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Abstract

Inflation risks are explicit in either (i) the nominal pricing of real payoffs in which prices are

denominated in dollars, or (ii) the real pricing of nominal payoffs in which prices are denominated

in consumption baskets. While the former involves over-the-counter inflation-indexed contracts

of real asset market, the latter involves exchange-traded and highly liquid contracts of nominal

asset market. We employ a parametric pricing model to investigate the asymmetry between

these two markets. The model obtains a liquidity-free distribution of future inflation using new

price data of T-note futures in nominal asset market, and implies liquidity risk premia separately

for any traded contract in real asset market. These premia indicate both an underpricing for

TIPS and an overpricing for inflation swaps, whose significance increases with the tenor of these

assets. Such a mispricing in inflation swaps helps temper a severe implied mispricing of TIPS

needed to match the puzzling trade profit on the nominal-TIPS yield spread. While yields on

TIPS still command a liquidity component, this finding implicates less pronounced borrowing

costs to the U.S. government in issuing TIPS.
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1 Introduction

Inflation is a central factor that influences the economy, the financial market, and their constituents:

producers, consumers, traders, and policy makers. As a result, the forecast and pricing of inflation

risk are of great interests to market participants, and traditionally are obtained using direct surveys,

statistical analysis, or both. The advent of inflation-indexed bonds and their derivatives has brought

a new market-based input to enhance the inflation forecast and pricing, as their inflation-sensitive

prices reflect market’s inflation expectation. However, the market nature of inflation-indexed assets

also exposes them to market imperfections, namely liquidity and segmentation. As a result, the

observed prices of inflation-indexed contracts (hereafter, real assets) reflect not only inflation, but

also these imperfections. The employment of real asset price data hence may confound premia of

various non-inflation risks and potentially skew the market-based forecast and pricing of inflation

risk.

In this paper, we first decouple the liquidity and other market imperfection concerns from the

estimation of the U.S. future inflation by employing proprietary price data of the most liquid and

exchange-traded contracts on treasury bonds (hereafter, nominal assets), namely T-note futures,

together with professional forecasts of the price index. We then employ the resulting pure-inflation

estimates to price individually every real asset out-of-sample. We compare these model-implied

prices with the corresponding observed prices to determine the “mispricing” of each real asset. By

construction, this mispricing is benchmarked against liquid nominal assets (T-note futures) in an

inflation-risk pricing model. As a result, the mispricing is due to non-inflation (hereafter, generally

referred to as “liquidity”) factors in real asset market that are not priced by the model. Such a

mispricing is relative to our inflation risk pricing model, and would vanish in more comprehensive

pricing models that take into account risk factors beyond the inflation risk and are able to fit TIPS

and inflation swap prices.

Recent literature has found significant spreads between the yields of nominal bonds and Treasury

Inflation-Protected Securities (TIPS). These findings hint at important TIPS liquidity premia (e.g.,

D’Amico et al. (2018)) or highly profitable strategies involving TIPS, inflation swaps, and nominal

bonds (Fleckenstein et al. (2014)). The mispricing magnitudes obtained in the current paper show

significant non-inflation premia for both TIPS and inflation swaps, and indicate their individual

contributions to the profit of strategies on the nominal-TIPS yield spread. The mispricing in

inflation swaps lessens the extent of TIPS mispricing needed to accommodate the above profit.
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This complementarity between inflation swap and TIPS mispricings lowers the implied borrowing

cost to U.S. government in issuing secured real debts, albeit such a cost still subjects the government

to pay for a liquidity premium of real asset market.

We find that (i) markets generally expect a higher, yet less uncertain, annualized long-run

inflation, which is quantified by a future inflation distributions of higher mean and lower variance

as the estimation horizon increases, (ii) markets expect a lower probability, yet higher price, of

the deflation risk at longer horizons, and the time-series fluctuation of the Arrow-Debreu price of

the deflation state arises mainly from movements in the deflation distribution, but not in its price

of risk, (iii) both TIPS and inflation swaps appear mispriced, and more significantly so for longer

tenors: TIPS appear consistently underpriced and inflation swaps consistently overpriced (to fixed

rate payors) for contracts of 10 years or longer maturities. These mispricings also vary with time.

Overall, the mispricing pattern of TIPS and inflation swaps indicates time-varying returns on the

nominal-real yield spread of short terms (less than 10 years), and consistent profits on the same

spread of longer-term yields (10 years or more).1

To arrive at these results, our paper adopts an empirical strategy using price data of nominal

assets and inflation surveys to estimate the inflation process in conjunction with a real pricing

model, in which prices are denominated in units of consumption baskets. Specifically, we specify

inflation and real stochastic discount factor (SDF) processes in terms of latent state variables, which

in turn have affine dynamics in the data-generating (physical) probability measure. A Kalman filter,

which employs data of inflation consensus forecasts, T-note futures prices, and a short-term real

interest rate proxy, is constructed to jointly estimate the SDF and future inflation distribution

parametrically.

The mechanism by which the price data of nominal assets, such as T-note futures, help to

determine the market’s expected inflation is as follows. Nominal asset payoffs, when denominated

in the real term (i.e., in units of consumption baskets), explicitly reflect future inflation. A joint

specification of inflation and real SDF processes translates inflation consensus forecasts into current

prices of nominal assets in an asset pricing framework. Therefore, data of inflation consensus and

nominal asset prices help to back out the best-fit parameters of the underlying joint specification

in an estimation framework. The advantage of this inflation estimation is in the fact that nominal

1Returns on the nominal-real yield spreads are returns on the strategy that takes a long position in nominal bonds
and a short position in TIPS of similar maturities (tenors), i.e., earning nominal and paying real yields. We will also
consider a related arbitrage strategy by adding positions in inflation swaps (paying fixed, receiving floating rates) to
fully hedge the inflation risk in the above nominal-real yield spread strategy.
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asset market is well developed, and nominal asset prices are subject the least to liquidity and other

frictions. This inflation estimation is on the flipped side of the approach in the literature that

employs inflation consensus data and real asset prices. Such an approach jointly specifies inflation

and nominal SDF processes, and exploits the sensitivity of dollar (i.e., nominal) prices of real assets

to the inflation risk. However, as real asset market tends to be less liquid, real asset prices are

potentially subject to liquidity and other market imperfections that might hinder the estimation

in such an approach.

Our inflation estimation described above is therefore motivated and dictated by a practical

consideration of market data. In fact, the market size and transaction volume of U.S. nominal

assets (Treasury bonds and their derivatives) are substantially larger than those of U.S. real assets

(TIPS, inflation swaps, inflation options and their derivatives), indicating superior liquidity for the

former. We acquire and employ T-note futures price data provided by the Chicago Mercantile

Exchange (CME). These futures contracts are standardized and exchange-traded, featuring trans-

action transparencies, large average daily trading volume (of approximately 300 billion dollars), and

matured markets. In comparison, TIPS and inflation swaps are mostly traded in OTC markets,

with significantly lower average daily trading volumes (of approximately 20 and 1 billion dollars,

respectively) and less matured markets.2 In this regard, while it appears that nominal yields might

also substitute for T-notes futures prices in the inflation estimation process, the employment of

nominal yield data is not straightforward. This is because nominal yields are typically derived

from coupon bond prices, so their inputs do not directly match the closed-form zero-coupon yields

derived from the estimation model. The construction of zero-coupon yields for all horizons needed

in our estimation from available coupon bond prices is intricate, and is beyond the scope of the

current paper.3

We make a specification assumption that nominal asset market is liquid and free of other fric-

tions. Therefore, by employing only nominal asset price data, our estimation model only concerns

inflation risk (but not liquidity or other frictions). Post estimation, given the obtained future

inflation distribution and pricing kernel, the model is able to price real assets individually and out-

2T-notes futures were first traded in CME in 1976. TIPS and inflation swaps were first introduced in 1997 and
2002, and their price data are available to us starting in 2003 and 2004 respectively. In notional amounts, in 2017,
average daily trading volumes are almost 300 billion dollars for T-note futures, and 1 billion dollars for inflation
swaps. See, e.g., Fleming and Krishnan (2012) and Fleming and Sporn (2013) for further description and discussion
of TIPS and inflation swap markets.

3Gurkaynak et al. (2006) and Le and Singleton (2013) discuss and present such a construction of constant-maturity
zero-coupon Treasury yields.
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of-sample. These model-implied prices capture only the exposure to inflation risk of real assets, and

evidently do not match the corresponding prices observed in real asset market. Their differences

represent the model-implied mispricing, which reflects the liquidity and other (non-inflation) market

frictions inherent in real assets. The mispricing provides a quantitative assessment of the integra-

tion and relative liquidity between the real and the much larger nominal asset market over time. By

not employing real asset price data, our estimation also indicates a venue to forecast the inflation

in developing economies, wherein real asset market is either underdeveloped or non-existent.

It is important to observe that while prices of liquid nominal assets constitute a high quality

data source, they alone are insufficient to estimate the future inflation distribution. From an

economic aspect, we recall that the pricing of risky assets only reflects risk premia, i.e., expected

asset returns in excess of the short-term risk-free rate (short rate). Intuitively, that the inflation-

protected (resp., nominal) assets are expensive when the market’s expectation about the future

price index is high (resp., low) is a relative notion. This expensiveness is only quantifiable with

respect to an appropriate baseline, which is the nominal (resp., real) bond in the setting. As a

result, quantifying the sensitivity of asset prices to the inflation risk necessitates the knowledge

of the corresponding baseline, namely, the nominal (resp., real) short rate. That is, the short

rate inputs help to pin down the baseline, restore the full expected asset returns. Follows from

which an estimation of the distribution and pricing of the inflation risk. From a pricing aspect,

in the difference with a pure statistical estimation, a pricing model specification is essential in

establishing a relationship between the inflation distribution and asset prices, forming the basis of

a market-based estimation of the future inflation from current prices. In the model, asset prices

therefore mingle and reflect parameters of both the SDF and inflation distribution. To disentangle

these parameters, two additional data inputs, namely inflation surveys (which pertain only to

inflation distribution parameters) and short-term real interest rate (which pertains only to the real

SDF parameters) are also employed in our estimation.4 In our estimation, the inflation consensus

forecast input is sourced from the Blue Chip Economic Indicators (BCEI), and short-term real

interest rate input is proxied by the difference between short-term nominal interest rates and short-

term professional inflation forecasts.5

Related Literature: Our paper contributes to a vibrant literature of the market-based estimation

4In principle, we just need one of these two data inputs to complement the nominal asset price data in the
estimation.

5This proxy is built upon the Fisher equation and motivated by the fact that, historically, the short-term future
inflation is forecastable by market professionals.
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of the inflation. Various price data sources on TIPS, inflation swaps, and nominal yields are em-

ployed in Christensen et al. (2010), Gurkaynak et al. (2010), Chernov and Mueller (2012), Haubrich

et al. (2012), Grishchenko and Huang (2013), Fleckenstein et al. (2017). While TIPS (resp., nomi-

nal yields) are sensitive to the future inflation distribution in the dollar (resp., consumption basket)

denomination, inflation swaps are sensitive to the inflation in both denominations. Hence papers

using inflation swap data, such as Haubrich et al. (2012) and Fleckenstein et al. (2017), examine

the inflation risk pricing and estimation in a joint nominal and real perspective. However, inflation

swap data and market size are limited. Our paper employs T-note futures prices as a new data

source, which is associated with a much larger and more liquid market.

The link between nominal price data (in particular, nominal yields) and expected inflation

are analyzed further within term structure settings in above-mentioned and other papers. Ang

et al. (2008) estimate a term structure model of nominal and real interest rates, with inflation as

a state variable switching between regimes, employing parametric restrictions and nominal yields

but no survey data. D’Amico et al. (2018) estimate another term structure model, employing

CPI, nominal and TIPS yields, and inflation survey data. Duffee (2018) studies how shocks in

the inflation expectation impact nominal yields. The construction of zero-coupon yields of various

(especially, long) maturities from a cross-section of Treasury coupon bonds is intricate as seen in

Le and Singleton (2013). Our paper differs from these works in that we directly employ price data

of the exchange-traded T-note futures – hence circumvent the construction of nominal zero-coupon

yields – as well as inflation surveys, but no TIPS nor inflation swap data.

The use of survey data in forecasting inflation is pioneered by Pennacchi (1991). Ang et al.

(2007), Faust and Wright (2013) and Bauer and McCarthy (2015) find that inflation surveys tend to

outperform market-based forecasts of the U.S. inflation using inflation-indexed asset prices. Ehling

et al. (2018) further show that subjective and heterogeneous beliefs about inflation have impacts

on nominal interest rates. Our inflation estimation relies importantly on the BCEI consensus

forecasts, but also employs (nominal) price data. Price data offers a much richer variety of tenors

than survey data, and hence, is important in estimating entire distributions of future inflation at

various horizons.

Potential arbitrage opportunities between real and nominal bonds have been investigated in

Fleckenstein et al. (2014), who find significant pricing anomalies in TIPS markets for the period

of 2004-2009. This finding follows from documenting (i) a difference in prices of TIPS and their
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replicating portfolios of inflation swaps and nominal bonds, and (ii) no significant difference in

prices of several corporate-issued real bonds and their replicating portfolios of inflation swaps and

corporate-issued nominal bonds. Our inflation estimation employs only the most liquid exchange-

traded nominal assets, whose price data is available from 1982 onward. We treat both TIPS and

inflation swaps as out-of-sample assets to the inflation estimation, which enables the pricing of

the inflation risk separately for TIPS and inflation swaps. As a result, our paper quantifies and

attributes pricing anomalies between nominal and real bonds down separately to an underpricing

in TIPS and an overpricing in inflation swaps.6 We find that, these mispricings vary significantly

with time, and increase with assets’ tenor.

The importance of determining inflation expectation from policy making perspectives is dis-

cussed in Dudley et al. (2009), Bernanke (2012) and Bullard (2016). Our findings indicate the

mispricing also in the smaller inflation swap market, which is integrally important to assess the

mispricing and borrowing cost of TIPS issuance. Neely and Rapach (2011) and Grishchenko et al.

(2017) further investigate the co-movement and anchoring of inflation in international settings.

Our inflation estimation makes use of only nominal asset prices and inflation surveys, hence can be

extended to other economies in which real asset markets are either underdeveloped or nonexistent.

Liquidity in real asset market is studied in various recent papers. Campbell et al. (2009)

and Pflueger and Viceira (2011) examine the liquidity component of these anomalies. Driessen

et al. (2017) include an explicit liquidity factor, estimate its price in a Fama-MacBeth regression

framework, and find that liquidity explains an important part of the spread between the nominal

bond and the its replicating portfolio of TIPS and inflation swap. In event studies, D’Amico and

King (2013) and Christensen and Gillan (2018) examine effects of a large purchase of T-bonds and

TIPS on the pricing and liquidity of nominal and real assets. D’Amico et al. (2018) emphasize the

relative illiquidity of TIPS over nominal Treasury bonds and the information distortion caused by

ignoring the liquidity factor in anomalous yield spreads on these assets. These papers extend the

vibrant literature investigating pricing anomalies in risky debts, e.g., Chen et al. (2007), Bao et al.

(2011), Huang and Huang (2012) to “safe” debts. Our paper concurs with a significant mispricing

in real asset market, but is agnostic about the specific nature of non-inflation factors (liquidity and

other market imperfections) impacting real assets.

