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1 Introduction

How economic agents form expectations about the future is of great macroeconomic impor-

tance because it influences decision-making and thus, economic behavior. Based on their

expectations about the future, consumers make decisions about how much to save and con-

sume, firms make decisions about setting prices and hiring workers, investors make decisions

about how much risk they are willing to bear to achieve their target returns, and central

bankers decide on appropriate monetary policy strategies. Specifically, agents’ inflation ex-

pectations impact business cycle dynamics and the effectiveness of monetary policy. The

Phillips curve describing the relationship between inflation and unemployment features in-

flation expectations as one of the main drivers of inflation, which underscores the importance

of well-anchored expectations as a primary goal of monetary policy. This study furthers this

objective by shedding new light on how economic uncertainty affects people’s inflation ex-

pectations.

Especially since the Great Recession, the economics profession has been publicly criti-

cized for its unrealistic simplifying assumptions, prominent among which is the assumption

of rational expectations, whereby economic agents form identical expectations using their

full information of the true underlying model of the economy. The full-information rational

expectations hypothesis has for a long time been subject to both theoretical and empirical

rejections (Caskey, 1985; Frankel and Froot, 1987; Sargent, 1993; Branch, 2004; Pesaran and

Weale, 2006; Coibion and Gorodnichenko, 2012, 2015; Dovern et al., 2015; Fuhrer, 2018).

Since Lucas (1972) and Kydland and Prescott (1982), a growing research field has attempted

to modify the full-information rational expectations assumption by introducing information

imperfections to economic models. Coibion and Gorodnichenko (2015) have framed this

research agenda around the concept of information rigidity, which is the existence of infor-

mation frictions despite agents having rational expectations, or at least taking into account

all currently available to them information. Among others, in this seminal paper the authors

assert that information rigidity is state-dependent; yet, there are few existing state-dependent

models Reis (2006); Van Nieuwerburgh and Veldkamp (2006); Gorodnichenko (2008); Wood-

ford (2009); Maćkowiak and Wiederholt (2012); Nimark (2014) and to my knowledge, none

that are based on regime-switching economic uncertainty.

Hence, this research contributes to our understanding of how agents form expectations

by introducing the indirect effect of uncertainty on information rigidity. Specifically, I pro-

pose a state-dependent structural micro-founded sticky-noisy information model with high-
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and low-uncertainty regimes. Agents are both rationally inattentive and faced with noisy

information. The main innovation is that the attention that agents allocate to acquiring and

processing information (quantity of information), as well as the noisiness in the information

they glean (quality of information) are driven by time-varying economic uncertainty. There

are interactions between the attention and noisiness effects, which moderate their influence

on aggregate information rigidity. Which of these opposite effects dominates is ambiguous a

priori and depends on the parameters of the model. I answer this question by conducting

structural estimation using Simulated Method of Moments (SMM) of the proposed state-

dependent model and the alternative models with information frictions.

The proposed theoretical model is micro-founded: agents solve an optimization problem

in order to minimize the cost of attention. In the solution, attention is a positive function of

economic uncertainty because collecting and analyzing information is costly in terms of time

and resources. When economic uncertainty is low, it may be optimal for agents not to update

their expectations every period. Since macroeconomic conditions are less volatile, the cost in

terms of forecast accuracy of not updating information frequently is relatively lower, so agents

optimally pay less attention. In contrast, in high-uncertainty states, this cost increases, as

previous forecasts can quickly become obsolete in light of volatile economic conditions. Thus,

agents have an incentive to pay closer attention to macroeconomic conditions in these periods.

This is the attention or wake-up call effect. At the same time, when uncertainty is relatively

low, the signals agents glean have relatively higher precision and are optimally trusted more.

Conversely, greater volatility makes it harder to make accurate predictions. With higher

uncertainty, the lower precision of information signals prompts agents to optimally put less

weight on the incoming information and have less faith in it. This is the noisiness or wait-

and-see effect.1 In high- (low-) uncertainty periods, there is a higher (lower) demand for

updated accurate information (attention effect) but lower (higher) supply (noisiness effect).

Therefore, the attention and the noisiness effect directly influence aggregate information

rigidity in opposite directions.

To capture the attention effect, I use the sticky information model (Mankiw and Reis,

2002; Reis, 2006; Maćkowiak and Wiederholt, 2015), whereby agents have to pay fixed costs

to acquire and process information in order to update their forecasts, so that every period

a fraction of agents is rationally inattentive. I introduce the noisiness effect by unifying

1The wait-and-see notion dates back to Bernanke (1983), who originally proposed a theory of irreversible
choice under uncertainty. According to it, uncertainty increases the value of waiting to make lasting in-
vestment decisions until the uncertainty is resolved and reliable information is obtained, so that short-run
investment cycles form.
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this framework with the noisy information model (Woodford, 2002; Sims, 2003; Maćkowiak

and Wiederholt, 2009), which posits that agents continuously update their information but

face a signal-extraction problem due to noise in the signal they glean. The proposed state-

dependent model improves upon existing hybrid sticky-noisy information models (Andrade

and Le Bihan, 2013; Giacomini et al., 2020), which consider the effects of rational inattention

and noisy information as independent drivers of information rigidity, thus overestimating it.

Whereas the attention and noisiness channels directly contribute to information rigidity,

state-dependence indirectly moderates the interactions between these two direct effects on

aggregate information rigidity. To my knowledge, these interactions are entirely ignored

in the existing literature. Introducing state-dependence to this theoretical setup is thus

an innovation and a major contribution to the literature. This research promises to add

granularity to our understanding of the expectation formation process of economic agents

and hence, its impact on macroeconomic dynamics in the future, especially during current

and forthcoming episodes of heightened uncertainty.

The proposed model posits that economic agents form expectations in two stages. First,

before deciding whether to engage in a comprehensive forecast re-estimation, agents con-

duct a preliminary step of assessing the hidden state of economic uncertainty. Using and

interpreting free public information, agents calculate the probabilities of being in high- or

low-uncertainty regimes, which is approximated with a Markov-switching model. Based on

this inference and the solution of the agent’s optimization problem, agents update their fore-

casts with probability proportional to the probability to be in the high-uncertainty state.

In the second stage of the model, only the attentive agents update their forecasts, while

the rest simply carry forward their previous predictions. This stage is approximated with a

Kalman filter as in a noisy information model: attentive agents optimally assign weights to

the incoming noisy information and their previous estimate according to the Kalman gain.2

I do not assert that economic agents actually run a Markov-switching model or a Kalman

filter to update their forecasts. Instead, these algorithms merely approximate the agents’

decision-making process, so that deciding whether uncertainty is high or low is less costly

than re-estimating a full forecast every period.

Structural estimation of alternative models with information frictions using SMM demon-

2The Kalman gain represents the relative importance given to the error in the incoming data versus
that of the existing estimate. If the Kalman gain is relatively high, more weight is placed on the incoming
observations and the existing estimates are unstable, whereas if it is relatively low, the incoming observations
are perceived to be less accurate and the filter puts more weight on the existing estimates, which are then
more stable. The specification of the Kalman gain is presented in equation (4.10).
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strates that the proposed state-dependent model is superior to the hybrid and sticky informa-

tion models, while preserving some of the desirable features of the noisy information model.

Moreover, the proposed model is more appealing than the noisy information model due to

its ability to account for inattention observed in survey data. Hence, all three channels, the

direct attention and noisiness and the indirect state-dependence effects need to be included

in models with information frictions, so that they match survey expectations. Structural

estimations further suggest that the attention effect clearly dominates the noisiness effect:

more than half of the estimated information rigidity is due to inattention, which is good

news for policymakers. It leaves ample room for monetary policy, which can affect the quan-

tity of information available to economic agents by employing frequent, direct, and simple

forward guidance. For instance, a creative recent initiative by the Bank of Jamaica anchors

expectations by raising awareness about its inflation-targeting policy through reggae music.

Next, Section 2 describes the empirical data and Section 3 provides stylized facts and

reduced-form empirical tests to motivate the theory. Prominently, Section 4 outlines the

proposed theoretical model and Section 5 describes its structural estimation. Section 6

compares the estimation results of alternative models with information frictions. Section 7

provides results of the relative contributions of the direct attention and noisiness, and the in-

direct state-dependence channels to information rigidity. Finally, Section 8 offers concluding

remarks and discusses the relevance of these findings to monetary policy.

2 Data

The survey data of quarterly forecasts of the GDP deflator3 by individual professional fore-

casters are from the US Survey of Professional Forecasters (SPF), collected by the Federal

Reserve Bank of Philadelphia4 in the period Q4 1968 - Q2 2019. The sample size varies be-

tween 9 and 131 individual forecasters, with an average of 46 forecasters every quarter and

includes 443 different individual forecasters in total, 70 of whom report forecasts in at least

40 of the 203 total periods. All of the presented stylized facts and empirical tests are robust

to constraining the sample of forecasters to this core sample, so the subsequent analysis uses

the full sample. The panel data set is unbalanced, as forecasters enter, exit, and merge

3Forecasts are of the level of chain-weighted GDP price index (GDP implicit deflator), seasonally adjusted
with varying base year. Prior to 1992, the forecasts are for the GNP implicit deflator.

4Prior to Q2 1990, the SPF was conducted by the American Statistical Association (ASA) and the
National Bureau of Economic Research (NBER).
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during the survey period. Figure A.1 presents the frequency of forecaster participation in

the sample and Figure A.2 shows time series of realized second- and final-release values of

inflation vs. mean SPF forecasts.

The use of survey data on professional forecasters is dictated by data availability and

the fact that as some of the most informed agents in the economy whose principal job is

to make economic predictions, they serve as a conservative benchmark, or a lower bound,

for the aggregate degree of information rigidity in the economy. Moreover, as documented

by Carroll (2003), the predictions of professional forecasters spread throughout the economy

and influence the expectations of firms and consumers, which are theoretically more relevant

on the macro level. Specifically, the use of forecasts of GDP deflator inflation are used due to

the much longer available time series dating back to Q4 1968, as compared to other inflation

indicators (CPI starting in Q3 1981 and PCE starting in Q1 2007).

The surveys are conducted with a variety of financial and non-financial service providers

for their forecasts of a plethora of macroeconomic variables. The SPF data includes industry

classifications for about 53 percent of forecasts, of which 42 percent are financial service

providers (insurance, investment banking, commercial banking, etc.) and 58 percent are

non-financial service providers (manufacturers, universities, forecasting firms, etc.). The

surveying process is the same for every respondent: the survey questionnaire includes recent

historical data from the Bureau of Economic Analysis (BEA) advance report including the

first estimate of GDP (and components) for the previous quarter, which is released at the

end of the first month of each quarter and the most recent report of other governmental

statistical agencies. Forecasters submit their predictions by the second to third week of the

middle month of each quarter, so their information sets include the data reported in the

advance report. More information about the SPF is available at www.philadelphiafed.

org/research-and-data/real-time-center/survey-of-professional-forecasters.

The SPF forecasts used in this study are of the “fixed-horizon” data structure, whereby

forecasters give predictions on a rolling basis for the current and the next four quarters. The

summary statistics and empirical results presented here have been checked for robustness

using forecast data collected by Consensus Economics, Inc. in the period October 1989 -

December 2014. This data is monthly and of the alternative “fixed-event” type: every month,

forecasters are asked to submit their annual forecasts for the current and next calendar years.

However, the “fixed-horizon” data structure of the SPF is preferred because unlike the “fixed-

event” data, it isolates time variation and removes the seasonal effect of diminishing horizons

on agents’ information sets.
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I use one-quarter ahead individual forecasts of GDP deflator inflation, given by the fol-

lowing equation:

ŷt+1|t =

[(
Pi,t+1

Pi,t

)4

− 1

]
× 100. (2.1)

I focus on one-quarter ahead forecasts, since they represent short-run expectations that

are more liable to the influence of spikes in contemporaneous economic uncertainty than

medium- and long-run predictions. Moreover, as pointed out by Ryngaert (2017), forecast

errors at horizons greater than one present an endogeneity problem, so that the empirical

tests of information rigidity presented in Section 3 could not be estimated by OLS for these

longer horizons. I also duplicate all summary statistics and empirical results using nowcasts,

the agents’ expectations about GDP deflator inflation for the current period formed in the

current period.5 Data on the realizations of GDP deflator inflation used in the calculation of

forecast and errors (actual minus forecasted values) are obtained from the Federal Reserve

Bank of Philadelphia’s real-time data set, including first, second, third, and most recent

(final) release of data.

In line with Bernanke (1983), Romer (1990), and Bloom (2009), uncertainty is construed

as second-moment shocks to economic activity. Specifically, two main indicators are used to

approximate economic uncertainty. First, the economic policy uncertainty (EPU) index is

based on newspaper coverage frequency and specifically proxies for changes in policy-related

economic uncertainty. It is compiled by Baker et al. (2016) and is constructed as a weighted

average of three components: 1) newspaper coverage of economic policy-related uncertainty;

2) expiration of federal tax code provisions; and 3) disagreement among forecasters. The

EPU is available online at www.policyuncertainty.com. Since the baseline EPU is only

available since 1985, I use the historical EPU index, which is based on newspaper coverage

of six rather than ten large newspapers as in the baseline, to extend the time series to cover

the sample period Q4 1968 - Q2 2019. I normalize the historical EPU to the same mean

and variance as the baseline EPU index for the period when they overlap (January 1985 -

December 2014), using the methodology of Bloom (2009). Second, as a robustness check, I

use the VXO, which is the Chicago Board Options Exchange index of implied volatility based

on trading of S&P100 options for a 30-day horizon. It is used as a proxy for the market’s

short-term expectation of stock market volatility. The VXO is obtained from the Federal

Reserve Economic Data (FRED) and is available from 1986. Prior values are calculated from

5Results not shown but available upon request.
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actual monthly returns volatilities (monthly standard deviations, again normalized to the

same mean and variance as the VXO index for the period when they overlap, as per Bloom

(2009)).

The EPU and VXO indices have significant correlation of 0.37; yet, each introduces its own

independent variation. For instance, the VXO is more reflective of episodes of short-term

financial-sector uncertainty, such as the Asian Financial Crisis and the Lehman Brothers

collapse, whereas the EPU is more sensitive to wars, elections, political disagreement over

taxation and spending, etc., which involve major political concerns, in addition to stock

market volatility. The EPU is preferred to the VXO because it is ‘more exogenous’ from

the expectation formation process of professional forecasters, many of whom are financial-

sector institutions. I urge caution in interpreting the presented results for the period prior

to 1985-86 due to the less reliable quality of the EPU and VXO data. Quarterly values of

the extended EPU and VXO indices are 3-month averages of monthly values. Finally, for

robustness, I also use a dummy indicator for recessionary periods, as defined by the National

Bureau of Economic Research (NBER) and obtained from FRED. Quarterly values of the

recession indicator are 3-month averages of monthly values.

3 Motivation

3.1 Stylized Facts

The following observations document the presence of uncertainty-based state-dependence in

the SPF data and motivate the introduction of regime-switching in the agents’ expectation

formation process. Table 1 presents descriptive statistics on the mean forecast error (actual

realization - mean forecast),6, empirical attention λt (the proportion of forecasters updating

their forecasts each period), and forecaster disagreement (cross-sectional standard deviation

of individual forecasts). Figure A.4 visually shows these stylized facts.

The mean forecast errors are larger in absolute value during HU than LU periods using

all releases of realized inflation data. The difference in means between LU and HU periods

is significant at least at the 10 percent level for all forecast errors. The negative values

during HU periods suggest that on average, forecasters overestimate inflation during high-

6I present stylized facts for the forecast errors using first, second, third, and final release of actual data
from the Federal Reserve Bank of Philadelphia’s real-time data set.
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Table 1: Summary Statistics Motivating State-dependence

Panel A: Mean Forecast Errors
Full Sample LU HU Abs. Difference AR(1) Coeff.

First Release -0.090 0.032 -0.367 0.399* 0.341***
(0.098) (0.132) (0.109) (0.213) (0.067)

Second Release -0.021 0.112 -0.337 0.449* 0.383***
(0.105) (0.141) (0.113) (0.229) (0.066)

Third Release 0.004 0.139 -0.313 0.452** 0.370***
(0.104) (0.139) (0.115) (0.226) (0.066)

Final Release 0.011 0.121 -0.241 0.363* 0.543***
(0.090) (0.121) (0.102) (0.195) (0.059)

Panel B: Empirical Attention λt (Fraction of Nowcast and Forecast Updaters)
Full Sample LU HU Abs. Difference AR(1) Coeff.

