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Abstract

Inflation risks are explicit in either (i) the nominal pricing of real payoffs in which prices are
denominated in dollars, or (ii) the real pricing of nominal payoffs in which prices are denominated
in consumption baskets. While the former involves over-the-counter inflation-indexed contracts
of real asset market, the latter involves exchange-traded and highly liquid contracts of nominal
asset market. We employ a parametric pricing model to investigate the asymmetry between
these two markets. The model obtains a liquidity-free distribution of future inflation using new
price data of T-note futures in nominal asset market, and implies liquidity risk premia separately
for any traded contract in real asset market. These premia indicate both an underpricing for
TIPS and an overpricing for inflation swaps, whose significance increases with the tenor of these
assets. Such a mispricing in inflation swaps helps temper a severe implied mispricing of TIPS
needed to match the puzzling trade profit on the nominal-TIPS yield spread. While yields on
TIPS still command a liquidity component, this finding implicates less pronounced borrowing

costs to the U.S. government in issuing TIPS.
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1 Introduction

Inflation is a central factor that influences the economy, the financial market, and their constituents:
producers, consumers, traders, and policy makers. As a result, the forecast and pricing of inflation
risk are of great interests to market participants, and traditionally are obtained using direct surveys,
statistical analysis, or both. The advent of inflation-indered bonds and their derivatives has brought
a new market-based input to enhance the inflation forecast and pricing, as their inflation-sensitive
prices reflect market’s inflation expectation. However, the market nature of inflation-indexed assets
also exposes them to market imperfections, namely liquidity and segmentation. As a result, the
observed prices of inflation-indexed contracts (hereafter, real assets) reflect not only inflation, but
also these imperfections. The employment of real asset price data hence may confound premia of
various non-inflation risks and potentially skew the market-based forecast and pricing of inflation

risk.

In this paper, we first decouple the liquidity and other market imperfection concerns from the
estimation of the U.S. future inflation by employing proprietary price data of the most liquid and
exchange-traded contracts on treasury bonds (hereafter, nominal assets), namely T-note futures,
together with professional forecasts of the price index. We then employ the resulting pure-inflation
estimates to price individually every real asset out-of-sample. We compare these model-implied
prices with the corresponding observed prices to determine the “mispricing” of each real asset. By
construction, this mispricing is benchmarked against liquid nominal assets (T-note futures) in an
inflation-risk pricing model. As a result, the mispricing is due to non-inflation (hereafter, generally
referred to as “liquidity”) factors in real asset market that are not priced by the model. Such a
mispricing is relative to our inflation risk pricing model, and would vanish in more comprehensive
pricing models that take into account risk factors beyond the inflation risk and are able to fit TIPS

and inflation swap prices.

Recent literature has found significant spreads between the yields of nominal bonds and Treasury
Inflation-Protected Securities (TIPS). These findings hint at important TIPS liquidity premia (e.g.,
D’Amico et al. (2018)) or highly profitable strategies involving TIPS, inflation swaps, and nominal
bonds (Fleckenstein et al. (2014)). The mispricing magnitudes obtained in the current paper show
significant non-inflation premia for both TIPS and inflation swaps, and indicate their individual
contributions to the profit of strategies on the nominal-TIPS yield spread. The mispricing in

inflation swaps lessens the extent of TIPS mispricing needed to accommodate the above profit.



This complementarity between inflation swap and TIPS mispricings lowers the implied borrowing
cost to U.S. government in issuing secured real debts, albeit such a cost still subjects the government

to pay for a liquidity premium of real asset market.

We find that (i) markets generally expect a higher, yet less uncertain, annualized long-run
inflation, which is quantified by a future inflation distributions of higher mean and lower variance
as the estimation horizon increases, (ii) markets expect a lower probability, yet higher price, of
the deflation risk at longer horizons, and the time-series fluctuation of the Arrow-Debreu price of
the deflation state arises mainly from movements in the deflation distribution, but not in its price
of risk, (iii) both TIPS and inflation swaps appear mispriced, and more significantly so for longer
tenors: TIPS appear consistently underpriced and inflation swaps consistently overpriced (to fixed
rate payors) for contracts of 10 years or longer maturities. These mispricings also vary with time.
Overall, the mispricing pattern of TIPS and inflation swaps indicates time-varying returns on the
nominal-real yield spread of short terms (less than 10 years), and consistent profits on the same

spread of longer-term yields (10 years or more).!

To arrive at these results, our paper adopts an empirical strategy using price data of nominal
assets and inflation surveys to estimate the inflation process in conjunction with a real pricing
model, in which prices are denominated in units of consumption baskets. Specifically, we specify
inflation and real stochastic discount factor (SDF) processes in terms of latent state variables, which
in turn have affine dynamics in the data-generating (physical) probability measure. A Kalman filter,
which employs data of inflation consensus forecasts, T-note futures prices, and a short-term real
interest rate proxy, is constructed to jointly estimate the SDF and future inflation distribution

parametrically.

The mechanism by which the price data of nominal assets, such as T-note futures, help to
determine the market’s expected inflation is as follows. Nominal asset payoffs, when denominated
in the real term (i.e., in units of consumption baskets), explicitly reflect future inflation. A joint
specification of inflation and real SDF processes translates inflation consensus forecasts into current
prices of nominal assets in an asset pricing framework. Therefore, data of inflation consensus and
nominal asset prices help to back out the best-fit parameters of the underlying joint specification

in an estimation framework. The advantage of this inflation estimation is in the fact that nominal

'Returns on the nominal-real yield spreads are returns on the strategy that takes a long position in nominal bonds
and a short position in TIPS of similar maturities (tenors), i.e., earning nominal and paying real yields. We will also
consider a related arbitrage strategy by adding positions in inflation swaps (paying fixed, receiving floating rates) to
fully hedge the inflation risk in the above nominal-real yield spread strategy.



asset market is well developed, and nominal asset prices are subject the least to liquidity and other
frictions. This inflation estimation is on the flipped side of the approach in the literature that
employs inflation consensus data and real asset prices. Such an approach jointly specifies inflation
and nominal SDF processes, and exploits the sensitivity of dollar (i.e., nominal) prices of real assets
to the inflation risk. However, as real asset market tends to be less liquid, real asset prices are
potentially subject to liquidity and other market imperfections that might hinder the estimation

in such an approach.

Our inflation estimation described above is therefore motivated and dictated by a practical
consideration of market data. In fact, the market size and transaction volume of U.S. nominal
assets (Treasury bonds and their derivatives) are substantially larger than those of U.S. real assets
(TIPS, inflation swaps, inflation options and their derivatives), indicating superior liquidity for the
former. We acquire and employ T-note futures price data provided by the Chicago Mercantile
Exchange (CME). These futures contracts are standardized and exchange-traded, featuring trans-
action transparencies, large average daily trading volume (of approximately 300 billion dollars), and
matured markets. In comparison, TIPS and inflation swaps are mostly traded in OTC markets,
with significantly lower average daily trading volumes (of approximately 20 and 1 billion dollars,
respectively) and less matured markets.” In this regard, while it appears that nominal yields might
also substitute for T-notes futures prices in the inflation estimation process, the employment of
nominal yield data is not straightforward. This is because nominal yields are typically derived
from coupon bond prices, so their inputs do not directly match the closed-form zero-coupon yields
derived from the estimation model. The construction of zero-coupon yields for all horizons needed
in our estimation from available coupon bond prices is intricate, and is beyond the scope of the

current paper.’

We make a specification assumption that nominal asset market is liquid and free of other fric-
tions. Therefore, by employing only nominal asset price data, our estimation model only concerns
inflation risk (but not liquidity or other frictions). Post estimation, given the obtained future

inflation distribution and pricing kernel, the model is able to price real assets individually and out-

2T-notes futures were first traded in CME in 1976. TIPS and inflation swaps were first introduced in 1997 and
2002, and their price data are available to us starting in 2003 and 2004 respectively. In notional amounts, in 2017,
average daily trading volumes are almost 300 billion dollars for T-note futures, and 1 billion dollars for inflation
swaps. See, e.g., Fleming and Krishnan (2012) and Fleming and Sporn (2013) for further description and discussion
of TIPS and inflation swap markets.

3Gurkaynak et al. (2006) and Le and Singleton (2013) discuss and present such a construction of constant-maturity
zero-coupon Treasury yields.



of-sample. These model-implied prices capture only the exposure to inflation risk of real assets, and
evidently do not match the corresponding prices observed in real asset market. Their differences
represent the model-implied mispricing, which reflects the liquidity and other (non-inflation) market
frictions inherent in real assets. The mispricing provides a quantitative assessment of the integra-
tion and relative liquidity between the real and the much larger nominal asset market over time. By
not employing real asset price data, our estimation also indicates a venue to forecast the inflation

in developing economies, wherein real asset market is either underdeveloped or non-existent.

It is important to observe that while prices of liquid nominal assets constitute a high quality
data source, they alone are insufficient to estimate the future inflation distribution. From an
economic aspect, we recall that the pricing of risky assets only reflects risk premia, i.e., expected
asset returns in excess of the short-term risk-free rate (short rate). Intuitively, that the inflation-
protected (resp., nominal) assets are expensive when the market’s expectation about the future
price index is high (resp., low) is a relative notion. This expensiveness is only quantifiable with
respect to an appropriate baseline, which is the nominal (resp., real) bond in the setting. As a
result, quantifying the sensitivity of asset prices to the inflation risk necessitates the knowledge
of the corresponding baseline, namely, the nominal (resp., real) short rate. That is, the short
rate inputs help to pin down the baseline, restore the full expected asset returns. Follows from
which an estimation of the distribution and pricing of the inflation risk. From a pricing aspect,
in the difference with a pure statistical estimation, a pricing model specification is essential in
establishing a relationship between the inflation distribution and asset prices, forming the basis of
a market-based estimation of the future inflation from current prices. In the model, asset prices
therefore mingle and reflect parameters of both the SDF and inflation distribution. To disentangle
these parameters, two additional data inputs, namely inflation surveys (which pertain only to
inflation distribution parameters) and short-term real interest rate (which pertains only to the real
SDF parameters) are also employed in our estimation.” In our estimation, the inflation consensus
forecast input is sourced from the Blue Chip Economic Indicators (BCEI), and short-term real
interest rate input is proxied by the difference between short-term nominal interest rates and short-

. . . =4
term professional inflation forecasts.”

Related Literature: Our paper contributes to a vibrant literature of the market-based estimation

4In principle, we just need one of these two data inputs to complement the nominal asset price data in the
estimation.

5This proxy is built upon the Fisher equation and motivated by the fact that, historically, the short-term future
inflation is forecastable by market professionals.



of the inflation. Various price data sources on TIPS, inflation swaps, and nominal yields are em-
ployed in Christensen et al. (2010), Gurkaynak et al. (2010), Chernov and Mueller (2012), Haubrich
et al. (2012), Grishchenko and Huang (2013), Fleckenstein et al. (2017). While TIPS (resp., nomi-
nal yields) are sensitive to the future inflation distribution in the dollar (resp., consumption basket)
denomination, inflation swaps are sensitive to the inflation in both denominations. Hence papers
using inflation swap data, such as Haubrich et al. (2012) and Fleckenstein et al. (2017), examine
the inflation risk pricing and estimation in a joint nominal and real perspective. However, inflation
swap data and market size are limited. Our paper employs T-note futures prices as a new data

source, which is associated with a much larger and more liquid market.

The link between nominal price data (in particular, nominal yields) and expected inflation
are analyzed further within term structure settings in above-mentioned and other papers. Ang
et al. (2008) estimate a term structure model of nominal and real interest rates, with inflation as
a state variable switching between regimes, employing parametric restrictions and nominal yields
but no survey data. D’Amico et al. (2018) estimate another term structure model, employing
CPI, nominal and TIPS yields, and inflation survey data. Duffee (2018) studies how shocks in
the inflation expectation impact nominal yields. The construction of zero-coupon yields of various
(especially, long) maturities from a cross-section of Treasury coupon bonds is intricate as seen in
Le and Singleton (2013). Our paper differs from these works in that we directly employ price data
of the exchange-traded T-note futures — hence circumvent the construction of nominal zero-coupon

yields — as well as inflation surveys, but no TIPS nor inflation swap data.

The use of survey data in forecasting inflation is pioneered by Pennacchi (1991). Ang et al.
(2007), Faust and Wright (2013) and Bauer and McCarthy (2015) find that inflation surveys tend to
outperform market-based forecasts of the U.S. inflation using inflation-indexed asset prices. Ehling
et al. (2018) further show that subjective and heterogeneous beliefs about inflation have impacts
on nominal interest rates. Our inflation estimation relies importantly on the BCEI consensus
forecasts, but also employs (nominal) price data. Price data offers a much richer variety of tenors
than survey data, and hence, is important in estimating entire distributions of future inflation at
various horizons.

Potential arbitrage opportunities between real and nominal bonds have been investigated in

Fleckenstein et al. (2014), who find significant pricing anomalies in TIPS markets for the period
of 2004-2009. This finding follows from documenting (i) a difference in prices of TIPS and their



replicating portfolios of inflation swaps and nominal bonds, and (ii) no significant difference in
prices of several corporate-issued real bonds and their replicating portfolios of inflation swaps and
corporate-issued nominal bonds. Our inflation estimation employs only the most liquid exchange-
traded nominal assets, whose price data is available from 1982 onward. We treat both TIPS and
inflation swaps as out-of-sample assets to the inflation estimation, which enables the pricing of
the inflation risk separately for TIPS and inflation swaps. As a result, our paper quantifies and
attributes pricing anomalies between nominal and real bonds down separately to an underpricing
in TIPS and an overpricing in inflation swaps.® We find that, these mispricings vary significantly

with time, and increase with assets’ tenor.

The importance of determining inflation expectation from policy making perspectives is dis-
cussed in Dudley et al. (2009), Bernanke (2012) and Bullard (2016). Our findings indicate the
mispricing also in the smaller inflation swap market, which is integrally important to assess the
mispricing and borrowing cost of TIPS issuance. Neely and Rapach (2011) and Grishchenko et al.
(2017) further investigate the co-movement and anchoring of inflation in international settings.
Our inflation estimation makes use of only nominal asset prices and inflation surveys, hence can be

extended to other economies in which real asset markets are either underdeveloped or nonexistent.