The paper is structured as follows. Section 2 describes data sources and provides key intuitions

6We implement estimations for the periods of 2003-2017, and 1982-2017, which also differ from the period of
2004-2009 in Fleckenstein et al. (2014).
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underlying the estimation. Section 3 specifies the actual estimation model and procedure. Section

4 presents estimation results. Section 5 discusses the mispricing in real asset markets. Section 6

concludes. Appendices A, B and C present robustness results and technical derivations omitted in

the main text.

2 Preliminaries: Data and Inflation Risk Pricing

In this section, we describe data sources and their relevant features. We also discuss the basics of

the inflation risk pricing as well as non-inflation premia (i.e., the mispricing) in out setup. This

discussion demonstrates all intuitions of the introduction section, as well as elucidates the essence

of the full estimation model of Section 3.

2.1 Data

Our estimation employs monthly data of T-note futures prices and BCEI inflation consensus fore-

casts, both are available from early 1980. Post estimation, to determine the mispricing in inflation

swaps, we compare model-implied inflation swap rates with the (transacted) inflation swap rate

given by Bloomberg. To determine the mispricing in TIPS, we compare model-implied TIPS yields

with the observed TIPS yields given by Fed’s inflation-indexed constant maturity yields. We note

that Fed’s inflation-indexed constant maturity yields indicate, but are not necessarily exactly equal

to, TIPS yields transacted in markets. Therefore, the mispricing in TIPS indicates, but is not

necessarily exactly equal to, the arbitrage in trading TIPS (against nominal bonds and inflation

swaps).

2.1.1 Data used in the estimation

T-note futures prices: Treasury Bond futures (also referred to as T-note futures here) were

introduced on the Chicago Board of Trade (CBOT) in 1977, augmented over the years by the

introduction of 10-year, 5-year, 2-year T-note futures, and are subject to the rules and regulations

of the CBOT. Our data is acquired and sourced from Chicago Mercantile Exchange (CME), from

1982 to the end of 2017. T-note face value in these futures is $100,000 (except for 2-year and 3-year

T-note futures, for which the face is $200,000 USD). The normal commercial round-lot is $1 million

face value. T-note futures permit the delivery of any U.S. Treasury security provided it matures
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within an eligible period (deliverable grade). Due to flexibility, T-note futures employ a “conversion

factor” invoicing system to reflect the value of the security that is delivered by reference to the

6% futures contract standard. The intent of the conversion factor invoicing system is to make the

delivery of any eligible securities fair (though, not perfectly). The principal invoice amount paid

from long to short upon delivery may be identified as the futures settlement price multiplied by the

conversion factor multiplied by $1,000. (or $2,000 of 2-year and 3-year T-note futures). The T-note

futures market is among the most liquid asset markets, featuring average daily trading volume of

almost 3 millions contracts (or, face values of $300 billions daily). Prices of options on T-note

futures are also a quality data source employed to estimate the pricing kernel non-parametrically

as in Bakshi et al. (2018).

BCEI inflation consensus forecasts: Since 1976, each month Blue Chip Economic Indicators has

polled approximately 50 business economists for future changes in inflation (and 14 other important

economic indicators). Our data is acquired from a global provider of professional information

Wolters Kluwer. We employ the data series in which surveys conducted monthly (12 surveys

per year) from 1982 to the end of 2017. Each survey contains inflation forecasts for several coming

quarters, starting with the current one, on to the last quarter of the next year.7 In the survey, BCEI

collects professional forecasts of the percent change in the U.S. seasonally adjusted consumer price

index for all urban consumers (CPI-U) from the prior quarter expressed at an annual rate. BCEI

compiles estimates into a consensus average forecast published each month based on responses,

along with averages of the 10 highest and 10 lowest forecasts, and a median forecast to eliminate

the effects of extremes on the consensus.

Yields on inflation-indexed securities at “constant maturity”: These yields are a part of

the Selected Interest Rates (H.15) statistical release compiled by Board of Governors of the Federal

Reserve System. Yields on inflation-indexed securities at “constant maturity” are interpolated

from the daily yield curve for TIPS in the over-the-counter market. The inflation-indexed constant

maturity yields are read from this yield curve at fixed maturities of 5, 7, 10, 20, and 30 years. We

employ monthly data series from 2003 to the end of 2017.

Zero-coupon inflation swaps: Zero-coupon inflation swaps are the simplest and most traded

among all inflation swaps, in which parties settles cashflows only at the swap’s maturity (details

7So in a survey (month), there are at least 5 forecasts (if the month is at the end of a year), and at most 8 forecasts
(if the month is at the beginning of a year). This relatively large number of forecast data points is the main reason
we choose BCEI the inflation consensus forecast inputs for our estimation.
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are in Section 3.3). The inflation swap rate data are from Bloomberg. Maturities of inflation swaps

range from 1 up to 55 years. Inflation swap data are available starting from 2004. We employ the

mid-quotes on the inflation swap rates, from 2004 (available date for most maturities) to the end

of 2017.

2.2 Inflation Risk Pricing and Mispricing

Mispricing: Before presenting ingredients of the inflation estimation procedure, it is instructive

to quantify and discuss the concept of mispricing in our approach. By design, the current paper’s

joint estimation of the inflation process and pricing characteristics (SDF) employs only price data

of liquid nominal assets (T-note futures) and inflation consensus forecasts. To the extent that

these nominal assets are not subject to non-inflation risks and other market imperfections such as

liquidity and defaults,8 our estimation concerns and reveals only the inflation risk and its pricing.

Because this estimation does not employ input data from real asset market, TIPS and inflation

swaps are out-of-sample assets with respect to the estimation. Therefore, the estimated pricing

model, when applied on TIPS and inflation swaps, produces prices for these assets that capture the

compensation for their exposure only to the inflation risk. As a result, the difference between these

model-implied and observed prices of real assets necessarily reflects premia on non-inflation risks

borne by them. Our paper is agnostic about the specific nature of the non-inflation risks and other

market imperfections impacting real assets that are responsible for such premia.9 Accordingly,

we refer to the difference between model-implied and observed prices and returns of real assets

broadly as mispricing throughout the paper. It is possible that this mispricing is priced in other

pricing models, those account for non-inflation risks and market imperfections not modeled in our

estimation.

We now turn to the pricing of the inflation risk, starting with basic notations. Let It be the spot

price in dollars of the consumption basket at time t. In data, It is the consumer price index (CPI).

Without loss of generality, we can set I0 = 1 at initial time t = 0. An inflation is realized from

time t to T > t if the consumption basket price increases during that period, IT ≥ It. Otherwise,

a deflation is realized when (IT < It). Any nominal payoff (or price) DNT in units of dollars at

8This identification assumption is in relative sense and innocuous. Our estimation treats liquid nominal contracts
(T-bond futures) as benchmark assets, against which other assets are evaluated. This does not require that T-bond
futures need be perfectly liquid in absolute sense.

9Literature has found that liquidity is an important factor that differentiates real (TIPS and inflation swaps) from
nominal (T-bonds) assets. See D’Amico et al. (2018) and the references therein.
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time T can be contemporaneously converted to the real payoff of DNT
IT

in units of consumption

baskets. A high inflation (larger IT
It

) depresses the real value of the payoff and vice versa. At time

t < T , in the nominal term (in which prices are denominated in dollars), risks are associated with

fluctuations in the realized nominal payoff DNT . In the real term (in which prices are denominated

in consumption baskets), inflation risks are inherent in the realized real payoff DNT
IT

, which reflects

the movements in both DNT and inflation IT . Let MNt be the nominal stochastic discount factor

(SDF) process which prices assets in the dollar denomination. Similarly, let MRt be the real SDF,

which price assets in the consumption basket denomination.

Non-parametric consideration: To gain preliminary intuitions about the inflation estimation,

we first discuss the pricing of inflation risks in a non-parametric setting, in which SDFs follow

diffusion processes,

dMRt

MRt
= −rRtdt− η′RtdZt,

dMNt

MNt
= −rNtdt− η′NtdZt,

where rR, rN are real and nominal interest rate, and ηRt, ηNt are real and nominal prices of risks.

By definition, the two SDFs are related by the multiplicative factor of the price index,

It =
MRt

MNt
, ∀t. (1)

This relationship assures that the pricing of a future payoff is consistent across real and nominal

denominations. Indeed, the price Pt (in spot dollars at t) of a nominal future payoff DNT can be

priced by either the nominal SDF MN or the real SDF MR,10

Pt = Et

ï
MNT

MNt
DNT

ò
, Pt = ItEt

ï
MRT

MRt

DNT

IT

ò
, ∀t, T. (2)

Following from this non-parametric setup, several preliminary observations are in order.

First, the inflation IT
It

is explicit in the cross-denomination pricing equation (second equation

in (2)), in which a nominal payoff is priced in the real term by SDF MR. Fluctuations in the

inflation IT
It

lead to fluctuations in the real value It
IT
DNT of the payoff. To employ input price data

of nominal assets, the estimation models the real SDF MR to pick on, and price, these fluctuations,

e.g., by a specification that relates MRt with It (Section 3). Hence, when DNT is a nominal

10In the latter case, first the nominal payoff of DT dollars is converted into a real payoff of DT
IT

to be priced by
MR. The resulting real price is converted back into dollars to obtain the spot price at time t.
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fixed-income (fixed) payoff or the model is agnostic about possible relationship between DNT and

the price index IT , the pricing in the real term of nominal assets remains sensitive to the future

inflation distribution due to the explicit appearance of the inflation IT
It

. Price data of nominal assets

(together with inflation surveys and short-term real rates) then help estimate inflation distribution.

In this real pricing perspective, it is natural to adopt the consumption basket denomination and the

associated real SDF MR specification in the inflation estimation. Symmetrically, the inflation rate

is also explicit in another (cross-denomination) pricing equation in the nominal term (associated

with MN ) of a real payoff.11 In principle, prices of real assets (together with inflation surveys and

short-term nominal rates) could also help estimate inflation distribution. However, real assets are

less liquid and their price inputs to the estimation may compound liquidity with inflation premia

and skew the the latter’s forecast.12

Second, an identical probability distribution is associated with the real SDF MR and nominal

SDF MN , and is also the physical probability measure. We recall that that MN (MR) is the

marginal utility of a nominal (real) representative agent to whom the risk-free asset pays surely

one dollar (one consumption basket) next period. However, this difference in the risk-free concept

associated with real and nominal pricing does not distort the associated probability measure because

dollar and consumption basket are just two alternative numeraires of the same market. To invoke

a metaphor from international finance: while U.S. and U.K. investors perceive different risk-free

bonds (Treasury bonds vs. Gilts), they may share identical probability distribution of the future

state of the world economy. Therefore, the real pricing perspective does not interdict a consistent

estimation of future inflation distribution in the physical measure.

Third, the inflation estimation requires additional input data other than nominal asset prices.

To see this, we examine the limit of nominal asset price data in the risk premium of short-term

11Similar to (2), the nominal and real pricing equations of a real payoff DRT (denominated in consumption baskets)

are, 1
It
Et
î
MNT
MNt

DRT IT
ó

= Et
î
MRT
MRt

DRT
ó
.

12A priori, the inflation factor is not explicit in the same-denomination pricing, i.e., either the pricing of a nominal
payoff in the nominal term Et

î
MNT
MNt

DNT
ó
, or the pricing of a real payoff in the real term Et

î
MRT
MRt

DRT
ó
. They can

be converted into cross-denomination pricing equations after the inflation is specified.
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nominal assets,13

µND − (µI + rR) = (η′R + σ′I)(σND − σI). (3)

Generally, the estimation procedure takes as inputs the moments {µND, σND} of asset returns

(provided by nominal asset price data), and generates joint output estimates {µI , σI ; rR, ηR} of the

inflation distribution and real pricing kernel.14 Clearly, these output estimates are mixed in the

risk premium (3). In particular, µI and rR influence this nominal risk premium through their sum

µI + rR. This implies that nominal asset price data (e.g., nominal risk premium) can only help

estimate the mean inflation µI and short-term real interest rate rR up to a linear combination.

This identification issue indicates the need for additional data that involve separately inflation

parameters (i.e., inflation surveys) and pricing kernels (i.e., short-term interest rates).

Other output estimates (σI and ηR) also mingle in the risk premium (3) but to a less extent.

Such a mixing does not lead to an identification issue and may be addressed by employing a varieties

of nominal assets of different maturities. However, these nominal asset price data are associated

with the inflation and pricing kernel characteristics of different time horizons, and might affect the

estimation efficiency. This complication motivates a parametric setting which systematically maps

prices of various nominal assets into few basic parameters of the pricing model and inflation, before

the estimation is carried out. Such a term-structure analysis is beyond the scope of the current

non-parametric consideration, and is discussed next.

Parametric consideration: To illustrate the use and integration of nominal asset price data

associated with diverse maturities in the estimation, we consider a toy dynamic term-structure

model. Let the state variable Xt have affine dynamics in a diffusion setting, i.e., dXt = µXdt +

σXdZt, with linear drift and variance,

µX = K0 +K1Xt,
Ä
σXσ

T
X

ä
ij

= H0,ij +HT
1,ijXt ≡ (H0 + [H1 ·Xt])ij . (4)

13The risk premium (3) arises from substituting the inflation process dIt
It

= µIdt + σ′IdZt, and the short-term

nominal asset return dPt+Dtdt
Pt

= µNDdt+ σ′NDdZt into the real pricing equation (second equation in (2)),

1 = Et

ï
MRt+dt

MRt

(Pt+dt +Dtdt)/Pt
It+dt/It

ò
= Et

ï
(1− rRdt− η′RdZt)

1 + µNDdt+ σ′NDdZt
1 + µIdt+ σ′IdZt

ò
.

= 1 +
{
µND − (µI + rR)− (η′R + σ′I)(σND − σI)

}
dt.

Note that (3) is the usual risk premium in the real term: µRD−rR = η′RσRD, where µRD = µND−µI−σ′I(σND−σI)
and σRD = σND − σI are mean and volatility of the real return

(Pt+dt+Dtdt)/Pt

It+dt/It
.

14Nominal pricing characteristics then arise from (1), MNt = MRt
It

.

12



Let both the price index and real SDF be exponential affine functions of the state variable,

It = I0e
iXt , MRt = MR0e

mXt , ∀t ≥ 0. (5)

Given this specification, to estimate the inflation, one needs to estimate both (i) the parameters

{K0,K1, H0, H1} to determine the state variable dynamics, and (ii) inflation parameter i (and SDF

parameter m) to relate the inflation (and the pricing kernel) to the state variable.

Consider a nominal zero-coupon bond that pays one dollar at maturity T , or equivalently 1
IT

units of consumption baskets. The above parametric (affine) setting yields a tractable bond price

Pt,T , which is exponential affine in the state variable,15

Pt,T = ItEt

ï
MRT

MRt

1

IT

ò
= ep0t+p1tXt ,

with coefficients p0t, p1t satisfying a system of Riccati’s differential equations,

dp1t

dt = −K1p1t − 1
2(p1tH1p1t), p1T = m− i,

dp0t

dt = −K0p1t − 1
2(p1tH0p1t), p0T = 0,

(6)

where K’s and H’s characterize the state variable dynamic (4). Following from this parametric

setup, several important observations are in order.