Mean λt 0.931 0.921 0.953 0.031** 0.996***
(0.006) (0.008) (0.004) (0.013) (0.006)

Panel C: Forecaster Disagreement
Full Sample LU HU Abs. Difference AR(1) Coeff.

Standard Dev. 1.026 1.167 0.706 0.461*** 0.877***
(0.049) (0.065) (0.039) (0.101) (0.033)

Observations 199-202 139-140 59-62
Standard errors in parentheses *** p< 0.01, ** p<0.05, * p<0.1.

The table shows the means of the full sample, LU and HU sub-samples with standard errors in
parenthesis. Absolute differences are estimated with two-tailed means t-tests during LU vs. HU
periods. AR(1) coefficients are obtained from regressions on 1-quarter lag. Mean forecast errors
are obtained by subtracting the individual quarterly forecasts from the actual realizations and av-
eraging across forecasters. Empirical attention λt is calculated as the proportion of forecasters who
update their forecasts and nowcasts out of all forecasters in the sample. Forecaster disagreement
refers to the cross-sectional standard deviation of forecasts.

volatility episodes. Moreover, their mean forecast errors during LU periods are much smaller

in absolute value and positive, implying that forecasters underestimate these variables during

less volatile times, albeit to a lesser degree. These findings suggest that when economic

uncertainty increases forecast accuracy decreases, despite agents paying more attention and

updating their forecasts at higher rates. The significant AR(1) coefficients demonstrate the

predictability of mean forecast errors. Figure A.5 confirms that mean forecast errors are

fairly persistent in the inflation expectations of professional forecasters.

Similarly, empirical attention λt
7 is higher during HU episodes, confirming that agents

indeed pay more attention to inflation during periods of heightened uncertainty. This result

7Missing values of forecasts and nowcasts of GDP deflator inflation are interpreted as “not updating.”
Whenever forecasters report a forecast and nowcast that are different from the previous period’s, this is
interpreted as “updating.” Hence, in the first period when a forecaster joins the survey, she is counted as
“updating.” Removing the effect of new entrants does not substantially change the findings. Forecasters are
considered “attentive” only when they update both their forecast and nowcast to avoid measurement errors
and focus on intentional forecast updating resulting from forecast modeling, which produces both forecasts
and nowcasts.
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is significant at the 5 percent level. Figures A.4 and A.7 present graphically the significant

difference in the means of attention during LU and HU periods. Figure A.7 also presents

its standard deviation during the LU and HU regimes. Attention is less volatile during HU

periods, since forecasters prevalently pay more attention when uncertainty is relatively high.

Figure A.3 confirms this by showing that the distribution of attention during HU periods

includes many more forecasters paying close to full attention, compared to LU periods and

the full sample. Attention also varies over time and with the state of economic uncertainty.

It is never complete for long periods of time (λt 6= 1), as shown in Figure A.6. The fact

that attention is not complete fits with the sticky information model; however, the empirical

observation that it varies over time nonrandomly (high and significant AR(1) coefficient in

Table 1) does not. On the other hand, the observation that attention is not always complete

cannot be reconciled with the noisy information model. Hence, neither the canonical sticky,

nor the basic noisy information model on its own is able to account for these stylized facts.

Finally, the finding that forecaster disagreement is lower during HU than LU periods is

driven by the sample period. As shown in Figure A.8, disagreement is higher prior to the

late 1980s and declines thereafter, as noted by Coibion and Gorodnichenko (2012). This is

due to the Great Moderation when inflation volatility markedly declined; decisive monetary

policy and improved central bank communication anchored price expectations to an (implicit)

target. Due to the limited coverage of the EPU index prior to 1985, the early part of the

sample is also a period that the Markov-switching model in Appendix B designates as LU.

Two-tailed t-tests during the sub-period until 1990 shows disagreement lower in HU periods

than LU periods, while the result gets reversed in the sub-period after 1990.8 In the later

part of the period, there is evidence of state-dependent forecaster disagreement that is also

counter-cyclical, as in Ilut and Schneider (2014); Lahiri and Sheng (2008).Yet, the overall

trend of declining disagreement is dominant, which has produced this puzzling finding. The

fact that disagreement varies with the state of economic uncertainty is explained by the

sticky information model but not by the basic noisy information model.9

8These findings are not significant due to the fewer observations in each sub-period, 84 before 1990 and
118 afterward.

9The basic noisy information model can be altered to generate time-varying disagreement by introducing
heterogeneity in the noise among agents or conditional time-variance of the noisy signal that is correlated
with the magnitude of the shocks (Andrade and Le Bihan, 2013).
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3.2 Basic Empirical Tests

3.2.1 Preliminary OLS Regressions

In order to further motivate the state-dependent model of expectation formation, I exam-

ine the relationship of the empirical degree of attention and the unobserved state of eco-

nomic uncertainty as (λt = f(σ2
t )) by regressing the empirical degree of attention λt on the

proxies of uncertainty xt. The following equation is estimated using OLS regressions with

heteroskedasticity-robust Huber-White standard errors:

λt = α + βxt + δt + εt, (3.1)

where the dependent variable λt is the empirical attention and 0 ≤ λt ≤ 1. It is calculated

as the proportion of forecasters who revise their forecasts from the previous period t - 1 in

all forecasters who make a prediction at time t. The independent variable xt is a signal for

the hidden state of economic uncertainty σ2
t at time t. The extended EPU index is used as

the empirical proxy for uncertainty. In addition, the extended VXO index is also used as a

robustness check. Regressions (5) - (8) include quarter dummies δt to capture any seasonality

effect. Regressions (2), (4), (6), and (8) also include a constant α. Finally, εt is the error

term in the regressions.

Table 2: Preliminary OLS Regressions

Empirical Attention λt in GDP Deflator Inflation Forecasts

(1) (2) (3) (4) (5) (6) (7) (8)

Extended EPU 0.00825*** 0.000745*** 0.00630*** 0.000751***

(0.000223) (0.000219) (0.000339) (0.000224)

Extended VXO 0.0428*** 0.000801 0.0328*** 0.000733

(0.00136) (0.000583) (0.00226) (0.000613)

Constant 0.855*** 0.915*** 0.842*** 0.906***

(0.0264) (0.0145) (0.0293) (0.0189)

Observations 203 203 203 203 203 203 203 203

Quarter Dummies NO NO NO NO YES YES YES YES

R-squared 0.901 0.103 0.895 0.004 0.929 0.112 0.920 0.013

Adj. R-squared 0.901 0.0981 0.895 -0.0009 0.928 0.0939 0.918 -0.0071

Robust standard errors in parentheses *** p< 0.01, ** p<0.05, * p<0.1.

The table presents results from OLS regressions of empirical attention λt on the proxies of economic uncertainty, the
extended EPU and VXO indices, with heteroskedasticity-robust Huber-White standard errors. Empirical attention λt
is calculated as the proportion of forecasters who update their forecasts of GDP deflator inflation out of all forecasters
in the sample for each quarter.

These regressions should be considered as evidence of association, rather than causation,

between empirical attention λt and economic uncertainty, as approximated by the two un-

certainty indices. Whereas there is little reason to worry about reverse causality, since it

is clearly economic uncertainty affecting the degree of attention and not vice versa, the re-

gressions may still be afflicted by endogeneity due to omitted variable bias. There may be
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omitted variables that are correlated with both the uncertainty proxy and the error term of

the regressions.Yet, Table 2 presents an initial step in empirically establishing the relation-

ship between attention λt and uncertainty.

The results from the OLS regressions show that there is highly statistically significant

(at the 1 percent level) positive relationship between empirical attention in the forecasts of

GDP deflator inflation and the extended EPU index. The relationship is of the same level

of significance using the extended VXO index as the independent variable. However, the

coefficients are of lower magnitude when a constant is included in the regressions and even

lose significance in the model with the extended VXO index as the uncertainty proxy. The

regressions including quarter dummies also show slightly smaller coefficients but of the same

levels of significance. Despite the limitation of these simple OLS regressions, the results

from regressions (1) and (5) using the EPU index as the uncertainty proxy suggest that if

uncertainty increases by one standard deviation, attention rises by 2.7-3.5 standard devia-

tions, ceteris paribus. Since the sample size varies between 9 and 131 individual forecasters

every quarter, with an average of 46 forecasters, this implies that a one-standard deviation

increase in EPU uncertainty could make 2 to 39 professional forecasters attentive, 10-14 on

average, which is an economically significant effect.

3.2.2 Bi-variate VAR

A simple recursive bi-variate vector autoregression (VAR) is estimated in order to address

some of the concerns around the previous OLS regression analysis. The VAR approach al-

lows for symmetric treatment of the included variables in a structural sense by estimating an

equation for each variable explaining its evolution based on its own lags and the lags of the

other variable in the system. Two VAR models are estimated with the following Cholesky

identification ordering [EPU, λt]
′ and [VXO, λt]

′. The empirical proxy for uncertainty is or-

dered first, since it affects attention contemporaneously, whereas attention can be considered

to impact uncertainty only with a lag. As a robustness check on this imposed assumption, I

also estimated the reverse ordering leading to very similar results. The estimated VAR mod-

els include one lag of all variables, as preferred by the Hannan-Quinn information criterion

(HQIC) and the Schwarz’s Bayesian information criterion (SBIC). To confirm the station-

arity of the series, the augmented Dickey-Fuller test is performed and it strongly rejects the

null hypothesis of a unit root in the attention measure and the EPU and VXO indices at the

1 percent significance level. The Phillips-Perron unit-root test using Newey-West standard

errors to account for serial correlation confirms the rejection of the unit root null for all three
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variables at the 1 percent significance level. Finally, the results are also confirmed with the

modified Dickey-Fuller GLS test proposed by Elliott et al. (1996), a t-test for a unit root in

which the series has been transformed by a generalized least-squares regression.
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Figure 1: Cholesky Orthogonalized Impulse-Response Functions
The figure presents impulse-response functions orthogonalized using Cholesky decomposition, i.e. the impact of an uncertainty
shock on empirical attention λt. Attention λt is calculated as the proportion of forecasters who update their forecasts of GDP
deflator inflation out of all forecasters in the sample for each quarter. Post-estimation results: The estimated VAR models
are stable, since all eigenvalues lie inside the unit circle. The null hypothesis that there is no residual first-order autocorrelation
in the residuals of the VAR model including the EPU index cannot be rejected at the 10 percent level. The Jarque-Bera,
skewness, and kurtosis statistics reject the null hypothesis that the disturbances in the VAR models are normally distributed,
which may indicate some model misspecification. Wald tests of the null hypothesis that all endogenous variables at one lag are
separately and jointly zero are strongly rejected in all equations. Finally, Granger causality Wald tests suggest that the null
hypothesis that attention does not Granger-cause uncertainty can be rejected at the 10 percent for the VAR with the EPU
index, while the null hypothesis that uncertainty does not Granger-cause attention can be rejected at the 1 percent level, which
is in line with the hypothesized relationship. Neither of these Granger causality tests can reject the null for the VAR using the
VXO index.

Figure 1 presents the impulse-response functions orthogonalized using Cholesky decom-

positions. The EPU uncertainty shock (one standard deviation increase in the EPU index)

causes a significant increase in the empirical attention λt. Attention shoots up immediately

in the first quarter after the uncertainty shock and then slowly dies down by the seventh

quarter after the shock. In contrast, there is no significant effect on attention from a VXO

uncertainty shock (one standard deviation increase in the VXO index). These results suggest

that only an increase in the broader economic policy-related uncertainty has a positive, sig-

nificant, and persistent effect on attention in GDP deflator inflation forecasts. An increase in

financial sector-related uncertainty, as proxied by the VXO index, has no significant effect on

attention in inflation forecasts, which may be due to the high-frequency volatility in financial

data. This finding provides empirical confirmation of the choice of the EPU index, rather

than the VXO index, as the baseline uncertainty proxy in the model. The impact of an
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EPU uncertainty shock on attention is of similar magnitude as the results obtained from the

OLS regressions in Section 3.2.1, which adds further validity to these findings. The results

are in line with the hypothesized relationship, according to which the degree of attention

is affected by economic uncertainty, suggesting that the expectation formation process of

economic agents is state-dependent.

3.3 Empirical Test of Information Rigidity

To confirm the presence of information rigidity in the SPF data, I conduct a standard em-

pirical test used in the literature of regressing the mean forecast error on its lag (Coibion

and Gorodnichenko, 2012; Ryngaert, 2017). In Appendix C, I confirm these results with two

additional tests, regressing the mean forecast error on the mean forecast revision (Coibion

and Gorodnichenko, 2015) and regressing the mean forecast revision on its lag (Dovern

et al., 2015; Nordhaus, 1987). I also test the central hypothesis of this study that informa-

tion rigidity is characterized by uncertainty-based state-dependence by including interaction

terms with uncertainty indicators in these regressions.

The main empirical approach used to estimate information rigidity expresses the pre-

dictability of the mean forecast error with respect to its lag, as developed by Coibion and

Gorodnichenko (2012) and Ryngaert (2017):

MeanForecastErrort+1|t = αa + βaMeanForecastErrort|t−1 + δt + εt, (3.2)

where αa is a constant, MeanForecastErrort+1|t = ActualV aluet+1 −MeanForecastt+1|t,

MeanForecastErrort|t−1 = ActualV aluet −MeanForecastt|t−1, δt are quarter dummies to

account for any seasonality effect in the data, and εt is the error term in the regression.

Since the error εt is orthogonal to information dated t and earlier, this equation can be

estimated by OLS (Coibion and Gorodnichenko, 2012). This empirical test is performed on

mean forecast data of GDP deflator inflation from the SPF for the entire sample Q4 1968

- Q2 2019. As a robustness check to control for the effect of major revisions in the realized

data, mean forecast errors are calculated using the first, second, third, and final releases of

the actual values, obtained from the Federal Reserve Bank of Philadelphia’s real-time data

set. The results are presented in Table 3.

As expected, all estimated βa coefficients are positive and highly significant at the 1

percent level, indicating that there are significant information rigidities in the data. The

magnitude of the coefficients generally increase with later releases of actual data. None of
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Table 3: Information Rigidity Test Based on Forecast Error

Forecast Error (First Release) Forecast Error (Second Release)
(1) (2) (3) (4) (5) (6)

Lag FE (First Release) 0.341*** 0.338*** 0.349***
(0.0966) (0.0986) (0.108)

Lag FE (Second Release) 0.383*** 0.383*** 0.395***
(0.0966) (0.0971) (0.106)

Constant -0.0667 0.0466 -0.00824 0.0671
(0.0962) (0.168) (0.0987) (0.187)

Observations 199 199 199 197 197 197
Quarter Dummies NO NO YES NO NO YES
R-squared 0.115 0.113 0.142 0.147 0.147 0.179
Adjusted R-squared 0.110 0.109 0.124 0.143 0.143 0.162

Forecast Error (Third Release) Forecast Error (Final Release)
(7) (8) (9) (10) (11) (12)

Lag FE (Third Release) 0.370*** 0.370*** 0.380***
(0.101) (0.101) (0.109)

Lag FE (Final Release) 0.543*** 0.543*** 0.547***
(0.0769) (0.0769) (0.0791)

Constant -0.00253 0.0558 0.00299 0.180
(0.0965) (0.197) (0.0757) (0.159)

Observations 200 200 200 201 201 201
Quarter Dummies NO NO YES NO NO YES
R-squared 0.137 0.137 0.161 0.296 0.296 0.306
Adjusted R-squared 0.132 0.132 0.144 0.293 0.292 0.292

Robust standard errors in parentheses *** p< 0.01, ** p<0.05, * p<0.1.