Liquidity in real asset market is studied in various recent papers. Campbell et al. (2009)
and Pflueger and Viceira (2011) examine the liquidity component of these anomalies. Driessen
et al. (2017) include an explicit liquidity factor, estimate its price in a Fama-MacBeth regression
framework, and find that liquidity explains an important part of the spread between the nominal
bond and the its replicating portfolio of TIPS and inflation swap. In event studies, D’Amico and
King (2013) and Christensen and Gillan (2018) examine effects of a large purchase of T-bonds and
TIPS on the pricing and liquidity of nominal and real assets. D’Amico et al. (2018) emphasize the
relative illiquidity of TIPS over nominal Treasury bonds and the information distortion caused by
ignoring the liquidity factor in anomalous yield spreads on these assets. These papers extend the
vibrant literature investigating pricing anomalies in risky debts, e.g., Chen et al. (2007), Bao et al.
(2011), Huang and Huang (2012) to “safe” debts. Our paper concurs with a significant mispricing
in real asset market, but is agnostic about the specific nature of non-inflation factors (liquidity and

other market imperfections) impacting real assets.

The paper is structured as follows. Section 2 describes data sources and provides key intuitions

5We implement estimations for the periods of 2003-2017, and 1982-2017, which also differ from the period of
2004-2009 in Fleckenstein et al. (2014).



underlying the estimation. Section 3 specifies the actual estimation model and procedure. Section
4 presents estimation results. Section 5 discusses the mispricing in real asset markets. Section 6
concludes. Appendices A, B and C present robustness results and technical derivations omitted in

the main text.

2 Preliminaries: Data and Inflation Risk Pricing

In this section, we describe data sources and their relevant features. We also discuss the basics of
the inflation risk pricing as well as non-inflation premia (i.e., the mispricing) in out setup. This
discussion demonstrates all intuitions of the introduction section, as well as elucidates the essence

of the full estimation model of Section 3.

2.1 Data

Our estimation employs monthly data of T-note futures prices and BCEI inflation consensus fore-
casts, both are available from early 1980. Post estimation, to determine the mispricing in inflation
swaps, we compare model-implied inflation swap rates with the (transacted) inflation swap rate
given by Bloomberg. To determine the mispricing in TIPS, we compare model-implied TIPS yields
with the observed TIPS yields given by Fed’s inflation-indexed constant maturity yields. We note
that Fed’s inflation-indexed constant maturity yields indicate, but are not necessarily exactly equal
to, TIPS yields transacted in markets. Therefore, the mispricing in TIPS indicates, but is not
necessarily exactly equal to, the arbitrage in trading TIPS (against nominal bonds and inflation

swaps).

2.1.1 Data used in the estimation

T-note futures prices: Treasury Bond futures (also referred to as T-note futures here) were
introduced on the Chicago Board of Trade (CBOT) in 1977, augmented over the years by the
introduction of 10-year, 5-year, 2-year T-note futures, and are subject to the rules and regulations
of the CBOT. Our data is acquired and sourced from Chicago Mercantile Exchange (CME), from
1982 to the end of 2017. T-note face value in these futures is $100,000 (except for 2-year and 3-year
T-note futures, for which the face is $200,000 USD). The normal commercial round-lot is $1 million

face value. T-note futures permit the delivery of any U.S. Treasury security provided it matures



within an eligible period (deliverable grade). Due to flexibility, T-note futures employ a “conversion
factor” invoicing system to reflect the value of the security that is delivered by reference to the
6% futures contract standard. The intent of the conversion factor invoicing system is to make the
delivery of any eligible securities fair (though, not perfectly). The principal invoice amount paid
from long to short upon delivery may be identified as the futures settlement price multiplied by the
conversion factor multiplied by $1,000. (or $2,000 of 2-year and 3-year T-note futures). The T-note
futures market is among the most liquid asset markets, featuring average daily trading volume of
almost 3 millions contracts (or, face values of $300 billions daily). Prices of options on T-note
futures are also a quality data source employed to estimate the pricing kernel non-parametrically

as in Bakshi et al. (2018).

BCEI inflation consensus forecasts: Since 1976, each month Blue Chip Economic Indicators has
polled approximately 50 business economists for future changes in inflation (and 14 other important
economic indicators). Our data is acquired from a global provider of professional information
Wolters Kluwer. We employ the data series in which surveys conducted monthly (12 surveys
per year) from 1982 to the end of 2017. Each survey contains inflation forecasts for several coming
quarters, starting with the current one, on to the last quarter of the next year.” In the survey, BCEI
collects professional forecasts of the percent change in the U.S. seasonally adjusted consumer price
index for all urban consumers (CPI-U) from the prior quarter expressed at an annual rate. BCEI
compiles estimates into a consensus average forecast published each month based on responses,
along with averages of the 10 highest and 10 lowest forecasts, and a median forecast to eliminate

the effects of extremes on the consensus.

Yields on inflation-indexed securities at “constant maturity”: These yields are a part of
the Selected Interest Rates (H.15) statistical release compiled by Board of Governors of the Federal
Reserve System. Yields on inflation-indexed securities at “constant maturity” are interpolated
from the daily yield curve for TIPS in the over-the-counter market. The inflation-indexed constant
maturity yields are read from this yield curve at fixed maturities of 5, 7, 10, 20, and 30 years. We

employ monthly data series from 2003 to the end of 2017.

Zero-coupon inflation swaps: Zero-coupon inflation swaps are the simplest and most traded

among all inflation swaps, in which parties settles cashflows only at the swap’s maturity (details

"So in a survey (month), there are at least 5 forecasts (if the month is at the end of a year), and at most 8 forecasts
(if the month is at the beginning of a year). This relatively large number of forecast data points is the main reason
we choose BCEI the inflation consensus forecast inputs for our estimation.



are in Section 3.3). The inflation swap rate data are from Bloomberg. Maturities of inflation swaps
range from 1 up to 55 years. Inflation swap data are available starting from 2004. We employ the
mid-quotes on the inflation swap rates, from 2004 (available date for most maturities) to the end

of 2017.

2.2 Inflation Risk Pricing and Mispricing

Mispricing: Before presenting ingredients of the inflation estimation procedure, it is instructive
to quantify and discuss the concept of mispricing in our approach. By design, the current paper’s
joint estimation of the inflation process and pricing characteristics (SDF) employs only price data
of liquid nominal assets (T-note futures) and inflation consensus forecasts. To the extent that
these nominal assets are not subject to non-inflation risks and other market imperfections such as
liquidity and defaults,® our estimation concerns and reveals only the inflation risk and its pricing.
Because this estimation does not employ input data from real asset market, TIPS and inflation
swaps are out-of-sample assets with respect to the estimation. Therefore, the estimated pricing
model, when applied on TIPS and inflation swaps, produces prices for these assets that capture the
compensation for their exposure only to the inflation risk. As a result, the difference between these
model-implied and observed prices of real assets necessarily reflects premia on non-inflation risks
borne by them. Our paper is agnostic about the specific nature of the non-inflation risks and other
market imperfections impacting real assets that are responsible for such premia.” Accordingly,
we refer to the difference between model-implied and observed prices and returns of real assets
broadly as mispricing throughout the paper. It is possible that this mispricing is priced in other
pricing models, those account for non-inflation risks and market imperfections not modeled in our

estimation.

We now turn to the pricing of the inflation risk, starting with basic notations. Let I; be the spot
price in dollars of the consumption basket at time ¢t. In data, I; is the consumer price index (CPI).
Without loss of generality, we can set Iy = 1 at initial time ¢ = 0. An inflation is realized from
time ¢t to T > t if the consumption basket price increases during that period, I7 > I;. Otherwise,

a deflation is realized when (I < I;). Any nominal payoff (or price) Dy7 in units of dollars at

8This identification assumption is in relative sense and innocuous. Our estimation treats liquid nominal contracts
(T-bond futures) as benchmark assets, against which other assets are evaluated. This does not require that T-bond
futures need be perfectly liquid in absolute sense.

9Literature has found that liquidity is an important factor that differentiates real (TIPS and inflation swaps) from
nominal (T-bonds) assets. See D’Amico et al. (2018) and the references therein.



time 7T can be contemporaneously converted to the real payoff of Dl—ff in units of consumption
baskets. A high inflation (larger %) depresses the real value of the payoff and vice versa. At time
t < T, in the nominal term (in which prices are denominated in dollars), risks are associated with
fluctuations in the realized nominal payoff Dy7. In the real term (in which prices are denominated
in consumption baskets), inflation risks are inherent in the realized real payo DI—];T, which reflects
the movements in both Dy7 and inflation I7. Let My; be the nominal stochastic discount factor
(SDF) process which prices assets in the dollar denomination. Similarly, let Mpg; be the real SDF,

which price assets in the consumption basket denomination.

Non-parametric consideration: To gain preliminary intuitions about the inflation estimation,
we first discuss the pricing of inflation risks in a non-parametric setting, in which SDFs follow

diffusion processes,

dMpg;
Mgy

dM
= —rpedt — nlp,dZy, M;Vt = —rnydt — iy, dZy,
t

where g, vy are real and nominal interest rate, and ngs, ny: are real and nominal prices of risks.

By definition, the two SDFs are related by the multiplicative factor of the price index,

_ Mpy¢
Mny’

I V2. (1)

This relationship assures that the pricing of a future payoff is consistent across real and nominal
denominations. Indeed, the price P, (in spot dollars at t) of a nominal future payoff Dyp can be

priced by either the nominal SDF My or the real SDF Mg,'°

M
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Following from this non-parametric setup, several preliminary observations are in order.

First, the inflation % is explicit in the cross-denomination pricing equation (second equation

in (2)), in which a nominal payoff is priced in the real term by SDF Mpg. Fluctuations in the
inflation % lead to fluctuations in the real value I[—;DNT of the payoff. To employ input price data
of nominal assets, the estimation models the real SDF Mg to pick on, and price, these fluctuations,

e.g., by a specification that relates Mpg; with I; (Section 3). Hence, when Dy7 is a nominal

10T the latter case, first the nominal payoff of Dy dollars is converted into a real payoff of %T to be priced by
Mp. The resulting real price is converted back into dollars to obtain the spot price at time t.

10



fixed-income (fixed) payoff or the model is agnostic about possible relationship between D7 and
the price index I, the pricing in the real term of nominal assets remains sensitive to the future
inflation distribution due to the explicit appearance of the inflation % Price data of nominal assets
(together with inflation surveys and short-term real rates) then help estimate inflation distribution.
In this real pricing perspective, it is natural to adopt the consumption basket denomination and the
associated real SDF Mg specification in the inflation estimation. Symmetrically, the inflation rate
is also explicit in another (cross-denomination) pricing equation in the nominal term (associated
with My) of a real payoff.'* In principle, prices of real assets (together with inflation surveys and
short-term nominal rates) could also help estimate inflation distribution. However, real assets are

less liquid and their price inputs to the estimation may compound liquidity with inflation premia

and skew the the latter’s forecast.'?

Second, an identical probability distribution is associated with the real SDF Mg and nominal
SDF My, and is also the physical probability measure. We recall that that My (Mg) is the
marginal utility of a nominal (real) representative agent to whom the risk-free asset pays surely
one dollar (one consumption basket) next period. However, this difference in the risk-free concept
associated with real and nominal pricing does not distort the associated probability measure because
dollar and consumption basket are just two alternative numeraires of the same market. To invoke
a metaphor from international finance: while U.S. and U.K. investors perceive different risk-free
bonds (Treasury bonds vs. Gilts), they may share identical probability distribution of the future
state of the world economy. Therefore, the real pricing perspective does not interdict a consistent

estimation of future inflation distribution in the physical measure.

Third, the inflation estimation requires additional input data other than nominal asset prices.

To see this, we examine the limit of nominal asset price data in the risk premium of short-term

' Similar to (2), the nominal and real pricing equations of a real payoff Drr (denominated in consumption baskets)

1 M _ M
s, 4. (S5 D] — B (%5 D]
A priori, the inflation factor is not eleicit in the same-denomination pricing, i.e., either the pricing of a nominal

payoff in the nominal term E; []KIJH Dnr|, or the pricing of a real payoff in the real term E; {ZI‘@}E DRT]. They can

be converted into cross-denomination pricing equations after the inflation is specified.

11



nominal assets,

unp — (p1 +7r) = (Mg + 07)(onD — 07). (3)

Generally, the estimation procedure takes as inputs the moments {unp,onp} of asset returns
(provided by nominal asset price data), and generates joint output estimates {yus, or;7r, nr} of the
inflation distribution and real pricing kernel.'* Clearly, these output estimates are mixed in the
risk premium (3). In particular, u; and rr influence this nominal risk premium through their sum
wur + rr. This implies that nominal asset price data (e.g., nominal risk premium) can only help
estimate the mean inflation pu; and short-term real interest rate rp up to a linear combination.
This identification issue indicates the need for additional data that involve separately inflation

parameters (i.e., inflation surveys) and pricing kernels (i.e., short-term interest rates).

Other output estimates (o7 and nr) also mingle in the risk premium (3) but to a less extent.
Such a mixing does not lead to an identification issue and may be addressed by employing a varieties
of nominal assets of different maturities. However, these nominal asset price data are associated
with the inflation and pricing kernel characteristics of different time horizons, and might affect the
estimation efficiency. This complication motivates a parametric setting which systematically maps
prices of various nominal assets into few basic parameters of the pricing model and inflation, before
the estimation is carried out. Such a term-structure analysis is beyond the scope of the current

non-parametric consideration, and is discussed next.