First, nominal asset prices (and nominal yields) are sensitive to the inflation dynamics through

the influence of the parameter i on the coefficients p0t, p1t. In contrast, in the same parametric

setting, real asset prices (and real yields) do not reflect the inflation dynamics when priced in the

real term (i.e., by MRt). This is because while these data are sensitive to the distribution of state

variable X, the Riccati’s equations of real bond prices do not contain the key parameter i (5) that

links the state variable to inflation.16 Hence, the need to employ liquid nominal assets and data in

the inflation estimation motivates the adoption of real pricing specification MR. Moreover, nominal

assets of different maturities T are systematically integrated into, and reinforce, the estimation

because the same parameter set {K,H,m, i} drives all these asset prices in this parametric setting.

Second, while the parameter i of the inflation does appear in the real pricing of nominal bonds, it

15The nominal bond price arises from (2) with the nominal payoff payoff DT = 1T .
16Indeed, the real pricing of real bonds, Pt,T = Et

î
MRT
MRt

1T

ó
= exp (pR0t + pR1tXt), is established by the Riccati’s

equations on pR0t, pR1t:
dpR1t
dt

= −K1p1t − 1
2
(p1tH1p1t),

dp0t
dt

= −K0p1t − 1
2
(p1tH0p1t), with terminal conditions

pR1T = m, pR0T = 0. Clearly, this equation system does not involve the inflation parameter i explicitly.

13



only influences their prices through the combination (m−i) in the Riccati’s system (6). As a result,

these bond prices alone can only implicate the difference between the pricing (SDF) parameter m

and the inflation parameter i, but not m or i separately. Note that all derivative contracts (e.g.,

options) on nominal bonds feature the same combination (m− i) because they share the conversion

of nominal (dollar) payoffs to consumption baskets. In principle, more sophisticated derivatives

contracted directly on the inflation (e.g., inflation swaps) may enrich the estimation because their

inflation-contingent payoffs possibly entail other combinations of m and i. In practice, inflation

derivative markets are much smaller than nominal bond derivative markets and may subject to

a similar liquidity concern of TIPS in adverse market conditions. For this reason, we also look

beyond asset markets for additional inputs to enrich the inflation estimation.

Third, the discussion above points to the need of estimation inputs that are sensitive to SDF

and inflation parameters (other than their difference) and are free of potential asset market liquidity

concerns. Following the literature, we consider two such inputs, namely (i) the inflation surveys and

(ii) short-term real interest rate. With regard to (i), inflation surveys by market professionals are

an important source of forecasts that have long been employed and shown to outperform inflation

forecasts by other measures (Pennacchi (1991), and Ang et al. (2007)). With regard to (ii), because

the inflation is forecastable at short terms, short-term real interest rate proxies exist and equal the

difference between short-term nominal interest rates and short-term inflation forecasts as suggested

by the Fisher equation. In the current parametric setting, the inflation surveys map into the

inflation parameter i, the real interest rates map into the real SDF parameter m.17 Therefore,

these quantities supplement nominal asset price data with needed inputs to estimate inflation and

pricing parameters separately.

Looking back, in the real pricing perspective, the inflation estimation employs three sources

of inputs: inflation surveys (which implicate inflation parameter i), short-term real interest rates

(which implicate pricing parameter m), and prices of nominal assets (which implicate m − i). In

theory, inflation surveys alone suffice to estimate the inflation parameter i as in a pure statistical

approach (and short-term interest rates suffice to estimate the pricing parameter m). In practice,

these estimates are separate and hence may lose efficiency. Nominal asset price data contain both

parameters and their inputs to the estimation connect the above two separate estimates and improve

the overall efficiency. In comparison, the inflation estimation in the literature, e.g., Chernov and

17The interest rate is the drift term of the SDF (5), rR = − 1
dt
Et
î
dMRt
MRt

ó
= −mµX − 1

2
m2σ2

X .
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Mueller (2012), Haubrich et al. (2012), and Kitsul and Wright (2013), employs inflation surveys,

short-term nominal interest rates, and prices of real assets (TIPS or inflation derivatives). The

inclusion of inflation derivatives, e.g., inflation swaps, to the inflation estimation is also possible

in the real pricing perspective of the current paper. However, we restrain from employing these

inflation derivative inputs at the onset to eliminate potential liquidity concerns associated with

these assets. In doing so, our estimation is able to price these derivatives as out-of-sample assets

and quantifies their model-implied liquidity premia.

3 The Model

3.1 Model Specification

State Variables: We fix a probability space (Ω,F , P ) associated with a physical (data-generating)

probability measure P : F → [0, 1] and an information filtration Ft. We consider a setting with n

state variables stacked into n × 1 vector Xt. While we use the notation n throughout, the actual

estimation employs n = 3 state variables. For tractability, we assume that Xt is a continuous-time

autoregressive Gaussian process taking values in a state space D ⊂ Rn. This process belongs to

the class of affine dynamics (with linear conditional expected growths and constant conditional

volatilities), highly tractable asset prices and return distributions. Specifically, Xt satisfies the

stochastic differential equation (SDE),

dXt = K (Θ−Xt) dt+
î√
S
ó
dWt, (7)

where Wt is a n-dimensional standard Brownian motion adapted to Ft,
î√
S
ó

is the n×n constant

volatility matrix, K and Θ are n×n and n×1 constant matrices characterizing the mean reversion

of state variables. State variables can also be decomposed into proper modes associated with

(separate) mean-reverting and volatility dynamics by the respective orthogonalization,

K = V Diag [K] V −1,
√
S = ΣDiag

î√
S
ó
. (8)

Above, the n × n invertible matrix V prescribes an orthogonalization of state variables’ mean

reversion rates, V −1KV = Diag [K] = Diag [κi], i ∈ {1, . . . , n}, with κi denoting the rate of the i-th

orthogonalized mean reversion mode. The n× n matrix Σ prescribes an orthogonalization of state
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variables’ conditional covariance matrix, Σ′Covt (dXt) Σ = Diag [S] = Diag [Si], i ∈ {1, . . . , n},

with Si denoting the conditional variance of the i-th orthogonalized state variable, and notation ′

denoting the matrix transpose. Note that the real symmetric covariance matrix is diagonalized by

an orthogonal matrix Σ (i.e., ΣΣ′ = Σ′Σ = 1n×n).

In special cases in which the two orthogonalizations can be reconciled (Σ = V ), every or-

thogonalized state variable is mean reverting autonomously. However, in general cases, the two

orthogonalizations are distinct (Σ 6= V ), offering richer state variable dynamics, in which orthog-

onalized mean reversion modes correlate and orthogonalized state variables are not autonomous.

Our specification does not preclude these general cases a priori. The distribution of the Gaussian

state variable Xt is characterized by the first two unconditional moments of Xt,

E0[Xt] = e−tKX0 +
Ä
1− e−tK

ä
Θ, V ar0[Xt] =

∫ t

0
e−2(t−s)KΣDiag [S] Σ′ds. (9)

Inflation: Let It denote the price of the consumption basket in spot dollars at time t. We specify

an exponential affine process for the price index It,

It(Xt) = exp
(
i′1Xt

)
, (10)

where the sign ′ denotes the matrix transpose, and i1 is a (time-independent) n × 1 vector of

parameters. The economic interpretation of the basket price is that It identifies with a measure of

the consumer price index (CPI) in the economy.

Real SDF: We specify an exponential affine real SDF process MRt, which prices financial assets

in real term, i.e., asset prices generated by MRt are in units of consumption baskets.

MRt(Xt) = exp
(
m0t +m′1tXt

)
, (11)

where m0t and m1t are respectively scalar and n × 1 vector. In the estimation of the model,

we employ further parametric specifications in which m0t = −βt, and m1t = m1 is a constant

vector. The economic interpretation of the real SDF is that MRt identifies with the representative

agent’s marginal utility of consuming a basket at time t.18 Thus the constant parameter β ∈ R+

characterizes the time discount factor of the economy’s real representative agent.

18The intertemporal marginal rate of substitution (IMRS) in basket consumptions is the growth
MRt+dt(Xt+dt)

MRt(Xt)
.
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3.2 Model Implications

The above parametric specification of state variables, price index, and real SDF implies the

parametrization of other relevant quantities of the pricing model, namely inflation moments, the

real interest rate and real prices of risks, the nominal SDF (and hence the nominal interest rate

and nominal prices of risks), and risk-neutral distributions of state variables. We present these

quantities below, and relegate derivations to Appendix B.

Inflation Moments: The inflation follows from the log price index (10), log It = i′1Xt, is linear in

state variables Xt, and hence is conditional Gaussian. The conditional mean and variance of the

inflation follow from those of state variables derived in Appendix (B.1), equations (53), (54),

Et[log IT ] = i′1Θ + i′1VDiag
î
e(t−T )K

ó
V −1 (Xt −Θ) , V art[log IT ] = i′1V StT V ′i1, (12)

where the n× n symmetric matrix StT is such that its jh-th element is (see also Lemma 1),

[StT ]jh ≡
1− e(t−T )(κj+κh)

κj + κh

(
V −1ΣDiag[S]Σ′V ′−1

)
jh
, ∀j, h ∈ {1, . . . , n}. (13)

Similarly follows the log of the expected growth of price index (Lemma 1),

log ItT ≡ logEt

ï
IT
It

ò
= i′1Ut−T,0Θ +

1

2
i′1V StTV ′i1 − i′1Ut−T,0Xt, (14)

where matrix StT is as in (13), and the n× n matrix Ut1t2 is defined as

Ut1t2 ≡ −VDiag
î
et1K − et2K

ó
V −1 = −

î
et1K − et2K

ó
, ∀t1, t2. (15)

We can also characterize inflation as a stochastic process. The state variable specification (7)

and the price index (10) imply an SDE for the inflation process (via Itô’s lemma),

dIt
It

=
It+dt
It
− 1 = µItdt+ σ′ItdWt,

µIt ≡ i′1VDiag[K]V −1 (Θ−Xt) + 1
2 i
′
1ΣDiag[S]Σ′i1, σIt ≡ Diag

î√
S
ó

Σ′i1.

(16)

The inflation process dIt
It

has constant conditional volatility, and hence is conditional Gaussian.

Real Interest Rate and Prices of Risks: Similarly, the state variable specification (7) and the
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real SDF (11) imply the real SDF growth process,

dMRt

MRt
=
MRt+dt

MRt
− 1 = −rRtdt− η′RtdWt, (17)

with the affine real interest rate, and n× 1 real prices of risks,

rRt = ρR0t + ρ′R1tXt, ηRt = −Diag[
√
S]Σ′m1t. (18)

with

 ρR0t ≡ −dm0t
dt − (V ′m1t)

′Diag[K]V −1Θ− 1
2m
′
1tΣDiag[S]Σ′m1t,

ρR1t ≡ −dm1t
dt + V ′−1Diag[K]V ′m1t.

Nominal SDF, Interest Rate and Prices of Risks: The nominal SDF prices asset in the

numeraire of spot dollars. It is related to the real SDF by the factor of price index, and hence is

also an exponential affine function of state variables,

MNt =
MRt

It
= exp

[
m0t + (m′1t − i′1)Xt

]
. (19)

From this relationship follows the nominal SDF growth dMNt
MNt

= −rNtdt − η′NtdWt, which in turn

implies the nominal interest rate and n× 1 nominal prices of risks,

ηNt = ηRt + σI = Diag[
√
S]Σ′ (i1 −m1t) , rNt = rRt + (µI − σ′IσI)− η′RtσI . (20)

Clearly, nominal prices of risks account for real prices of risks as well as the volatility of inflation.

As a result, from a real pricing perspective, the nominal bond is risky. It offers expected return

rN − (µI − σ′IσI), and expected excess return rN − (µI − σ′IσI)− rR = −η′RtσI as a compensation

for bearing inflation risk σI .
19 The substitution of the inflation (16) and real interest rate (18) into

above expression yields an affine nominal interest rate,

rNt = ρN0t + ρ′N1tXt, (21)

with

 ρN0t ≡ −dm0t
dt − (m1t − i1)′VDiag[K]V −1Θ− 1

2(m1t − i1)′ΣDiag[S]Σ′(m1t − i1),

ρN1t ≡ −dm1t
dt + V ′−1Diag[K]V ′(m1t − i1).

The comparison of (18) and (21) shows that the inflation slope factor i1 drives the wedge between

19Expected returns on nominal bonds in the real term follow from Euler equation Et
î
MRt+dt

MRt

It
It+dt

ó
= 1.
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the real and nominal interest rate dynamics.20

Real (QR) and Nominal (QN) Risk-Neutral State Dynamics: We note that because risk-

free bonds are different in real and nominal terms, the risk-neutrality concept also varies with the

pricing denomination (i.e., in either real consumption baskets or nominal dollars). Accordingly,

let Wt, WQRt, and WQN t respectively denote the standard n-dimensional Brownian motions in the

physical measure P, the real risk-neutral measure QR, and the nominal risk-neutral measure QN .

They are related with one another through the real and nominal prices of risks ηRt (18), ηNt (20),

dWt = dWQRt − ηRtdt = dWQN t − ηNtdt.

Substituting these relationships into (7) yields the the state variable dynamics in the real and

nominal risk-neutral measures,

dXt = VDiag[K]V −1 (ΘQR −Xt) dt+ ΣDiag[
√
S]dWQRt

= VDiag[K]V −1 (ΘQN −Xt) dt+ ΣDiag[
√
S]dWQN t,

(22)

with state variable’s long-term mean vectors ΘQR ≡ Θ + VDiag[K−1]V −1ΣDiag[S]Σ′m1t and

ΘQN ≡ Θ + VDiag[K−1]V −1ΣDiag[S]Σ′(m1t − i1). Clearly, the state variable remains affine in

either real or nominal risk-neutral measures by model’s (complete affine) construction.

3.3 Model Pricing

The current model features closed-form prices for nominal and real assets, including nominal bonds,

T-note futures, real bonds, TIPS, and inflation swaps, which facilitate the model’s estimation

in subsequent sections. We describe these assets and present their prices below, and relegate

derivations to Appendices B.2, B.3.

Nominal Bond Prices: Consider a nominal zero coupon bond that pays one dollar (or equiva-

lently, 1
IT

units of consumption baskets) at maturity T . The current price at time t of this bond in

consumption baskets is Et
î
MRT
MRt

1
IT

ó
. Given the model specifications (11), (10), the nominal zero

coupon bond price in spot dollar at time t is exponential affine in state variables,

BtT = ItEt

ï
MRT

MRt

1

IT

ò
= Et

ñ
e(m0T−i0)+(m′1T−i

′
1)XT

e(m0t−i0)+(m′1t−i′1)Xt

ô
= e(m0T−m0t+b0tT )+(i′1−m′1t+b′1tT )Xt , (23)

20This wedge results from the difference between real and nominal SDFs (11), (20), which are related by the
substitution m1t ↔ m1t − i1.
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where time-dependent coefficients b0tT ∈ R and b1tT ∈ Rn solve the the conditional expectation,

Et
î
e(m′1T−i

′
1)XT
ó

= eb0tT+b′1tTXt , and are obtained from Lemma 1 (Appendix B.1),

b1tT = V ′−1Diag
î
e(t−T )K

ó
V ′(m1T − i1), (24)

b0tT = (m1T − i1)′VDiag
î
1− e(t−T )K

ó
V −1Θ +

1

2
(m1T − i1)′V StTV ′(m1T − i1),

where the n× n symmetric matrix StT is defined in (13).