The table presents results from OLS regressions of mean forecast errors on their lags, following Coibion and
Gorodnichenko (2012) and Ryngaert (2017). The mean forecast errors are obtained by subtracting the individual
quarterly forecasts from the first-, second-, third-, and final-release actual data and averaging across forecasters.
All regressions include heteroskedasticity-robust Huber-White standard errors.

the constants in the regressions are significant, suggesting no bias in the forecasts. Overall,

the specifications including constants and quarter dummies are preferred as a baseline due

to their higher adjusted R-squared, although all specifications presented in this study are

robust to excluding the constants and quarter dummies. The results using the final actual

data release to calculate forecast errors are comparable to the findings of Ryngaert (2017) of

βa = 0.53∗∗∗ for one-quarter ahead forecasts. However, these results are lower than Coibion

and Gorodnichenko (2012)’s βa = 0.88∗∗∗ for four-quarters ahead forecast data, which could

be explained by the fact that information rigidity increases over longer prediction horizons.

15



Table 4: Information Rigidity Test Based on Forecast Error: Interactions

Forecast Error (First Release) Forecast Error (Second Release)
(1) (2) (3) (4) (5) (6)

Lag FE (First Release) 0.385*** 0.436*** 0.772***
(0.116) (0.136) (0.216)

Lag FE (Second Release) 0.427*** 0.469*** 0.719***
(0.111) (0.132) (0.210)

Lag FE×HU Indicator -0.424** -0.503** -0.00467** -0.447** -0.465* -0.00369*
(0.176) (0.236) (0.00184) (0.183) (0.250) (0.00193)

HU Dummy -0.408** -0.416**
(0.175) (0.175)

Prob(HU) -0.412* -0.399*
(0.230) (0.228)

EPU Index -0.00494** -0.00509**
(0.00203) (0.00213)

Constant 0.134 0.141 0.502* 0.142 0.147 0.539*
(0.189) (0.203) (0.301) (0.207) (0.222) (0.325)

Observations 199 199 199 197 197 197
Quarter Dummies YES YES YES YES YES YES
R-squared 0.170 0.167 0.177 0.206 0.199 0.205
Adjusted R-squared 0.144 0.141 0.151 0.181 0.173 0.180

Forecast Error (Third Release) Forecast Error (Final Release)
(7) (8) (9) (10) (11) (12)

Lag FE (Third Release) 0.407*** 0.447*** 0.672***
(0.114) (0.136) (0.221)

Lag FE (Final Release) 0.563*** 0.597*** 0.730***
(0.0835) (0.0954) (0.210)

Lag FE×HU Indicator -0.437** -0.449* -0.00339 -0.274* -0.386* -0.00249
(0.193) (0.267) (0.00207) (0.161) (0.206) (0.00196)

HU Dummy -0.413** -0.144
(0.170) (0.140)

Prob(HU) -0.426* -0.224
(0.222) (0.188)

EPU Index -0.00552*** -0.00407*
(0.00209) (0.00207)

Constant 0.140 0.157 0.580* 0.144 0.162 0.515*
(0.213) (0.227) (0.321) (0.175) (0.189) (0.298)

Observations 200 200 200 201 201 201
Quarter Dummies YES YES YES YES YES YES
R-squared 0.188 0.181 0.188 0.307 0.310 0.316
Adjusted R-squared 0.162 0.155 0.163 0.285 0.289 0.295
Robust standard errors in parentheses *** p< 0.01, ** p<0.05, * p<0.1.

The table presents results from OLS regressions of mean forecast errors on their lags, following Coibion and Gorod-
nichenko (2012) and Ryngaert (2017). High uncertainty (HU) indicators include: HU Dummy = dummy for periods
with probability of HU regime at least 50 percent (see Appendix B); Prob(HU) = probability of HU regime (see
Appendix B); EPU Index = uncertainty proxy. The mean forecast errors are obtained by subtracting the individ-
ual quarterly forecasts from the releases of actual data and averaging across forecasters. All regressions include
heteroskedasticity-robust Huber-White standard errors.
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To test the central hypothesis of this study that information rigidity is characterized

by uncertainty-based state-dependence, Table 4 adds to the baseline specifications from

Table 3 interactions of the explanatory variable (lagged mean forecast error) with various

measures of economic uncertainty, including a high-uncertainty (HU) dummy for quarters

with probability of HU regime at least 50 percent and the continuous probability of HU

regime itself, Prob(HU), both as estimated by a Markov-switching dynamic autoregression

model in Appendix B, as well as the extended EPU index on which this Markov-switching

dynamic autoregression is based.

The βa coefficients using all releases of actual data are of even higher magnitude when

the interaction terms are included, as compared to the baseline results from Table 3. The

coefficients on the interaction terms are all negative and in the majority of specifications,

at least significant at the 10 percent level. This indicates that whereas information rigid-

ity overall may be higher than previously estimated, it significantly decreases with rising

economic uncertainty. In half of the models in Table 4, the coefficients of the interaction

terms are even larger in absolute value than the coefficients of the lagged forecast error, sug-

gesting that information rigidity in HU periods falls between about 49 percent (Model (10),

−0.274/0.563) and 118 percent (Model (1), −0.424/0.385). This finding that information

rigidity is decreasing in economic uncertainty is in line with the results of Baker et al. (2019),

who find significantly negative coefficients on interaction terms with dummies for periods

with natural disasters.10

The results from the two additional tests of information rigidity regressing the mean fore-

cast error on the mean forecast revision (Coibion and Gorodnichenko, 2015) and regressing

the mean forecast revision on its lag (Dovern et al., 2015; Nordhaus, 1987) in Appendix

C offer some additional support to the notions that information rigidity is present even in

short-term forecasts and that it decreases rather substantially with rises in economic uncer-

tainty. The effect of state-dependence on information rigidity is significant and merits more

detailed investigation. The results give a preliminary indication that the hypothesized at-

tention or wake-up call effect may be stronger than the alternative noisiness or wait-and-see

effect of uncertainty on information rigidity. Thus, as uncertainty increases, forecasters pay

significantly more attention and update their forecasts at a more frequent rate to reflect new

developments in the data. Doing so outweighs the effect of increased noisiness in the new

incoming information, which would otherwise cause forecasters to optimally put less weight

10Baker et al. (2019) include interactions in the empirical test regressing the mean forecast error on the
mean forecast revision (Coibion and Gorodnichenko, 2015) and in the test regressing the mean forecast
revision on the lagged mean forecast revision (Dovern et al., 2015; Nordhaus, 1987).
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on it in updating their predictions. Which effect on information rigidity dominates is further

examined in Section 5 and Section 7, which present results from structural estimation and

regressions of simulated forecasts from the theoretical model that is described next.

4 Theoretical Model

Collecting and especially analyzing information in order to update one’s expectation is costly

in terms of time, resources, and expertise. In normal times when economic uncertainty is

relatively low, it is optimal for agents not to update their expectations every period. In

contrast, during high-uncertainty episodes, the cost of not updating one’s information in

terms of forecast accuracy can dramatically increase, as one’s previous prediction quickly

becomes obsolete. The notion that attention λt is a positive function of economic uncertainty

is derived from the solution of an optimization problem that agents solve in order to minimize

the cost of attention in terms of forecast accuracy (mean squared error, MSE).

Hence, in this model, economic agents form their expectations in two stages. First, before

deciding whether to engage in a comprehensive forecast re-estimation, agents conduct a

preliminary step of assessing the hidden state of economic uncertainty σ2
t , which can be in

a low-uncertainty (LU) or a high-uncertainty (HU) regime: σ2
t ∈ {σ2

LU , σ
2
HU}. Using easily

obtainable common public information, agents calculate the probabilities of each regime

and decide in which of the two states of economic uncertainty they are more likely to find

themselves. Based on this inference, on average agents update their forecasts with probability

λt|t, the expected degree of attention. According to the solution of the optimization problem,

attention is proportional to the probability to be in the HU regime, conditional on the

observed data: λt|t ∝ πHU |t. The innovation of the model is that the degree of attention is

state-dependent and evolves with the states of economic uncertainty.

In the second stage of the expectation formation process, only the fraction of agents λt who

are attentive update their individual time-t forecasts ŷt+1|t for the macroeconomic variable

being forecasted y at period t + 1. The remaining (1 − λt) of agents do not update their

information at time t and instead simply carry forward their forecasts from the previous

period t−1, ŷt|t−1, according to the state equation. The agents who update their predictions

use the Kalman filter, as in a traditional noisy information model. Using this filter, they

assign optimal weights to their idiosyncratic incoming noisy information and their previous

estimate depending on the estimated precision of the new data and the perceived accuracy of
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the existing estimate. The expected Kalman gain, the weight agents put on new information,

kt|t 6∝ πHU |t, since the higher the probability to be in the HU state, the noisier the new

incoming information. Hence, in the proposed state-dependent sticky-noisy information

model, both the attention effect and the noise effect are driven by time-varying economic

uncertainty and they influence aggregate information rigidity in the economy in opposite

directions. Which effect dominates is ambiguous a priori and depends on the parameters of

the model. The decision problem of the individual agent is illustrated in Figure 2.

1. Assess the latent state of eco-
nomic uncertainty σ2

t ∈ {σ2
LU, σ

2
HU}

Common costless signal xt

Is HU state
more

probable?
λt|t ∝ πHU

2. Update using the
Kalman filter

Idiosyncratic noisy signal zit

Do not update:
ŷt+1|t = ŷt+1|t−1 = ρŷt|t−1 + vt+1

Update:
ŷt+1|t = ktzit + (ρ− kt)ŷt|t−1

NO

YES

Figure 2: Agent’s Problem in State-dependent Sticky-Noisy Information Model

Thus, agents update their information sets according to a hybrid sticky-noisy information

model á la Andrade and Le Bihan (2013). However, here the probability of updating, or

attention λt, is dependent on the hidden state of economic uncertainty, as perceived by the

forecasters. It is important to note that I do not assert that economic agents actually run

a Markov-switching model or a Kalman filter to update their forecasts and that the former

is less computationally costly than the latter. Instead, these algorithms approximate the

agents’ actual decision-making process. So, the preliminary stage of making inference about

the unobserved state of economic uncertainty is computationally less expensive (assumed

free in the model) than engaging in a full-fledged forecast updating exercise every period,

which carries a nonzero cost for acquiring and processing information (Ψt(λt) in the model)

and relatively lower benefit in terms of forecast accuracy when uncertainty is sufficiently

low. In practice, agents can use publicly available, free, and easily accessible information to

decide the extent to which it is worth their time and resources to collect and analyze new
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information and to re-estimate their forecasts in any given period, which carries the nonzero

cost Ψt(λt).

4.1 Micro-foundation

The economic agent chooses her degree of attention λt to minimize the following value

function, in mean squared error (MSE) units, w.r.t. λt ∈ [0, 1] :

V (λt) = MSE + Cost of attention

= MSE + Ψt(λt) (4.1)

The MSE of the individual forecast is the weighted sum of the MSE if the agent is updating

and the MSE if the agent is not updating, weighted by their respective probabilities:

MSE = λt × σ2
t|t + (1− λt)× σ2

t|t−1. (4.2)

Substituting for σ2
t|t, the MSE of the nowcast at time t from the second stage of the model

in equation (D.13), where kt is the Kalman gain:

MSE = λt[(1− ρ−1kt)σ
2
t|t−1] + σ2

t|t−1 − λtσ2
t|t−1

= (1− ρ−1λtkt)σ
2
t|t−1. (4.3)

The cost of attention Ψt(λt) is assumed to take the form Ψt(λt) = (λtkt)
2. As in Branch

et al. (2009), a cost function that is quadratic in λt allows for increasing marginal costs, with

the marginal cost tending to zero when λt → 0. Hence, it is always optimal to choose λt > 0.

This cost function is also quadratic in the Kalman gain kt, which is the weight agents put on

new information. Thus, the more attention agents pay and the more weight they put on the

new incoming information, the higher the cost of attention. Converting this problem into

the constrained optimization format, this becomes:

V (λt) = max−{(1− ρ−1λtkt)σ
2
t|t−1 + (λtkt)

2} s.t. λt ≤ 1 and − λt ≤ 0. (4.4)

Appendix D presents the solution of the constrained optimization problem using the

Karush-Kuhn-Tucker complementarity slackness conditions. The result is that

λt =
ρ−1σ2

t|t−1

2kt
(4.5)
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maximizes the objective function, unless uncertainty is above the two thresholds

σ2
t ≥ 2ρ2 − σ2

t|t−1

σ2
t >

(σ2
t|t−1 + σ2

t )
2 − 4ρ2σ2

t|t−1 + 4ρ4

4ρ2
,

in which case complete attention (λt = 1) is optimal.

4.2 First Stage: Uncertainty States via Markov-switching Model

The first stage of the expectation formation process involves agents assessing the latent

state of economic uncertainty σ2
t ∈ {σ2

LU , σ
2
HU}. This state is hidden, so agents have to use

an observed common costless signal xt about the state of economic uncertainty in order to

estimate the probabilities of whether they are in a low-uncertainty (LU) or a high-uncertainty

(HU) regime at time t. This process is approximated by a Markov-switching model. Hamilton

(1994, Chapter 22) provides a detailed overview and discussion of Markov-switching models.

In estimating the Markov-switching model in Section 5.1, I follow the methodology of Perlin

(2015).

Agents observe a common costless signal xt = µσt + φxt−1 + εt with a state-dependent

mean µσt and error term εt ∼ i.i.d. N (0, σ2
σt), about the hidden state of economic uncertainty

σ2
t at time t. The hidden state σ2

t is assumed to follow an irreducible aperiodic two-state

Markov chain, where by definition P{σ2
t |σ2

t−1, σ
2
t−2, ..., σ

2
1} = P{σ2

t |σ2
t−1}. The transition of

the states is a stochastic process; however, the dynamics of the switching process are known

and driven by a matrix of transitional probabilities.

The Markov-switching model is estimated with maximum likelihood. Yet, since the states

of uncertainty are unknown, the notation of the likelihood function becomes f(xt|σ2
t = j; θ)

for state j and conditional on a set of parameters θ = (µL, µH , σ2
L, σ2

H , pLL, pHH). The

full log likelihood function of the model is a weighted sum of the likelihood in each state

j with the weights equal to the state’s probabilities. These probabilities are not observed;

however, we can make inference about the probabilities based on the available information.

Appendix D.2 explains how these conditional probabilities are estimated using Hamilton’s

iterative algorithm to obtain:

πj|t = Pr(σ2
t = j|It) =

f(xt|σ2
t = j; It−1)Pr(σ2

t = j|It−1)∑
j∈{L,H} f(xt|σ2

t = j; It−1)Pr(σ2
t = j|It−1)

. (4.6)
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Using the set of conditional probabilities πj|t, the log likelihood of the model can be cal-

culated by maximum likelihood as a function of the parameters of the model that maximize:

lnL =
T∑
t=1

ln
∑

j∈{L,H}

(
f(xt|σ2

t = j; θ)πj|t

)
. (4.7)

4.3 Second Stage: Forecast Updating via Kalman Filter

In this model, agents update their information sets according to a hybrid sticky-noisy in-

formation model. Only a proportion of the population λt updates its time-t forecasts ŷt+1|t

for variable y at time period t + 1. The remaining population (1 − λt) does not update its

information at time t and simply carries forward its forecast from the previous period t− 1,

ŷt|t−1, scaled by the persistence of the state process ρ and polluted with error, according to

the state equation, which takes an AR(1) form:

yt = ρyt−1 + vt, where vt ∼ i.i.d. N (0, σ2
v) and 0 < ρ < 1. (4.8)

The agents who update their information at period t receive an idiosyncratic noisy in-

formation signal. They solve a signal-extraction problem using the Kalman filter. The

observation equation is:

zit = yt + ηit, (4.9)

where ηit ∼ i.i.d. N (0, σ2
t ). The variance of the error ηit, σ

2
t , is stochastic and thus, the

model is characterized by stochastic volatility. Furthermore, σ2
t is assumed to follow an

irreducible aperiodic two-state Markov chain, where σ2
t ∈ {σ2

LU , σ
2
HU}, the two states of

economic uncertainty from Section 4.2.

Equations (4.8) and (4.9) together describe the information structure in state space

form (ssf). The recursion is initialized with ŷ1|0 = E(y1|zi0) = 0 with associated MSE

σ2
1|0 = V ar(y1|zi0) = σ2

v

1−ρ2 , which are just the unconditional mean and variance of y1 using

information from time t = 0 (Hamilton, 1994, Chapter 13).