Parametric consideration: To illustrate the use and integration of nominal asset price data
associated with diverse maturities in the estimation, we consider a toy dynamic term-structure
model. Let the state variable X; have affine dynamics in a diffusion setting, i.e., dX; = pxdt +

oxdZ;, with linear drift and variance,

px = Ko+ K1Xq, (UXU)T()H = Hoqj + H{;;X; = (Ho + [H1 - X4)), - (4)

13The risk premium (3) arises from substituting the inflation process %t = urdt + oydZ;, and the short-term

It
dPi+Dqdt
Py

nominal asset return = unpdt + oy pdZ, into the real pricing equation (second equation in (2)),

Mpgiyai (Pryar + Didt)/ Py
Mr: Tivat/ Iy

1= E, l-l—[LNDdt-i-O'EVDdZt}

} =F; {(1 —ert—nﬁadZt) U+ pudt + o' dZ,
I

=1+ {NND — (ur +rR) — (773%+UII)(UND _UI)}dt'

Note that (3) is the usual risk premium in the real term: prp —rr = NRORD, Where purp = pnp — i1 — 07 (oND —O7)
(Piyqe+Didt)/ Pt

Tytae/Te
Mp,
I -

and orp = onp — o1 are mean and volatility of the real return

4Nominal pricing characteristics then arise from (1), My =
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Let both the price index and real SDF be exponential affine functions of the state variable,
I, = L™, Mpy = Mpoe™Xt, vt > 0. (5)

Given this specification, to estimate the inflation, one needs to estimate both (i) the parameters
{Ko, K1, Hy, H1} to determine the state variable dynamics, and (ii) inflation parameter i (and SDF

parameter m) to relate the inflation (and the pricing kernel) to the state variable.

Consider a nominal zero-coupon bond that pays one dollar at maturity 7', or equivalently ﬁ
units of consumption baskets. The above parametric (affine) setting yields a tractable bond price
P;.r, which is exponential affine in the state variable,”

Mpr 1
Mgy It

_ _ +p1: X
Pt,T =1L, E; [ } — ePottpit t’

with coefficients po:, p1¢ satisfying a system of Riccati’s differential equations,

% = —Kipi — %(pltHlplt)a piT =m — 1, ©)
d
% = —Kop1: — %(plt-HOplt)a por = 0,

where K’s and H'’s characterize the state variable dynamic (4). Following from this parametric

setup, several important observations are in order.

First, nominal asset prices (and nominal yields) are sensitive to the inflation dynamics through
the influence of the parameter i on the coefficients pg:, p1:. In contrast, in the same parametric
setting, real asset prices (and real yields) do not reflect the inflation dynamics when priced in the
real term (i.e., by Mp;). This is because while these data are sensitive to the distribution of state
variable X, the Riccati’s equations of real bond prices do not contain the key parameter ¢ (5) that
links the state variable to inflation.'® Hence, the need to employ liquid nominal assets and data in
the inflation estimation motivates the adoption of real pricing specification Mpz. Moreover, nominal
assets of different maturities T are systematically integrated into, and reinforce, the estimation

because the same parameter set { K, H,m,i} drives all these asset prices in this parametric setting.

Second, while the parameter i of the inflation does appear in the real pricing of nominal bonds, it

5The nominal bond price arises from (2) with the nominal payoff payoff Dy = 1r.

'%Indeed, the real pricing of real bonds, Pir = E; {J\]/V[[I;g ]lT} = exp (prot + pr1:X¢), is established by the Riccati’s

equations on Prot, Pr1t: _Klplt — %(p1tH1p1t), ngt’ = _KOplt — %(puHoplt), with terminal conditions

priT = m, pror = 0. Clearly, this equation system does not involve the inflation parameter i explicitly.

dpRrit _
dt
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only influences their prices through the combination (m —i) in the Riccati’s system (6). As a result,
these bond prices alone can only implicate the difference between the pricing (SDF) parameter m
and the inflation parameter i, but not m or i separately. Note that all derivative contracts (e.g.,
options) on nominal bonds feature the same combination (m — i) because they share the conversion
of nominal (dollar) payoffs to consumption baskets. In principle, more sophisticated derivatives
contracted directly on the inflation (e.g., inflation swaps) may enrich the estimation because their
inflation-contingent payoffs possibly entail other combinations of m and 4. In practice, inflation
derivative markets are much smaller than nominal bond derivative markets and may subject to
a similar liquidity concern of TIPS in adverse market conditions. For this reason, we also look

beyond asset markets for additional inputs to enrich the inflation estimation.

Third, the discussion above points to the need of estimation inputs that are sensitive to SDF
and inflation parameters (other than their difference) and are free of potential asset market liquidity
concerns. Following the literature, we consider two such inputs, namely (i) the inflation surveys and
(ii) short-term real interest rate. With regard to (i), inflation surveys by market professionals are
an important source of forecasts that have long been employed and shown to outperform inflation
forecasts by other measures (Pennacchi (1991), and Ang et al. (2007)). With regard to (ii), because
the inflation is forecastable at short terms, short-term real interest rate proxies exist and equal the
difference between short-term nominal interest rates and short-term inflation forecasts as suggested
by the Fisher equation. In the current parametric setting, the inflation surveys map into the
inflation parameter i, the real interest rates map into the real SDF parameter m.'” Therefore,
these quantities supplement nominal asset price data with needed inputs to estimate inflation and

pricing parameters separately.

Looking back, in the real pricing perspective, the inflation estimation employs three sources
of inputs: inflation surveys (which implicate inflation parameter ), short-term real interest rates
(which implicate pricing parameter m), and prices of nominal assets (which implicate m — i). In
theory, inflation surveys alone suffice to estimate the inflation parameter ¢ as in a pure statistical
approach (and short-term interest rates suffice to estimate the pricing parameter m). In practice,
these estimates are separate and hence may lose efficiency. Nominal asset price data contain both
parameters and their inputs to the estimation connect the above two separate estimates and improve

the overall efficiency. In comparison, the inflation estimation in the literature, e.g., Chernov and

"The interest rate is the drift term of the SDF (5), rr = —%Et [dﬁfgf} =-—mpux — %m20§(.

14



Mueller (2012), Haubrich et al. (2012), and Kitsul and Wright (2013), employs inflation surveys,
short-term nominal interest rates, and prices of real assets (TIPS or inflation derivatives). The
inclusion of inflation derivatives, e.g., inflation swaps, to the inflation estimation is also possible
in the real pricing perspective of the current paper. However, we restrain from employing these
inflation derivative inputs at the onset to eliminate potential liquidity concerns associated with
these assets. In doing so, our estimation is able to price these derivatives as out-of-sample assets

and quantifies their model-implied liquidity premia.

3 The Model

3.1 Model Specification

State Variables: We fix a probability space (2, F, P) associated with a physical (data-generating)
probability measure P : F — [0,1] and an information filtration ;. We consider a setting with n
state variables stacked into n x 1 vector X;. While we use the notation n throughout, the actual
estimation employs n = 3 state variables. For tractability, we assume that X; is a continuous-time
autoregressive Gaussian process taking values in a state space D C IR"™. This process belongs to
the class of affine dynamics (with linear conditional expected growths and constant conditional
volatilities), highly tractable asset prices and return distributions. Specifically, X; satisfies the

stochastic differential equation (SDE),
dX, = K (0 — X;)dt + [VS] dW;, (7)

where W, is a n-dimensional standard Brownian motion adapted to J3, [\/g} is the n x n constant
volatility matrix, K and © are n x n and n x 1 constant matrices characterizing the mean reversion
of state variables. State variables can also be decomposed into proper modes associated with

(separate) mean-reverting and volatility dynamics by the respective orthogonalization,
K =V Diag[K] V!, V'S = ¥Diag [\/g} . (8)

Above, the n x n invertible matrix V prescribes an orthogonalization of state variables’” mean
reversion rates, V1KV = Diag [K] = Diag[k;], i € {1,...,n}, with x; denoting the rate of the i-th

orthogonalized mean reversion mode. The n X n matrix 3 prescribes an orthogonalization of state
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variables’ conditional covariance matrix, ¥'Cov; (dX;) ¥ = Diag[S] = Diag[Si], i € {1,...,n},
with S; denoting the conditional variance of the i-th orthogonalized state variable, and notation ’
denoting the matrix transpose. Note that the real symmetric covariance matrix is diagonalized by

an orthogonal matrix ¥ (i.e., X3 = ¥'Y = 1,,45).

In special cases in which the two orthogonalizations can be reconciled (¥ = V), every or-
thogonalized state variable is mean reverting autonomously. However, in general cases, the two
orthogonalizations are distinct (X # V'), offering richer state variable dynamics, in which orthog-
onalized mean reversion modes correlate and orthogonalized state variables are not autonomous.
Our specification does not preclude these general cases a priori. The distribution of the Gaussian

state variable X} is characterized by the first two unconditional moments of X,
t
Eo[X;] = e X + (1 — e*t’C) o, Varg[ Xt = / e~ 29K Diag [S] X'ds. 9)
0

Inflation: Let I; denote the price of the consumption basket in spot dollars at time t. We specify

an exponential affine process for the price index I,
I,(Xy) = exp (i1X1), (10)

where the sign ’ denotes the matrix transpose, and i; is a (time-independent) n x 1 vector of
parameters. The economic interpretation of the basket price is that I; identifies with a measure of

the consumer price index (CPI) in the economy.

Real SDF: We specify an exponential affine real SDF process Mpg;, which prices financial assets

in real term, i.e., asset prices generated by Mp; are in units of consumption baskets.
Mpi(Xy) = exp (moy + mi, Xy), (11)

where mg; and mq; are respectively scalar and n x 1 vector. In the estimation of the model,
we employ further parametric specifications in which mqo: = —ft, and mi; = mj is a constant
vector. The economic interpretation of the real SDF is that Mp; identifies with the representative
agent’s marginal utility of consuming a basket at time ¢.'® Thus the constant parameter 3 € Rt

characterizes the time discount factor of the economy’s real representative agent.

Mpitae(Xetdt)

'8 The intertemporal marginal rate of substitution (IMRS) in basket consumptions is the growth N (X0
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3.2 Model Implications

The above parametric specification of state variables, price index, and real SDF implies the
parametrization of other relevant quantities of the pricing model, namely inflation moments, the
real interest rate and real prices of risks, the nominal SDF (and hence the nominal interest rate
and nominal prices of risks), and risk-neutral distributions of state variables. We present these

quantities below, and relegate derivations to Appendix B.

Inflation Moments: The inflation follows from the log price index (10), log I; = i} Xy, is linear in
state variables X;, and hence is conditional Gaussian. The conditional mean and variance of the

inflation follow from those of state variables derived in Appendix (B.1), equations (53), (54),
Eillog Ir] = {0 + #, VDiag [ DM VL (X, — @), Varflogly) =iV Sr Vi, (12)
where the n x n symmetric matrix S;7 is such that its jh-th element is (see also Lemma 1),

1 — et=T)(K;j+rn)
Vi, he{l,...,n}. (13)

[Ser];, = pr—— (V™ 'SDiag[S]='V'™h)

Similarly follows the log of the expected growth of price index (Lemma 1),

_ I 1
log ItT = log Et {I—T} = illut—T,OG =+ iillvstTV/il — Z'llut_TpXt, (14)
t

where matrix Syr is as in (13), and the n x n matrix U, +, is defined as
Uy,1, = —V Diag [etl,c — etQ’C} vl=— [eth - etQK] , Vi, ta. (15)

We can also characterize inflation as a stochastic process. The state variable specification (7)

and the price index (10) imply an SDE for the inflation process (via It6’s lemma),

dT{f — It%tdt — 1= M]tdt+0/1tth’

(16)
pr = 1 VDiaglK]V 1 (6 — X;) + 3i| XDiag[S]i1, on = Diag [VS] ¥'iy.

The inflation process dI—Itt has constant conditional volatility, and hence is conditional Gaussian.

Real Interest Rate and Prices of Risks: Similarly, the state variable specification (7) and the
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real SDF (11) imply the real SDF growth process,

dMpg:  Mpiyar /
= — 1= —rpdt — aw, 17
MRt MRt TRt Rt ts ( )

with the affine real interest rate, and n x 1 real prices of risks,

TRt = prot + PR1eXts nre = —Diag[V/S]Z/my,. (18)

prot = — 230t — (V'my,)'Diag[K]V 10 — im/,EDiag[S]2'my,,
prit = — 2L 4+ V' 1 Diag[K]V may.

with

Nominal SDF, Interest Rate and Prices of Risks: The nominal SDF prices asset in the
numeraire of spot dollars. It is related to the real SDF by the factor of price index, and hence is

also an exponential affine function of state variables,

Mg .
My = I—t = exp [mOt + (mfy, — Z/l)Xt]. (19)
t
From this relationship follows the nominal SDF growth dMM—]\];’: = —rydt — U;thWt, which in turn

implies the nominal interest rate and n x 1 nominal prices of risks,
nNe = Nre + op = Diag[V SIS (iy —muy), e =rRe + (1 — 0701) — N0 (20)

Clearly, nominal prices of risks account for real prices of risks as well as the volatility of inflation.
As a result, from a real pricing perspective, the nominal bond is risky. It offers expected return
rn — (ur — ohor), and expected excess return ry — (i — 0y01) — TR = —1jR,01 s a compensation
for bearing inflation risk o7.'” The substitution of the inflation (16) and real interest rate (18) into

above expression yields an affine nominal interest rate,

TNt = pnot + Pv1eXts (21)

PNOt = —dgbtm — (mlt — il)’VDiag[lC]V’l@ — %(mlt — il)’ZDiag[S]E’(mlt — il),
pn1e = — L2t + V' Diag[K]V' (m, — i1).

with

The comparison of (18) and (21) shows that the inflation slope factor i; drives the wedge between

9Expected returns on nominal bonds in the real term follow from Euler equation E; [MR”d‘ It ]

Mgt  Iiyar
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the real and nominal interest rate dynamics.?’

Real (Qr) and Nominal (Qy) Risk-Neutral State Dynamics: We note that because risk-
free bonds are different in real and nominal terms, the risk-neutrality concept also varies with the
pricing denomination (i.e., in either real consumption baskets or nominal dollars). Accordingly,
let Wi, Wq e, and Wg ¢ respectively denote the standard n-dimensional Brownian motions in the
physical measure P, the real risk-neutral measure Q g, and the nominal risk-neutral measure Q.