Futures on Nominal Bonds: Let us consider a futures contract initiated at current time t that

delivers at time T > t a nominal bond of one dollar face value and maturity τ > T . The futures

price FtT τ (contracted at the initiation time t) is derived in (57) (Appendix B.2),

FtT τ =
Bt,τ
Bt,T

=
e(m0τ+b0tτ )+b′1tτXt

e(m0T+b0tT )+b′1tTXt
= e(m0τ−m0T+b0tτ−b0tT )+(b′1tτ−b′1tT )Xt , (25)

where the second equality has employed the expression (23) for bond prices. In the case in which m1t

is time-independent, the substitution of (24) into the above expression yields an explicit solution

for the log futures price,

fT−t,τ−t ≡ logFtT τ = m0τ −m0T + (m1 − i1)′Ut−T,t−τXt

−(m1 − i1)′Ut−T,t−τΘ + 1
2(m1 − i1)′V [Stτ − StT ]V ′(m1 − i1),

(26)

where Ut−T,t−τ is defined in (15).

Real Bond Prices: Let us consider first a stylized real zero-coupon bond that is issued at time t0

and matures at Ti. The bond offers an inflation-indexed payoff of
ITi−δ
It0−δ

in spot dollars at maturity

Ti, where δ is the indexation lag of three months.21 This nominal payoff at Ti is equivalent to

1
ITi

ITi−δ
It0−δ

units of consumption baskets. Therefore, the price BR,t0
tTi

at t (t0 ≤ t ≤ Ti) of this bond is

Et

[
MRTi
MRt

1
ITi

ITi−δ
It0−δ

]
in units of consumption baskets, and ItEt

[
MRTi
MRt

1
ITi

ITi−δ
It0−δ

]
in spot dollars at t.

Appendix B.3 derives the following expression for the price of this bond (in spot dollars at t),

BR,t0
tTi

= exp
¶

(m0Ti −m0t + bR0tTi) + (i′1 −m′1t + bR1tTi
′
)Xt − i′1Xt0−δ

©
, (27)

21This stylized real zero-coupon bond represents a real stripped coupon due at Ti of a TIPS issued at t0. In practice,
the official realized inflation level is published with a time lag δ of three months. Therefore, at the bond maturity
Ti, ITi−δ is the most recent official realized inflation available, and is employed to determine the real bond’s nominal
payoffs. The valuation of real stripped coupons helps to price TIPS.
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where coefficients bR0tTi ∈ R and bR1tTi ∈ R
n are given in equation (59). The real yield associated

with the real zero-coupon bond is,

yR,t0tTi
=
−1

Ti − t
¶

(m0Ti −m0t + bR0tTi) + (i′1 −m′1t + bR1tTi
′
)Xt − i′1Xt0−δ

©
.

TIPS Prices: Let us consider a TIPS contract issued at time t0 of a unit notional face value, the

coupon rate k, and the maturity T . The TIPS cash flows consist of a series of stripped coupons

payable at times {Ti}, and the final payment at T of the last coupon and the principal. All cash flow

settlements (coupon and principal payments) of TIPS are indexed to the spot inflation at respective

payment times. In addition, the principal settlement at maturity T is guaranteed to be no less than

the TIPS notional face value at issuance. This floor option protect the principal payment against

the deflation. Therefore the TIPS price in spot dollars at t is composed of the valuation of (i) real

stripped coupons, (ii) the real principal, and (iii) the floor option on the principal,

PTIPS,t0
tT =

Ñ
k

∑
i:Ti∈[t,T ]

BR,t0
tTi

é
+BR,t0

tT + CR,t0t (Xt). (28)

Zero-coupon real bond prices BR,t0
tTi

and BR,t0
tT are given in (27), and option price CR,t0t (Xt) are

derived in (61), Appendix B.3.

Inflation Swap Rates: Let us consider a zero-coupon inflation swap contract initiated at time

t0 of a unit notional value and the maturity T . The fixed-rate payor in the swap contract pays

a constant inflation swap rate ht0T and receives a floating rate indexed to the available inflation.

As in zero-coupon contracts, these payments are settled at the maturity of contract and based on

the notional value of the contract. At time t ∈ [t0, T ], the floating rate is indexed to the inflation

rate
It−δ
It0−δ

due to the same inflation indexation lag δ of three months discussed above. Given a unit

notional value, the fixed-rate payor pays eht0T (T−t0) and receives
IT−δ
It0−δ

in spot dollars at maturity

T . Equivalently, these payments are 1
IT
eht0T (T−t0) and 1

IT

IT−δ
It0−δ

in units of consumption baskets. At

the initiation time, the swap contract is fair to both parties, i.e., the net value to the fixed-rate

payor is zero,

0 = Et0

ï
MRT

MRt0

1

IT

Å
IT−δ
It0−δ

− eht0T (T−t0)

ãò
. (29)
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From this follows the inflation swap rate (see (63), Appendix B.3),

ht0T =
1

T − t0

î
bR0t0T − b0t0T + (bR1t0T

′ − b′1t0T )Xt0 − i′1Xt0−δ
ó
, (30)

where coefficients b0, b
R
0 ∈ R, and b1, b

R
1 ∈ Rn are given in (24) and (59) respectively.

4 Estimation and Results

In order to estimate the future inflation distribution in physical measure, we need to estimate both

(i) state dynamics parameters that govern the state variable distribution in P, and (ii) parameters

{i1j}, (j ∈ {1, . . . , n}), that connect the inflation process to state variables. We employ Kalman

filter to jointly estimates all parameters in the model. Therefore, apart from the future inflation

distribution, we also simultaneously estimate risk pricing (SDF) parameters.

4.1 Maximum likelihood and the Kalman Filter Estimation

State-space Setup

In the Gaussian setting of our paper, the maximum likelihood based on the Kalman filter estima-

tor is both consistent and optimal in the sense of achieving the least mean square errors.22 We

summarize below the main formula of the estimator, and relegate underlying details to Appendix

C.1.

The Kalman filter works with the state space formulation of state equation (concerning state

variables Xt) and observation equations (concerning observable quantities yt),

Xt+1 = A+BXt + νt+1, (31)

yt = a+ bXt + εt, (32)

where νt+1 and εt are normally distributed. In our model, the state equation is given in (7), and

we will discuss the choice of the observable variables in the next section.

Our maximum likelihood estimator is based on the likelihood of observing yt. For our Gaussian

22Therefore, estimators generated by the Kalman filter are optimal among all estimators that are linear in past
estimators and observations.
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setting, the log likelihood function is

L(yt|P) =
T−1∑
t=0

ß
−1

2
log Det[“V∆yt+1|t]−

1

2
∆y′t+1

Ä“V∆yt+1|t
ä−1

∆yt+1

™
, (33)

where P is the full set of the model’s parameters, vector ∆yt+1 ≡ yt+1− ŷt+1|t denotes innovations

to observations yt, and matrix “V∆yt+1|t ≡ E
î
(∆yt+1)2

ó
denotes their covariances. The observation

equation (32) gives the predicted values ŷt+1|t and “V∆yt+1|t in terms of “Xt+1|t and “VXt|t−1, which

in turns are provided by the Kalman filter.

The recursive Kalman procedure starts with initial estimates of state variables and their covari-

ance matrix “X1|0 = Θ, “VX1|0 =
1

4

(
ΣDiag[S]Σ′K−1 +K′−1ΣDiag[S]Σ′

)
.

At time period t, given new observations yt, state variable estimates and their covariance matrix

are recursively updated as“Xt+1|t = (A+B“Xt|t−1) +B“VXt|t−1b
′
Ä
b“VXt|t−1b

′ + Σε

ä−1
(yt − ŷt|t−1),“VXt+1|t = B

[“VXt|t−1 − “VXt|t−1b
′
Ä
b“VXt|t−1b

′ + Σε

ä−1
b“VXt|t−1

]
B′ + S,

where ŷt|t−1 = a + b“Xt|t−1, and S and Σε respectively are covariance matrices of innovations νt+1

in the state equation and observation errors εt in the observation equation.

Observable variables

We take as inputs the data from three groups of price data, survey data, and real interest rate (see

also Section 2.1). Therefore the observation equations are (26), (14), and (18).

First, price data is composed of futures prices FtT τ (25) associated with CME T-note futures.

In the model, futures prices FtT τ are functions of parameter differential m1 − i1. Hence, T-note

futures prices as input data help estimate the joint parametric model of inflation and pricing

(SDF). Second, survey data is composed of the expected inflation (14) associated with the BCEI

inflation consensus forecasts for different horizons (varying from one-quarter up to two-year). In the

model, the inflation expectations are functions of the inflation slope parameter i1. Hence, inflation

expectations as input data also help estimate the model. Finally, while real interest rates are not

directly observed in markets, their proxies exist for the short-term horizon. We consider such an
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observable proxy for the short-term real interest rate rR, namely the difference between the one-

month nominal interest rate rN (as yield on one-month Treasury bills from the Federal Reserve’s

H.15 release) and one-month expected inflation Ie (as interpolated BCEI inflation consensus),

r̃Rt = rNt − Iet. (34)

This proxy reflects the essence of the Fisher equation.23 In the model, the short-term real interest

rate rR (18) is function of the pricing parameter m1. Hence, as an input data, the real interest

rate (34) complements data on futures prices and inflation surveys in the estimation of inflation

distribution and risk pricing characteristics.

The estimation procedure is implemented using monthly input data above. At each current

month t, we collect q futures prices associated with different futures settlement times T and different

bond maturity times τ , qinf BCEI inflation consensus forecasts associated with various survey

horizons Tinf , and the short-term nominal interest rate. Depending on particular month t, there

are from 4 to 11 futures contracts (4 ≤ q ≤ 11), and from 5 to 8 inflation consensus forecasts

(5 ≤ qinf ≤ 8).24 Post estimation, we also use the inflation-indexed constant maturity yields

compiled and provided by the Fed as observed TIPS yields, and inflation swap rates provided

by Bloomberg as observed swap rates.25 We calculate the difference between model-implied and

observed TIPS yields (as well as inflation swap rates) to determine the mispricing of these real

assets.

Model’s parameters

We estimate the following parameters of the model.

1. State variable parameters: Our actual estimation employs three state variables, i.e., n = 3

hereafter. The state variable parameters to be estimated are,

• n2 parameters Kij , i, j ∈ {1, . . . , n}, of the mean reversion matrix K,

• n elements {Θ1, . . . ,Θn} of the long-term mean vector Θ ∈ Rn,

• (n2 + n)/2 elements of the covariance matrix S. Without loss of generality, we work with

23At short-term horizons, inflation risk is small, the Fisher equation holds approximately. In the model, the proxy
(34) equals the real interest rate when we omit second- and higher-order terms.

24BCEI gives inflation consensus forecasts for future quarters, up to two years ahead.
25See also the discussion at the beginning of Section 2.1.
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the orthogonalized form
√
S = ΣDiag

î√
S
ó
. For n = 3, these elements are (i) 3 diagonal

variances {S1, S2, S3}, which are strictly positive entries of the diagonal matrix Diag[S],26 and

(ii) 3 Euler angles {a1, a2, a3} that fully parametrize the 3 × 3 orthogonal matrix Σ (a.k.a.,

Euler rotation matrix),

Σ =


c2 −c3s2 s2s3

c1s2 c1c2c3 − s1s3 −c3s1 − c1c2s3

s1s2 c1s3 + c2c3s1 c1c3 − c2s1s3

 ,

where si ≡ sin ai, ci ≡ cos ai, for i ∈ {1, 2, 3}.

2. Inflation parameters: n slope parameters {i11, . . . , i1n} (which are components of the inflation

slope vector i1 ∈ Rn).

3. Real-pricing parameters: For the simplicity of the estimation, we assume a simple (log linear)

time dependence of the real SDF (11),

m0t = −β t, m1t is constant vector in Rn. (35)

Intuitively, the constant parameter β ∈ R+ characterizes the time discount factor of the economy’s

real representative agent. We constrain this discount factor to be in the range of 0-5%. Therefore,

there are n + 1 real pricing parameters to be estimated: 1 time preference β̃ ∈ R, where β̃ ≡

− log(5%
β − 1), and n slope parameters {m11, . . . ,m1n} (as components of the vector m1 ∈ Rn).

4. Volatility parameters: We assume that the observation errors εt are uncorrelated in the cross

section, i.e., (q + qinf + 1) × (q + qinf + 1) covariance matrix Σε is diagonal. For simplicity, we

further assume that

Σε =



Σε0 . . . 0 0 . . . 0 0
...

. . . 0
...

. . .
...

...

0 . . . Σε0 0 . . . 0 0

0 . . . 0 ΣεI . . . 0 0
...

. . . 0
...

. . .
...

...

0 . . . 0 0 . . . ΣεI 0

0 . . . 0 0 . . . 0 Σεr


≡ Diag[Σε0, . . . ,Σε0,ΣεI , . . . ,ΣεI ,Σεr]. (36)

26In the actual estimation procedure, we employ the associated transformed parameters sj ≡ logSj for j ∈ {1, 2, 3}.
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Hence, there are 3 volatility parameters (Σε0, ΣεI , Σεr). In the actual estimation procedure, we

employ the associated transformed parameters σj ≡ log Σj for j ∈ {ε0, εI, εr}.

Altogether, there are n2 + 5n+ 4 = 28 model parameters to be estimated,

P = {κij ; Θi ; si, ai ; i1i ; β̃,m1i ; σq}, (37)

where i, j ∈ {1, . . . , n}, q ∈ {ε0, εI, εr}, n = 3.

4.2 Estimation Results

This section presents the estimation of future inflation and deflation distributions for various hori-

zons. The estimation is at monthly frequency and employs data for the period of 2003-2017, chosen

to be contemporaneous with the availability of TIPS and inflation swap data.27 For the robustness,

Appendix A presents the inflation estimation for the entire period 1982-2017. We first list the

parameter estimates of the state dynamic and the underlying pricing model of Section 3.1.

Table 1 reports the estimates and standard errors of the model’s parameters, which are obtained

from the maximization of the log likelihood function (82) with a Kalman filter. The estimation

employs monthly data of CME T-note futures prices and BCEI inflation consensus forecasts, for

the period of 2003-2017. We note that mj × ij > 0 for j ∈ {1, 2} in Table 1. As a result, state

variables Xj , for j ∈ {1, 2}, influence the real SDF growth and price index growth in the same

direction. That is, a change in Xj increases (resp. decreases) the price index while also pushes the

real SDF MR higher (resp. lower), for j ∈ {1, 2}. These estimates indicate that state variables Xj ,

j ∈ {1, 2}, are responsible for the counter-cyclical behavior of price index as high SDF signifies a

bad state of the economy. Hence they represent the risk characteristic of the inflation process as

seen from the real pricing perspective.