For each agent i, the Kalman filter assigns different weights to the incoming noisy in-

formation and the previous estimate depending on their respective precisions. The Kalman

gain kt is a measure of how much the forecaster can trust her information signal. The more

credible the signal, the more weight the forecaster will optimally put on it in updating her
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expectation. The Kalman gain kt is defined as:

kt =
ρσ2

t|t−1

σ2
t|t−1 + σ2

t

. (4.10)

Appendix D.3 provides the derivation of the attentive agents’ forecasts for the state vari-

able and its mean squared error (MSE) at time t for the period t+ 1, respectively, as:

ŷt+1|t = ktzit + (ρ− kt)ŷt|t−1 (4.11)

σ2
t+1|t = ρ(ρ− kt)σ2

t|t−1 + σ2
v . (4.12)

By the law of large numbers, assuming the population of forecasters is large, a state-

dependent fraction λt of the population is attentive each period and a proportion (1 − λt)
is inattentive. Thus, the mean forecast of the entire population is the sum of the mean

forecasts within each group of forecasters j, who all updated their information sets j periods

ago, weighted by the respective proportion of each group in the total population.

Appendix D.3 shows the derivation of the mean forecast at time t for time t + 1 of all

agents i in group j = 0 w.l.o.g.:

Ej[ȳt+1|t−j|j = 0] = ȳallt+1|t = λtȳ
attentive
t+1|t + (1− λt)ȳinattentivet+1|t

= λtktyt + (ρ− λtkt)ȳt|t−1. (4.13)

4.4 State-dependent Attention λt and Kalman Gain kt

The innovation of the proposed state-dependent sticky-noisy information model is that the

quantity of information represented by attention λt and the quality of information that agents

glean reflected by the Kalman gain kt are driven by time-varying economic uncertainty. In

order to investigate the effect of time-varying uncertainty on λt and kt, I define these variables

in terms of uncertainty σ2
t and provide an auxiliary assumption in this section.

Using the auxiliary assumption from Bloom (2009) that σHU = 2×σLU 11, Appendix D.4

expresses attention λt and the Kalman gain kt in terms of the filtered probabilities of HU

11Therefore, σ2
HU = 4× σ2

LU . As in Bloom (2009), I confirm the results for σHU = 2× σLU are also valid
for σHU = 1.5× σLU and σHU = 3× σLU .
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state:

λt|t =
σ2
t|t−1 + σ2

LU(1 + 3πHU |t)

2ρ2
(4.14)

kt|t =
ρσ2

t|t−1

σ2
t|t−1 + σ2

LU(1 + 3πHU |t)
(4.15)

Partial derivative analysis in Appendix D.4 shows that both attention λt|t and Kalman

gain kt|t are increasing functions of the previous MSE. Agents are expected to pay more

attention and to have more faith in the new information when their previous forecasts have

been more inaccurate. Moreover, attention λt|t is an increasing function of LU-regime uncer-

tainty and by construction, also HU-regime uncertainty, confirming that agents are expected

to become more attentive during periods of greater volatility. Yet, the Kalman gain kt|t is a

decreasing function of uncertainty, since agents optimally put less weight on new incoming

information when it is more noisy. Similarly, whereas attention is an increasing function of

the conditional probability of a HU state, so that so that λt|t ∝ πHU |t, the Kalman gain is

a decreasing function of it: kt|t 6∝ πHU |t. In other words, the greater the probability of a

perceived HU state, the greater the probability of updating a forecast but the lesser the faith

in the new information. Finally, attention λt|t is a decreasing function of the persistence of

the state process ρ, while the Kalman gain kt|t is an increasing function of it, suggesting that

more persistent processes cause agents to optimally become less attentive but they optimally

trust new information more. Overall, all these relationships are of the expected signs.

5 Structural Estimation

In the proposed state-dependent sticky-noisy information model, both the attention and the

noise effect are driven by time-varying economic uncertainty and they influence aggregate

information rigidity in the economy in opposite directions. Which effect dominates is am-

biguous a priori and depends on the parameters of the model. In this section, I conduct

structural estimations of the proposed model, as well as the alternative theories by sim-

ulating the theoretical models and estimating the structural parameters of interest using

Simulated Method of Moments (SMM). Since the proposed model nests within itself the

hybrid, the noisy, and the sticky information models, in Section 6, I compare the ability

of these alternative theories to match the data by shutting down the state-dependence, the

state-dependence and inattention, and the state-dependence and noisiness channels, respec-

tively. I further examine the relative importance of each channel in Section 7.
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5.1 SMM Estimation

I conduct the structural estimation of the proposed theoretical model using SMM, which

estimates the structural parameters by minimizing the difference between empirical mo-

ments and their theoretical counterparts, as in Duffie and Singleton (1993), Gourieroux and

Monfort (1996), Ruge-Murcia (2012) and Giacomini et al. (2020). The estimated structural

parameters are thus the most likely to have generated the moments in the survey data.

The structural parameters I estimate are θ = ( ρ σ2
v σ

2
LU )′: the persistence of the state

process, the variance of the error of the state process, and the baseline uncertainty. I match

three moments from the Survey of Professional Forecasters (SPF) data and the simulated

theoretical model, including the consensus (mean) forecast, accuracy expressed as the root

mean squared error (RMSE) of forecasts from realized inflation, and forecaster disagreement

(cross-sectional standard deviation of individual forecasts) over the entire length of the sam-

ple, Q4 1968 - Q2 2019. The objective function that is minimized is the difference between

the empirical moments and the average moments from the simulation performed with a draw

of θ:

J(θ) = [m̂−m(θ)]′W [m̂−m(θ)], (5.1)

where m̂ are the empirical consensus forecast, accuracy, and disagreement, while m(θ) are

their simulated theoretical counterparts. I set the weighting matrix W to equal the identity

matrix, so that all three moments are weighted equally.

To obtain the forecasts needed to calculate the theoretical moments, I simulate the pro-

posed model as follows. In the state-dependent sticky-noisy information model, agents up-

date their expectations infrequently and when they do so, they face a signal-extraction

problem. Crucially, the rate of updating, attention λt, and the weight agents put on new

incoming information, Kalman gain kt are not constant but driven by the unobserved states

of economic uncertainty σ2
t ∈ {σ2

LU , σ
2
HU}. Summing equation (4.13) over all groups of fore-

casters j who update their predictions in the same period yields the mean forecast in the

state-dependent sticky-noisy information model, presented in Appendix D.5.

I model the dynamics of individual one-quarter ahead forecasts for N = 70 agents in

order to approximate the cross-section of the core sample of 70 professional forecasters who

participate in the SPF at least 40 periods for the length of the sample period T = 203,

obtaining a 203 × 70 matrix of individual simulated forecasts of GDP deflator inflation. In

the first period, the (1−λt) fraction of agents who do not update their forecasts predict GDP

deflator inflation equal to 2.149 percent, the mean of realized GDP deflator inflation in the
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previous 20 years.12 In every period after that, a time-varying fraction λt of the forecasters

chosen at random update their expectations and thus, these attentive agents have forecasts

as in the noisy information model. The fraction of updaters λt for each quarter is calculated

per equation (4.14). The remaining fraction (1− λt) of forecasters are inattentive and carry

forward their forecast from the last period they updated their predictions, scaled by the

persistence of the state process ρ and polluted with error vt+1.

I set the starting values of θ0 as follows: the AR(1) coefficient ρ = 0.9 and the process

innovation variance σ2
v = 0.5, as in Ryngaert (2017), and the signal noise variance, or baseline

time-varying economic uncertainty is set to σ2
LU = 0.44322 = 0.1964, as estimated by Bloom

(2009).13 The conditional probability of being in a high-uncertainty (HU) state πHU |t is

estimated from the Markov-switching dynamic autoregression presented in Appendix B and

Section 4.2, using the methodology of Perlin (2015). I perform M = 1000 rounds for each

simulation, discarding the first 100, and report the average individual forecasts, which are

then used to calculate the mean forecast, RMSE of the forecasts from realized inflation, and

forecaster disagreement (cross-sectional standard deviation of individual forecasts) over the

entire length of the sample.

5.2 Estimation Results

The estimated parameters θ from the SMM structural estimation of the proposed state-

dependent sticky-noisy information model are presented in Table 5, Column (4). The struc-

tural estimation results of the alternative models with information frictions are discussed in

more detail in Section 6.

The structural estimation sets the persistence of the state process ρ = 0.999. This is

slightly higher than the AR(1) coefficient from the survey data of 0.896, even though this

value is not used in the estimation. The variance of the error of the state process σ2
v = 0.006

is lower than the value calibrated by Ryngaert (2017) of 0.5. Finally, the estimated baseline

uncertainty σ2
LU = 0.172 is not much different from the estimation in Bloom (2009) of 0.1964.

Since both attention λt and the Kalman gain kt are time-varying and driven by the state

of economic uncertainty, as defined in equations (4.14) and (4.15) respectively, I calibrate

the proposed theoretical model with the values of the estimated structural parameters and

12Setting the expectation of the inattentive agents in the first period to the average realized GDP deflator
inflation of the previous 2, 5, or 10 years instead does not substantially change the results.

13The specific starting values do not impact the estimated structural parameters θ very much. The
presented results use these starting values as found in the literature.
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present their dynamics in Figure 3.

Table 5: Estimated Parameters θ using SMM

Sticky Info Noisy Info Hybrid Info State-dependent Info
θ (1) (2) (3) (4)
λ 0.128 0.128∗ λt = f(σ2

LU )
σ2
t (σ2

LU in (4)) 0.517 0.191 0.172
σ2
v 0.523 0.145 0.006
ρ 0.905 0.999 0.999
∗Calibrated as in (1).
Results are based on SMM estimation, matching mean forecast error, RMSE, and forecaster
disagreement in all models with information frictions except for (1). For the estimation of
the sticky information model in (1), only two moments are used, consensus forecast error and
accuracy.
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Figure 3: Information Rigidity and Components: Attention λt and Kalman Gain kt
The figure presents the time series of the simulated attention λt and Kalman gain kt at the estimated structural parameters θ
using SMM and the aggregate information rigidity, calculated as (ρ− λtkt) in equation (7.1).

As expected, during high-uncertainty periods, agents optimally increase their quantity of

information (attention increases) but since the quality of their information is lower, they

optimally put less weight on it in forming their predictions (the Kalman gain decreases).

Over the sample, attention varies between 0.19 and 0.64, which is within the range in the

literature: 0.18 in Mankiw and Reis (2002), 0.25 in Coibion and Gorodnichenko (2012), 0.46

in Coibion and Gorodnichenko (2015) for models of rational inattention. On the other hand,
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the Kalman gain takes values between 0.87 and 0.96, which is relatively high compared to

other studies: 0.5 in Coibion and Gorodnichenko (2015) and Dovern et al. (2015), 0.66 in

Ryngaert (2017), 0.7 in Afrouzi (2017). These differences are not surprising, since in the

proposed model there are interactions between the attention and noisiness channels, which

moderate the magnitudes of both. This is evident in Figure 3, where also presented is

aggregate information rigidity, calculated as (ρ − λtkt) in equation (7.1). It varies in the

range 0.44-0.82, which is in line with the estimated aggregate information rigidity values.

This result implies that forecasters update their information sets every two to five quar-

ters. Moreover, the dynamics of the simulated aggregate information rigidity over the sam-

ple uncover that the attention effect clearly dominates the noisiness effect: in high- (low)-

uncertainty periods, the lower (higher) information rigidity attributed to higher (lower)

attention clearly outweighs the higher (lower) information rigidity attributed to noisiness by

the lower (higher) Kalman gain. As a result, aggregate information rigidity, which is influ-

enced by these two effects in opposite directions, is lower (higher) in HU (LU) periods. This

important finding is further scrutinized in Section 7 by conducting empirical tests on the

proposed state-dependent model and the alternative models with information frictions. Be-

fore that, in Section 6, I analyze the results from the structural estimations of the alternative

theories.

6 Alternative Models with Information Frictions

The proposed state-dependent sticky-noisy information model nests within itself the three

prominent models in the field of information rigidity: 1) sticky information, 2) noisy infor-

mation, and 3) hybrid sticky-noisy information models. Each of these existing models can be

considered as a version of the proposed state-dependent sticky-noisy information model with

the 1) state-dependence and noisiness, 2) state-dependence and inattention, and 3) state-

dependence channels, respectively, shut down. Both the sticky and the noisy information

models feature a single information friction and simply conflate information rigidity with

inattention and noisiness, respectively. As a result, they are unable to match all the features

of the data at once. Hybrid sticky-noisy information models have a notable advantage of

including both attention and noisiness channels. Yet, existing hybrid models simply add

these two frictions as if they are independent effects. The proposed state-dependent model

improves on these models, since it allows for interaction between the attention and noisiness

channels, which are both driven by time-varying economic uncertainty and that moderates
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the impact of both on aggregate information rigidity.

In this section, I describe in more detail the structural estimation of the existing alternative

models with information frictions and compare their predictions to the observed SPF survey

forecasts and the realized values of the predicted variable, GDP deflator inflation. The

estimated parameters θ for all discussed models with information frictions are presented in

Table 5.

6.1 Sticky Information Model

First, assuming no noisiness and no state-dependence but inattention yields the sticky in-

formation model. According to it, agents update their forecasts with a constant Poisson

probability λ: each agent is equally likely to update every period. By the law of large num-

bers, assuming the population of forecasters is large, a random constant fraction λ of agents

are attentive each period, while the remaining (1−λ) simply carry forward their predictions

from their last update (Mankiw and Reis, 2002). The attentive agents glean the true value

of the forecasted variable, unpolluted by noise. The mean forecast of the sticky information

model follows equation (D.16) but with a constant λ, as shown in Appendix D.5.

I model the dynamics of mean expectations in the sticky information model during the

length of the sample period in the SPF survey data T = 203, yielding a 203 × 1 vector of

mean forecasts. As in the proposed state-dependent model, in the first period, the (1 − λ)

fraction of inattentive agents predict GDP deflator inflation equal to 2.149 percent, the mean

of realized GDP deflator inflation in the previous 20 years. In every period after that, the

contemporaneous mean forecast is the weighted average of the realized inflation and the

previous average inflation forecast, weighted by λ and (1− λ), respectively.

In the SMM structural estimation, I estimate structural parameter θ = λ, minimizing

the difference between empirical and theoretical moments, including the consensus forecast

and accuracy expressed as the root mean squared error (RMSE) of forecasts from realized

inflation over the entire length of the sample, Q4 1968 - Q2 2019. I set the starting values

of θ0 = λ = 0.25, as in Coibion and Gorodnichenko (2012). The value of the structural

parameter that is most likely to have produced the observed moments is λ = 0.128. This

value is below the range estimated in the literature and also lower than the empirical estimate

of attention as the fraction of forecasters revising their predictions every period, λ = 0.931,

found in Table 1. The estimated degree of attention implies that agents only revise their
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predictions every seven to eight quarters, which is clearly at odds with the survey data for

professional forecasters. This inconsistency suggests that the attention effect alone is unable

to explain the observed data.

6.2 Noisy Information Model

Second, shutting down both the direct inattention and the indirect state-dependence channels

yields the noisy information model. According to it, all agents are attentive every period but

they face a signal extraction problem (Woodford, 2002; Sims, 2003). The noisy information

setup is described in detail in Section 4.3. The mean forecast is derived in Appendix D.5.

I simulate the dynamics of individual expectations in the noisy information model using

a Kalman filter according to equations (4.9) and (4.8) for N = 70 agents in order to approx-

imate the cross-section of the core sample of 70 professional forecasters who participate in

the SPF at least 40 periods for the length of the sample period T = 203. This results in a

203× 70 matrix of individual simulated forecasts of GDP deflator inflation.

In the SMM structural estimation, I estimate structural parameters θ = ( ρ σ2
v σ

2
t )′: the

persistence of the state process, the variance of the error of the state process, and the signal

noise variance. I use the same moments as in the estimation of the proposed state-dependent

model in Section 5: the consensus forecast, accuracy (RMSE), and forecaster disagreement

over the entire length of the sample, Q4 1968 - Q2 2019. I set the starting values of θ0 as

follows: the AR(1) coefficient ρ = 0.9 and the process innovation variance σ2
v = 0.5, as in

Ryngaert (2017), and the signal noise variance is set to σ2
t = 0.1964, as the value of baseline

uncertainty estimated by Bloom (2009). I perform M = 1000 rounds for each simulation,

discarding the first 100, and report the average individual forecasts, which are then used to

calculate the three moments over the entire length of the sample.