They are related with one another through the real and nominal prices of risks gy (18), ¢ (20),
th = dWQRt — ntht = dWQNt — nNtdt

Substituting these relationships into (7) yields the the state variable dynamics in the real and

nominal risk-neutral measures,

dX, = VDiaglK]V~!(Oq, — Xt)dt + EDiag[V/S]|dWg

(22)
= VDiag[K]V~! (Og, — X;) dt + XDiag[v/S|dWq,

with state variable’s long-term mean vectors Og, = © + VDiag[K ]V 1EDiag[S]>'my; and
Oqy = © + VDiag[K 1|V ~1EDiag[S]¥/(my; — i1). Clearly, the state variable remains affine in

either real or nominal risk-neutral measures by model’s (complete affine) construction.

3.3 Model Pricing

The current model features closed-form prices for nominal and real assets, including nominal bonds,
T-note futures, real bonds, TIPS, and inflation swaps, which facilitate the model’s estimation
in subsequent sections. We describe these assets and present their prices below, and relegate

derivations to Appendices B.2, B.3.

Nominal Bond Prices: Consider a nominal zero coupon bond that pays one dollar (or equiva-

lently, % units of consumption baskets) at maturity 7. The current price at time ¢ of this bond in

Mpr 1

consumption baskets is F; [ M I

]. Given the model specifications (11), (10), the nominal zero

coupon bond price in spot dollar at time ¢ is exponential affine in state variables,

—mor+b i —m V) X
= e(mor=mortborr) + (1 —mi+by, ) Xe - (93)

M 1
By = LE, [ T }

e(mor—io)+(myp—i) XT
Mpy It !

€(m0t 7i0)+(m/1t 71;/1 )Xt

20This wedge results from the difference between real and nominal SDFs (11), (20), which are related by the
substitution mis <> mas — 1.
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where time-dependent coefficients by, € R and by € R™ solve the the conditional expectation,

E; [e(mllT*ill)XT} = eborr 01Xt and are obtained from Lemma 1 (Appendix B.1),
bir = V'~'Diag [e(th)K} V' (mir — i), (24)

. . _ _ 1 . .
bOtT = (mlT — 21)’VD1ag [ﬂ — e(t T)’C} V 1@ + §(m1T — Zl)/VStTV/(mlT — 11),

where the n x n symmetric matrix Syp is defined in (13).

Futures on Nominal Bonds: Let us consider a futures contract initiated at current time ¢ that
delivers at time T' > t a nominal bond of one dollar face value and maturity 7 > T. The futures

price Fyp, (contracted at the initiation time ¢) is derived in (57) (Appendix B.2),

(mor~+botr)+b ., Xt
_ By - _ ¢ T — e(mor—mor+boir —borr)+ (b, —b ) X (25)
Bt T e(mOT+bOtT)+b/1tTXt ’

where the second equality has employed the expression (23) for bond prices. In the case in which mq
is time-independent, the substitution of (24) into the above expression yields an explicit solution

for the log futures price,

fr—tr—t = log Fyrr = mor — mor + (ma — 01) U717 X4

—(m1 — 1) Up—74—20 + L (m1 — 1)V [Sir — Ser| V' (my — 1),

where U7, is defined in (15).

Real Bond Prices: Let us consider first a stylized real zero-coupon bond that is issued at time ¢

I _s5 . .
Ij’ z in spot dollars at maturity
o

and matures at T;. The bond offers an inflation-indexed payoff of

21

T;, where ¢ is the indexation lag of three months.”* This nominal payoff at T; is equivalent to

1 Ir—s
I, Iiy—s

MRTl- 1 ITi*‘S . . . MRTZ- 1 ITifé .
E; Ve Tr, Trues in units of consumption baskets, and I; F; Mre Tr, Trues in spot dollars at t.

units of consumption baskets. Therefore, the price Bgfo at t (to <t <T;) of this bond is

Appendix B.3 derives the following expression for the price of this bond (in spot dollars at ¢),

. / .
B = exp {(mor, — mor + bir,) + (i — mf, + bl ) X — i Xy (27)

21This stylized real zero-coupon bond represents a real stripped coupon due at T; of a TIPS issued at to. In practice,
the official realized inflation level is published with a time lag & of three months. Therefore, at the bond maturity
T, It,—s is the most recent official realized inflation available, and is employed to determine the real bond’s nominal
payoffs. The valuation of real stripped coupons helps to price TIPS.
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where coefficients bOR;TZ_ € R and bﬁTi € R™ are given in equation (59). The real yield associated

with the real zero-coupon bond is,

-1 . ! ,
it = g {(mor, = mou+ i) (85 = mhy + b )Xo = X0}

TIPS Prices: Let us consider a TIPS contract issued at time ¢g of a unit notional face value, the
coupon rate k, and the maturity 7. The TIPS cash flows consist of a series of stripped coupons
payable at times {7;}, and the final payment at 7" of the last coupon and the principal. All cash flow
settlements (coupon and principal payments) of TIPS are indexed to the spot inflation at respective
payment times. In addition, the principal settlement at maturity 7" is guaranteed to be no less than
the TIPS notional face value at issuance. This floor option protect the principal payment against
the deflation. Therefore the TIPS price in spot dollars at ¢ is composed of the valuation of (i) real

stripped coupons, (ii) the real principal, and (iii) the floor option on the principal,

PR =k 3T BREC |+ BRC + ¢ (Xy). (28)
e T E[t,T]

Zero-coupon real bond prices Bglito and Bgr’to are given in (27), and option price C/*(X,) are

derived in (61), Appendix B.3.

Inflation Swap Rates: Let us consider a zero-coupon inflation swap contract initiated at time
to of a unit notional value and the maturity 1. The fixed-rate payor in the swap contract pays
a constant inflation swap rate hy,r and receives a floating rate indexed to the available inflation.
As in zero-coupon contracts, these payments are settled at the maturity of contract and based on

the notional value of the contract. At time ¢ € [to, T], the floating rate is indexed to the inflation

Ii—s
Iiy—s

rate due to the same inflation indexation lag § of three months discussed above. Given a unit

notional value, the fixed-rate payor pays ehtor(T—t0) and receives IItT_‘; in spot dollars at maturity
o—

T. Equivalently, these payments are %ehtoT(T*tO) and % IItT“; in units of consumption baskets. At
0

the initiation time, the swap contract is fair to both parties, i.e., the net value to the fixed-rate

payor is zero,

Mpr 1 (IT—d hy o (T—t ))}
=F —_ _ pMoT 0 . 9
0= {Mmo Ir \Iy—s (29)
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From this follows the inflation swap rate (see (63), Appendix B.3),

/ .
htOT = [b(])?foT - bOtoT + (bﬁoT - /ltoT)Xto - z/1)(750—(5} ’ (30)

T —t

where coefficients b, b € R, and by, bl* € R™ are given in (24) and (59) respectively.

4 Estimation and Results

In order to estimate the future inflation distribution in physical measure, we need to estimate both
(i) state dynamics parameters that govern the state variable distribution in P, and (ii) parameters
{i1;}, (j € {1,...,n}), that connect the inflation process to state variables. We employ Kalman
filter to jointly estimates all parameters in the model. Therefore, apart from the future inflation

distribution, we also simultaneously estimate risk pricing (SDF) parameters.

4.1 Maximum likelihood and the Kalman Filter Estimation
State-space Setup

In the Gaussian setting of our paper, the maximum likelihood based on the Kalman filter estima-
tor is both consistent and optimal in the sense of achieving the least mean square errors.”> We

summarize below the main formula of the estimator, and relegate underlying details to Appendix

C.1.

The Kalman filter works with the state space formulation of state equation (concerning state

variables X;) and observation equations (concerning observable quantities v),

Xy = A+ BX; + Vi+1, (31)

Y =a+bXy + €, (32)

where 141 and ¢ are normally distributed. In our model, the state equation is given in (7), and

we will discuss the choice of the observable variables in the next section.

Our maximum likelihood estimator is based on the likelihood of observing y;. For our Gaussian

22Therefore, estimators generated by the Kalman filter are optimal among all estimators that are linear in past
estimators and observations.
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setting, the log likelihood function is

S
_

1 EN 1 ~ -1
L(y|P) = {—5 log Det[Vayiy1)e] — §Ay£+1 (VAyt+1|t) Ayt+1} , (33)
¢

Il
=)

where P is the full set of the model’s parameters, vector Ay;i1 = yr41 — Y41)¢ denotes innovations
to observations y;, and matrix /‘}Ayt+1|t =F [(Ayt+1)2:| denotes their covariances. The observation
equation (32) gives the predicted values g, ), and /VAyt+1|t in terms of X\Hllt and ?Xt‘t,l, which
in turns are provided by the Kalman filter.

The recursive Kalman procedure starts with initial estimates of state variables and their covari-

ance matrix

= = 1
Xi0p=0, Vxip=7 (EDiag[S]Y'K ™! + K'~'EDiag[S]%') .

At time period t, given new observations y;, state variable estimates and their covariance matrix

are recursively updated as
—~ —~ —~ —~ -1 .
Xt+1|t =(A+ BXt|t—1) + BVXt\t—lb/ (bVXt|t—1b/ + Ze) (yt — yt|t—1)a

Py - Py Py 1~
Vxiq1e = B [VXt\t—l — V1’ (bVXt|t—1b, + Ee) bVXt|t—1} B'+8S,

where .@:\t—1 =a+ bXy;_1, and S and ¥ respectively are covariance matrices of innovations 441

in the state equation and observation errors ¢; in the observation equation.

Observable variables

We take as inputs the data from three groups of price data, survey data, and real interest rate (see

also Section 2.1). Therefore the observation equations are (26), (14), and (18).

First, price data is composed of futures prices Fyp, (25) associated with CME T-note futures.
In the model, futures prices Fyp, are functions of parameter differential m; — i1. Hence, T-note
futures prices as input data help estimate the joint parametric model of inflation and pricing
(SDF). Second, survey data is composed of the expected inflation (14) associated with the BCEI
inflation consensus forecasts for different horizons (varying from one-quarter up to two-year). In the
model, the inflation expectations are functions of the inflation slope parameter ;. Hence, inflation
expectations as input data also help estimate the model. Finally, while real interest rates are not

directly observed in markets, their proxies exist for the short-term horizon. We consider such an
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observable proxy for the short-term real interest rate rr, namely the difference between the one-
month nominal interest rate ry (as yield on one-month Treasury bills from the Federal Reserve’s

H.15 release) and one-month expected inflation I, (as interpolated BCEI inflation consensus),
Fre =Nt — et (34)

This proxy reflects the essence of the Fisher equation.?® In the model, the short-term real interest
rate g (18) is function of the pricing parameter m;. Hence, as an input data, the real interest
rate (34) complements data on futures prices and inflation surveys in the estimation of inflation

distribution and risk pricing characteristics.

The estimation procedure is implemented using monthly input data above. At each current
month ¢, we collect ¢ futures prices associated with different futures settlement times 7" and different
bond maturity times 7, g;,y BCEI inflation consensus forecasts associated with various survey
horizons T3, r, and the short-term nominal interest rate. Depending on particular month ¢, there
are from 4 to 11 futures contracts (4 < ¢ < 11), and from 5 to 8 inflation consensus forecasts
(5 < ging < 8).”* Post estimation, we also use the inflation-indexed constant maturity yields
compiled and provided by the Fed as observed TIPS yields, and inflation swap rates provided

25

by Bloomberg as observed swap rates.”® We calculate the difference between model-implied and

observed TIPS yields (as well as inflation swap rates) to determine the mispricing of these real
assets.

Model’s parameters

We estimate the following parameters of the model.

1. State wvariable parameters: Our actual estimation employs three state variables, i.e., n = 3

hereafter. The state variable parameters to be estimated are,

e n? parameters K;j, i,7 € {1,...,n}, of the mean reversion matrix K,
e n elements {©1,...,0,} of the long-term mean vector © € R",

e (n? 4+ n)/2 elements of the covariance matrix S. Without loss of generality, we work with

23 At short-term horizons, inflation risk is small, the Fisher equation holds approximately. In the model, the proxy
(34) equals the real interest rate when we omit second- and higher-order terms.

24BCEI gives inflation consensus forecasts for future quarters, up to two years ahead.

25Gee also the discussion at the beginning of Section 2.1.
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the orthogonalized form VS = YDiag [\/?} For n = 3, these elements are (i) 3 diagonal
variances {51, So, 53}, which are strictly positive entries of the diagonal matrix Diag[S],%° and
(ii) 3 Euler angles {a1, as,as} that fully parametrize the 3 x 3 orthogonal matrix ¥ (a.k.a.,

Euler rotation matrix),

C2 —C352 5253
Y= C182 (C1C2C3 — 8183 —C3S81 — C1C2S83 )

5182 €183 +C2€381  €1C3 — 25153
where s; = sina;, ¢; = cosay, for i € {1,2,3}.

2. Inflation parameters: n slope parameters {i11,...,%1,} (which are components of the inflation

slope vector i; € R"™).

3. Real-pricing parameters: For the simplicity of the estimation, we assume a simple (log linear)

time dependence of the real SDF (11),
mo: = —fBt, mq is constant vector in R"”. (35)

Intuitively, the constant parameter 3 € R™ characterizes the time discount factor of the economy’s
real representative agent. We constrain this discount factor to be in the range of 0-5%. Therefore,

there are m + 1 real pricing parameters to be estimated: 1 time preference B € R, where

- log(%% — 1), and n slope parameters {mi1,...,mi,} (as components of the vector m; € R").

4. Volatility parameters: We assume that the observation errors ¢; are uncorrelated in the cross
section, i.e., (¢ + @iny + 1) X (¢ + giny + 1) covariance matrix X is diagonal. For simplicity, we

further assume that

Yo ... O 0o ... 0 0
0
0 o O 0 0
Y. = 0 0 g ... 0 0 = Diag[Xe0, - - -y ey Dels -« -y Dely Der) - (36)
0
0 0 0 er O
0 0 0 ... 0 3

26In the actual estimation procedure, we employ the associated transformed parameters s; = log S; for j € {1,2,3}.
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Hence, there are 3 volatility parameters (X¢p, 2er, Xer). In the actual estimation procedure, we

employ the associated transformed parameters o; = log ¥; for j € {€0,€el,er}.

Altogether, there are n? 4+ 5n + 4 = 28 model parameters to be estimated,
P ={rij; O;; si,a;; ii; B,mui; og), (37)
where 7,7 € {1,...,n},q € {€0,el,er},n = 3.