Future Inflation: Distribution and Risk Pricing

Given the process (9) for the state variable Xt, the scalar i′1Xt has a normal distribution, whose

conditional mean and and variance are derived respectively in (53) and (54). As a result, i′1(XT−Xt)

27Post estimation, we are to price TIPS and inflation swaps (out of sample) and compare results with their observed
prices in markets. Running the estimation of the period contemporaneous to the availability of these assets’ observed
prices aims to assure that the pricing parameter estimates are also contemporaneous and facilitate the comparison.
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Table 1: Model Parameter Estimates

Parameter Estimate Standard Error

K11 0.0629 0.00001
K12 0.0152 0.00009
K13 0.0337 0.00001
K21 0.0179 0.00004
K22 0.1388 0.00005
K23 0.0487 0.00003
K31 -0.0250 0.00001
K32 0.0113 0.00004
K33 0.0120 0.00001
Θ1 -23.138 2.04979
Θ2 156.54 2.02552
Θ3 -293.49 1.51887
s1 -8.9840 0.00040
s2 -6.1923 0.00023
s3 -7.6114 0.00032

β̃ -10.642 2.10622
m1 0.7718 0.00198
m2 -1.0910 0.00269
m3 0.5434 0.00220
i1 2.1992 0.00086
i2 -4.0436 0.00063
i3 -2.0264 0.00086
σε0 -4.0686 0.03261
σεI -13.349 0.02952
σεr -8.6890 0.05633

Notes: Panel A shows the maximum likelihood estimates of the parameters of the

inflation pricing model of (7), (10), (11) (Section 3.1) and the associated standard

errors. The model is estimated using a Kalman filter and data at monthly frequency

for the period from 2003 to 2017.
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has a time t-conditional Gaussian distribution.28 After rescaling, the following random variable has

a conditional standard normal distribution at time t,

i′1(XT −Xt)− Et [i′1(XT −Xt)]√
Vart [i′1XT ]

∼ Nt(0, 1).

Therefore, the inflation from t to T (10) IT (XT )
It(Xt)

= exp (i′1[XT −Xt]) then is a log normal random

variable and has the the conditional probability density function,

ρIT /It(x) =
1

x
√

2πVart [i′1(XT −Xt)]
exp

®
−1

2

([log x]− Et [i′1(XT −Xt)])
2

Vart [i′1(XT −Xt)]

´
=

1

x
√

2πi′1V StTV ′i1
exp

®
−1

2

([log x] + i′1 [Ut−T,0 (Xt −Θ)])2

i′1V StTV ′i1

´
, (38)

wherein S and U are given in (13), (15).

We first focus on the first moment of the annualized inflation. The conditional expectation of

the inflation follows from (14),

Et

ï
IT (XT )

It(Xt)

ò
= Et

î
ei
′
1(XT−Xt)

ó
= exp

ß
−i′1Ut−T,0(Xt −Θ) +

1

2
i′1V StTV ′i1

™
. (39)

Figure 1 plots the conditional expectation of the annualized inflation, or 1
T−t logEt

î
IT (XT )
It(Xt)

ó
, for

various horizons in a time series of spot time t. In the cross section, the annualized inflation

expectation tends to be slightly lower at shorter horizons as observed earlier. In the time series,

the annualized inflation expectation at all horizons dipped in the end of 2008 as a result of the

financial crisis. These patterns broadly agree with the inflation expectation estimated by Haubrich

et al. (2012) and Fleckenstein et al. (2017). However, these papers employ price data on different

(inflation-indexed) assets from the the current paper’s nominal (T-note futures) assets. As a result,

the detailed differences in the time-series estimates of the expected future inflation reflect the

differences between real and nominal asset prices. We pursue a detailed analysis on the differential

pricing of real and nominal assets in Section 5 below.

To have an overall picture of the estimated future inflation, we examine its distribution. Figure

2 plots the conditional probability density function (38) of the annualized inflation for various

horizons (of 1, 2, 5 and 10 years) in a time series of spot times t. Two features stand out in this

28The mean and variance of i′1(XT − Xt) are respectively, Et [i′1(XT −Xt)] = −i′1 [Ut−T,0 (Xt −Θ)], and
Vart [i′1(XT −Xt)] = Vart [i′1XT ] = i′1V StTV ′i1, with U (15), S (13).
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Expected Inflation (2003-2017)

Figure 1: Expected annualized inflation estimated for various horizons. Values are annualized. The esti-
mation is based on data of 2003-2017 period.

figure. First, in a cross-sectional aspect, the probability distribution of the annualized inflation

exhibits a rightward shift (as well as becomes more concentrated) as the horizon increases (fixing

current time t). This cross-sectional pattern indicates that asset markets reflect a slightly higher

annualized inflation prospect in the longer run. Second, in a time-series aspect, the probability

distribution of the inflation exhibits a leftward shift in the years of 2008-2009 (relatively to other

years) for each horizon. This time-series pattern is consistent with an downward revision by market

participants about the prospect of the future (annualized) inflation at different horizons, given that

the economy was experiencing the great recession starting in the later half of 2008. Compared

to the distributions of future inflation estimated from price data of real assets (Fleckenstein et al.

(2017)), Figure 2 indicate flatter distributions estimated from T-note futures price data, which place

relatively higher chances on inflationary scenarios. This pattern is consistent with the presence of

a liquidity component in real asset markets, which reduces real asset prices, and hence, produces a

29



weaker outlook of inflationary scenarios from price data of these real assets.

Probability Density Function of the Future Inflation (2003-2017)

Figure 2: Probability density function of the future annualized inflation estimated for various horizons.
Values are annualized. The estimation is based on data of 2003-2017 period.

Given above inflation distribution perceived in asset markets, we now discuss the price of in-

flation risk. From the nominal perspective, the pricing of inflation risk is given by the covariation

between the price index It and the nominal SDF MNt. The (annualized) nominal inflation risk

premium for the time period from t to T is,

πNt,T =
1

T − t
Covt

Å
MNT

MNt
,
IT
It

ã
. (40)

An explicit expression of this premium is derived in (64) (Appendix B.4). In the theory, a positive

premium πNt,T , i.e., the nominal SDF MNt tends to be high when the price index is high, quantifies

that inflation is a risk to the nominal agent in the economy.29 In this case, πNt,T is the premium

29That is, the price index is counter-cyclical from the nominal perspective: It is high in the bad nominal state
(high MNt), and vice versa.
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required by the nominal agent to bear inflation risk. Whereas, a negative premium πNt,T signifies

that the price index is pro-cyclical from the nominal perspective. We recall that the nominal

SDF MNt represents the nominal agent’s marginal utility of consuming an extra dollar worth of

consumption good (but not an extra consumption basket). Therefore, the nominal agent does not

represent a consumption-based economic agent of the economy, and as a result, the sign of πNt,T

does not necessarily reflect the consumption-based risk pricing.30

In the estimation, Figures 3 plots the nominal price of the inflation risk (40). In a cross-

sectional aspect, πNt,T is negative across (but increasing with) maturities. In a time-series aspect,

the nominal inflation risk premium slightly increases (i.e., becomes least negative) around 2008-

2009 for all horizons. Practically, the magnitude (in the absolute value) of the nominal price of

inflation risk is relatively small across the board.

Prices of Future Inflation Risks (Nominal Perspective, 2003-2017)

Figure 3: Annualized prices of future inflation risks estimated for various horizons. The estimation is based
on data of 2003-2017 period.

30McCown and Shaw (2010) elaborate on a view that governments may also be subject to a risk premium on
nominal bonds, as a result of which they are willing to issue and pay high TIPS yields.
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Given the possible ambiguity in the economic (consumption-based) interpretation of the nominal

price of inflation risk, we examine its real counterpart. The real price of inflation risk arises from the

covariation between the price index and the real SDF MRt, and is characterized by the (annualized)

real inflation risk premium for the time period from t to T ,

πRt,T = − 1

T − t
Covt

Å
MRT

MRt
,
It
IT

ã
. (41)

An explicit expression of this premium is derived in (65) (Appendix B.4). A positive premium πRt,T ,

i.e., the price index is counter-cyclical from the real perspective, quantifies that inflation is a risk

to the real agent. In this case, πRt,T is the premium required by the real agent to bear inflation

risk. We recall that the real SDF MRt represents the real agent’s marginal utility of consuming

an extra consumption basket, who is the economic agent in the consumption-based asset pricing

framework. Figures 4 plots the real price of the inflation risk (40). In a cross-sectional aspect, πRt,T

is positive (in agreement with Haubrich et al. (2012)) and decreasing with maturities. This pattern

signifies the risk characteristic of inflation, whose prices feature a decreasing term structure from

the perspective of the real agent in the economy. In a time-series aspect, the real inflation risk

premium dips during the period of 2008-2009, but has since gradually increases for all horizons. The

average of the (annualized) real price of inflation risk is about 15 basis points, which is relatively

small and of similar magnitude with the inflation risk premium estimated by Buraschi and Jiltsov

(2005), Haubrich et al. (2012) and Fleckenstein et al. (2017).31

Future Deflation: Distribution and Risk Pricing

This section presents an estimate of the deflation perceived in asset markets. Following Fleckenstein

et al. (2017), the prospect of deflation for time horizon T is quantified by the conditional probability

Probt
Ä
IT
It
≤ 1
ä

of the event that the price index at T drops bellow the current index. Given that the

inflation IT
It

has a conditional log normal distribution (38), the conditional probability of deflation

is,

Probt

Å
IT
It
≤ 1

ã
= Probt

(
i′1(XT −Xt) ≤ 0

)
= CDFN

Ç
i′1 [Ut−T,0 (Xt −Θ)]√

i′1V StTV ′i1

å
, (42)

where CDFN (·) denotes the standard cumulative normal distribution function. Figure 5 plots this

31Note that some papers in the literature adopt the definition of inflation risk premium in which it is equal to the
difference between the inflation swap rate and the expected inflation. Omitting second-order (convexity) terms, this
difference coincides with the real price of inflation risk πRt,T (41).
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Prices of Future Inflation Risks (Real Perspective, 2003-2017)

Figure 4: Annualized prices of future inflation risks estimated for various horizons. The estimation is based
on data of 2003-2017 period.

probability of deflation estimated for various horizons of 1, 2, 5, and 10 years in a time series of spot

time t. In the cross section, the deflation probability tends to decrease as the horizon increases.

This pattern reflects the fact that, on average, the price index tends to increase as time progresses.32

In the time series, the deflation probability at all horizons spiked in the end of 2008 as the financial

crisis unfolded.

To assess the pricing effect of the deflation risk perceived in asset market, we follow the tail

risk literature to consider the ratio of deflation probabilities in risk-neutral and physical measures.

Technically, the pricing content of this ratio reflects in the fact that it captures the pricing kernel

of the deflation state.33 Intuitively, because the risk-neutral discount rate (i.e. risk-free rate) is

32Note that the underlying function Probt
Ä
IT
It
≤ 1
ä

(42) measures the probability of the event that the price index

IT at a specific future time T is below the current index It, but not the event that the future price index Is, s ∈ (t, T ],
ever drops below It before time T ).

33To see this, consider a one-period setting for simplicity. The price of Arrow-Debreu asset paying off in the deflation
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Deflation Probability (2003-2017)

Figure 5: Conditional probability of the future deflation estimated for various horizons. The estimation is
based on data of 2003-2017 period.

state-independent, the relative magnitude of the risk-neutral probability of a state signifies the price

of risk of that state. In the model, there are two risk-neutral measures QN and QR associated

with nominal and real pricing perspectives (22). Therefore, there are two corresponding probability

ratios of type (42), namely,

Prob
QN
t

Ä
IT
It
≤1
ä

Probt
Ä
IT
It
≤1
ä = CDFN

Å
i′1[Ut−T,0(Xt−ΘQN )]√

i′1V StTV ′i1

ã
,

Prob
QR
t

Ä
IT
It
≤1
ä

Probt
Ä
IT
It
≤1
ä = CDFN

Å
i′1[Ut−T,0(Xt−ΘQR)]√

i′1V StTV ′i1

ã
,

(43)

where ΘQN and ΘQR , given below (22), represent the long-term mean of state variables in nominal

state d can be computed in either physical or risk-neutral measures: AD(d) = prob(d)M(d) = probQ(d)
1+rf

, where M(d)

is the pricing kernel of the deflation state and rf the risk-free rate. This implies a proportional relationship between

the ratio of probability and the pricing kernel, probQ(d)
prob(d)

= (1 + rf )M(d).

34



and real risk-neutral measures. Figures 6 and 7 plot the probability ratios (43), which respectively

Prices of Future Deflation Risks (Nominal Perspective, 2003-2017)

Figure 6: Prices of future deflation risks estimated for various horizons. The estimation is based on data of
2003-2017 period.

characterize the price of the deflation risk under the nominal and real pricing perspective. Several

features stand out in these figures. In the cross section, the price of the deflation risk tends to

increase with the horizon, from both nominal and real pricing perspectives. In the time series,

the deflation prices are stable overall.34 These prices exhibit more notable movements during

the financial crisis of 2008-2009, but only for longer (10-year) horizon. Combined with an earlier

observation concerning the deflation distribution (Figures 5), our estimation indicates that (i)

markets place a lower probability, yet higher price, of the deflation risk at longer horizons, and (ii)

the time-series movements of the Arrow-Debreu price of deflation state the deflation state price

arise mainly from their distributions, but not their prices of risks.35 Furthermore, markets perceive

34Numerical values of deflation risk prices, or the ratio of deflation probabilities in risk-neutral and physical measures
(on vertical axis of Figures 6), vary by few percentage points for 1-, 2-, and 5-year horizons, and 20 percentage points
for 10-yr horizon.

35The Arrow-Debreu price of deflation state, i.e., the deflation state price, characterizes the cost to insure against
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Prices of Deflation Risks (Real Perspective, 2003-2017)

Figure 7: Prices of future deflation risks estimated for various horizons. The estimation is based on data of
2003-2017 period.

a lower price of deflation risks in the real pricing perspective (Figure 7) than in the nominal pricing

perspective (Figure 6). This is because the real representative agent denominates all payoffs and

prices in consumption baskets. and the real pricing kernel growth is the product of the nominal

pricing kernel growth and the inflation (19). In the deflation state, the inflation IT
It

is less than

unit. Therefore, the real price of the deflation risk is dominated by its nominal price.

5 Mispricing in Real Asset Markets

In this section we compute the difference between model-implied and observed prices of real assets,

namely TIPS and inflation swaps. As we discuss at the beginning of Section 2.2, this difference

captures the compensation for the exposure of real assets to non-inflation risks and other market

future deflation. It equals the product of deflation probability and the price of deflation risk.
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imperfections, so is also referred to as a mispricing with respect to the estimation model.

Mispricing in TIPS Markets

Specifically, we define the mispricing of TIPS as the difference in yields on model-implied TIPS

and observed TIPS,

∆yTIPStT =
−1

T − t
logPTIPS,t

tT − ỹTIPStT , (44)

where PTIPS,t
tT is the price of TIPS (28) maturing at T implied from the model, and ỹTIPSt,T is the

observed yield at time t on the same TIPS provided by the Fed (see Section 2.1). A negative

mispricing, ∆yTIPStT < 0, indicates that the model-implied price of TIPS is higher than the price

observed in markets (i.e., according to the model, TIPS is undervalued, or “cheap”, in markets),

and vice versa. Figure 8 plots the time series of mispricing in TIPS markets, or the yield differential

Mispricing in TIPS Markets (2003-2017)

Figure 8: Time series of the yield differential ∆yTIPS
tT (44) for maturities of 5, 7, 10, 20, and 30 years.

Values are annualized. The estimation is based on data of 2003-2017 period.