The estimated parameters in Table 5 of θ = ( 0.517 0.523 0.905 )′ imply a Kalman gain k =

0.54, or agents updating their forecast about every two quarters. This is much closer to the

results in existing studies and the observed information rigidity than the results from the

sticky information model. However, since the noisy information model cannot account for

any inattention observed in the data, it is also not satisfactory as a modeling device for the

expectation formation process of economic agents.
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6.3 Hybrid Sticky-Noisy Information Model

Third, assuming no state-dependence yields the hybrid sticky-noisy information model, which

includes both inattention and noisiness but considers them independent information frictions.

The hybrid model simply adds the sticky information model ‘on top of’ the noisy information

model without considering the interactions between these two information frictions. Agents

update their expectations infrequently and when they do so, they face a signal-extraction

problem (Andrade and Le Bihan, 2013). Substituting equation (D.31) into equation (D.27)

yields the mean forecast in the hybrid information model, presented in Appendix D.5.

I model the dynamics of individual expectations in the hybrid sticky-noisy information

model for N = 70 agents, the core SPF sample, during the length of the sample period

T = 203, obtaining a 203 × 70 matrix of individual simulated forecasts of GDP deflator

inflation. As in the sticky and state-dependent information models, in the first period,

inattentive agents predict GDP deflator inflation equal to 2.149 percent, the mean of realized

GDP deflator inflation in the previous 20 years. In every period after that, constant fraction

λ of the forecasters chosen at random update their expectations and have forecasts as in

the noisy information model. Fraction (1 − λ) are inattentive and carry forward their last

predictions, scaled by the persistence of the state process ρ and polluted with error.

In the SMM structural estimation, I estimate the same structural parameters as in the

estimation of the noisy information model θ = ( ρ σ2
v σ

2
t )′. As in Giacomini et al. (2020),

I do not estimate but simply calibrate λ = 0.128, as per the sticky information model

estimation. This is an appropriate calibration, since in the hybrid information model, there

is no interaction between the attention and noisiness effects. I use the same moments as in

the estimation of the proposed state-dependent model and the noisy information model: the

consensus forecast, accuracy (RMSE), and forecaster disagreement over the entire length of

the sample, Q4 1968 - Q2 2019. I set the starting values of θ0 as in the noisy information

model. I perform M = 1000 rounds for each simulation, discarding the first 100, and report

the average individual forecasts, which are then used to calculate the three moments over

the entire length of the sample.

The estimated parameters in Table 5 of θ = ( 0.191 0.145 0.999 )′ imply a Kalman gain k =

0.57, which is broadly in line with the literature. However, since the hybrid model adds

the noisiness and attention information frictions together, aggregate information rigidity can

be estimated by substituting the time-varying λt and kt with constant ones in equation

(7.1). Aggregate information rigidity thus equals (ρ − λk) = 0.926, implying that agents
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update their predictions every 13 quarters, which is much higher than both the range found

in the literature and observed in survey data. This illustrates the principal shortcoming

of the hybrid sticky-noisy information model: whereas it correctly takes into account both

inattention and noisiness, since it simply adds the information frictions together with no

regard for their interactions, it ends up predicting information rigidity that is implausibly

high.

6.4 State-dependent Sticky-Noisy Information Model

Finally, the proposed state-dependent sticky-noisy information model nests within itself the

three aforementioned models with information frictions, thereby including all three posited

channels affecting information rigidity: the direct attention and noisiness, and the indirect

state-dependence channels. Specifically, time-varying uncertainty drives both attention and

noisiness, thereby integrating them and accounting for the interactions between them. This

greatly improves upon existing hybrid sticky-noisy information models (Andrade and Le Bi-

han, 2013; Giacomini et al., 2020), which simply add the two frictions as independent effects.

The proposed model is thus superior to the hybrid information model and theoretically more

appealing than the noisy information model due to its inclusion of rational inattention ob-

served in survey data. The structural estimation of the proposed model is discussed in detail

in Section 5.1.

Figure 4 presents time series of the inflation forecasts from the four theoretical models with

information frictions, simulated at the values of the structural parameters estimated using

SMM, along with mean SPF survey data, and realized GDP deflator inflation. As the figures

show, the proposed state-dependent sticky-noisy information model performs relatively well

compared to the sticky, noisy, and hybrid sticky-noisy information models. Inattention has

a smoothing effect on the estimated forecasts, while noisiness closely tracks the oscillations

of the survey forecasts. The sticky and especially the hybrid information models produce

forecasts that deviate the most from the SPF expectations. The simulated predictions from

the proposed state-dependent model are closest to those from the noisy information model.

This visually demonstrates the finding that the proposed state-dependent model is superior

to the hybrid and sticky information models, while preserving some of the desirable features

of the noisy information model. Yet, the proposed model is more appealing than the noisy

information model due to its ability to account for observed inattention.
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Figure 4: Simulated Forecasts: Alternative Models with Information Frictions
The figure presents time series of the mean SPF survey data, realized GDP deflator inflation, and simulated mean forecast
data from the sticky, noisy, hybrid sticky-noisy, and state-dependent sticky-noisy information models at the values of the
structural parameters estimated using SMM. The shaded regions indicate time periods to which the Markov-switching dynamic
autoregression from Appendix B assigns a probability of at least 50 percent of being in the high-uncertainty (HU) regime.

7 Results: Contributions to Information Rigidity

To further investigate the important finding from Section 5.2 that the attention dominates

the noisiness effect when the two are allowed to interact in the proposed state-dependent

model, I use empirical tests to estimate the relative contribution of each of the three chan-

nels affecting information rigidity, the direct attention and noisiness and the indirect state-

dependence effects. Specifically, again I conduct the empirical test estimating information

rigidity by regressing the mean forecast error on its lag from Section 3.3, as in Coibion and

Gorodnichenko (2012) and Ryngaert (2017). However, this time I compare the regression

coefficient using SPF data to the ones obtained using simulated forecasts at the values of

the estimated structural parameters according to the sticky, noisy, hybrid sticky-noisy, and

state-dependent sticky-noisy information models.
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First, the theoretical foundation of this empirical test is obtained by subtracting both sides

of equation (4.13) from the realized inflation yt+1, which yields the following specification:

yt+1 − ȳt+1|t = ρyt + vt+1 − [λtktyt + (ρ− λtkt)ȳt|t−1]

= (ρ− λtkt)(yt − ȳt|t−1) + vt+1, (7.1)

where the regression coefficient is (ρ − λtkt) and the error is vt+1. In other words, the

coefficient of information rigidity depends on the parameters of the model, attention λt

(attention channel) and Kalman gain kt (noisiness channel), both of which in turn are driven

by economic uncertainty as per equations (4.14) and (4.15) (state-dependence channel), as

well as the persistence of the state process ρ. To be closer to the theory, the subsequent

regressions do not include constant terms or quarter dummies, as in Section 3.3. However,

the inclusion of constant terms and quarter dummies does not substantially change the

presented results.

Table 6: Information Rigidity Based on Forecast Error: SPF and Simulated Forecasts

SPF FE Sticky FE Noisy FE Hybrid FE State-dependent FE
(1) (2) (3) (4) (5)

Lag SPF FE 0.543***
(0.0769)

Lag Sticky FE 0.681***
(0.0707)

Lag Noisy FE 0.323***
(0.0906)

Lag Hybrid FE 0.712***
(0.0696)

Lag State-dependent FE 0.496***
(0.0877)

Observations 201 201 201 201 201
R-squared 0.296 0.467 0.104 0.510 0.246
Adjusted R-squared 0.293 0.465 0.0995 0.507 0.242
Robust standard errors in parentheses *** p< 0.01, ** p<0.05, * p<0.1.

The table presents the results from OLS regressions of mean forecast errors on their lags (Coibion and Gorod-
nichenko, 2012; Ryngaert, 2017) using survey data and simulated data from the sticky, noisy, hybrid sticky-noisy,
and state-dependent sticky-noisy information models at the values of the structural parameters estimated using
SMM. The theoretical models with information frictions are simulated according to Section 6. All regressions
include heteroskedasticity-robust Huber-White standard errors.

According to the results presented in Table 6, the simulated forecasts from the proposed

state-dependent sticky-noisy information model yield a regression coefficient that is closest

to the one from the survey data, explaining 91 percent of the information rigidity that is
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present in the inflation expectations of professional forecasters. As previously noted, both

the sticky and the hybrid information models overestimate information rigidity, while the

noisy information model underestimates it. Thus, all three channels, the direct inattention

and noisiness and the indirect state-dependence effects need to be included in theoretical

models, so that they match the information rigidity observed in survey inflation expecta-

tions. As noted previously, this has been a major shortcoming of existing hybrid sticky-noisy

information models (Andrade and Le Bihan, 2013; Giacomini et al., 2020).

Following Ryngaert (2017), I estimate the relative importance of the three channels

on information rigidity, since the hybrid model is the state-dependent model with state-

dependence shut down, the sticky information model is the hybrid model with noisiness shut

down, and the noisy information model is the hybrid model with inattention shut down. To

calculate the relative importance of the inattention channel, I divide the coefficient estimate

from the sticky information model by the coefficient estimate from the hybrid model. To

obtain the relative contribution of the noisiness effect, I likewise divide the coefficient esti-

mate from the noisy information model by the coefficient estimate from the hybrid model.

This back-of-the-envelope calculation suggests that the inattention and noisiness frictions

account for 95.7 percent and 45.4 percent of the information rigidity estimated in the infla-

tion expectations of professional forecasters.14. Adding the contributions of these two direct

channels sums up to 141.1 percent, which confirms that there are sizable additional offset-

ting interactions between the attention and noisiness channels and that in fact, they are not

independent, as assumed by the hybrid sticky-noisy information model.

To my knowledge, this is the first study to estimate the relative contributions to infor-

mation rigidity of inattention and noisiness, so this is another important finding. The fact

that more than half of the estimated information rigidity is due to inattention is good news

for monetary policymakers. It leaves ample room for monetary policy, which can affect

the quantity of information available to economic agents by employing frequent, direct, and

simple forward guidance.

The offsetting effect of the state-dependence channel accounts for -43.6 percent of the

overall information rigidity, calculated as the residual of the coefficient estimate from the

hybrid model divided by the coefficient estimate from the state-dependent model.15 This

value almost exactly offsets the overestimation of information rigidity by the hybrid model.

Hence, it is important to consider state-dependence in models with information frictions

14(0.681/0.712)× 100 = 95.7%; (0.323/0.712)× 100 = 45.4%.
15[1− (0.712/0.496)]× 100 = −43.6%.
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because it accounts for an indirect channel through which the direct attention and noisiness

effects interact to affect aggregate information rigidity.
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Figure 5: Information Rigidity in SPF vs. Simulated Forecasts
This figure presents coefficients from 5-year rolling regressions of the mean forecast error on its lag, a standard test of information
rigidity (Coibion and Gorodnichenko, 2012; Ryngaert, 2017). I estimate the coefficients of information rigidity using SPF data
and data from simulations of the sticky, noisy, hybrid sticky-noisy, and the proposed state-dependent sticky-noisy information
models at the values of the structural parameters estimated using SMM. The shaded regions indicate time periods to which
a Markov-switching dynamic autoregression from Appendix B assigns a probability of at least 50 percent of being in the
high-uncertainty (HU) state.

Finally, to address concerns that the estimated information rigidity coefficients are time-

varying in the proposed state-dependent sticky-noisy information model: βt = (ρ − λtkt), I

also estimate the regression in equation (7.1) using 5-year rolling regressions16 of the mean

forecast error on its lag. For comparison, I conduct similar estimation for the sticky, noisy,

and hybrid sticky-noisy information models, simulated at the values of the structural pa-

rameters estimated using SMM. The results are presented in Figure 5. As expected from the

preceding discussion, information rigidity obtained from the state-dependent sticky-noisy

information model is the most successful out of the four alternative models at matching

the dynamics of information rigidity in the survey inflation expectations, especially during

recent high-uncertainty periods. The three alternative models with information frictions con-

sistently offer worse explanatory power in accounting for the observed information rigidity

than the proposed model.

16Similar results were obtained from 8-year rolling regressions and 10-year rolling regressions.
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8 Policy Relevance and Conclusion

“Monetary policymakers must understand the determinants of inflation in order to attain

their inflation goal.” (Tootell (1998), p. 21)

The most common framework for analyzing inflation dynamics is the Phillips curve, al-

though it is often criticized. The traditional Phillips curve is backward-looking and features

adaptive expectations, as in Friedman (1968) and Phelps (1968). More recently, the micro-

founded New-Keynesian Phillips curve includes forward-looking expectations, which allows

monetary policy an additional channel through which to affect inflation (Woodford, 2003).

A hybrid Phillips curve combines both adaptive and forward-looking expectations, as in Galı

and Gertler (1999), Galı et al. (2001), and Galı et al. (2003). The hybrid model is widely

used, as in Berganza et al. (2018), Blanchard et al. (2015), IMF (2013), and Mikolajun and

Lodge (2016). Albuquerque and Baumann (2017) show that if some firms are backward-

looking and set prices based on past values, while others are forward-looking and maximize

profits, the hybrid Phillips curve controls for both. According to Forbes (2018), inflation

expectations are significantly more correlated with core inflation in the last decade, whereas

domestic slack and lagged inflation are less correlated with it. Mikolajun and Lodge (2016)

and Bems et al. (2018) find that survey measures of forward-looking inflation expectations

are one of the main drivers of inflation in both advanced economies and emerging markets

and they perform better at explaining inflation than globalization proxies. Fuhrer (2017)

demonstrates that survey expectations improve the performance of standard macroeconomic

relationships, as well as DSGE models, and largely eliminate the need for lagged dependent

variables reflecting habits, price indexation or autocorrelated structural shocks.

Recently, the Phillips curve has become flatter. Some attribute this to the forces of

globalization (Borio and Filardo, 2007; Ahmad and Civelli, 2016; Forbes, 2018). Others

find that credible monetary policy has stabilized inflation expectations and trend inflation

(Mishkin, 2009). The flatter Phillips curve makes it harder for monetary policy to bring

inflation back to target once it deviates, which highlights the importance of well-anchored

expectations around the central bank’s target (Bean, 2006; Gnan and Valderrama, 2006).

Thus, Gnan and Valderrama (2006) have called for “the stabilization of inflation expectations

as a primary goal of monetary policy” (p. 37). Yet, as Bean (2006) acknowledges, we know

relatively little about how people form their inflation expectations.

This study sheds new light on how economic agents form inflation expectations. Specifi-

cally, I propose a micro-founded state-dependent sticky-noisy information model with high-
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and low-uncertainty regimes. Like existing hybrid sticky-noisy information theories, in the

proposed model agents are both rationally inattentive and faced with noisy information. The

principal innovation of this model is that the quantity of information represented by atten-

tion λt and the quality of information that agents glean reflected by the Kalman gain kt are

driven by time-varying uncertainty. As a result, there are interactions between the attention

and noisiness effects, which moderate their impact on aggregate information rigidity.

The results using data of professional forecasters include stylized facts demonstrating that

forecast errors, attention, and forecaster disagreement (in the latter part of the sample) are

state-dependent. Regression results show a highly statistically significant relationship be-

tween attention and uncertainty and results from bi-variate VAR confirm that an uncertainty

shock causes a significant increase in attention. The standard empirical tests estimating in-

formation rigidity yield coefficients that are in line with the literature. Regression analysis

including interactions of uncertainty indicators suggests that information rigidity declines

with increasing uncertainty. Structural estimation of alternative models with information

frictions using Simulated Method of Moments (SMM) demonstrates that the proposed state-

dependent model is superior to the hybrid and sticky information models, while preserving

some of the desirable features of the noisy information model. The proposed model is also

more appealing than the noisy information model due to its ability to account for the ob-

served rational inattention. Hence, all three channels, the direct attention and noisiness

and the indirect state-dependence effects, need to be included in theoretical models with

information frictions, so that they match the observed information rigidity.