4.2 Estimation Results

This section presents the estimation of future inflation and deflation distributions for various hori-
zons. The estimation is at monthly frequency and employs data for the period of 2003-2017, chosen
to be contemporaneous with the availability of TIPS and inflation swap data.?” For the robustness,
Appendix A presents the inflation estimation for the entire period 1982-2017. We first list the

parameter estimates of the state dynamic and the underlying pricing model of Section 3.1.

Table 1 reports the estimates and standard errors of the model’s parameters, which are obtained
from the maximization of the log likelihood function (82) with a Kalman filter. The estimation
employs monthly data of CME T-note futures prices and BCEI inflation consensus forecasts, for
the period of 2003-2017. We note that m; x i; > 0 for j € {1,2} in Table 1. As a result, state
variables X, for j € {1,2}, influence the real SDF growth and price index growth in the same
direction. That is, a change in X increases (resp. decreases) the price index while also pushes the
real SDF Mp, higher (resp. lower), for j € {1,2}. These estimates indicate that state variables X},
j € {1,2}, are responsible for the counter-cyclical behavior of price index as high SDF signifies a
bad state of the economy. Hence they represent the risk characteristic of the inflation process as

seen from the real pricing perspective.

Future Inflation: Distribution and Risk Pricing

Given the process (9) for the state variable X;, the scalar i} X; has a normal distribution, whose

conditional mean and and variance are derived respectively in (53) and (54). As a result, ¢} (X7 —X})

2"Post estimation, we are to price TIPS and inflation swaps (out of sample) and compare results with their observed
prices in markets. Running the estimation of the period contemporaneous to the availability of these assets’ observed
prices aims to assure that the pricing parameter estimates are also contemporaneous and facilitate the comparison.

26



Table 1: Model Parameter Estimates

Parameter Estimate Standard Error
K11 0.0629 0.00001
Kia 0.0152 0.00009
K13 0.0337 0.00001
Ko 0.0179 0.00004
Koo 0.1388 0.00005
Ko 0.0487 0.00003
Ka -0.0250 0.00001
Kao 0.0113 0.00004
Kas 0.0120 0.00001
6 -23.138 2.04979
O, 156.54 2.02552
O3 -293.49 1.51887
1 -8.9840 0.00040
$9 -6.1923 0.00023
s3 -7.6114 0.00032

3 -10.642 2.10622
mi 0.7718 0.00198
ma -1.0910 0.00269
ms 0.5434 0.00220
i 2.1992 0.00086
i -4.0436 0.00063
i3 -2.0264 0.00086
00 -4.0686 0.03261
Oer -13.349 0.02952
Oer -8.6890 0.05633

Notes: Panel A shows the maximum likelihood estimates of the parameters of the
inflation pricing model of (7), (10), (11) (Section 3.1) and the associated standard
errors. The model is estimated using a Kalman filter and data at monthly frequency
for the period from 2003 to 2017.
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has a time ¢-conditional Gaussian distribution.?® After rescaling, the following random variable has

a conditional standard normal distribution at time ¢,

i (X1 — Xp) — By [i3 (X — X3)]

~ N3 (0,1).
Vary [i] X7] Ni(0.1)

Therefore, the inflation from ¢ to 7' (10) IITtgtT)) = exp (#}[X7 — X¢]) then is a log normal random

variable and has the the conditional probability density function,

prm () = 1 expd L ([log z] — By [i} (X7 — X))
ik 2 /27 Var, i} (X1 — X7)] 2 Var [/ (X1 — X)]
1 1([1 ! Us_10 (X; — ©)])?
= ' — exp —7([ og 7] +l,1 U T’O,(. : = ©))) , (38)
x /21 VS V7iy 2 1 VSirV'ip

wherein S and U are given in (13), (15).

We first focus on the first moment of the annualized inflation. The conditional expectation of

the inflation follows from (14),

Ir(X7)
It(Xt)

., 1
Et [ ] = Et [ezl(XT_Xt)} = exXp {—Z'llut_ﬂo(Xt - @) + §i/1VStTV/i1} . (39)

Figure 1 plots the conditional expectation of the annualized inflation, or %_t log E; [I};gf))}, for

various horizons in a time series of spot time t. In the cross section, the annualized inflation
expectation tends to be slightly lower at shorter horizons as observed earlier. In the time series,
the annualized inflation expectation at all horizons dipped in the end of 2008 as a result of the
financial crisis. These patterns broadly agree with the inflation expectation estimated by Haubrich
et al. (2012) and Fleckenstein et al. (2017). However, these papers employ price data on different
(inflation-indexed) assets from the the current paper’s nominal (T-note futures) assets. As a result,
the detailed differences in the time-series estimates of the expected future inflation reflect the
differences between real and nominal asset prices. We pursue a detailed analysis on the differential

pricing of real and nominal assets in Section 5 below.

To have an overall picture of the estimated future inflation, we examine its distribution. Figure
2 plots the conditional probability density function (38) of the annualized inflation for various

horizons (of 1, 2, 5 and 10 years) in a time series of spot times t. Two features stand out in this

?%The mean and variance of i{(Xr — X;) are respectively, E;[i}(Xt — X¢)] = —i| [Us—7,0 (X — ©)], and
Var; [1,1 (XT — Xt)] = Var; [’LllXT] = i&VStTV/ih with U (15), S (13).
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Expected Inflation (2003-2017)
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Figure 1: Expected annualized inflation estimated for various horizons. Values are annualized. The esti-
mation is based on data of 2003-2017 period.

figure. First, in a cross-sectional aspect, the probability distribution of the annualized inflation
exhibits a rightward shift (as well as becomes more concentrated) as the horizon increases (fixing
current time ¢). This cross-sectional pattern indicates that asset markets reflect a slightly higher
annualized inflation prospect in the longer run. Second, in a time-series aspect, the probability
distribution of the inflation exhibits a leftward shift in the years of 2008-2009 (relatively to other
years) for each horizon. This time-series pattern is consistent with an downward revision by market
participants about the prospect of the future (annualized) inflation at different horizons, given that
the economy was experiencing the great recession starting in the later half of 2008. Compared
to the distributions of future inflation estimated from price data of real assets (Fleckenstein et al.
(2017)), Figure 2 indicate flatter distributions estimated from T-note futures price data, which place
relatively higher chances on inflationary scenarios. This pattern is consistent with the presence of

a liquidity component in real asset markets, which reduces real asset prices, and hence, produces a
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weaker outlook of inflationary scenarios from price data of these real assets.

Probability Density Function of the Future Inflation (2003-2017)
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Figure 2: Probability density function of the future annualized inflation estimated for various horizons.
Values are annualized. The estimation is based on data of 2003-2017 period.

Given above inflation distribution perceived in asset markets, we now discuss the price of in-
flation risk. From the nominal perspective, the pricing of inflation risk is given by the covariation

between the price index I; and the nominal SDF Mpy;. The (annualized) nominal inflation risk

premium for the time period from ¢ to T is,

1 Myt I
_N T 4T
- C <_7 _> . 40
T T—t ovt Mpy: " Iy ( )

An explicit expression of this premium is derived in (64) (Appendix B.4). In the theory, a positive
premium ﬁﬁT, i.e., the nominal SDF M tends to be high when the price index is high, quantifies

that inflation is a risk to the nominal agent in the economy.?” In this case, ﬁi\fT is the premium

29That is, the price index is counter-cyclical from the nominal perspective: I; is high in the bad nominal state
(high M), and vice versa.
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required by the nominal agent to bear inflation risk. Whereas, a negative premium ﬁi\fT signifies
that the price index is pro-cyclical from the nominal perspective. We recall that the nominal
SDF My represents the nominal agent’s marginal utility of consuming an extra dollar worth of
consumption good (but not an extra consumption basket). Therefore, the nominal agent does not
represent a consumption-based economic agent of the economy, and as a result, the sign of ﬁiYT

does not necessarily reflect the consumption-based risk pricing.?"

In the estimation, Figures 3 plots the nominal price of the inflation risk (40). In a cross-
sectional aspect, ﬁi\fT is negative across (but increasing with) maturities. In a time-series aspect,
the nominal inflation risk premium slightly increases (i.e., becomes least negative) around 2008-
2009 for all horizons. Practically, the magnitude (in the absolute value) of the nominal price of

inflation risk is relatively small across the board.

Prices of Future Inflation Risks (Nominal Perspective, 2003-2017)
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Figure 3: Annualized prices of future inflation risks estimated for various horizons. The estimation is based
on data of 2003-2017 period.

39McCown and Shaw (2010) elaborate on a view that governments may also be subject to a risk premium on
nominal bonds, as a result of which they are willing to issue and pay high TIPS yields.
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Given the possible ambiguity in the economic (consumption-based) interpretation of the nominal
price of inflation risk, we examine its real counterpart. The real price of inflation risk arises from the
covariation between the price index and the real SDF Mg, and is characterized by the (annualized)

real inflation risk premium for the time period from ¢ to T,
1 M I
WET = ———Coy <RT t> . (41)

An explicit expression of this premium is derived in (65) (Appendix B.4). A positive premium ff“T,
i.e., the price index is counter-cyclical from the real perspective, quantifies that inflation is a risk
to the real agent. In this case, ﬁf‘T is the premium required by the real agent to bear inflation
risk. We recall that the real SDF Mp; represents the real agent’s marginal utility of consuming
an extra consumption basket, who is the economic agent in the consumption-based asset pricing
framework. Figures 4 plots the real price of the inflation risk (40). In a cross-sectional aspect, ﬁfT
is positive (in agreement with Haubrich et al. (2012)) and decreasing with maturities. This pattern
signifies the risk characteristic of inflation, whose prices feature a decreasing term structure from
the perspective of the real agent in the economy. In a time-series aspect, the real inflation risk
premium dips during the period of 2008-2009, but has since gradually increases for all horizons. The
average of the (annualized) real price of inflation risk is about 15 basis points, which is relatively
small and of similar magnitude with the inflation risk premium estimated by Buraschi and Jiltsov

(2005), Haubrich et al. (2012) and Fleckenstein et al. (2017).3!

Future Deflation: Distribution and Risk Pricing

This section presents an estimate of the deflation perceived in asset markets. Following Fleckenstein
et al. (2017), the prospect of deflation for time horizon T is quantified by the conditional probability
Prob; (% < 1) of the event that the price index at T" drops bellow the current index. Given that the
inflation % has a conditional log normal distribution (38), the conditional probability of deflation

is,

, B
Prob, (IIT < 1) = Proby; (i{(Xr — X;) <0) = CDFy (21 U1 (X: @)]> : (42)

t \/Z'/IVStTV/il

where CDF)/(-) denotes the standard cumulative normal distribution function. Figure 5 plots this

31Note that some papers in the literature adopt the definition of inflation risk premium in which it is equal to the
difference between the inflation swap rate and the expected inflation. Omitting second-order (convexity) terms, this
difference coincides with the real price of inflation risk 7{7 (41).
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Prices of Future Inflation Risks (Real Perspective, 2003-2017)
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Figure 4: Annualized prices of future inflation risks estimated for various horizons. The estimation is based
on data of 2003-2017 period.

probability of deflation estimated for various horizons of 1, 2, 5, and 10 years in a time series of spot
time t. In the cross section, the deflation probability tends to decrease as the horizon increases.
This pattern reflects the fact that, on average, the price index tends to increase as time progresses.*?
In the time series, the deflation probability at all horizons spiked in the end of 2008 as the financial

crisis unfolded.

To assess the pricing effect of the deflation risk perceived in asset market, we follow the tail
risk literature to consider the ratio of deflation probabilities in risk-neutral and physical measures.
Technically, the pricing content of this ratio reflects in the fact that it captures the pricing kernel

of the deflation state.*® Intuitively, because the risk-neutral discount rate (i.e. risk-free rate) is

32Note that the underlying function Prob; (% < 1) (42) measures the probability of the event that the price index
It at a specific future time T is below the current index I¢, but not the event that the future price index I, s € (¢, 77,

ever drops below I; before time T').
33To see this, consider a one-period setting for simplicity. The price of Arrow-Debreu asset paying off in the deflation
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Deflation Probability (2003-2017)
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Figure 5: Conditional probability of the future deflation estimated for various horizons. The estimation is
based on data of 2003-2017 period.

state-independent, the relative magnitude of the risk-neutral probability of a state signifies the price
of risk of that state. In the model, there are two risk-neutral measures Qy and Qg associated
with nominal and real pricing perspectives (22). Therefore, there are two corresponding probability

ratios of type (42), namely,

QN (IT .
PTObt T§1> _ (le [utTyo(Xt—@QN)]>
Pmbt(’;{g) =CDFEy Vi VSV ’
(43)
PTOb?R<II%S1) — CDFy <z’1 [Ut—T,O(Xt*QQR)]>
Probt(%gl) VAV SirVin ’

where O, and Og,, given below (22), represent the long-term mean of state variables in nominal

state d can be computed in either physical or risk-neutral measures: AD(d) = prob(d)M(d) = %ﬁf(d), where M (d)

is the pricing kernel of the deflation state and 7 the risk-free rate. This implies a proportional relationship between

the ratio of probability and the pricing kernel, %m =1 +rp)M(d).
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and real risk-neutral measures. Figures 6 and 7 plot the probability ratios (43), which respectively

Prices of Future Deflation Risks (Nominal Perspective, 2003-2017)
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Figure 6: Prices of future deflation risks estimated for various horizons. The estimation is based on data of
2003-2017 period.

characterize the price of the deflation risk under the nominal and real pricing perspective. Several
features stand out in these figures. In the cross section, the price of the deflation risk tends to
increase with the horizon, from both nominal and real pricing perspectives. In the time series,
the deflation prices are stable overall.?* These prices exhibit more notable movements during
the financial crisis of 2008-2009, but only for longer (10-year) horizon. Combined with an earlier
observation concerning the deflation distribution (Figures 5), our estimation indicates that (i)
markets place a lower probability, yet higher price, of the deflation risk at longer horizons, and (ii)
the time-series movements of the Arrow-Debreu price of deflation state the deflation state price

arise mainly from their distributions, but not their prices of risks.?> Furthermore, markets perceive

34Numerical values of deflation risk prices, or the ratio of deflation probabilities in risk-neutral and physical measures
(on vertical axis of Figures 6), vary by few percentage points for 1-, 2-, and 5-year horizons, and 20 percentage points
for 10-yr horizon.