∆yTIPStT (44), for various maturities. For a larger part of the period 2003-2017 and specially for

longer horizons, this yield differential has a negative value (shaded area, below the grid plane at zero

altitude in Figure 8), or TIPS are observed in markets at prices lower than implied by the model.

Given that the model’s estimation features only the inflation risk, this underpricing of observed
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TIPS indicates that investors do perceive and price non-inflation risks and other imperfections

inherent in TIPS markets. In the cross section, TIPS of longer maturities tend to be underpriced

more consistently, suggesting that non-pricing risks, e.g., liquidity issues, tend to be more important

and consistent in longer-maturity TIPS. In the time series, the underpricing of TIPS is most notable

is the periods of before 2005, 2007-2010, and 2014-2016, though the mispricing (overpriced TIPS)

turned positive briefly at the onset of the 2008 financial crisis for shorter horizons. More generally,

the time series pattern of underpricing (∆yTIPStT < 0) and overpricing (∆yTIPStT > 0) tend to

be more volatile for shorter-maturity TIPS (see also Figure 10 below). Before discussing further

implications of the mispricing of TIPS on the divergence and long–short strategies on nominal and

real asset markets, we turn to the pricing of inflation swaps.

Mispricing in Inflation Swap Markets

We recall that the inflation swap rate is the fixed rate specified in the swap contract, at which rate

the fixed-rate payor pays (in exchange for receiving a floating rate equal to the spot inflation at

settlement dates). Similar to (44), we define the mispricing of inflation swaps as the difference in

the model-implied and observed inflation swap rates,

∆htT = htT − h̃tT , (45)

where htT is the model-implied inflation swap rate (30) of a swap contract initiated at t that

matures at T , and h̃tT is the observed swap rate on the same inflation swap provided by Bloomberg.

Adopting the perspective of the fixed rate payor, a negative mispricing, ∆htT < 0, indicates that the

model-implied swap rate is lower than the rate observed in the market, (i.e., according to the model,

the inflation swap is overvalued, or “expensive”, to the fixed-rate payor in the market), and vice

versa. This pricing characterization is purely conventional. Its possible economic content is clearly

tied to the practical feature that which economic agents are the fixed rate payor in the inflation

swap market. Apparently, this finding indicates there are more buyers than sellers in the inflation

swap market. To illustrate, assume that pension funds have long-term real liabilities and want

to hedge them using inflation swaps. They would buy inflation swap contracts of commensurate

durations because as fixed-rate payors in these contracts, pension funds receive floating cashflows

to offset inflation movements and match their real liabilities. Figure 9 plots the time series of

mispricing in inflation swap markets, or the rate differential ∆htT (45), for various maturities from
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Mispricing in Inflation Swap Markets (2003-2017)

Figure 9: Time series of the rate differential ∆htT (45) for maturities from 1 year out to 55 years. Values
are annualized. The estimation is based on data of 2003-2017 period.

1 year to 55 years. In the time series, this rate differential has a negative value (shaded area,

below grid plane at zero altitude in Figure 9) for the period before 2007. After that, the rate

differential fluctuates between negative and positive values, indicating inflation swaps can either

overvalued or undervalued, i.e., “expensive” or “cheap,” from the fixed rate payor’s perspective.

Around the financial crisis, during the period of 2008-2010, this rate differential is mostly positive

(undervalued). In the cross section, similar to TIPS, inflation swaps of longer maturities tend to

be overpriced more consistently, suggesting that non-pricing risks tend to be more consistent in

longer-maturity inflation swaps. Analyzing proprietary data limited to June-August 2010 period,

Fleming and Sporn (2013) document that trading in the inflation swap market concentrates in

certain tenors, in particular, inflation swaps of 10-year and shorter maturities are more actively

traded. This trading pattern might be responsible for the cross sectional heterogeneity in the

liquidity and mispricing seen in Figure 9. To the extent that pension funds participate more in

longer-maturity inflation swaps (as fixed rate payors) to hedge their long-term real liabilities, they

appear to overpay for these swap contracts.
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Mispricing in TIPS and Inflation Swap Markets

To relate the mispricing in real asset markets with the profitable trade on the nominal-TIPS yield

spread, we recall that a portfolio of TIPS and zero-coupon inflation swaps can replicate a nominal

Treasury bond in theory.36 In the absence of arbitrages and other frictions, the return on the

replication portfolio is equal to the nominal interest rate rNt (21). Empirically, however, the

replicating portfolio tends to be cheaper than the respective nominal bond and offers higher yield,

h̃tT + ỹTIPS,t
tT > r̃Nt, where the tilde notation denotes observed quantities (44), (45) in markets. In

the literature, this “underpricing” of the replicating portfolio is the basis of the profitable trade

on the nominal-TIPS yield spread (e.g., Fleckenstein et al. (2014)) and can be attributed to the

presence of liquidity, frictions, or arbitrages in markets. These market imperfections are beyond

the inflation risk framework, and hence, can also be responsible for the mispricing of TIPS and

inflation swaps found in our pure-inflation risk estimation. In particular, the possibility of “cheap”

TIPS and “expensive” inflation swaps (i.e., the observed TIPS yield h̃tT and inflation swap rate

h̃tT are in excess of their model-implied values) lend supports to the underpricing of the replicating

portfolio documented in the literature.

To examine this mispricing possibility of TIPS and inflation swaps within our estimation, and

their individual contributions to the profitable trade on the nominal-TIPS yield spread, Figure 10

plots the time series of the TIPS mispricing (44), inflation swap mispricing (45), and their total,

for different maturities. In the cross section, the total mispricing (depicted by the continuous blue

line) decreases with maturities, suggesting higher profits for the trade on the nominal-TIPS yield

spread on longer-maturity bonds. For shorter maturities (10 year or less), the individual mispricing

of TIPS and inflation swap alternates in signs, suggesting that their contributions to the trade vary

as each can be either undervalued or overvalued in our estimation model. For longer maturities (20

and 30 years), the mispricing of both TIPS and inflation swaps is negative, suggesting that both

mispricings contribute to the profit of the trade on the nominal-TIPS yield spread.

36Specifically, at initial time t, the replicating portfolio consists of (i) long position in one unit of TIPS of one
basket face value that matures at T , and (ii) entering the inflation swap of notional value of $1 that also matures at
T as the floating rate payor (receiving fixed swap rate htT (30)). Because it is costless to enter swap contracts, the
initial value of the portfolio is PTIPS,t

tT (28) in spot dollars at t. At T , the payoff of the portfolio consists of (i) one
consumption basket valued at IT

It
in dollars at T from TIPS position, (ii) the net cashflow of e(T−t)htT − IT

It
also in

dollars at T as settlement from the swap contract. In summary, the portfolio invests PTIPS,t
tT at t to receive a fixed

payoff of e(T−t)htT at T , hence replicating a nominal bond. As a result, the return on replicating portfolio equals
nominal interest rate,

e(T−t)htT

PTIPS,t
tT

= e(T−t)rNt =⇒ htT +
−1

T − t logPTIPS,t
tT = rNt.
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Mispricing in TIPS and Inflation Swap Markets (2003-2017)

Figure 10: Time series of the TIPS mispricing ∆yTIPS,t
tT (44) (red dotted line), the inflation swap mispricing

∆htT (45) (black dashed line), and their sum (blue continuous line) for various maturities. Values are
annualized. The estimation is based on data of 2003-2017 period. Data on TIPS of 30-year tenor is not
available before 2010.

In the time series, the mispricing in both TIPS and inflation swaps exhibits significant more

variations (specially for shorter maturities). However, movements in the mispricing tend to offset

one another, resulting in more stable and mostly negative total mispricing (specially for longer

maturities), and indicating a profitable trade on the nominal-TIPS yield spread. In the pre-financial

crisis period before 2008, the total mispricing is negative and stable for all maturities, which

is consistent with Fleckenstein et al. (2014)’s finding that the trade on the nominal-TIPS yield

spread is profitable consistently across different tenors, based on their data of 2004-2009. In the
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period of 2008-2010, TIPS mispricing is mostly negative while inflation swap mispricing is mostly

positive for maturities of 10 year or less. This pattern indicates that during crisis, shorter-maturity

TIPS and shorter-maturity inflation swaps (from fixed rate payor’s perspective) both appear to be

underpriced. The vigorous time series movements in the mispricing of real asset market during and

after crisis are possibly due to deterioration and improvement in market conditions. Christensen

and Gillan (2018) find that the quantitative easing, i.e., government injecting cash into markets by

conducting large purchases of government bonds and other assets between 11/2010 and 06/2011,

improves liquidity and decreases mispricing in real asset markets.37 Event studies lie beyond the

scope of the current paper, but are important to understand the economic forces behind the time

variation of the mispricing in real asset markets.

6 Conclusion

This paper employs new price data of T-note futures from CME (and BCEI inflation consensus

forecasts) to estimate the distribution of the U.S. future inflation in a real pricing model. The

estimation is based on the time series data of the most liquid and exchange-traded nominal assets.

We then use these estimates to price real assets out of sample and obtain the model-implied mis-

pricing separately for TIPS and inflation swaps. Our findings indicate that the well documented

profitable trade on the nominal-TIPS yield spread owes to the mispricing of both TIPS (mostly

underpriced) and inflation swaps (mostly overpriced, to fixed rate payors). Our paper is agnostic

about the nature (e.g., liquidity, and other market imperfections) of the mispricing. We leave this

topic, and an extension of this inflation estimation to international settings for future research.
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Appendices

A Estimates for 1982-2017 Period

This appendix presents the inflation estimation using monthly data of T-note futures prices and

BCEI inflation consensus forecasts for the longer period of 1982-2017. Figure A.1 plots the condi-

tional expectation (39) of the annualized inflation for various horizons (corresponding to Figure 1

in the main text). Figure A.2 plots the conditional probability density function of the annualized

inflation growth for various horizons (corresponding to Figure 2 for 2003-2017 in the main text).

Figure A.3 and A.4 plot the (annualized) nominal and real price of inflation risk for various horizons

(corresponding to Figures 3 and 4 for 2003-2017 in the main text). Figure A.5 plots the probability

of deflation estimated for various horizons (corresponding to Figure 5 in the main text). Figures

A.6 and A.7 plot the probability ratios (43), which characterize the price of the deflation risk under

the nominal and real pricing perspective (corresponding to Figures 6 and 7 in the main text).

The estimation and these figures show that the expected inflation is significantly higher in the

earlier period (before 2000), while the expected deflation (except for the financial crisis of 2008) is

significantly lower. Prices of inflation risk remain negative to the nominal agent, and positive to

the real agent (these signs are the same as those obtained from the data of 2003-2017 in the main

text). Prices of deflation risk in nominal (resp. real) perspective are higher (resp. lower) in the

the earlier period. Broadly, these patterns are similar to the earlier estimation results using more

recent data of 2003-2017.
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Expected Inflation (1982-2017)

Figure A.1: Expected annualized inflation estimated for various horizons. Values are annualized. The
estimation is based on data of 1982-2017 period.

B Derivations

B.1 Conditional Distribution

We first discuss the notation. Given that {κi} are the eigenvalues of matrix K, the corresponding

diagonalization is V −1KV = Diag[K] = Diag[κ1, . . . , κn]. We also employ a general diagonal matrix

notation Diag[euK], ∀u ∈ R, to denotes the following explicit matrix throughout,

V −1euKV = euV
−1KV = euDiag[K] = Diag[euK] =

á
euκ1 · · · 0

...
. . .

...

0 · · · euκn

ë
, ∀u ∈ R. (46)

Given the Markovian state variable dynamics (7) in physical measure P, we want to characterize
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Probability Density Function of the Future Inflation (1982-2017)

Figure A.2: Probability density function of the future annualized inflation growth estimated for various
horizons. Values are annualized. The estimation is based on data of 1982-2017 period.

their conditional distribution and determine certain conditional expectations needed for pricing

assets in the model.

Conditional Expectation: In affine settings, a quantity of interest is the conditional expectation

of an exponential affine function of state variables Xt. For conveniences, the following result reca-

pitulates a known analytical expression for this conditional expectation when Xt has a conditional

Gaussian distribution.

Lemma 1 Given the state variable dynamics (7), a n×1 parameter vector AT that may vary with

terminal time T , and assuming standard regularity conditions such that the conditional expectation

Et
î
eA
′
TXT
ó

is well defined, then

Lt(Xt) ≡ Et
î
eA
′
TXT
ó

= e
l0t;AT +l′1t;AT

Xt , (47)
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Prices of Future Inflation Risks (Nominal Perspective, 1982-2017) (×10−4)

Figure A.3: Annualized prices of future inflation risks (in basis points) estimated for various horizons. The
estimation is based on data of 1982-2017 period.

with

l′1t;AT = A′TVDiag
î
e(t−T )K

ó
V −1, (48)

and

l0t;AT = A′TVDiag
î
1− e(t−T )K

ó
V −1Θ +

1

2
A′TV StTV ′AT , (49)

where n× n symmetric matrix StT is defined such that its jh-element is (see also (13)),

[StT ]jh ≡
1− e(t−T )(κj+κh)

κj + κh

(
V −1ΣDiag[S]Σ′V ′−1

)
jh
, ∀j, h ∈ {1, . . . , n},

and Diag
î
e(t−T )K

ó
denotes a diagonal matrix in the notation of (46).

We employ explicit notations l0t;AT , l1t;AT to signify the dependence of the expectation solution on

the given parameter vector AT . In this way, the Lemma’s results (47), (48), (49) apply generally for
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Prices of Future Inflation Risks (Real Perspective, 1982-2017) (×10−4)

Figure A.4: Annualized prices of future inflation risks (in basis points) estimated for various horizons. The
estimation is based on data of 1982-2017 period.

any terminal parameter vector AT . To further understand the formulation and notation of Lemma

1, it is instructive to examine its derivation.

Proof: Under the assumed standard regularity conditions, Lt(Xt) is a P-martingale and has zero

drift, from which follows the differential equation,

∂Lt(Xt)

∂t
+

n∑
j

∂Lt(Xt)

∂Xjt
µjt(Xt) +

1

2

n∑
j,h

∂2Lt(Xt)

∂X2
t

σjt(Xt)σht(Xt) = 0.

Substituting the expression (47) for Lt(Xt) and the state variable specification (7) into the above

differential equation implies further equations for the time-dependent n×1 vector l1t;AT and scalar

50



Deflation Probability (1982-2017)

Figure A.5: Conditional probability of the future deflation estimated for various horizons. The estimation
is based on data of 1982-2017 period.

l0t;AT (by matching separately the term associated with Xt and the free term),

dl1t;AT
dt = V ′−1Diag[K]V ′l1t;AT , l1T ;AT = AT ,

dl0t;AT
dt = −(V −1Θ)′Diag[K]V ′l1t;AT − 1

2 l
′
1t;AT

ΣDiag[S]Σ′l1t;AT , l0T ;AT = 0.
(50)

Multiplying V ′ to the left of both sides of the equation on l1t;AT yields a simple (decoupled)

differential equation on V ′l1t;AT , and consequently its explicit solution (matching the terminal

condition l1T ;AT = AT )

d

dt

(
V ′l1t;AT

)
= Diag[K]

(
V ′l1t;AT

)
=⇒ V ′l1t;AT = Diag[e(t−T )K]V ′AT ,

where Diag[e(t−T )K] denotes the explicit diagonal matrix (46) (with u therein replaced by t − T ).