The structural estimation further demonstrates that the attention effect clearly dominates

the noisiness effect: in high- (low-) uncertainty periods, the lower (higher) information rigid-

ity attributed to higher (lower) attention outweighs the higher (lower) information rigidity

attributed to noisiness by the lower (higher) Kalman gain. As a result, aggregate informa-

tion rigidity, which is influenced by these two effects in opposite directions, is lower (higher)

in high- (low-) uncertainty periods. The fact that more than half of the estimated informa-

tion rigidity is due to inattention is good news for monetary policymakers. It leaves ample

room for monetary policy, which can affect the quantity of information available to economic

agents by employing frequent, direct, and simple forward guidance. Some creative recent

initiatives include the Bank of Jamaica anchoring expectations by raising awareness about

its inflation-targeting policy through reggae music (Whelan, 2019) and the Bank of Finland

using Twitter to explain recent European Central Bank rate decisions and what they entail

for average citizens in plain Finnish (Weber, 2019).
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Appendix A Additional Figures
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Figure A.1: Frequency of Forecaster Participation
The figure shows the frequency of forecaster participation in the sample. Individual quarterly forecasts are obtained from the
U.S. Survey of Professional Forecasters (SPF) in the period Q4 1968 - Q2 2019. The sample size varies between 9 and 131
individual forecasters, with an average of 46 forecasters, every quarter and includes 443 different individual forecasters in total,
70 of whom, pictured in red, report forecasts in at least 40 periods. The panel data set is unbalanced, as forecasters enter, exit,
and merge during the survey period.
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Figure A.2: Inflation Realizations vs. Mean SPF Forecasts
The figure shows the time series of realized second- and most recent-release values vs. the cross-sectional mean of individual
forecasts of GDP deflator inflation for each quarter. The releases of actual data are from the Federal Reserve Bank of Philadel-
phia’s real-time data set. Individual quarterly forecasts are obtained from the Federal Reserve Bank of Philadelphia’s Survey
of Professional Forecasters (SPF) in the period Q4 1968 - Q2 2019. The shaded regions indicate periods to which the Markov-
switching dynamic autoregression from Appendix B assigns a probability of at least 50 percent of being in the high-uncertainty
(HU) regime.
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Figure A.3: Histograms of Empirical Attention λt
The figure presents the distribution of empirical attention λt in GDP deflator inflation forecasts in the full sample, as well as
during high-uncertainty (HU) and low-uncertainty (LU) periods. The degree of attention λt is expressed as the proportion
of forecasters who update their forecasts and nowcasts of GDP deflator inflation out of all forecasters in the sample for each
quarter. Missing values of the nowcasts and forecasts are interpreted as “not updating.” Whenever forecasters report a nowcast
and a forecast that are different from the ones they had made the previous period, this is interpreted as “updating.” Individual
quarterly forecasts are obtained from the Federal Reserve Bank of Philadelphia’s Survey of Professional Forecasters (SPF) in
the period Q4 1968 - Q2 2019. HU periods are periods to which the Markov-switching dynamic autoregression from Appendix
B assigns a probability of at least 50 percent of being in the HU state. LU periods are all the remaining periods in the sample.
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Figure A.4: State-dependence in Forecast Errors, Empirical Attention, and Disagreement
The figure presents box plots of the means and standard deviations of mean forecast errors (using second and final release
of realized data), attention λt, and forecaster disagreement during the LU and HU sub-samples, as presented in Table 1.
Mean forecast errors are obtained by subtracting the individual quarterly forecasts from the actual data and averaging across
forecasters. Attention λt is calculated as the proportion of forecasters who update their forecasts and nowcasts out of all
forecasters in the sample each quarter. Forecaster disagreement refers to the cross-sectional standard deviation of forecasts each
quarter. All graphs exclude outside values.
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Figure A.5: Mean Forecast Errors
The figure presents time series of the mean forecast errors of forecasts of GDP deflator inflation using the second and the most
recent release of realized data. Mean forecast errors are obtained by subtracting the individual quarterly forecasts from the
second-release and most recent-release actual data and averaging across forecasters. The releases of actual data are from the
Federal Reserve Bank of Philadelphia’s real-time data set. Individual quarterly forecasts are obtained from the Federal Reserve
Bank of Philadelphia’s Survey of Professional Forecasters (SPF) in the period Q4 1968 - Q2 2019. The shaded regions indicate
periods to which the Markov-switching dynamic autoregression from Appendix B assigns a probability of at least 50 percent of
being in the high-uncertainty (HU) regime.
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Figure A.6: Empirical Attention λt
The figure presents time series of the empirical degree of attention λt, expressed as the proportion of forecasters who update
their forecasts and nowcasts of GDP deflator inflation out of all forecasters in the sample for each quarter. Missing values
of the nowcasts and forecasts are interpreted as “not updating.” Whenever forecasters report a nowcast and forecast that are
different from the ones they had made the previous period, this is interpreted as “updating.” Individual quarterly forecasts are
obtained from the Federal Reserve Bank of Philadelphia’s Survey of Professional Forecasters (SPF) in the period Q4 1968 - Q2
2019. The shaded regions indicate periods to which the Markov-switching dynamic autoregression from Appendix B assigns a
probability of at least 50 percent of being in the high-uncertainty (HU) regime.
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Figure A.7: Empirical Attention λt: Mean and Standard Deviation
This figure presents the empirical observations noted in Table 1 about the mean and standard deviation of the empirical
attention λt across all LU vs. all HU periods. Empirical attention λt is expressed as the proportion of forecasters who update
their forecasts and nowcasts of GDP deflator inflation out of all forecasters in the sample for each quarter. Missing values
of the nowcasts and forecasts are interpreted as “not updating.” Whenever forecasters report a nowcast and forecast that are
different from the ones they had made the previous period, this is interpreted as “updating.” Individual quarterly forecasts are
obtained from the Federal Reserve Bank of Philadelphia’s Survey of Professional Forecasters (SPF) in the period Q4 1968 - Q2
2019. The shaded regions indicate periods to which the Markov-switching dynamic autoregression from Appendix B assigns a
probability of at least 50 percent of being in the high-uncertainty (HU) regime.
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Figure A.8: Forecaster Disagreement
The figure presents time series of forecaster disagreement, the cross-sectional standard deviation of forecasts for each quarter.
Individual quarterly forecasts are obtained from the Federal Reserve Bank of Philadelphia’s Survey of Professional Forecast-
ers (SPF) in the period Q4 1968 - Q2 2019. The shaded regions indicate periods to which the Markov-switching dynamic
autoregression from Appendix B assigns a probability of at least 50 percent of being in the high-uncertainty (HU) regime.
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Appendix B Uncertainty-based State-dependence

A Markov-switching dynamic autoregression model17 is used to estimate the probabili-

ties of the latent or hidden state of economic uncertainty being low uncertainty (LU) or

high uncertainty (HU), σ2
t ∈ {σ2

LU , σ
2
HU}, for each time t in the sample, conditional on

an “observed” time-t signal xt for the state of economic uncertainty and parameters θ,

πj|t = P{σ2
t = σ2

j |xt, θ} , where j ∈ {LU,HU}. Empirical uncertainty indicators are used

to approximate this “observed” variable xt (the common costless signal in equation (D.1)).

Section 4.2 incorporates the Markov-switching model into the proposed theoretical hybrid

sticky-noisy information model.

Similarly to one of the proposed volatility specifications in Diebold et al. (2016), volatility

follows a Markov-switching dynamic autoregression model:

xt = µσt + φxt−1 + εt, (B.1)

with a state-dependent mean µσt and error term εt ∼ i.i.d. N (0, σ2
σt) and state-independent

coefficient φ. The “observed” signal xt about the hidden state σ2
t at time t is approximated

with the extended EPU and VXO indices.

Table B1 presents results of Markov-switching dynamic autoregressions with the EPU

and VXO indices as the “observed” signals for the hidden state of economic uncertainty. All

specification include regime-switching mean and variance of the error term and non-switching

coefficient on the AR(1) term, as specified in equation (B.1). Model (1) in Table B1, which

uses the EPU index, is taken as the baseline. The EPU is preferred to the VXO because it is

‘more exogenous’ from the expectation formation process of professional forecasters, many

of whom are financial-sector institutions. Approximating uncertainty with the EPU is less

likely to involve confounding variable bias than the VXO, which may be jointly influenced

with the degree of attention financial analysts pay to macroeconomic conditions, by other

variables. Instead, the VXO is used as a robustness check on the baseline model, which

does not yield very different state transition probabilities. Moreover, based on the SBIC, the

baseline model is preferred to models with switching coefficients on the AR(1) term, models

with non-switching variances of the error terms, models with three instead of two uncertainty

states, and Markov-switching mean models (Krolzig, 2013). The baseline results are neither

significantly affected by the extension of the baseline EPU index with the historical EPU

index, nor by the conversion from monthly to quarterly frequency.

17Markov-switching models, also referred to as Hidden Markov Models in the machine learning literature,
are explained in detail in Hamilton (1994, Chapter 22); Hamilton (1989) provides an application.
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Table B1: Markov-switching Autoregression Based on EPU and
VXO

(1) (2)
Extended EPU Extended VXO
LU HU LU HU

µσt
34.29*** 59.90*** 5.668*** 10.344***
(4.734) (8.077) (0.474) (1.137)

Lag. Uncertainty Proxy xt−1 0.580*** 0.612***
(0.0549) (0.0213)

State-dep. St. Dev. σσt 14.781 30.686 1.662 5.570
(1.074) (3.385) (0.331) (1.139)

P (σ2
t = σ2

LU |σ2
t−1 = σ2

LU ) 0.944 0.843
(0.033) (0.051)

P (σ2
t = σ2

HU |σ2
t−1 = σ2

HU ) 0.896 0.780
(0.068) (0.144)

Expected Duration 17.937 9.637 6.386 4.546
(10.588) (6.330) (2.096) (2.980)

Observations 202 202
SBIC 9.150 5.512
Robust standard errors in parentheses *** p< 0.01, ** p<0.05, * p<0.1.

The table presents results of Markov-switching dynamic autoregressions of the EPU and
VXO indices. All specifications include switching constant and variance of the error
term and non-switching coefficient on the AR(1) term. The probabilities listed are the
transitional probabilities that the LU and HU will persist from one period to the next.
The expected duration is in quarters. The EPU index is compiled by Baker et al. (2016).
The VXO is obtained from the Federal Reserve Economic Data (FRED). Quarterly values
are 3-month averages of monthly values.

According to the baseline model, the probability of a LU regime of continuing from one

period to the next is 0.944 and the probability of a HU regime of continuing from one period

to the next is 0.896. The average duration of a LU period is about 18 quarters and the

average duration of a HU period is about 10 quarters. For comparison, Hamilton (1989)

applies a Markov-switching model to U.S. GNP data and estimates transitional probabilities

of an expansion equal to 0.90 and of a recession equal to 0.75. These transitional probabilities

correspond to average durations of 30 months for expansions and 12 months for recessions.

As discussed below, these durations do not match the ones estimated here; however, they do

not have to. Periods of high economic uncertainty are correlated with recessionary periods

but the correlation is not very strong, since economic uncertainty may increase earlier and

persist longer than periods of actual decline in real economic activity, or it may vary within

recession periods.

Figure B.1 examines the fit of the baseline model by presenting the fitted values of the EPU

index, the actual values, and the residuals. The fitted values are obtained using a smoothing

algorithm based on all sample data. The model shows a relatively good fit and for the most
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Figure B.1: Fit of Baseline Markov-switching Autoregression Model
The figure shows fitted values of the EPU index, actual values, and residuals of the baseline Markov-switching dynamic
autoregression model. The fitted values are obtained using a smoothing algorithm based on all sample data. The EPU index
is compiled by Baker et al. (2016). Quarterly values are 3-month averages of monthly values.

part, the residuals do not seem to account for much of the dependent variable variation.

This result is robust to obtaining the fitted values and residuals using only information from

previous periods, as well as from previous and contemporaneous periods.

Using the baseline Markov-switching dynamic autoregression model, the probability of

being in the HU regime is compared to recessionary periods, as defined by the National

Bureau of Economic Research (NBER) in Figure B.2. The probability of being in the HU

regime does not exactly match the NBER-designated recessions and it does not have to, since

economic uncertainty may increase earlier and persist long after the defined periods of decline

in actual economic activity, or it may vary significantly within such episodes. Instead, as

argued by Bloom (2009), recessions may be caused by economic uncertainty shocks, among

other factors.

Based on the estimated probabilities using the baseline model, the threshold probability,

above which the state is considered more likely to be the HU regime, is designated as πHU |t =

P{σ2
t = σ2

HU} ≥ 0.50. Figure B.3 presents these estimated HU periods using the baseline

Markov-switching autoregression model as the shaded regions, along with the time series

of the two uncertainty proxies, the EPU and VXO indices. Despite the fact that the HU

periods are estimated only on the basis of the EPU index and do not take the VXO under

consideration, they still seem to capture well most of the increases in economic uncertainty,

as represented by both of the empirical proxies.
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Figure B.2: Estimated HU Regime Probabilities vs. Recessions (NBER)
The figure presents the probability of being in the HU regime, estimated using the baseline Markov-switching autoregression
model compared to recessionary periods, as defined by the National Bureau of Economic Research (NBER). The dummy
recession indicator is obtained from the Federal Reserve Economic Data (FRED). Quarterly values of the recession indicator
are 3-month averages of monthly values.
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Figure B.3: Estimated HU Periods vs. Uncertainty Proxies
The figure presents estimated HU periods, in which the conditional probability of being in the HU regime πHU|t = P{σ2

t =

σ2
HU} ≥ 0.50, using the baseline Markov-switching autoregression model estimated on the basis of the EPU index (shaded

regions), along with the time series of the EPU and VXO indices. The EPU index is compiled by Baker et al. (2016). The
VXO is obtained from the Federal Reserve Economic Data (FRED). Quarterly values are 3-month averages of monthly values.
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Appendix C Additional Tests of Information Rigidity

The second empirical test of information rigidity expresses the predictability of the average

ex-post forecast error with respect to the mean ex-ante forecast revision, as derived by

Coibion and Gorodnichenko (2015):

MeanForecastErrort+1|t = αb + βbMeanForecastRevisiont+1|t + δt + εt, (C.1)

where αb is a constant, MeanForecastErrort+1|t = ActualV aluet+1 −MeanForecastt+1|t,

MeanForecastRevisiont+1|t = MeanForecastt+1|t−MeanForecastt|t−1, δt are quarter dum-

mies to account for any seasonality effect in the data, and εt is the error term in the regression.

Table C1: Information Rigidity Test Based on Forecast Error and Forecast
Revision: Interactions

FE (First Release) FE (Second Release)
(1) (2) (3) (4) (5) (6) (7) (8)

Revision 0.485* 0.454 0.480 0.685 0.740** 0.712** 0.733* 0.975
(0.281) (0.307) (0.365) (0.686) (0.297) (0.323) (0.387) (0.718)

Rev×HU Indicator -0.146 -0.197 -0.00271 -0.200 -0.208 -0.00316
(0.415) (0.604) (0.00583) (0.504) (0.697) (0.00632)

HU Dummy -0.369** -0.407**
(0.176) (0.185)

Prob(HU) -0.415* -0.462*
(0.239) (0.245)

EPU Index -0.00559** -0.00646***
(0.00222) (0.00235)

Constant 0.137 0.248 0.274 0.705** 0.223 0.344 0.376 0.879**
(0.192) (0.213) (0.228) (0.323) (0.204) (0.226) (0.241) (0.342)

Observations 200 200 200 200 199 199 199 199
Quarter Dummies YES YES YES YES YES YES YES YES
R-squared 0.054 0.068 0.064 0.073 0.084 0.098 0.095 0.106
Adjusted R-squared 0.0345 0.0386 0.0354 0.0438 0.0653 0.0702 0.0672 0.0781

FE (Third Release) FE (Final Release)
(1) (2) (3) (4) (5) (6) (7) (8)

Revision 0.688** 0.660** 0.670* 0.877 0.558*** 0.564** 0.658** 0.706
(0.305) (0.332) (0.397) (0.731) (0.214) (0.232) (0.280) (0.698)

Rev×HU Indicator -0.197 -0.163 -0.00275 -0.386 -0.687 -0.00245
(0.532) (0.725) (0.00648) (0.415) (0.567) (0.00627)

HU Dummy -0.395** -0.318**
(0.183) (0.159)

Prob(HU) -0.459* -0.469**
(0.243) (0.213)

EPU Index -0.00663*** -0.00772***
(0.00236) (0.00219)

Constant 0.221 0.332 0.369 0.883*** 0.159 0.241 0.292 0.948***
(0.214) (0.233) (0.246) (0.339) (0.176) (0.195) (0.209) (0.313)

Observations 200 200 200 200 201 201 201 201
Quarter Dummies YES YES YES YES YES YES YES YES
R-squared 0.073 0.087 0.085 0.096 0.053 0.065 0.071 0.096
Adjusted R-squared 0.0543 0.0586 0.0562 0.0677 0.0332 0.0360 0.0422 0.0678
Robust standard errors in parentheses *** p< 0.01, ** p<0.05, * p<0.1.