35The Arrow-Debreu price of deflation state, i.e., the deflation state price, characterizes the cost to insure against
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Prices of Deflation Risks (Real Perspective, 2003-2017)
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Figure 7: Prices of future deflation risks estimated for various horizons. The estimation is based on data of
2003-2017 period.

a lower price of deflation risks in the real pricing perspective (Figure 7) than in the nominal pricing
perspective (Figure 6). This is because the real representative agent denominates all payoffs and
prices in consumption baskets. and the real pricing kernel growth is the product of the nominal
pricing kernel growth and the inflation (19). In the deflation state, the inflation % is less than

unit. Therefore, the real price of the deflation risk is dominated by its nominal price.

5 Mispricing in Real Asset Markets

In this section we compute the difference between model-implied and observed prices of real assets,
namely TIPS and inflation swaps. As we discuss at the beginning of Section 2.2, this difference

captures the compensation for the exposure of real assets to non-inflation risks and other market

future deflation. It equals the product of deflation probability and the price of deflation risk.
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imperfections, so is also referred to as a mispricing with respect to the estimation model.

Mispricing in TIPS Markets

Specifically, we define the mispricing of TIPS as the difference in yields on model-implied TIPS

and observed TIPS,

—1 TIPSt  ~
AyfPs = AL S, (44)

where Pt?IPS’t is the price of TIPS (28) maturing at 7" implied from the model, and QE%P S is the
observed yield at time ¢ on the same TIPS provided by the Fed (see Section 2.1). A negative
mispricing, Ay;fTIP 9 < 0, indicates that the model-implied price of TIPS is higher than the price
observed in markets (i.e., according to the model, TIPS is undervalued, or “cheap”, in markets),

and vice versa. Figure 8 plots the time series of mispricing in TIPS markets, or the yield differential

Mispricing in TIPS Markets (2003-2017)
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Figure 8: Time series of the yield differential AyLfPS (44) for maturities of 5, 7, 10, 20, and 30 years.
Values are annualized. The estimation is based on data of 2003-2017 period.

TIPS
Ayp

(44), for various maturities. For a larger part of the period 2003-2017 and specially for
longer horizons, this yield differential has a negative value (shaded area, below the grid plane at zero
altitude in Figure 8), or TIPS are observed in markets at prices lower than implied by the model.

Given that the model’s estimation features only the inflation risk, this underpricing of observed
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TIPS indicates that investors do perceive and price non-inflation risks and other imperfections
inherent in TIPS markets. In the cross section, TIPS of longer maturities tend to be underpriced
more consistently, suggesting that non-pricing risks, e.g., liquidity issues, tend to be more important
and consistent in longer-maturity TIPS. In the time series, the underpricing of TIPS is most notable
is the periods of before 2005, 2007-2010, and 2014-2016, though the mispricing (overpriced TIPS)
turned positive briefly at the onset of the 2008 financial crisis for shorter horizons. More generally,
the time series pattern of underpricing (AyL/"¥ < 0) and overpricing (AyL/?S > 0) tend to
be more volatile for shorter-maturity TIPS (see also Figure 10 below). Before discussing further
implications of the mispricing of TIPS on the divergence and long—short strategies on nominal and

real asset markets, we turn to the pricing of inflation swaps.

Mispricing in Inflation Swap Markets

We recall that the inflation swap rate is the fixed rate specified in the swap contract, at which rate
the fixed-rate payor pays (in exchange for receiving a floating rate equal to the spot inflation at
settlement dates). Similar to (44), we define the mispricing of inflation swaps as the difference in

the model-implied and observed inflation swap rates,
Ahir = her — her, (45)

where hyp is the model-implied inflation swap rate (30) of a swap contract initiated at ¢ that
matures at T', and hyr is the observed swap rate on the same inflation swap provided by Bloomberg.
Adopting the perspective of the fixed rate payor, a negative mispricing, Ah;7 < 0, indicates that the
model-implied swap rate is lower than the rate observed in the market, (i.e., according to the model,
the inflation swap is overvalued, or “expensive”, to the fixed-rate payor in the market), and vice
versa. This pricing characterization is purely conventional. Its possible economic content is clearly
tied to the practical feature that which economic agents are the fixed rate payor in the inflation
swap market. Apparently, this finding indicates there are more buyers than sellers in the inflation
swap market. To illustrate, assume that pension funds have long-term real liabilities and want
to hedge them using inflation swaps. They would buy inflation swap contracts of commensurate
durations because as fixed-rate payors in these contracts, pension funds receive floating cashflows
to offset inflation movements and match their real liabilities. Figure 9 plots the time series of

mispricing in inflation swap markets, or the rate differential Ahyp (45), for various maturities from
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Mispricing in Inflation Swap Markets (2003-2017)
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Figure 9: Time series of the rate differential Ahyp (45) for maturities from 1 year out to 55 years. Values
are annualized. The estimation is based on data of 2003-2017 period.

1 year to 55 years. In the time series, this rate differential has a negative value (shaded area,
below grid plane at zero altitude in Figure 9) for the period before 2007. After that, the rate
differential fluctuates between negative and positive values, indicating inflation swaps can either
overvalued or undervalued, i.e., “expensive” or “cheap,” from the fixed rate payor’s perspective.
Around the financial crisis, during the period of 2008-2010, this rate differential is mostly positive
(undervalued). In the cross section, similar to TIPS, inflation swaps of longer maturities tend to
be overpriced more consistently, suggesting that non-pricing risks tend to be more consistent in
longer-maturity inflation swaps. Analyzing proprietary data limited to June-August 2010 period,
Fleming and Sporn (2013) document that trading in the inflation swap market concentrates in
certain tenors, in particular, inflation swaps of 10-year and shorter maturities are more actively
traded. This trading pattern might be responsible for the cross sectional heterogeneity in the
liquidity and mispricing seen in Figure 9. To the extent that pension funds participate more in
longer-maturity inflation swaps (as fixed rate payors) to hedge their long-term real liabilities, they

appear to overpay for these swap contracts.
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Mispricing in TIPS and Inflation Swap Markets

To relate the mispricing in real asset markets with the profitable trade on the nominal-TIPS yield
spread, we recall that a portfolio of TIPS and zero-coupon inflation swaps can replicate a nominal
Treasury bond in theory.?® In the absence of arbitrages and other frictions, the return on the
replication portfolio is equal to the nominal interest rate ry; (21). Empirically, however, the
replicating portfolio tends to be cheaper than the respective nominal bond and offers higher yield,
her + gjgps’t > 7n¢, where the tilde notation denotes observed quantities (44), (45) in markets. In
the literature, this “underpricing” of the replicating portfolio is the basis of the profitable trade
on the nominal-TIPS yield spread (e.g., Fleckenstein et al. (2014)) and can be attributed to the
presence of liquidity, frictions, or arbitrages in markets. These market imperfections are beyond
the inflation risk framework, and hence, can also be responsible for the mispricing of TIPS and
inflation swaps found in our pure-inflation risk estimation. In particular, the possibility of “cheap”
TIPS and “expensive” inflation swaps (i.e., the observed TIPS yield hyr and inflation swap rate

hy are in excess of their model-implied values) lend supports to the underpricing of the replicating

portfolio documented in the literature.

To examine this mispricing possibility of TIPS and inflation swaps within our estimation, and
their individual contributions to the profitable trade on the nominal-TIPS yield spread, Figure 10
plots the time series of the TIPS mispricing (44), inflation swap mispricing (45), and their total,
for different maturities. In the cross section, the total mispricing (depicted by the continuous blue
line) decreases with maturities, suggesting higher profits for the trade on the nominal-TIPS yield
spread on longer-maturity bonds. For shorter maturities (10 year or less), the individual mispricing
of TIPS and inflation swap alternates in signs, suggesting that their contributions to the trade vary
as each can be either undervalued or overvalued in our estimation model. For longer maturities (20
and 30 years), the mispricing of both TIPS and inflation swaps is negative, suggesting that both

mispricings contribute to the profit of the trade on the nominal-TIPS yield spread.

368pecifically, at initial time ¢, the replicating portfolio consists of (i) long position in one unit of TIPS of one
basket face value that matures at 7', and (ii) entering the inflation swap of notional value of $1 that also matures at
T as the floating rate payor (receiving fixed swap rate h;r (30)). Because it is costless to enter swap contracts, the
initial value of the portfolio is PZ«IPS’t (28) in spot dollars at ¢. At T, the payoff of the portfolio consists of (i) one

consumption basket valued at % in dollars at 7' from TIPS position, (ii) the net cashflow of eI =D _ % also in

dollars at T' as settlement from the swap contract. In summary, the portfolio invests Pt?PS’t at t to receive a fixed

payoff of eT=OhT g T, hence replicating a nominal bond. As a result, the return on replicating portfolio equals
nominal interest rate,
e(T—=t)hsT

. —1
Tt TIPSt
pIIPS ¢ =TTNG = by T—thgPtT - e
tT
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Mispricing in TIPS and Inflation Swap Markets (2003-2017)
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Figure 10: Time series of the TIPS mispricing Aygps’t (44) (red dotted line), the inflation swap mispricing

Ahyr (45) (black dashed line), and their sum (blue continuous line) for various maturities. Values are
annualized. The estimation is based on data of 2003-2017 period. Data on TIPS of 30-year tenor is not

available before 2010.

In the time series, the mispricing in both TIPS and inflation swaps exhibits significant more
variations (specially for shorter maturities). However, movements in the mispricing tend to offset
one another, resulting in more stable and mostly negative total mispricing (specially for longer
maturities), and indicating a profitable trade on the nominal-TIPS yield spread. In the pre-financial
crisis period before 2008, the total mispricing is negative and stable for all maturities, which
is consistent with Fleckenstein et al. (2014)’s finding that the trade on the nominal-TIPS yield

spread is profitable consistently across different tenors, based on their data of 2004-2009. In the
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period of 2008-2010, TIPS mispricing is mostly negative while inflation swap mispricing is mostly
positive for maturities of 10 year or less. This pattern indicates that during crisis, shorter-maturity
TIPS and shorter-maturity inflation swaps (from fixed rate payor’s perspective) both appear to be
underpriced. The vigorous time series movements in the mispricing of real asset market during and
after crisis are possibly due to deterioration and improvement in market conditions. Christensen
and Gillan (2018) find that the quantitative easing, i.e., government injecting cash into markets by
conducting large purchases of government bonds and other assets between 11/2010 and 06/2011,
improves liquidity and decreases mispricing in real asset markets.?” Event studies lie beyond the
scope of the current paper, but are important to understand the economic forces behind the time

variation of the mispricing in real asset markets.

6 Conclusion

This paper employs new price data of T-note futures from CME (and BCEI inflation consensus
forecasts) to estimate the distribution of the U.S. future inflation in a real pricing model. The
estimation is based on the time series data of the most liquid and exchange-traded nominal assets.
We then use these estimates to price real assets out of sample and obtain the model-implied mis-
pricing separately for TIPS and inflation swaps. Our findings indicate that the well documented
profitable trade on the nominal-TIPS yield spread owes to the mispricing of both TIPS (mostly
underpriced) and inflation swaps (mostly overpriced, to fixed rate payors). Our paper is agnostic
about the nature (e.g., liquidity, and other market imperfections) of the mispricing. We leave this

topic, and an extension of this inflation estimation to international settings for future research.
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Appendices

A Estimates for 1982-2017 Period

This appendix presents the inflation estimation using monthly data of T-note futures prices and
BCEI inflation consensus forecasts for the longer period of 1982-2017. Figure A.1 plots the condi-
tional expectation (39) of the annualized inflation for various horizons (corresponding to Figure 1
in the main text). Figure A.2 plots the conditional probability density function of the annualized
inflation growth for various horizons (corresponding to Figure 2 for 2003-2017 in the main text).
Figure A.3 and A .4 plot the (annualized) nominal and real price of inflation risk for various horizons
(corresponding to Figures 3 and 4 for 2003-2017 in the main text). Figure A.5 plots the probability
of deflation estimated for various horizons (corresponding to Figure 5 in the main text). Figures
A.6 and A.7 plot the probability ratios (43), which characterize the price of the deflation risk under

the nominal and real pricing perspective (corresponding to Figures 6 and 7 in the main text).

The estimation and these figures show that the expected inflation is significantly higher in the
earlier period (before 2000), while the expected deflation (except for the financial crisis of 2008) is
significantly lower. Prices of inflation risk remain negative to the nominal agent, and positive to
the real agent (these signs are the same as those obtained from the data of 2003-2017 in the main
text). Prices of deflation risk in nominal (resp. real) perspective are higher (resp. lower) in the
the earlier period. Broadly, these patterns are similar to the earlier estimation results using more

recent data of 2003-2017.
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Expected Inflation (1982-2017)
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Figure A.1: Expected annualized inflation estimated for various horizons.

estimation is based on data of 1982-2017 period.

B Derivations

B.1 Conditional Distribution

We first discuss the notation. Given that {k;} are the eigenvalues of matrix I, the corresponding

., kn]. We also employ a general diagonal matrix

Diag[K]| = Diag|k1, . .

diagonalization is V1KV

notation Diag[e"X], Vu € R, to denotes the following explicit matrix throughout,

(46)

Yu € R.

)

>

0
el fin

et k1
0

Diag[e'*] = <

Given the Markovian state variable dynamics (7) in physical measure P, we want to characterize

uDiag[K] _

e

_ -1
% 1eu/Cv:euV KV
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Probability Density Function of the Future Inflation (1982-2017)
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Figure A.2: Probability density function of the future annualized inflation growth estimated for various
horizons. Values are annualized. The estimation is based on data of 1982-2017 period.

their conditional distribution and determine certain conditional expectations needed for pricing

assets in the model.

Conditional Expectation: In affine settings, a quantity of interest is the conditional expectation
of an exponential affine function of state variables X;. For conveniences, the following result reca-

pitulates a known analytical expression for this conditional expectation when X; has a conditional

Gaussian distribution.