Multiplying V ′−1 to the left of both sides of the above equation yields the unique solution (48) of
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Prices of Future Deflation Risks (Nominal Perspective, 1982-2017)

Figure A.6: Prices of future deflation risks estimated for various horizons. The estimation is based on data
of 1982-2017 period.

l1t;AT .

Next, substituting the above solutions for V ′l1t;AT and l1t;AT into the equation (50) on l0t;AT

transforms it into,

dl0t;AT
dt = −(V −1Θ)′Diag[Ke(t−T )K]V ′AT

−1
2(V ′AT )′Diag[e(t−T )K] V −1ΣDiag[S]Σ′V ′−1 Diag[e(t−T )K]V ′AT , l0T ;AT = 0.

(51)

In particular, the second term on the right-hand side can be written explicitly as,

−1

2

n∑
j,h=1

(V ′AT )je
(t−T )κj

[
V −1ΣDiag[S]Σ′V ′−1

]
jh
e(t−T )κh(V ′AT )h.

Integrating differential equation (51) over the time dimension while matching the terminal condition

l0T ;AT = 0 yields the unique solution (49) of l0t;AT �
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Prices of Deflation Risks (Real Perspective, 1982-2017)

Figure A.7: Prices of future deflation risks estimated for various horizons. The estimation is based on data
of 1982-2017 period.

Characteristic Function and Moments of State Variable Distribution: The conditional

characteristic function of state variables X (7) is a version of the conditional expectation (47) (in

which the parameter vector AT is constant). Specifically, given a n vector C of constant parameters,

an application of Lemma 1 yields the conditional characteristic function,

Xt(C) ≡ Et
î
eC
′XT
ó

= ec0t;C+c′1t;CXt , with, c1t;C = V ′−1Diag
î
e(t−T )K

ó
V ′C

c0t;C = (V −1Θ)′Diag
î
1− e(t−T )K

ó
V ′C + 1

2 (V ′C)′ StTV ′C,

(52)

where n × n matrix StT is defined in (13). Recall that state variables X specified in (7) have

conditional Gaussian distribution, which is fully characterized by the first two moments, namely the

conditional mean and the conditional covariance matrix. These conditional moments are obtained

by valuing the derivatives of the characteristic function with respective to parameters in C at their
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zeros. In this regard, we observe that c1t;C and c0t;C are homogeneous of degree one and two in C

respectively.

Taking the first-order derivative of (52) yields the n× 1 conditional mean vector of state vari-

ables,

Et[XT ] =
∂X
∂C

∣∣∣∣
C=0

= Θ + VDiag
î
e(t−T )K

ó
V −1 (Xt −Θ) . (53)

Taking the second-order derivative of (52) yields the n × n conditional covariance matrix of state

variables,

Vart [XT ] = Et[XTX
′
T ]− Et[XT ]Et[X

′
T ] =

∂2X
∂C2

∣∣∣∣
C=0

− ∂X
∂C

∣∣∣∣
C=0

∂X ′

∂C

∣∣∣∣
C=0

= V StTV ′, (54)

where n × n matrix StT is defined in (13). Hence, the conditional distribution of state variables

is normal N (Et[XT ],Vart [XT ]) (53), (54), and described by the following conditional probability

density function,

ft(XT ) =
exp

{
−1

2 (XT − Et[XT ])′ Var−1
t [XT ] (XT − Et[XT ])

}√
(2π)nDet (Vart [XT ])

. (55)

In the short-term limit (T = t+ dt), the above conditional mean, variance and probability density

become,

Et[Xt+dt] = Xt + VDiag [K]V −1(Θ−Xt)dt,

V art[Xt+dt] = dtΣDiag [S] Σ′, (56)

ft(Xt + dt) =
exp

{
−1

2 (Xt+dt − Et[Xt+dt])
′ Var−1

t [XT ] (Xt+dt − Et[Xt+dt])
}√

(2π)nDet (Vart [Xt+dt])
.

B.2 Pricing Nominal Bond Derivatives

Pricing Futures on Nominal Bonds: At a time t1, we consider a futures contract that delivers

at time t2 ≥ t1 a nominal bond of one dollar face value and maturity t3 ≥ t2. Let Ft1 denote the

contractual futures price of this contract at t1, and Bt2,t3 the price of the underlying nominal bond

at t2. At the futures delivery date t2, the realized payoff to a long position of the futures then is

Bt2,t3 − Ft1 in spot dollars, or equivalently in
Bt2,t3−Ft1

It2
in consumption baskets. As in all zero-net

(at the initiation date) financial contracts the futures price Ft1 is settled at time t1 such that, given

the information set at t1, the contract has a fair (zero) value to both long and short parties. In
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real pricing (i.e., in consumption baskets), this valuation is,

Et1

ï
MRt2

MRt1

Bt2,t3 − Ft1
It2

ò
= 0

which implies the futures price,

Ft1 =
It1Et1

[
MRt2
MRt1

Bt2,t3
It2

]
It1Et1

[
MRt2
MRt1

1
It2

] =
Bt1,t3
Bt1,t2

, (57)

where in the last equation we have used the nominal bond price (23). Reassuringly, the futures

price satisfies the standard forward parity.38

B.3 Pricing Real Bond Derivatives

Pricing Real Zero-coupon Bonds: The price BR,t0
tTi

of the real zero-coupon bond (27) in spot

dollars at t (t0 ≤ t ≤ Ti) can be written explicitly as,

BR,t0
tTi

=
It

It0−δ
× Et

ï
MRTi

MRt

ITi−δ
ITi

ò
= ei

′
1(Xt−Xt0−δ)em0Ti

−m0t−m′1tXtEt

[
e
m′1Ti

XTi+i
′
1(XTi−δ−XTi)

]
.

(58)

We first compute the conditional expectation,

Et

[
e
m′1Ti

XTi+i
′
1(XTi−δ−XTi)

]
= Et

î
ei
′
1XTi−δETi−δ

î
e

(m′1Ti
−i′1)XTi

óó
= Et

î
ei
′
1XTi−δe

b0Ti−δ,Ti+b
′
1Ti−δ,Ti

XTi−δ
ó

= eb0Ti−δ,Ti Et
î
e

(i′1+b′1Ti−δ,Ti
)XTi−δ

ó
,

where coefficients b0Ti−δ,Ti ∈ R, b1Ti−δ,Ti ∈ Rn have been computed in (24), with the replacements

of t by Ti − δ, and T by Ti. Similarly, an application of Lemma 1 (Appendix B.1) again yields an

explicit expression for the above conditional expectation,

eb0Ti−δ,Ti Et
î
e

(i′1+b′1Ti−δ,Ti
)XTi−δ

ó
= e

bR0tTi
+bR1tTi

′
Xt ,

with bR1tTi = V ′−1Diag
î
e(t−Ti+δ)K

ó
V ′(i1 + b1Ti−δ,Ti), (59)

bR0tTi = b0Ti−δ,Ti+(i′1+b′1Ti−δ,Ti)VDiag
î
1− e(t−Ti+δ)K

ó
V −1Θ+

1

2
(i′1+b′1Ti−δ,Ti)V St,Ti−δV

′(i1+b1Ti−δ,Ti),

38The forward parity reads Fte
−y(T−t) = St, where St is the spot price of underlying asset (Bt1,t3 in the current

case), and e−y(T−t) is the risk-neutral discount (Bt1,t2 in the current case).
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where the n × n symmetric matrix StT is defined in (13), and b0Ti−δ,Ti ∈ R, b1Ti−δ,Ti ∈ Rn are in

(24). Substituting these results into (58) yields the real zero-coupon bond price,

BR,t0
tTi

= exp
¶

(m0Ti −m0t + bR0tTi) + (i′1 −m′1t + bR1tTi
′
)Xt − i′1Xt0−δ

©
.

The real yield associated with the real zero-coupon bond is,

yR,t0tTi
=
−1

Ti − t
¶

(m0Ti −m0t + bR0tTi) + (i′1 −m′1t + bR1tTi
′
)Xt − i′1Xt0−δ

©
.

In the special case of zero lag indexation, δ = 0, (24) implies that b0Ti−δ,Ti = 0, b1Ti−δ,Ti =

m1Ti − i1, and the real zero-coupon bond price and the associated real yield reduce to,

BR,t0
tTi

= exp
¶

(m0Ti −m0t + bR0tTi) + (i′1 −m′1t + bR1tTi
′
)Xt − i′1Xt0

©
,

yR,t0tTi
=
−1

Ti − t
¶

(m0Ti −m0t + bR0tTi) + (i′1 −m′1t + bR1tTi
′
)Xt − i′1Xt0

©
,

where coefficients bR0tTi and bR1tTi solve,39

bR1tTi = V ′−1Diag
î
e(t−Ti)K

ó
V ′m1Ti , (60)

bR0tTi = m′1TiVDiag
î
1− e(t−Ti)K

ó
V −1Θ +

1

2
m′1TiV StTiV

′m1Ti ,

where the n× n symmetric matrix StT is defined in (13).

Pricing Floor Option on TIPS Principal: Let us consider the TIPS that is issued at t0,

matures at T , and has a unit notional face value and coupon rate k, as in (28). The floor option

associated with the TIPS principal protects investors against deflation, and pays off only when

the indexed inflation
IT−δ
It0−δ

at maturity is less then unit. Hence, the TIPS terminal payoff is

1+
(
IT−δ
It0−δ

− 1
)+

in spot dollars at maturity T , or equivalently 1
IT

ï
1 +

(
IT−δ
It0−δ

− 1
)+
ò

in consumption

baskets. Therefore the price in spot dollars at time t of this terminal payoff has two components

39When lag indexation δ = 0, (24) implies that b0Ti−δ,Ti = 0, b1Ti−δ,Ti = m1Ti − i1. Then the system (59) reduces
to (60).
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(associated with a real payoff and a floor option),

ItEt

ñ
MRT

MRt

1

IT

ñ
1 +

Å
IT−δ
It0−δ

− 1

ã+
ôô

= Et

ï
MRT

MRt

It
IT

ò
︸ ︷︷ ︸

B
R,t0
t,T

+Et

ñ
MRT

MRt

It
IT

Å
IT−δ
It0−δ

− 1

ã+
ô

︸ ︷︷ ︸
CR,t0t,T

.

The real bond price BR,t0
t,T is given in (58). We decompose option price CR,t0t,T into two terms,

CR,t0t,T = Et

ï
MRT

MRt

It
IT

IT−δ
It0−δ

1{IT−δ≥It0−δ}

ò
− Et

ï
MRT

MRt

It
IT
1{IT−δ≥It0−δ}

ò
,

and compute each term separately. First,

Et

ï
MRT

MRt

It
IT

IT−δ
It0−δ

1{IT−δ≥It0−δ}

ò
= Et

ï
ET−δ

ï
MRT

IT

ò
It
MRt

IT−δ
It0−δ

1{IT−δ≥It0−δ}

ò
= em0T−m0t−(m′1t−i′1)Xt−i′1Xt0−δ × Et

î
ET−δ

î
e(m′1T−i

′
1)XT
ó
ei
′
1XT−δ1{i′1XT−δ≥i′1Xt0−δ}

ó
= em0T−m0t+b0T−δ,T−(m′1t−i′1)Xt−i′1Xt0−δEt

î
e(b′1T−δ,T+i′1)XT−δ1{i′1XT−δ≥i′1Xt0−δ}

ó
,

where ET−δ
î
e(m′1T−i

′
1)XT
ó

= eb0T−δ,T+b′1T−δ,TXT−δ is given in (24). Second,

Et

ï
MRT

MRt

It
IT
1{IT−δ≥It0−δ}

ò
= Et

ï
ET−δ

ï
MRT

IT

ò
It
MRt

1{IT−δ≥It0−δ}

ò
= em0T−m0t−(m′1t−i′1)Xt × Et

î
ET−δ

î
e(m′1T−i

′
1)XT
ó
1{i′1XT−δ≥i′1Xt0−δ}

ó
= em0T−m0t+b0T−δ,T−(m′1t−i′1)XtEt

î
eb
′
1T−δ,TXT−δ1{i′1XT−δ≥i′1Xt0−δ}

ó
,

Combining these two conditional expectation yields the price of the floor option,

CR,t0t,T = em0T−m0t+b0T−δ,T−(m′1t−i′1)Xt (61)

×
Ä
e−i
′
1Xt0−δEt

î
e(b′1T−δ,T+i′1)XT−δ1{i′1XT−δ≥i′1Xt0−δ}

ó
− Et

î
eb
′
1T−δ,TXT−δ1{i′1XT−δ≥i′1Xt0−δ}

óä
.

Finally, an application of Lemma 2 below yields an expression for the conditional expectations

involving the indicator function 1{i′1XT−δ≥i′1Xt0−δ}
in the floor option price above.

Lemma 2 (Duffie et al. (2000)) Assume the affine dynamics (7) of state variables Xt, two con-

stant vectors p, q ∈ Rn, and a scalar parameter k ∈ R. Then the following identity concerning a
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conditional expectation of exponential affine and indicator functions hold,

Et
î
ep
′XT1{q′XT≥k}

ó
=

1

2
el0t;p+l′01;pXt − 1

2π

∫ ∞
−∞

1

v
Im
î
el0t;p−ιvq+l

′
01;p−ιvqXteιvk

ó
dv, (62)

where Im [A] retains only the imaginative component of express A, and coefficients l0t, l1t are given

in (47).

This lemma constitutes a special result from Duffie et al. (2000), which is reproduced here for the

self-sufficiency of this appendix.

Inflation Swap Rate: We consider a zero-coupon inflation swap contract initiated at time t0 of

a unit notional value and the maturity T . The zero net value to the fixed rate payor (29) at the

initiation of this contract implies the swap rate,

ht0T =
1

T − t0

Å
lnEt0

ï
MRT

MRt0

1

IT

IT−δ
It0−δ

ò
− lnEt0

ï
MRT

MRt0

1

IT

òã
=

1

T − t0

Ä
lnBR,t0

t0,T
− lnBt0,T

ä
, (63)

where Bt0,T (23) and BR,t0
t0,T

(27) are zero-coupon nominal and real bond prices. From this follows

the inflation swap rate (30).

B.4 Inflation Risk Premium

Nominal Perspective: Recall that the Euler pricing equation of a zero-coupon real bond (which

is risky to nominal agent) is,

e−y
R,t
tT (T−t) ≡ BR,t

tT = Et

ï
MNT

MNt

IT
It

ò
= Covt

Å
MNT

MNt
,
IT
It

ã
+ Et

ï
MNT

MNt

ò
Et

ï
IT
It

ò
.

From this follows the definition of the (annualized) nominal inflation risk premium πNt,T (40),

πNt,T =
1

T − t
Covt

Å
MNT

MNt
,
IT
It

ã
=

1

T − t

Å
Et

ï
MNT

MNt

IT
It

ò
− Et

ï
MNT

MNt

ò
Et

ï
IT
It

òã
=

1

T − t

Å
BR,t
tT −BtTEt

ï
IT
It

òã
=

1

T − t

Å
e−y

R,t
tT (T−t) − e−y

N,t
tT (T−t)Et

ï
IT
It

òã
.