The table presents results from OLS regressions of mean forecast errors on mean forecast revisions, follow-
ing Coibion and Gorodnichenko (2015). HU Dummy = dummy for periods with probability of HU regime
at least 50 percent (see Appendix B); Prob(HU) = probability of HU regime (see Appendix B); EPU
Index = uncertainty proxy. The mean forecast errors are obtained by subtracting the individual quarterly
forecasts from the first-, second-, third-, and final-release actual data and averaging across forecasters.
The mean forecast revisions are obtained by subtracting the one-quarter lagged mean forecast from the
contemporaneous mean forecast. All regressions include quarter dummies and heteroskedasticity-robust
Huber-White standard errors.
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The third empirical test for estimating information rigidity in inflation expectations re-

gresses the contemporaneous mean forecast revision on its one-quarter lag. This empirical

test, offered by Dovern et al. (2015) and Nordhaus (1987), avoids the issue of realized data

revisions and takes the form:

MeanForecastRevisiont+1|t = αc + βcMeanForecastRevisiont|t−1 + δt + εt, (C.2)

where MeanForecastRevisiont+1|t = MeanForecastt+1|t −MeanForecastt|t−1,

MeanForecastRevisiont|t−1 = MeanForecastt|t−1−MeanForecastt−1|t−2, αc is a constant,

δt are quarter dummies to account for any seasonality effect in the data, and εt is the error

term in the regression.Dovern et al. (2015) demonstrate that Nordhaus (1987)’s rationality

test of regressing the contemporaneous mean forecast revision on its lag can be used to derive

similar implications as the Coibion and Gorodnichenko (2015) regressions of average forecast

errors on mean forecast revisions.

Table C2: Information Rigidity Test Based on Forecast Revision:
Interactions

Forecast Revision
(1) (2) (3) (4)

Lag Revision 0.181 0.239* 0.286** 0.175
(0.119) (0.132) (0.130) (0.391)

Lag Rev×HU Indicator -0.481** -0.547* -3.95e-05
(0.231) (0.318) (0.00444)

HU Dummy -0.165***
(0.0618)

Prob(HU) -0.213***
(0.0771)

EPU Index -0.00245***
(0.000845)

Constant -0.0724 -0.0358 -0.0115 0.185
(0.0692) (0.0783) (0.0801) (0.118)

Observations 201 201 201 201
Quarter Dummies YES YES YES YES
R-squared 0.039 0.085 0.083 0.070
Adjusted R-squared 0.0198 0.0563 0.0544 0.0409
Robust standard errors in parentheses *** p< 0.01, ** p<0.05, * p<0.1.

The table presents results from OLS regressions of mean forecast revisions on one-
quarter lagged mean forecast revisions, following Dovern et al. (2015) and Nordhaus
(1987). High uncertainty (HU) indicators include: HU Dummy = dummy for periods
with probability of HU regime at least 50 percent (see Appendix B); Prob(HU) = prob-
ability of HU regime (see Appendix B); EPU Index = uncertainty proxy. The mean
forecast revisions are obtained by subtracting the mean one-quarter lagged forecast
from the contemporaneous mean forecast. All regressions include quarter dummies
and heteroskedasticity-robust Huber-White standard errors.
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Appendix D Derivations

D.1 Micro-foundation Solution

Lagrangian:

L(λt, µ1, µ2) = −[(1− ρ−1λtkt)σ
2
t|t−1 + (λtkt)

2] + µ1(1− λt) + µ2(0 + λt)

The Karush-Kuhn-Tucker conditions are:

1. FOC:

∂L

∂λt
= −(−ρ−1ktσ

2
t|t−1 + 2λtk

2
t )− µ1 + µ2 = 0

= ρ−1ktσ
2
t|t−1 − 2λtk

2
t − µ1 + µ2 = 0

2. Constraints:

λt ≤ 1

−λt ≤ 0

3. Complementary slackness conditions:

µ1, µ2 ≥ 0

µ1(1− λt) = 0

µ2λt = 0

Four cases:

1. µ1 = 0, µ2 = 0

2. µ1 6= 0, µ2 = 0

3. µ1 = 0, µ2 6= 0

4. µ1 6= 0, µ2 6= 0
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1. µ1 = 0, µ2 = 0: both constraints are nonbinding

From FOC:

ρ−1ktσ
2
t|t−1 − 2λtk

2
t = 0

2λtk
2
t = ρ−1ktσ

2
t|t−1

λt =
ρ−1σ2

t|t−1

2kt

The objective function with λt =
ρ−1σ2

t|t−1

2kt
becomes:

= −
[
σ2
t|t−1 −

ρ−1 × ρ−1σ2
t|t−1 × ktσ2

t|t−1

2kt
+

(
ρ−1σ2

t|t−1 × kt
2kt

)2]

= −
[
σ2
t|t−1 −

ρ−2(σ2
t|t−1)

2

2
+
ρ−2(σ2

t|t−1)
2

4

]

= −
[
σ2
t|t−1 −

2ρ−2(σ2
t|t−1)

2 − ρ−2(σ2
t|t−1)

2

4

]

= −
[
σ2
t|t−1 −

(σ2
t|t−1)

2

4ρ2

]
.

2. µ1 6= 0, µ2 = 0: (1− λt) = 0 is binding

From Complementary slackness conditions:

(1− λt) = 0

−λt = −1

λt = 1

From FOC:

ρ−1ktσ
2
t|t−1 − 2k2

t − µ1 = 0

µ1 = ρ−1ktσ
2
t|t−1 − 2k2

t

µ1 = kt(ρ
−1σ2

t|t−1 − 2kt)

and since 0 ≤ kt ≤ 1→ µ1 ≥ 0 only when ρ−1σ2
t|t−1 ≥ 2kt.

Thus, 2kt ≤ ρ−1σ2
t|t−1

kt ≤
ρ−1σ2

t|t−1

2
.
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Substitute for kt from equation (4.10):

ρσ2
t|t−1

σ2
t|t−1 + σ2

t

≤
ρ−1σ2

t|t−1

2

ρ

σ2
t|t−1 + σ2

t

≤ 1

2ρ

σ2
t|t−1 + σ2

t ≥ 2ρ2

σ2
t ≥ 2ρ2 − σ2

t|t−1.

Attention is complete (λt = 1) only when uncertainty σ2
t is equal to or above this

threshold. Otherwise, the solution of Case 2 is not feasible. The objective function

with λt = 1 becomes:

−
[
σ2
t|t−1 − ρ−1ktσ

2
t|t−1 + k2

t

]
.

It is optimal for agents to pay complete attention (λt = 1) only when the value of the

objective function in Case 2 is less than the value of the objective function in Case 1.

Specifically:

σ2
t|t−1 − ρ−1ktσ

2
t|t−1 + k2

t < σ2
t|t−1 −

(σ2
t|t−1)

2

4ρ2

−ρ−1ktσ
2
t|t−1 + k2

t < −
(σ2

t|t−1)
2

4ρ2
.

Substitute for kt:

−ρ−1
ρσ2

t|t−1

σ2
t|t−1 + σ2

t

σ2
t|t−1 +

(
ρσ2

t|t−1

σ2
t|t−1 + σ2

t

)2

< −
(σ2

t|t−1)
2

4ρ2

−
(σ2

t|t−1)
2

σ2
t|t−1 + σ2

t

+
ρ2(σ2

t|t−1)
2

(σ2
t|t−1 + σ2

t )
2 < −

(σ2
t|t−1)

2

4ρ2

− 1

σ2
t|t−1 + σ2

t

+
ρ2

(σ2
t|t−1 + σ2

t )
2 < −

1

4ρ2

ρ2 − (σ2
t|t−1 + σ2

t )

(σ2
t|t−1 + σ2

t )
2 < − 1

4ρ2

ρ2 − σ2
t|t−1 − σ2

t < −
(σ2

t|t−1 + σ2
t )

2

4ρ2
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−σ2
t < −

(σ2
t|t−1 + σ2

t )
2

4ρ2
+ σ2

t|t−1 − ρ2

σ2
t >

(σ2
t|t−1 + σ2

t )
2 − 4ρ2σ2

t|t−1 + 4ρ4

4ρ2
.

In other words, complete attention (λt = 1) is optimal only when uncertainty σ2
t is

above these two thresholds. If that is not the case, incomplete attention (λt < 1) is

optimal.

3. µ1 = 0, µ2 6= 0: λt = 0 is binding

From Complementary slackness conditions:

λt = 0

From FOC:

ρ−1ktσ
2
t|t−1 + µ2 = 0

µ2 = −ρ−1ktσ
2
t|t−1 < 0, since 0 ≤ kt, ρ ≤ 1

→ µ2 < 0

→ does not satisfy condition that µ2 ≥ 0,

so the solution is not feasible.

4. µ1 6= 0, µ2 6= 0: both (1− λt) = 0 and λt = 0 are binding

From Complementary slackness conditions:

λt = 1

λt = 0

→ this solution is not feasible.

∴ The objective function is maximized under Case 1, where:

λt =
ρ−1σ2

t|t−1

2kt
,

unless uncertainty is above the two thresholds:

σ2
t ≥ 2ρ2 − σ2

t|t−1

σ2
t >

(σ2
t|t−1 + σ2

t )
2 − 4ρ2σ2

t|t−1 + 4ρ4

4ρ2
,
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in which case complete attention (λt = 1) is optimal.

Checking SOC: V ′′(λt) < 0 needed to be local maximum:

∂2V

∂λ2
t

=
∂

∂λt
[ρ−1ktσ

2
t|t−1 − 2λtk

2
t ]

= −2k2
t < 0, since 0 ≤ kt ≤ 1

→ λt =
ρ−1σ2

t|t−1

2kt
is local maximum.

V (λt) is concave, so the local maximum is a global maximum.
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D.2 Markov-switching Model Solution

Agents observe a common costless signal:

xt = µσt + φxt−1 + εt, (D.1)

with a state-dependent mean µσt and error term εt ∼ i.i.d. N (0, σ2
σt), about the hidden state

of economic uncertainty σ2
t at time t. The hidden state σ2

t is assumed to follow an irreducible

aperiodic two-state Markov chain, where by definition P{σ2
t |σ2

t−1, σ
2
t−2, ..., σ

2
1} = P{σ2

t |σ2
t−1}.

The transition of the states is a stochastic process; however, the dynamics of the switching

process are known and driven by a matrix of transitional probabilities:

P =

[
pLL pLH

pHL pHH

]
, (D.2)

where element in row i, column j (pij) is the probability of switching from state j to state

i, 0 ≤ pi,j ≤ 1, and the pij sum to 1 in each column.

The Markov-switching model is estimated with maximum likelihood. The log likelihood

of the model in equation (D.1), conditional on the state being known, is:

lnL =
T∑
t=1

ln

[
1√

2πσ2
σt

exp

(
− xt − µσt − φxt−1

2σ2
σt

)]
. (D.3)

Yet, since the states of uncertainty are unknown, the notation of the likelihood function

becomes f(xt|σ2
t = j; θ) for state j and conditional on a set of parameters θ = (µL, µH , σ2

L,

σ2
H , pLL, pHH). The full log likelihood function of the model is given by:

lnL =
T∑
t=1

ln
∑

j∈{L,H}

(
f(xt|σ2

t = j; θ)Pr(σ2
t = j)

)
, (D.4)

which is a weighted sum of the likelihood in each state j with the weights equal to the state’s

probabilities. Since these probabilities are not observed, equation (D.4) cannot be applied

directly; however, we can make inference about the probabilities based on the available

information.

The probabilities of each state Pr(σ2
t = j) are estimated based on the new incoming

information using Hamilton’s iterative algorithm, as follows:

1. Set a guess for the initial probabilities at time t = 0 for each state Pr(σ2
0 = j) for j ∈

{LU,HU}, conditional on the information set at time t = 0, I0, i.e. Pr(σ2
0 = j) = 0.5
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or the steady-state unconditional probabilities of σ2
t :

Pr(σ2
0 = LU |I0) =

1− pLL
2− pLL − pHH

Pr(σ2
0 = HU |I0) =

1− pHH
2− pLL − pHH

.

2. For a following period t, calculate the probabilities of each state, given information up

to time t− 1, It−1, where pji are the transitional probabilities from the Markov chain

in equation (D.2):

Pr(σ2
t = j|It−1) =

∑
i∈{L,H}

pji
(
Pr(σ2

t−1 = i|It−1)
)
. (D.5)

3. Update the probability of each state with the new incoming information at time t

using the set of parameters θ to calculate the log likelihood function for each state

f(xt|σ2
t = j; It−1) for time t and update the filtered or conditional probability of each

state πj|t, given the new information, as follows:

πj|t = Pr(σ2
t = j|It) =

f(xt|σ2
t = j; It−1)Pr(σ2

t = j|It−1)∑
j∈{L,H} f(xt|σ2

t = j; It−1)Pr(σ2
t = j|It−1)

. (D.6)

4. Set t = t + 1 and repeat steps 2-3 until t = T to obtain a set of filtered probabilities

πj|t of each state for every period in the sample.

Using the set of filtered probabilities πj|t, the log likelihood of the model can be calculated

by maximum likelihood as a function of the parameters of the model that maximize:

lnL =
T∑
t=1

ln
∑

j∈{L,H}

(
f(xt|σ2

t = j; θ)πj|t

)
. (D.7)
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D.3 Kalman Filter Solution

D.3.1 Individual Forecast

The observation equation is:

zit = yt + ηit, (D.8)

where ηit ∼ i.i.d. N (0, σ2
t ). The variance of the error ηit, σ

2
t , is stochastic and thus, the

model is characterized by stochastic volatility. Furthermore, σ2
t is assumed to follow an

irreducible aperiodic two-state Markov chain, where σ2
t ∈ {σ2

LU , σ
2
HU}, the two states of eco-

nomic uncertainty from Section 4.2. The state or transition equation for the macroeconomic

state variable takes an AR(1) form:

yt = ρyt−1 + vt, where vt ∼ i.i.d. N (0, σ2
v) and 0 < ρ < 1. (D.9)

Equations (D.9) and (D.8) together describe the information structure in state space form

(ssf). Each agent i generates her nowcast for the state variable and its mean squared error

(MSE) at time t for the period t, respectively, as:

ŷt|t = E[yt|zi1, ..., zit]
σ2
t|t = E[(yt − ŷt|t)2]

Each agent forecasts the state variable at time t for the period t + 1. The forecast and its

MSE are thus:

ŷt+1|t = E[yt+1|zi1, ..., zit]
σ2
t+1|t = E[(yt+1 − ŷt+1|t)

2].

The recursion is initialized with ŷ1|0 = E(y1|zi0) = 0 with associated MSE σ2
1|0 =

V ar(y1|zi0) = σ2
v

1−ρ2 , which are just the unconditional mean and variance of y1 using in-

formation from time t = 0 (Hamilton, 1994, Chapter 13).

Agents need to estimate the error in the incoming noisy signal. Using the law of iterated

expectations and equation (D.8), at time t− 1 attentive agents forecast the value of zit:

ẑit|t−1 = E[zit|zi1, ..., zit−1]

= E[yt|zi1, ..., zit−1] + E[ηit|zi1, ..., zit−1]

= ŷt|t−1. (D.10)
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For each agent i, the Kalman filter assigns different weights to the incoming noisy infor-

mation and the previous estimate depending on the precision of the new observed data and

the perceived accuracy of the existing estimate. Thus, in order to be able to estimate the

forecasts for the following periods, agents need to calculate the error in the existing esti-

mate, as well as the error in the incoming noisy information signal. The Kalman gain kt is a

measure of how much the forecaster can trust her information signal. The more credible the

signal, the more weight the forecaster will optimally put on it in updating her expectation.