Lemma 1 Given the state variable dynamics (7), a n x 1 parameter vector Ar that may vary with
terminal time T, and assuming standard regularity conditions such that the conditional expectation

E; [eALIXT] is well defined, then

L(X:) = E; [GA/TXT} = elo“ATH/”?ATXt, (47)
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Prices of Future Inflation Risks (Nominal Perspective, 1982-2017) (x107%)
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Figure A.3: Annualized prices of future inflation risks (in basis points) estimated for various horizons. The
estimation is based on data of 1982-2017 period.

with
\t.ap = ATV Diag [e(t_T)K} v (48)

and

1
loz.ay = A7V Diag [1 — = DF ] v=1o + S ATV SaV' Az, (49)
where n X n symmetric matriz Syr is defined such that its jh-element is (see also (13)),

1 — et=T)(rj+rn)

— -1 . Iy1—1 .
[Serl;n = . (V'S Diag[S]X'V )jh, Vi,h € {1,...,n},

and Diag [e(t_T)’C} denotes a diagonal matriz in the notation of (46).

We employ explicit notations lot A, l11;4, to signify the dependence of the expectation solution on

the given parameter vector Ap. In this way, the Lemma’s results (47), (48), (49) apply generally for
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Prices of Future Inflation Risks (Real Perspective, 1982-2017) (x10~%)
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Figure A.4: Annualized prices of future inflation risks (in basis points) estimated for various horizons. The
estimation is based on data of 1982-2017 period.

any terminal parameter vector Ap. To further understand the formulation and notation of Lemma

1, it is instructive to examine its derivation.

Proof: Under the assumed standard regularity conditions, L;(X;) is a P-martingale and has zero

drift, from which follows the differential equation,

OL (X " OL(X, 0?Ly(Xy)
+( t)+ ¢(X3) Z a tO’jt(Xt)Uht(Xt):O‘

ot —0Xy Hit(X aX?

Substituting the expression (47) for L;(X;) and the state variable specification (7) into the above

differential equation implies further equations for the time-dependent n x 1 vector l14 4, and scalar
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Deflation Probability (1982-2017)
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Figure A.5: Conditional probability of the future deflation estimated for various horizons. The estimation
is based on data of 1982-2017 period.

lot;a, (by matching separately the term associated with X; and the free term),

dly,. e
=58 = V' 1 Diag[K]V lig; ., hr.a, = Ar,

dlog; A 1AV , 1 . , (50)
g - = — (V7 0)Diag[K]V'lit;a, — 5144, 4, EDiag[S]E i a,, lor;a, = 0.

Multiplying V' to the left of both sides of the equation on li;a, yields a simple (decoupled)
differential equation on V'lj;4,, and consequently its explicit solution (matching the terminal

condition lip.a, = Ar)

d , -
- (V'liiay) = DiaglK] (V'lga,) = V'hia, = Diagle ™V Az,

where Diag[e®=T)X] denotes the explicit diagonal matrix (46) (with u therein replaced by t — T).

Multiplying V'~! to the left of both sides of the above equation yields the unique solution (48) of
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Prices of Future Deflation Risks (Nominal Perspective, 1982-2017)
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Figure A.6: Prices of future deflation risks estimated for various horizons. The estimation is based on data

of 1982-2017 period.

llt;AT .

Next, substituting the above solutions for V'lj;. 4, and li4.4, into the equation (50) on losa,

transforms it into,

dlong _ —(Vﬁl@)'Diag[lCe(t*T)’C]V'AT

—1(V'Ar)'Diag[e="*] V-1 Diag[S]%'V'~! Diagle"DX|V' A7,  lop,ap = 0.

In particular, the second term on the right-hand side can be written explicitly as,

1 n
-5 > (V' Ap)elt= 1% [V S Diag S|V, e (V! Ay,
j,h=1

(51)

Integrating differential equation (51) over the time dimension while matching the terminal condition

lor;a, = 0 yields the unique solution (49) of lps,4, W
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Prices of Deflation Risks (Real Perspective, 1982-2017)
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Figure A.7: Prices of future deflation risks estimated for various horizons. The estimation is based on data
of 1982-2017 period.

Characteristic Function and Moments of State Variable Distribution: The conditional
characteristic function of state variables X (7) is a version of the conditional expectation (47) (in
which the parameter vector A is constant). Specifically, given a n vector C' of constant parameters,

an application of Lemma 1 yields the conditional characteristic function,

X(C) = E; [eC/XT} = ¢ teXt with,  ¢1p0 = V' 'Diag [e(t_T)K] Ve
(52)
Cot;C = (V_l@)’Diag |:]]. — e(t_T)’C} V/C + % (VIC),StTvlcv

where n x n matrix Sypis defined in (13). Recall that state variables X specified in (7) have
conditional Gaussian distribution, which is fully characterized by the first two moments, namely the
conditional mean and the conditional covariance matrix. These conditional moments are obtained

by valuing the derivatives of the characteristic function with respective to parameters in C at their
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zeros. In this regard, we observe that ci,c and coi,c are homogeneous of degree one and two in C'

respectively.

Taking the first-order derivative of (52) yields the n x 1 conditional mean vector of state vari-
ables,
oX

ElXr] = 55 = © + VDiag [ D*] V=1 (X, - ©). (53)

Taking the second-order derivative of (52) yields the n x n conditional covariance matrix of state

variables,

PxX
oC?

_ X
c=o OC

ox’

Vary [Xr] = E[XrX7] — By[Xr] B[ X7] = 5C
C=0

=VSrV’, (54)
C=0

where n X n matrix Sy is defined in (13). Hence, the conditional distribution of state variables
is normal N (E;[X7], Var, [X7]) (53), (54), and described by the following conditional probability

density function,

exp {_% (X7 — Ef[X7]) Vart_l (X7] (X7 — Et[XTD}
V/(2m)"Det (Var, [X7]) ’

fi(Xr) = (55)

In the short-term limit (7" = ¢ 4 dt), the above conditional mean, variance and probability density
become,

Ey[Xiyar] = Xy + VDiag [K] V10 — Xy)dt,

Vary X, a4 = dt XDiag[S] Y, (56)

exp {—3 (Xyar — Be[Xerar])' Var, ' [X7] (Xipar — B[ Xerar))}

fe( X+ dt) = v/ (2m)"Det (Var, [X;1q4))

B.2 Pricing Nominal Bond Derivatives

Pricing Futures on Nominal Bonds: At a time ¢, we consider a futures contract that delivers
at time ¢9 > ¢; a nominal bond of one dollar face value and maturity t3 > t2. Let F}, denote the
contractual futures price of this contract at t1, and By, s, the price of the underlying nominal bond
at to. At the futures delivery date to, the realized payoff to a long position of the futures then is
By, t, — F}, in spot dollars, or equivalently in Bt?%;ﬂl in consumption baskets. As in all zero-net
(at the initiation date) financial contracts the futures price Fj, is settled at time ¢; such that, given

the information set at 1, the contract has a fair (zero) value to both long and short parties. In
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real pricing (i.e., in consumption baskets), this valuation is,

which implies the futures price,

MRy Biy,tg
ItlEtl [MRt1 Tty Btl,ts
Fy, = —

MR, 1 ) ’
1 bt
L, B, [ e L Lt

(57)

where in the last equation we have used the nominal bond price (23). Reassuringly, the futures

price satisfies the standard forward parity.®®

B.3 Pricing Real Bond Derivatives

Pricing Real Zero-coupon Bonds: The price BfT’itO of the real zero-coupon bond (27) in spot

dollars at ¢ (tg <t < T;) can be written explicitly as,

Btz;to _ I; : Mpgr, It,—5 — o (Xt—XtO_g)emOTimetfm’ltXtEt [em’lTiXTi-&-i’l(XTr(;—XTi)] ‘
’ Iiy—s Mpy Ir,
0— 7

(58)

We first compute the conditional expectation,

E, |:€m/1TiXTi+i/1 (XT¢*5_XT1'>] = E, [eiiXTi—aETi_é |:e(m/1Ti_i/1)XTi:|:|

. / -/ /
=FE; [eZﬁXTréebOTr&Ti+b1T,L-75,TiXTr5} — ebo:rra,:ri E, [e(’1+b1Trs,Ti)XTr5}

)

where coefficients bor,—s1, € R, bi1,—s,7; € R™ have been computed in (24), with the replacements
of t by T; — 6, and T by T;. Similarly, an application of Lemma 1 (Appendix B.1) again yields an

explicit expression for the above conditional expectation,

ot R R/
et -1, |, [e(’1+b1Ti—5,Ti)XTr5] — hotr; totir, Xt7

with  bfiy, = V'~ 'Diag [e T 4K V/(iy + bip,_s,), (59)

) . 7 _ 1 )
bOR;Ti = bor, 5,1, + (i1 +b\7,_s7,)V Diag []1 — el TZM)K} 14 19"‘5(le‘i‘b/lTi—a,Ti)VSt,TféV/(Zl‘*‘blTﬁé,Ti),

38The forward parity reads Fie ¥T~Y = §,, where S; is the spot price of underlying asset (Bt ,t5 in the current

case), and e YT~ is the risk-neutral discount (By, ., in the current case).
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where the n x n symmetric matrix Syp is defined in (13), and bor,—s51, € R, bi7,—s7, € R™ are in

(24). Substituting these results into (58) yields the real zero-coupon bond price,
R . ! .
Btﬁto = exp {(mOTi — Mot + bg;Tz) + (’lll — m’lt + b{%tTi )Xt — leXtO,(;}.

The real yield associated with the real zero-coupon bond is,

1 /
Rt R . R .
ytTio _ =3 {(WOTi — mog + bosr,) + (i) —mi, + bier ) Xi — Z/1Xt0—6} )

In the special case of zero lag indexation, 6 = 0, (24) implies that byr,—s7, = 0, bir,—s,1, =

mait; — i1, and the real zero-coupon bond price and the associated real yield reduce to,

R . / .
B = exp {(mor, — mos + blip,) + (i) — mh, + b )Xo — 11X, },

-1 ) / .
it = g {(mor, = mou + i) + (15 = mhy + b )Xo = 5 X}

where coefficients b(lftTi and bﬁTi solve,??
bir, = V' "' Diag [T Vi, (60)

) _ 1
boyr, = mi,VDiag []1 - e(t_T’)K} vle + imllTiVStTi V'mir,,

where the n x n symmetric matrix S;r is defined in (13).

Pricing Floor Option on TIPS Principal: Let us consider the TIPS that is issued at tg,
matures at 7', and has a unit notional face value and coupon rate k, as in (28). The floor option
associated with the TIPS principal protects investors against deflation, and pays off only when

the indexed inflation IItT*‘; at maturity is less then unit. Hence, the TIPS terminal payoff is
o—

+ +
1+ (IItT_é 1) in spot dollars at maturity 7', or equivalently ﬁ [1 + < [7-5 1) } in consumption

0—9 It075

baskets. Therefore the price in spot dollars at time ¢ of this terminal payoff has two components

39When lag indexation 6 = 0, (24) implies that bor, —5,7, = 0, bi1,—s,7; = mi7, —91. Then the system (59) reduces
to (60).
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(associated with a real payoff and a floor option),

Mpr 1 I + Mpgr I,
ItEt[ RT[1+(T61> H:Et[ rr It

Mpr I ( Ip_ +
g, | Mar L ( T—5 1) ‘
Mp; It I, s

Mgy It I, s Mgy It
R,t
Bz,TO ij’fo

The real bond price BtR q’fo is given in (58). We decompose option price Ct 0 into two terms,

Mpr I Ir— 5]1 & MRTIt]l
My I Iy — {Ir—s>I1y—s} t Mp; I {Ir—s>I1y—s}

i = Ey [

and compute each term separately. First,

[MRTEITﬂSH ] _B [E [MRT} Ly Ir—s ) }
Mpy It Iy _s {Ir_s>Iy—s5} t [ET—4 Ir | Mp Iy {Ir_s>Iyy—s}

/ ! -/ / ! -/
_ _mor—mot—(m,,—)) Xt —i| X —s mi =) X | i X7
=e (mie =) 1%0=0 X Fy [ET—a [6( 1) et ]l{i’IXTf(SZiiXto—é}

__ _mor—mot+b -3, —(m/,—i" ) X¢—i" X4 _s (b/ _ +Z'/)XT,5
= "o t+bor—s,7—(m1,—i) 1% t0=68 [y, | e\ 1T—5,T "1 ]l{i&XT—JZillXtofé} ,

/ ;! / . . .
where Ep_s [e(mlT_ll)XT} = ehor-s 10757875 ig given in (24). Second,

MRT It MRT I
E; [MRt ﬂ{]T P A 5}] Ey [ET 5[ Iy | Mpy :[]'{IT 5>Itg—s}

mor—mot—(m],—i7)X mh—i)X
= g/"oT ot (mf,—i1) X X E [ETf(s [6( 1) T} ]l{iﬁXszsZiﬁXtofa}]

_  mor—mot+bor—sm—(mi,—i7) Xy X1_5
=e (mi,—if) Et 1T 5,T ]]-{z’XT §>11Xt0 5}

Combining these two conditional expectation yields the price of the floor option,

CR’tO — eMmor—mot+bor 57— (mf,—i}) X

—11 Xty—s [ Vs rtit) Xr—sq ) } _ [ Vip_sr X157 . })
x (e1%0=s By [, Vi Xp_s>i x5y — Bt [€7770 Lt Xro 5>, Xog-s}) ) -

(61)

Finally, an application of Lemma 2 below yields an expression for the conditional expectations

involving the indicator function Ly x,. ;> X1 s} in the floor option price above.

Lemma 2 (Duffie et al. (2000)) Assume the affine dynamics (7) of state variables X, two con-

stant vectors p,q € R", and a scalar parameter k € R. Then the following identity concerning a
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conditional expectation of exponential affine and indicator functions hold,

/ 1 / 1 1 /
X L il X 1 lotip—rvaHlly1.y wa Xt 00k
By [ep T]]'{q/XTZk}:| =5¢ onpT0Lp 5 /_OO va [e 0tip=10a 01 p—1vg Nt Y }du (62)

where Im [A] retains only the imaginative component of express A, and coefficients loy, l1y are given

in (47).

