP. Hence, (21) and

(24) together yield the partial differential equation in (11). States x with vpro(x) ≤ g(x) are
in the optimal stopping region P, and, since τP is an optimal stopping time in (10), (12)
follows with

vpro(x) = Ex

[
e−r(τP∧τD−t)g(X∞

τP∧τD
)
]
= Ex [g(X∞

t )] = g(x) . (25)

A.2 Proof for Result 3.2

First, we rewrite the value function for non-professionals given in (17). By grouping the
contract’s payoffs according to the time that they occur before or after the professional
policyholders’ surrender time τP, we can rewrite the contract value of the representative
non-professional policyholder as follows:

vnon(x) = Ex

[
e−r(τ1∧τD−t)

(
g(τ1, X∗τ1∧τD

)1{τ1∧τD≤τP} + ṽnon(X∗τP
)1{τ1∧τD>τP}

)
| N1

t = 0
]

,

where ṽnon presents the contract value for the non-professionals after the professionals
have surrendered. Now, we introduce the process N∗∗t = ∑Znon

i=2 Ni and denote the adjusted
processes X∗∗t = (t, A∗∗t , N∗∗t , M∗∗t ) where Nt is replaced by N∗∗t . Hence, X∗∗t describes the
underlying dynamics after the departure of the professionals. The contract value ṽnon for
non-professionals given that the processionals have departed is

ṽnon(x) = Ex

[
e−r(τ1∧τD−t)g(τ1, X∗∗τ1∧τD

) | N1
t = 0

]
, (26)

for initial states x = (t, a, n, m) with n ≥ Zpro.
We argue that ṽnon satisfies (20) and, then, show that vnon satisfies (18). Consider

the following contract value process, Ṽt = ṽnon(X∗∗t ) + 1τ1≤t(S(t, A∗∗t , 1) − ṽnon(X∗∗t ))

for t < T, at which the contract value is given by the value function ṽnon(X∗∗t ) if the
representative non-professional policyholder does not surrender, and equals the surrender
value otherwise. Du to no-arbitrage, the value process satisfies

rṽnon(X∗∗t )dt = E[dvnon(X∗∗t ) +
(
S(t, A∗∗t , 1)− ṽnon(X∗∗t )

)
d1τ1≤t|Ft] , (27)

27



conditioned on {t < τD}. Itô’s Lemma provides

E[dṽnon(X∗∗t )|Ft] =
[∂ṽnon

∂t
+ r A∗∗t

∂ṽnon

∂a
+

1
2

A∗∗t
2 σ2 ∂2ṽnon

∂a2 − β M∗∗t
∂ṽnon

∂m
+ (Z− N∗∗t − 1) λ(M∗∗t )∆ṽnon(X∗∗t )

]
dt ,

(28)

where the jump component is averaged out and, thus, replaced by its corresponding jump
intensity. Additionally, by Bielecki and Rutkowski (2004, Proposition 5.1.3), we have

E[d(S(t, A∗∗t , 1)− ṽnon(X∗∗t )d1τ1≤t|Ft] =
(
S(t, A∗∗t , 1)− ṽnon(X∗∗t )

)
λ(M∗∗t )dt , (29)

so that (29) and (28) inserted to (27) provide the differential characterization (20) of
ṽnon. By its definition, ṽnon must satisfy the boundary conditions (15) and (16). Fi-
nally, consider the value process for non-professionals given that professionals have
not surrendered their contracts, so that the contract value process takes the form Vt =

vnon(X∗∗t ) + 1τ1≤t(S(t, A∗∗t , 1)− vnon(X∗∗t )) for t < T ∧ τP. Note, that we do not include
the jump caused by professional surrenders at time τP to the underlying dynamics. How-
ever, by definition, vnon satisfies (19) on P \ D, which incorporates the surrender event of
professionals. With the arguments used in the first part of the proof we obtain

rvnon(X∗∗t )dt =
[∂vnon

∂t
+ r A∗∗t

∂vnon

∂a
+

1
2

A∗∗t
2 σ2 ∂2vnon

∂a2 − β M∗∗t
∂vnon

∂m
+ (Z− N∗∗t − 1) λ(M∗∗t )∆vnon(X∗∗t )

(
S(t, A∗∗t , 1)− vnon(X∗∗t )

)
λ(M∗∗t )

]
dt,

(30)

which justifies that vnon satisfies (18) for x ∈ E \ (D ∪ P). Note that, if the underlying
dynamics enter the optimal surrender region of the professionals P, the boundary condition
(19) induces the professional surrenders and shifts the valuation problem to ṽnon. In total,
the boundary conditions (15) and (16) account for default and maturity payoffs.
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