The Kalman gain kt is defined as:

kt =
ρσ2

t|t−1

σ2
t|t−1 + σ2

t

. (D.11)

The Kalman gain is increasing in the MSE of the existing estimate (σ2
t|t−1) and state process

persistence (ρ) and decreasing in the variance of the error in the observation of the signal

(σ2
t ). Thus, the less accurate the previous estimate and the more persistent the state process,

the more weight is optimally placed on the new information signal. In contrast, the more

uncertain the signal (higher σ2
t ), the less weight is optimally placed on it in updating the

prediction.

The optimal nowcast of the attentive agents, who update their inference about the value

of yt based on the new observed idiosyncratic signal zit, using the formula for updating a

linear projection, is:

ŷt|t = E[yt|zi1, ..., zit]
= ŷt|t−1 + E[(yt − ŷt|t−1)(zit − ẑit|t−1)]× E[(zit − ẑit|t−1)2]

−1 × (zit − ẑit|t−1)

= ŷt|t−1 + E[(yt − ŷt|t−1)(yt − ŷt|t−1 + ηit)]× E[(yt − ŷt|t−1 + ηit)
2]
−1

× (zit − ŷt|t−1)

= ŷt|t−1 + σ2
t|t−1 × {E[(yt − ŷt|t−1)2] + E[(ηit)

2]}−1 × (zit − ŷt|t−1)

= ŷt|t−1 + σ2
t|t−1 × [σ2

t|t−1 + σ2
t ]
−1 × (zit − ŷt|t−1)

= ŷt|t−1 + ρ−1kt × (zit − ŷt|t−1)

= ρ−1ktzit + (1− ρ−1kt)ŷt|t−1, (D.12)
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since E[ηit(yt − ŷt|t−1)] = 0. The MSE of the optimal nowcast is:

σ2
t|t = E[(yt − ŷt|t)2]

= E[(yt − ρ−1ktzit − (1− ρ−1kt)ŷt|t−1)
2
]

= E[(ρ−1kt(yt − zit) + (1− ρ−1kt)(yt − ŷt|t−1))
2
]

= E[(−ρ−1ktηit + (1− ρ−1kt)(yt − ŷt|t−1))
2
]

= ρ−2k2
t σ

2
t + (1− ρ−1kt)

2
σ2
t|t−1

= σ2
t|t−1 − 2ρ−1ktσ

2
t|t−1 + ρ−2k2

t (σ
2
t|t−1 + σ2

t )

= σ2
t|t−1 − 2ρ−1ktσ

2
t|t−1 + ρ−2

ρ2σ4
t|t−1

(σ2
t|t−1 + σ2

t )
2
(σ2

t|t−1 + σ2
t )

= σ2
t|t−1 − 2ρ−1ktσ

2
t|t−1 +

σ4
t|t−1

σ2
t|t−1 + σ2

t

= σ2
t|t−1 − 2ρ−1ktσ

2
t|t−1 + ρ−1ktσ

2
t|t−1

= (1− ρ−1kt)σ
2
t|t−1. (D.13)

The optimal nowcast from equation (D.12) ŷt|t is a weighted sum of the new information zit

and the old information ŷt|t−1, weighted by the respective weights ρ−1kt and (1−ρ−1kt). This

is the equivalent of equation (8) in Coibion and Gorodnichenko (2015) for the homoscedastic

case. However, here the Kalman gain is different due to heteroscedasticity.

Finally, the attentive agents produce their forecasts for ŷt+1|t:

ŷt+1|t = E[yt+1|zi1, ..., zit]
= ρE[yt|zi1, ..., zit] + E[vt+1|zi1, ..., zit]
= ρŷt|t + 0

= ρ[ρ−1ktzit + (1− ρ−1kt)ŷt|t−1]

= ktzit + (ρ− kt)ŷt|t−1 (D.14)
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with MSE of the forecast:

σ2
t+1|t = E[(yt+1 − ŷt+1|t)

2]

= E[(ρyt + vt+1 − ρŷt|t)2]

= ρ2 E[(yt − ŷt|t)2] + E[v2
t+1]

= ρ2σ2
t|t + σ2

v

= ρ2[(1− ρ−1kt)σ
2
t|t−1] + σ2

v

= ρ(ρ− kt)σ2
t|t−1 + σ2

v . (D.15)

D.3.2 Mean Forecast

By the law of large numbers, assuming the population of forecasters is large, a state-

dependent fraction λt of the population is attentive each period and a proportion (1 − λt)
is inattentive. In other words, the mean forecast of the entire population is the sum of the

mean forecasts within each group of forecasters j, who all updated their information sets j

periods ago, weighted by the respective proportion of each group in the total population.

The mean forecast of the entire population is denoted as the expectation across individuals

i within the same group j and across all groups j: Ej[Ei(ŷt+1|t−j)]. The mean forecast across

all agents i within the same group j is Ei[ŷt+1|t] = ȳt+1|t, where ŷt+1|t are the individual

forecasts. Unlike the hybrid sticky-noisy information model, where λ is constant, here λt is

state-dependent. The mean forecast of the entire population of forecasters is thus:

Ej[ȳt+1|t−j] = λtȳt+1|t

+ λt−1(1− λt)ȳt+1|t−1

+ λt−2(1− λt−1)(1− λt)ȳt+1|t−2

+ ...

+ λ1(1− λ2)...(1− λt−1)(1− λt)ȳt+1|1. (D.16)

We can substitute for the mean forecast of the agents in each group. Taking expectation

across agents i in group j = 0 w.l.o.g. using equation (D.14), the mean forecast of this group
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(all the forecasters who update their forecast for time t+ 1 at time t) becomes:

Ej[ȳt+1|t−j|j = 0] = Ei[ŷt+1|t] = ȳattentivet+1|t

= kt Ei[zit] + (ρ− kt)Ei[ŷt|t−1]

= kt Ei[yt + ηit] + (ρ− kt)ȳt|t−1

= ktyt + (ρ− kt)ȳt|t−1. (D.17)

Note that equation (D.17) yields the mean forecast of the noisy information model, according

to which all agents are attentive, updating their forecasts every period.

Combining equations (D.16) and (D.17), the mean forecast of all agents, attentive and

inattentive, at time t for time t+ 1, where the mean prediction of the inattentive forecasters

is ȳinattentivet+1|t = ȳt+1|t−1 = ρȳt|t−1, is:

Ej[ȳt+1|t−j|j = 0] = ȳallt+1|t = λtȳ
attentive
t+1|t + (1− λt)ȳinattentivet+1|t

= λt[ktyt + (ρ− kt)ȳt|t−1] + (1− λt)ρȳt|t−1

= λtktyt + (ρ− λtkt)ȳt|t−1. (D.18)
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D.4 State-dependent Attention λt and Kalman Gain kt

In Section 4.2, the individual agent calculates her estimated filtered probabilities of the two

states of economic uncertainty. However, it is not realistic to assume that all agents will

estimate the same filtered probabilities, even when exposed to the same common costless

signal, due to the different models they employ to process the information. Thus, each agent

calculates filtered probabilities πj|t polluted with error: π̂j|t = πj|t + επ,i. Focusing on the

probability of a high-uncertainty (HU) state, the mean estimated probability becomes:

π̄HU |t = Ei[πHU |t + επ,i] = πHU |t. (D.19)

Moreover, from equation (D.6), πLU |t + πHU |t = 1. Thus,

πLU |t = 1− πHU |t. (D.20)

The expected value of economic uncertainty σ2
t at time t is:

E[σ2
t |x1, ..., xt] = σ2

t|t = σ2
LU × πLU |t + σ2

HU × πHU |t. (D.21)

Finally, in order to be able to express attention λt and the Kalman gain kt in terms of the

filtered probabilities of HU state, I follow Bloom (2009) and set the following relationship

for σ2
LU and σ2

HU :18

σHU = 2× σLU
σ2
HU = 4× σ2

LU . (D.22)

Substituting equations (D.20) and (D.22) in equation (D.21), the expected value of eco-

nomic uncertainty σ2
t|t becomes:

σ2
t|t = σ2

LU(1− πHU |t) + 4σ2
LUπHU |t

= σ2
LU − σ2

LUπHU |t + 4σ2
LUπHU |t

= σ2
LU(1 + 3πHU |t). (D.23)

18As in Bloom (2009), I confirm the results for σHU = 2 × σLU are also valid for σHU = 1.5 × σLU and
σHU = 3× σLU .
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D.4.1 State-dependent Attention λt

. Substituting for the Kalman gain from equation (D.11) in the expression for λt that

maximizes the objective function in the agent’s optimization problem from equation (4.5),

yields:

λt =
ρ−1σ2

t|t−1

2ρσ2
t|t−1

σ2
t|t−1

+σ2
t

=
ρ−1σ2

t|t−1 × (σ2
t|t−1 + σ2

t )

2ρσ2
t|t−1

=
σ2
t|t−1 + σ2

t

2ρ2
. (D.24)

Applying the result for σ2
t|t from equation (D.23) to the result for λt above, expected

attention λt at time t becomes:

E[λt|x1, ..., xt] = λt|t = Et
[
σ2
t|t−1 + σ2

t

2ρ2

]
=
σ2
t|t−1 + σ2

t|t

2ρ2

=
σ2
t|t−1 + σ2

LU(1 + 3πHU |t)

2ρ2
(D.25)

To determine how the previous MSE σ2
t|t−1, the LU regime uncertainty σ2

LU (therefore,

also the HU regime uncertainty σ2
HU), the conditional probability of HU state πHU |t, and

the persistence of the state process ρ influence expected attention λt|t, I examine the partial

derivatives of λt|t with respect to these four variables.

∂λt|t
∂σ2

t|t−1

=
1

2ρ2
> 0→ as previous MSE σ2

t|t−1 ↑ =⇒ expected λt|t ↑

∂λt|t
∂σ2

LU

=
1 + 3πHU |t

2ρ2
> 0→ as LU σ2

LU ↑→ HU σ2
HU ↑ =⇒ expected λt|t ↑

∂λt|t
∂πHU |t

=
3σ2

LU

2ρ2
> 0→ as probability of HU πHU |t ↑ =⇒ expected λt|t ↑

∂λt|t
∂ρ

= −
σ2
t|t−1 + σ2

LU(1 + 3πHU |t)

ρ3
< 0→ as persistence ρ ↑ =⇒ expected λt|t ↓

Hence, attention λt|t is an increasing function of the previous MSE, so economic agents

are expected to pay more attention when their previous forecasts have been more inaccu-
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rate. Moreover, attention λt|t is an increasing function of LU-regime uncertainty and by

construction, also HU-regime uncertainty, confirming that agents are expected to become

more attentive during periods of greater volatility. Attention is also an increasing function

of the conditional probability of a HU state, so that λt|t ∝ πHU |t. In other words, the greater

the probability of a perceived HU state, the greater the probability of updating one’s fore-

cast. Finally, attention λt|t is a decreasing function of the persistence of the state process ρ,

suggesting that more persistent processes cause agents to optimally become less attentive.

Overall, all these relationships are of the expected signs.

D.4.2 State-dependent Kalman gain kt

. Substituting the result for σ2
t|t from equation (D.23) in the Kalman gain equation (D.11)

yields:

E[kt|x1, ..., xt] = kt|t = Et
[

ρσ2
t|t−1

σ2
t|t−1 + σ2

t

]
=

ρσ2
t|t−1

σ2
t|t−1 + σ2

t|t

=
ρσ2

t|t−1

σ2
t|t−1 + σ2

LU(1 + 3πHU |t)
(D.26)

To determine how the previous MSE σ2
t|t−1, the LU regime uncertainty σ2

LU (therefore,

also the HU regime uncertainty σ2
HU), the conditional probability of HU state πHU |t, and

the persistence of the state process ρ influence the expected Kalman gain kt|t, I examine the
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partial derivatives of kt|t with respect to these four variables:

∂kt|t
∂σ2

t|t−1

=
ρσ2

LU(1 + 3πHU |t)

(σ2
t|t−1 + σ2

LU(1 + 3πHU |t))
2 > 0→ as previous MSE σ2

t|t−1 ↑ =⇒ expected kt|t ↑

∂kt|t
∂σ2

LU

= −
ρσ2

t|t−1(1 + 3πHU |t)

(σ2
t|t−1 + σ2

LU(1 + 3πHU |t))
2 < 0→ as LU σ2

LU ↑→ HU σ2
HU ↑ =⇒ expected kt|t ↓

∂kt|t
∂πHU |t

= −
3ρσ2

t|t−1

(σ2
t|t−1 + σ2

LU(1 + 3πHU |t))
2 < 0→ as probability of HU πHU |t ↑ =⇒ expected kt|t ↓

∂kt|t
∂ρ

=
σ2
t|t−1

σ2
t|t−1 + σ2

LU(1 + 3πHU |t)
> 0→ as persistence ρ ↑ =⇒ expected kt|t ↑

Therefore, the expected weight agents put on new information, Kalman gain kt|t, is an

increasing function of the previous MSE, so economic agents are expected to trust the new

information more when their previous forecasts have been more inaccurate. Moreover, the

Kalman gain kt|t is a decreasing function of LU-regime uncertainty and by construction, also

HU-regime uncertainty, since agents optimally place less weight on new incoming information

when it is more noisy. The Kalman gain is also a decreasing function of the conditional

probability of a HU state, so that kt|t 6∝ πHU |t. In other words, the greater the probability

of a perceived HU state, the lesser the weight agents optimally put on the new information

when updating their forecasts. Finally, the Kalman gain kt|t is an increasing function of the

persistence of the state process ρ, suggesting that more persistent processes cause agents to

optimally weigh new information more heavily. Overall, all these relationships are also of

the expected signs.

74



D.5 Mean Forecasts of Alternative Models

D.5.1 Sticky Information Model

Ej[ȳt+1|t−j] = λȳt+1|t

+ λ(1− λ)ȳt+1|t−1

+ λ(1− λ)(1− λ)ȳt+1|t−2

+ ...

+ λ(1− λ)...(1− λ)(1− λ)ȳt+1|1

= λ
∞∑
j=0

(1− λ)j ȳt+1|t−j. (D.27)

D.5.2 Noisy Information Model

The individual signal that each agent i gleans is described in the observation equation:

zit = yt + ηit, (D.28)

where ηit ∼ i.i.d. N (0, σ2
t ).

Each agent i updates her forecast according to the state equation for the macroeconomic

state variable, which takes an AR(1) form:

yt = ρyt−1 + vt, where vt ∼ i.i.d. N (0, σ2
v) and 0 < ρ < 1. (D.29)

As derived in Section 4.3, the optimal forecast of each agent i is:

ŷt+1|t = kzit + (ρ− k)ŷt|t−1, (D.30)

where k is the Kalman gain. Averaging across individual agents yields the mean forecast:

Ei[ŷt+1|t] = ȳt+1|t

= k Ei[zit] + (ρ− k)Ei[ŷt|t−1]

= k Ei[yt + ηit] + (ρ− k)ȳt|t−1

= kyt + (ρ− k)ȳt|t−1. (D.31)
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D.5.3 Hybrid Sticky-Noisy Information Model

Ej[ȳt+1|t−j] = λ

∞∑
j=0

(1− λ)j Ei[ŷt+1|t−j]

= λ
∞∑
j=0

(1− λ)j[kyt + (ρ− k)ȳt|t−j−1] (D.32)

D.5.4 State-dependent Sticky-Noisy Information Model

Ej[ȳt+1|t−j] = λtȳt+1|t +
∞∑
j=1

λt−j

[ j−1∏
k=0

(1− λt−k)
]
ȳt+1|t−j

= λt[ktyt + (ρ− kt)ȳt|t−1] +
∞∑
j=1

λt−j

[ j−1∏
k=0

(1− λt−k)
]
ρj[kt−jyt−j + (ρ− kt−j)ȳt−j|t−j−1].

(D.33)
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