Now, applying e−y
R,t
tT (T−t) from (27) (for Ti = T , and no indexation lag δ = 0), e−y

N,t
tT (T−t) ≡ BtT

and BtT from (23), Et
î
IT
It

ó
from (14), yields the (annualized) inflation risk premium from the
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nominal perspective,

πNt,T =
1

T − t
× (64)

×
(
e(m0T−m0t+bR0tT )+(−m′1t+bR1tT

′
)Xt − e(m0T−m0t+b0tT )+(i′1−m′1t+b′1tT )Xte−i

′
1Ut−T,0(Xt−Θ)+ 1

2
i′1V StTV ′i1

)
,

where coefficients b0, b
R
0 ∈ R, and b1, b

R
1 ∈ Rn are given in (24); bR0tT ∈ R and bR1tT ∈ Rn are given

in (60) (note t0 ≡ t), n× n symmetric matrix StT is defined in (13), and Ut−T,0 in (15).

Real Perspective: Symmetrically, from a real pricing perspective, the Euler pricing equation of

a zero-coupon nominal bond (which is risky to real agent) is,

e−y
N,t
tT (T−t) ≡ BtT = Et

ï
MRT

MRt

It
IT

ò
= Covt

Å
MRT

MRt
,
It
II

ã
+ Et

ï
MRT

MRt

ò
Et

ï
It
IT

ò
.

From this follows the definition of the (annualized) real inflation risk premium πRt,T (41),

πRt,T = − 1

T − t
Covt

Å
MRT

MRt
,
It
IT

ã
= − 1

T − t

Å
Et

ï
MRT

MRt

It
IT

ò
− Et

ï
MRT

MRt

ò
Et

ï
It
IT

òã
= − 1

T − t

Å
BtT −BR,t

tT Et

ï
It
IT

òã
= − 1

T − t

Å
e−y

N,t
tT (T−t) − e−y

R,t
tT (T−t)Et

ï
It
IT

òã
.

Note that similar to (14),

Et

ï
It
IT

ò
= ei

′
1XtEt

î
e−i
′
1XT
ó

= exp

ß
i′1Ut−T,0(Xt −Θ) +

1

2
i′1V StTV ′i1

™
,

where we have applied Lemma 1 (in which AT ≡ −i1) to obtain the last expression. Substituting

this conditional expectation, e−y
R,t
tT (T−t) from (27) (with Ti = T , and δ = 0), e−y

N,t
tT (T−t) ≡ BtT and

BtT from (23) into the above equation for πRt,T yields the (annualized) real inflation risk premium,

πRt,T = − 1

T − t
× (65)

×
(
e(m0T−m0t+b0tT )+(i′1−m′1t+b′1tT )Xt − e(m0T−m0t+bR0tT )+(−m′1t+bR1tT

′
)Xtei

′
1Ut−T,0(Xt−Θ)+ 1

2
i′1V StTV ′i1

)
,

where coefficients b0, b
R
0 ∈ R, and b1, b

R
1 ∈ Rn are given in (24); bR0tT ∈ R and bR1tT ∈ Rn are given

in (60) (note t0 ≡ t), n× n symmetric matrix StT is defined in (13), and Ut−T,0 in (15).
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C Estimations

C.1 Kalman Filter

First, given a set of model’s parameters P (37), the Kalman filter generates estimates of state

variables and their covariance matrix recursively as more price data are observed and employed in

the estimation procedure over time. The current-step estimates are linear in previous-step estimates

and updates from latest data observation to minimize mean square errors (MSE). In the Gaussian

setting of our paper, Kalman filter estimators are both consistent and (MSE) optimal. Second, a

log likelihood function is maximized to estimate model’s parameters P.

Recursive Estimation Procedure

The Kalman filter of the inflation dynamics starts with (i) the state space representation of the

model specification (7) (i.e., state equations), and (ii) model-implied relationships between observ-

able quantities and state variables (i.e., observation equations), all in discrete time. The observable

quantities include futures prices on nominal bonds and the inflation expectation.

State Equations:

Xt+1 = A+BXt + νt+1, (66)

where n × 1 vector νt+1 denotes normally distributed innovations to state variables of zero mean

and covariance matrix S, and n× 1 vector A and n× n matrix B are,

νt+1 ∈ N (0, S) , A = KΘ, B = 1n×n −K, (67)

with the diagonalization (8), Diag[K] = V −1KV , Diag[S] = Σ′KΣ. Note that the above distribution

for νt+1 and expressions for A and B follow from a discrete version of the state variable dynamics

(7).40

Observation Equations:

yt = a+ bXt + εt, εt ∈ N (0,Σε), or in matrix notation, (68)

40The discrete version of (7) reads, Xt+1 = Xt +K (Θ−Xt) +
î√
S
ó
ωt, ωt ∈ N (0,1n×n).
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yt =



ftT1τ1

...

ftTqτq

log ItT1

...

log ItTqinf

r̃Rt


=



a1

...

aq

aI1
...

aIqinf

ar


+



b11 . . . b1n
...

. . .
...

bq1 . . . bqn

bI11 . . . bI1n
...

. . .
...

bIqinf 1 . . . bIqinf n

br1 . . . brn




X1t

...

Xnt

+



ε1t
...

εqt

εI1t
...

εIqinf t

εrt


where (q + qinf + 1) × 1 vector yt contains the (q + qinf + 1) observable quantities employed as

inputs in the estimation. They are: (i) q log T-note futures prices ftTiτi (26) corresponding to

q different maturities Tiτi, (ii) qinf (surveyed) inflation expectations log ItTi associated with qinf

different horizons Ti (14), and (iii) one short-term real interest rate proxy r̃Rt (34). We assume

that observable quantities yt are observed with normally distributed errors εt.

Therefore, (q + qinf + 1)× 1 vector a and (q + qinf + 1)× n matrix b are determined from the

model-implied relationships between the (q + qinf + 1) observable quantities and state variables.

Specifically, the model-implied coefficients are (see (26), (14), (18), and using specification (35)),

a =



a1

...

aq

aI1
...

aIqinf

ar


=



−β(τ1 − T1)− (m1 − i1)′Ut−T1,t−τ1Θ + 1
2(m1 − i1)′V [Stτ1 − StT1 ]V ′(m1 − i1)

...

−β(τq − Tq)− (m1 − i1)′Ut−Tq ,t−τqΘ + 1
2(m1 − i1)′V

[
Stτq − StTq

]
V ′(m1 − i1)

i′1Ut−T1,0Θ + 1
2 i
′
1V StT1V

′i1
...

i′1Ut−Tqinf ,0Θ + 1
2 i
′
1V StTqinf V

′i1

β −m′1tVDiag[K]V −1Θ− 1
2m
′
1ΣDiag[S]Σ′m1


(69)

b =



b11 . . . b1n
...

. . .
...

bq1 . . . bqn

bI11 . . . bI1n
...

. . .
...

bIqinf 1 . . . bIqinf n

br1 . . . brn


=



(m1 − i1)′Ut−T1,t−τ1
...

(m1 − i1)′Ut−Tq ,t−τq
−i′1Ut−T1,0

...

−i′1Ut−Tqinf ,0

m′1tVDiag[K]V −1


, (70)
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where the n×n matrix StT is defined in (13) and the n×n matrix Ut1t2 in (15) (Ut1t2 ≡ VDiag[et2K−

et1K]V −1, ∀t1, t2).

Initiation: The recursive estimation starts with the initial estimates for state variables and their

covariance matrix which are their long-run (unconditional) expected values (taking the limit of

moments in (9) as t ∈ ∞),“X1|0 = Θ, “VX1|0 =
1

4

(
ΣDiag[S]Σ′K−1 +K′−1ΣDiag[S]Σ′

)
. (71)

Updating: At time t − 1, we are endowed with the latest estimates of state variables and their

covariance matrix, “Xt|t−1, “VXt|t−1 = E[(Xt − “Xt|t−1)2], (72)

where for notational simplicity, given a k × 1 vector H, E[H2] denotes the k × k matrix E[HH ′]

throughout. The model-implied relationship (68) gives the estimate for the observable quantities

and their covariance matrix,

ŷt|t−1 = a+ b“Xt|t−1, “Vyt|t−1 = b“VXt|t−1b
′. (73)

Now with newly observed data yt, the perceived innovations in observable quantities are yt−ŷt|t−1 =

yt − (a+ b“Xt|t−1). The Kalman filter then “linearly” updates the state variable estimates with the

above innovations, “Xt|t = “Xt|t−1 + Γt(yt − ŷt|t−1), (74)

in such a way that minimizes the square error of the estimate. That is, the optimal n×(q+qinf +1)

weight matrix Γt solves,

Γt = arg minE
[Ä
Xt − “Xt|t

ä2
]

= arg minE
[Ä

(Xt − “Xt|t−1)− Γ(yt − ŷt|t−1)
ä2
]
.

The optimal Γt then follows from the associated FOC,

Γt = E
î
(Xt − “Xt|t−1)(yt − ŷt|t−1)′

ó î
E
î(
yt − ŷt|t

)2óó−1
.

By virtue of the observation equation (68) and the estimate (73), yt − ŷt|t−1 = b(Xt − “Xt|t−1) + εt,
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and therefore

Γt = “VXt|t−1b
′
Ä
b“VXt|t−1b

′ + Σε

ä−1
,

where “VXt|t−1 (72) and Σε (68) are the covariance matrix of the estimate “Xt|t−1 and observation

errors in the data of yt.

Substituting this optimal weight matrix Γt back into (74), the updated estimates of state vari-

ables and its covariance matrix (associated with the lowest mean square error) are“Xt|t = “Xt|t−1 + “VXt|t−1b
′
Ä
b“VXt|t−1b

′ + Σε

ä−1
(yt − ŷt|t−1), (75)

E
[Ä
Xt − “Xt|t

ä2
]

= “VXt|t−1 − “VXt|t−1b
′
Ä
b“VXt|t−1b

′ + Σε

ä−1
b“VXt|t−1. (76)

Forecasting: Employing the updated estimates “Xt|t (75) in the state equation (66), we obtain the

new estimates of state variables,41“Xt+1|t = A+B“Xt|t = (A+B“Xt|t−1) +B“VXt|t−1b
′
Ä
b“VXt|t−1b

′ + Σε

ä−1
(yt − ŷt|t−1), (77)

where the second term represents the optimal (“Kalman gain”) update from the latest observation

innovation (yt − ŷt|t−1). Then follows the covariance matrix of the new state variable estimates,“VXt+1|t = E[(Xt+1 − “Xt+1|t)
2] = E

[Ä
B(Xt − “Xt|t) + νt+1

ä2
]

= B
[“VXt|t−1 − “VXt|t−1b

′
Ä
b“VXt|t−1b

′ + Σε

ä−1
b“VXt|t−1

]
B′ + S,

(78)

where we have used (76). The latest estimates (77), (78) replace the previous ones (72) in the

recursive estimation procedure.

C.2 Log Likelihood Function Associated with the Kalman Filter

The log likelihood function is constructed from the model-implied probability density function of

the observable quantities yt,
42 whose estimators and variances are obtained in the Kalman filtering

at every time step.

At every time period in the recursive process, the (q + qinf + 1) × 1 innovations ∆yt+1 in

41In Kalman filter, estimates are (minimum-variance) linear projector on the previous-step estimates and current

data observations. Therefore, innovation νt+1 in the state equation (66) drops out from “Xt+1|t (77).
42Since state variables Xt are not observable in the model, to confront the data, we do not employ the log likelihood

function constructed from the model-implied probability density function of state variables Xt.
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observable quantities and their (q + qinf + 1)× (q + qinf + 1) covariance matrices are implied from

the state variable estimates “Xt+1|t and their covariance matrix “VXt+1|t as follows,

∆yt+1 ≡ yt+1 − ŷt+1|t = yt+1 − a− b“Xt+1|t = b(Xt+1 − “Xt+1|t) + εt+1, (79)“V∆yt+1|t ≡ E
î
(∆yt+1)2

ó
= b“VXt+1|tb

′ + Σε. (80)

In particular, state variables’ initial values (71) then imply the following initial values,

∆y1 ≡ y1 − ŷ1|0 = y1 − a− b“X1|0 = y1 − a− bΘ,“V∆y1|0 ≡ E
î
(∆y1)2

ó
=

1

4
b
(
ΣDiag[S]Σ′K−1 +K′−1ΣDiag[S]Σ′

)
b′ + Σε (81)

=
1

4
b

Å
ΣDiag[S]Σ′V

1

Dial[K]
V −1 + (V ′)−1 1

Dial[K]
V ′ΣDiag[S]Σ′

ã
b′ + Σε.

In the model, these quantities are functions of the model’s parameters P (37). Hence, the log

likelihood function of the model’s parameters reads,

L{∆yt}(P) =
T−1∑
t=0

Lt(P) =
T−1∑
t=0

ß
−1

2
log Det[“V∆yt+1|t]−

1

2
∆y′t+1

Ä“V∆yt+1|t
ä−1

∆yt+1

™
(82)

=

T−1∑
t=0

ß
−1

2
log Det[b“VXt+1|tb

′ + Σε]−
1

2
(y′t+1 − a′ − “X ′t+1|tb

′)
Ä“V∆yt+1|t

ä−1
(yt+1 − a− b“Xt+1|t)

™
.

Note that, given the model’s parameters P (37), estimates “Xt+1|t (77) and “VXt+1|t (78) are deter-

mined in the Kalman filter estimation above.

These model’s parameters P then are obtained by maximizing this log likelihood function,

P = arg maxL{∆yt}(P). The first-order condition associated with the variation of the parameter

pj ∈ P at optimality is,

∂L{∆yt}(P)

∂pj
= −

T−1∑
t=0

1

2
Tr

[“V −1
∆yt+1|t

∂“V∆yt+1|t

∂pj

]

−
T−1∑
t=0

∂∆y′t+1

∂pj
“V −1

∆yt+1|t∆yt+1 −
T−1∑
t=0

1

2
∆y′t+1

“V −1
∆yt+1|t

∂“V∆yt+1|t

∂pj
“V −1

∆yt+1|t∆yt+1.
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Recall from (37) that pj is one of 28 model parameters in the set

P = {κij ; Θi ; si, ai ; i1i ; β̃,m1i ; σq},

Note that the (q + qinf + 1)× 1 vector ∂∆yt+1

∂pj
, is as follows (see (79)),

∂∆yt+1

∂pj
= − ∂a

∂pj
− ∂b

∂pj
“Xt+1|t − b

∂“Xt+1|t

∂pj
, ∀pj ∈ P. (83)

The (q + qinf + 1)× (q + qinf + 1) matrix
“V∆yt+1|t
∂pj

, is as follows (see (80)),

∂“V∆yt+1|t

∂pj
=

∂b

∂pj
“VXt+1|tb

′ + b
∂“VXt+1|t

∂pj
b′ + b“VXt+1|t

∂b′

∂pj
, ∀pj ∈ P. (84)

In principle, therefore, to compute ∂∆yt+1

∂pj
, and

∂“V∆yt+1|t
∂pj

, for every parameter pj ∈ P (37) (which

appear in the FOC of the maximum log likelihood function), we need to compute
∂ “Xt+1|t
∂pj

, and

∂“VXt+1|t
∂pj

, ∀pj ∈ P. All of these values can be calculated analytically and the details are available

from the authors upon request.
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