This lemma constitutes a special result from Duffie et al. (2000), which is reproduced here for the

self-sufficiency of this appendix.

Inflation Swap Rate: We consider a zero-coupon inflation swap contract initiated at time tg of
a unit notional value and the maturity 7. The zero net value to the fixed rate payor (29) at the

initiation of this contract implies the swap rate,

1 Ryt
B, [77D = (Bl —mByr), (63)

1
hier = =—— (l E
toT T _ t() 1l L — tO

where By, v (23) and Bg ';9 (27) are zero-coupon nominal and real bond prices. From this follows

the inflation swap rate (30).

B.4 Inflation Risk Premium

Nominal Perspective: Recall that the Euler pricing equation of a zero-coupon real bond (which

is risky to nominal agent) is,

Rt My I Myyp I M I
BTt — gRY _ g { NTT}:C ( NT T) E[ NT}E {T}
¢ @ =B N T T i ) TR e |

From this follows the definition of the (annualized) nominal inflation risk premium 7. (40),

= Lo (Mr In) L (g [Marln] (Mg [12])

LT = My, I, T —1¢ My; I, Mn¢ I
ey I\ _ L (iliaen _ ira-n g, [T
= g (B - Bm ) = g (o - o, [ )

Nt

Now, applying et (M=) from (27) (for T; = T, and no indexation lag § = 0), e %7 (=t = B,

and Byr from (23), E; [{,—ﬂ from (14), yields the (annualized) inflation risk premium from the
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nominal perspective,

1
N
T = T_¢

X (64)

% (e(mOT7m0t+b§tT)+(fm/1t+bﬁT/)Xt _ e(m0T7m0t+b0tT)+(7:/17ml1t+b/1tT)Xtef’illuth,O(Xt7®)+%il1VStTV/i1)

Y

where coefficients bo, b € R, and by, blt € R™ are given in (24); bl € R and bl € R™ are given
in (60) (note tg =t), n X n symmetric matrix Syr is defined in (13), and U7 in (15).
Real Perspective: Symmetrically, from a real pricing perspective, the Euler pricing equation of

a zero-coupon nominal bond (which is risky to real agent) is,

I

I

Nt Mpr I Mpr I M
~4r T = B = F [ RT’*} =C ( BT t) E {RT}E
. = N\ M T ) T b |

From this follows the definition of the (annualized) real inflation risk premium ﬁfT (41),

1 M I 1 Mpr I M I
S Cow( RTvt):<Et{ RTt}Et[ RT:|Et [tD
! Tt Mg Ir Tt Mpy Iy Mp; Ir
1 Ritp | 1t ) 1 ( Nt Rt I
- (By+—-BBR |2t ) = -~ Yoo (T—t) _ o=y (T-)pp | 2L | )
T—t( T P B T T \°" “r s

Note that similar to (14),

I

., , 1
T} = e’lXtEt [e_ZlXT] = exp {illut,T,o(Xt —-0)+ iiSVStTV,il},
T

|

where we have applied Lemma 1 (in which Ap = —i1) to obtain the last expression. Substituting
this conditional expectation, e=vit (T=1) from (27) (with T; = T', and § = 0), e—vir (T=) = By and

Byr from (23) into the above equation for ﬁfT yields the (annualized) real inflation risk premium,

_ 1
TR = — (65)

% (e(mOT—mOt +boer)+(8) =m0 ) Xe (mor—mot +b(1)2tT)+(—m'1t+bﬁT/)Xt eilluth,O(Xt —0)+1i VS rV'iy )

—e ,

where coefficients by, bl € R, and by, b¥ € R™ are given in (24); bOR;T € R and bﬁT € R™ are given

in (60) (note tg =t), n x n symmetric matrix Sy is defined in (13), and U_7 in (15).
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C Estimations

C.1 Kalman Filter

First, given a set of model’s parameters P (37), the Kalman filter generates estimates of state
variables and their covariance matrix recursively as more price data are observed and employed in
the estimation procedure over time. The current-step estimates are linear in previous-step estimates
and updates from latest data observation to minimize mean square errors (MSE). In the Gaussian
setting of our paper, Kalman filter estimators are both consistent and (MSE) optimal. Second, a

log likelihood function is maximized to estimate model’s parameters P.

Recursive Estimation Procedure

The Kalman filter of the inflation dynamics starts with (i) the state space representation of the
model specification (7) (i.e., state equations), and (ii) model-implied relationships between observ-
able quantities and state variables (i.e., observation equations), all in discrete time. The observable

quantities include futures prices on nominal bonds and the inflation expectation.

State Equations:
Xt_|_1 = A+ BX; + Vtid, (66)

where n x 1 vector v;41 denotes normally distributed innovations to state variables of zero mean

and covariance matrix S, and n x 1 vector A and n x n matrix B are,

Vit1 € N(O, S) y A= IC("), B = ]lan — ]C, (67)

with the diagonalization (8), Diag[K] = V1KV, Diag[S] = X'K3. Note that the above distribution
for 1441 and expressions for A and B follow from a discrete version of the state variable dynamics

(7)‘40

Observation Equations:

y=a+bXi+e, N0, or in matrix notation, (68)

40The discrete version of (7) reads, X441 =X + K (0 — Xy) + [\/ﬂ wi, we €N (0, Lxn).
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[ firim | T T e ]
fthTq Qg bql cee bqn X1t €qt
Yt = lothTl = ar + bhl o bhn + €0yt
Xnt
log Tthmf a[qu b[qu 1 .- b[qu n qumft
TRt ] L Gr ] L br1 s brn ] | 6t

where (¢ + ging + 1) x 1 vector y; contains the (q + ¢inr + 1) observable quantities employed as
inputs in the estimation. They are: (i) g log T-note futures prices fir,,, (26) corresponding to
q different maturities T;7;, (ii) ¢ins (surveyed) inflation expectations log Iy7, associated with g
different horizons T; (14), and (iii) one short-term real interest rate proxy 7r; (34). We assume

that observable quantities y; are observed with normally distributed errors ¢;.
Therefore, (¢ + ging + 1) x 1 vector a and (q + giny + 1) X n matrix b are determined from the

model-implied relationships between the (¢ + gins + 1) observable quantities and state variables.

Specifically, the model-implied coefficients are (see (26), (14), (18), and using specification (35)),

|| BT - = i) Ut e, © 4 B — i1V (St — Siy ) V! (i)
2
aq —B(rq = Ty) — (M1 — i) Up—1, 47,0 + 3(m1 — 1)V [Siz, — Sir, | V' (my — 1)
a = ar, = illut_Tl’o@ + %iIIVStTl V'iy
Oy, illut_Tqu’o@ + %i&VSthmf V'iy
e || B —m},VDiag[K]V 10 — 1m|XDiag[S]S'my
(69)
bin ... b (m1 —i1) U7y -7y
bql cee bqn (ml - il),uthq,thq
b= bhl e bhn — —illut_Tho ) (70)
b[qul . b[qun —Z'/lut_Tqu 0
bri oo b i m’,V Diag[K]V 1
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where the n xn matrix Syr is defined in (13) and the n xn matrix Uy, in (15) Ui, = VDiagle!?* —
eIV =1 g, 1),

Initiation: The recursive estimation starts with the initial estimates for state variables and their
covariance matrix which are their long-run (unconditional) expected values (taking the limit of

moments in (9) as t € 00),
o~ = 1 . I1~—1 /1—1 : /

Updating: At time t — 1, we are endowed with the latest estimates of state variables and their

covariance matrix,

Xt|t—1a VXt|t—1 = B[(X; — Xt|t—1)2]v (72)

where for notational simplicity, given a k x 1 vector H, E[H?] denotes the k x k matrix E[HH']
throughout. The model-implied relationship (68) gives the estimate for the observable quantities

and their covariance matrix,
Yeje—1 = a + bXyp_1, Vitlt—1 = bVxype—1b'. (73)

Now with newly observed data y;, the perceived innovations in observable quantities are y; — ;1 =
ye— (a+ bk\m,l). The Kalman filter then “linearly” updates the state variable estimates with the

above innovations,

Xyt = Xepp—1 + Loyt — Yepp—1)s (74)

in such a way that minimizes the square error of the estimate. That is, the optimal n x (¢+¢gins+1)

weight matrix I'; solves,
. > \2 . = ~ 2
I't = argmin £ [(Xt - Xt|t) ] = argmin £/ [((Xt — Xyje—1) — Ty — yt|t—1)) ] :
The optimal I'; then follows from the associated FOC,
-1

I'h=F [(Xt - )/(\t|t—1)(yt - /y\t|t—1),} [E [(yt - gt\t)zﬂ

By virtue of the observation equation (68) and the estimate (73), y: — Uyi—1 = b(Xy — X\t“,l) + €,
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and therefore

17 /(177 / -1
I't = Vxye1b (bVXt|t—1b + Ee) :

where VXt‘t,l (72) and X, (68) are the covariance matrix of the estimate X\t|t71 and observation

errors in the data of y;.

Substituting this optimal weight matrix I'; back into (74), the updated estimates of state vari-

ables and its covariance matrix (associated with the lowest mean square error) are

o~ o~ o~ —~ —1 -
Xt|t = Xt\t—l + VXt|t—1b/ (bVXt\t—1b/ + Ze) (ye — yt|t—1)7 (75)
o~ 2 o~ o~ ~ -1 —~
E [(Xt - Xt|t) ] = Vxtp—1 — V-1t (bVXt|t—lb/ + Ze) bVxjt—1- (76)

Forecasting: Employing the updated estimates jf\ﬂt (75) in the state equation (66), we obtain the

new estimates of state variables,*!
—~ —~ —~ —~ —~ -1 =R
Xi1pp = A+ BXyp = (A+ BXy—q) + BV V' (bVXt|t—1b/ + Ee) (Yt — Yeje—1); (77)

where the second term represents the optimal (“Kalman gain”) update from the latest observation

innovation (y; — Yt—1)- Then follows the covariance matrix of the new state variable estimates,

—~ —~ —~ 2
Vi = El(Xep1 — Xop)?] = B [(B(Xt — Xy) + ver1) }

o~ —~ —~ -1 (78)
= B |Vxyjp—1 — Vxep—10' (bVXt|t71bl + Ee) bVXt\t,l} B +8,

where we have used (76). The latest estimates (77), (78) replace the previous ones (72) in the

recursive estimation procedure.

C.2 Log Likelihood Function Associated with the Kalman Filter

The log likelihood function is constructed from the model-implied probability density function of
the observable quantities v;,"> whose estimators and variances are obtained in the Kalman filtering

at every time step.

At every time period in the recursive process, the (¢ + giny + 1) x 1 innovations Ay, in

41In Kalman filter, estimates are (minimum-variance) linear projector on the previous-step estimates and current
data observations. Therefore, innovation v, in the state equation (66) drops out from )A(H_m (77).

42Gince state variables X; are not observable in the model, to confront the data, we do not employ the log likelihood
function constructed from the model-implied probability density function of state variables X;.
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observable quantities and their (¢ + ginf + 1) X (¢ + ¢iny + 1) covariance matrices are implied from

the state variable estimates E(\tﬂ‘t and their covariance matrix V\Xt+1|t as follows,
Aypp1 = Yry1 — @\tJrl\t =Y+1 —a—bXy = b( X1 — Xt+1|t) + €41, (79)

f/\Ayt+1|t =FE [(Ayt—kl)ﬂ = bvxwutb/ + X (80)

In particular, state variables’ initial values (71) then imply the following initial values,

Ayt =y1 —Yip =1 — a—bXy 0 =y1 —a— b0,

~ 1
Vayio = B [(Ap)?] = G (SDiag[S]X'K ™" + K/~ SDiag[S]Z/) ¥ + =, (81)
1 1
— —p( ©Di Y/ -1 N1 ¥D E’) '+ 3.
4b ( iag[S] vDial[lC] VT + (V)™ DiallK] ——V'SDiag[S]¥ ) b +

In the model, these quantities are functions of the model’s parameters P (37). Hence, the log

likelihood function of the model’s parameters reads,

T—1
1 ~ 1 —~ -1
Liayy(P Z Ly(P) =) {—5 log Det[Vay+1] — §Ay£+1 (VAyt+1\t) Ayt+1} (82)
=0
— 1 I / 1 / / ! "N (17 -1 s
= —3 log Det[bVx ;110" + X — §(Qt+1 —a = X qb) (VAyt+1|t> (Y41 —a = bXy 1)) ¢ -
=0

Note that, given the model’s parameters P (37), estimates )?t+1\t (77) and /‘}Xt-i-l\t (78) are deter-

mined in the Kalman filter estimation above.

These model’s parameters P then are obtained by maximizing this log likelihood function,
P = argmax L{ay,}(P). The first-order condition associated with the variation of the parameter

pj € P at optimality is,

OL Ay (P) _ Tz_l ET
apj =0 2

-1 Vgt
Ayt+1|t 8pj

GAyt_H IVaytilt 1

Ayt+1|tAyt+1 Z Aytﬂ Ayt+1|t ap; Ayt+1|tAyt+1'
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Recall from (37) that p; is one of 28 model parameters in the set

P ={Kij; Oi; 85,055 1155 B,mai; 0},

Note that the (¢ + ginf + 1) x 1 vector %pij“, is as follows (see (79)),

0AY 11 Ja  0b & aX\t+1|t
S L Y e VSSNEY -} 83

The (¢ + ¢ing + 1) X (¢ + ging + 1) matrix VA#;M, is as follows (see (80)),

a/‘}Ayt—&-l\t 3[) - a/‘}Xt_’_”t o~ 8[),
— " = Vb + o——b +bVxppp5—,  Vp; € P. 84
ap; ap; Xt41)t0 + op; + xt+1|t8pj, p; € P (84)

d a/‘}Ayt+1\t

(myt_“, an Do for every parameter p; € P (37) (which

In principle, therefore, to compute B
J

. . - . dX,
appear in the FOC of the maximum log likelihood function), we need to compute OXexle - and

apj )
8‘/;;;;1“, Vp; € P. All of these values can be calculated analytically and the details are available

from the authors upon request.
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