
Optimal Dynamic Contract of Influence

By Yi Chen∗

Draft: December 7, 2018

I study the optimal dynamic contract in a long-term principal-

agent relationship, where the agent privately observes an evolving

state but his preferences are state-independent. The principal com-

mits to action flows based solely on the agent’s reports. I show that

communication is generically effective despite the misaligned pref-

erences. Moreover, the optimal contract can stipulate actions that

move in the opposite direction of the principal’s ideal actions; a

necessary and sufficient condition is provided. The principal is

worse off over time in expectation, but the agent is not necessari-

ly immiserated. The results apply to dynamic allocation problems

such as capital budgeting.
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In organizations, the expert of relevant information is often not the decision-

maker, and the effectiveness of information transmission is limited by conflict of

interests. The self-interested informed agent could have a motive to misguide

the uninformed principal, who takes actions based on the communication. In

this paper, I investigate whether or not effective information transmission can

be induced by a dynamic contract, and how to best elicit and utilize the private

information.

As an example, the headquarters of a firm must decide how to allocate resources

over time to a division manager, who is endowed with a unique product. From the
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perspective of the headquarters, the optimal amount of resources to be allocated

to the division depends on some state of the product, say, profitability or a tech-

nical parameter. However, the division manager knows the state much better due

to specialization. Communication frictions arise if the manager always prefers

more resources to less, regardless of the product’s actual state. The headquarters

commits to a dynamic rule of resource allocation based on the manager’s reports.

With these severely misaligned preferences, does the headquarters benefit at all

from consulting the manager? If yes, does the headquarters necessarily allocate

more resources when the state of the product is optimistic, and vice versa?

To answer these questions, I use the framework of dynamic principal-agent

model. The agent privately observes a state process which evolves according to

a Brownian motion with drift. The agent continuously reports to the principal,

with the ability to manipulate the report by inflating or shading the true process

at any time. The principal observes nothing but the agent’s reports, and commits

to a dynamic contract specifying actions over time based on the report history.

The principal values information about the state: she suffers a quadratic cost in

the gap between the action and her “target”. The target is a function of the state,

specifying the ideal action of the principal given the state. In contrast, the agent

is severely biased in that he always prefers higher action levels regardless of the

state.

State-independent preferences of the agent can arise in a number of situation-

s. An investment manager with empire-building motives always prefers more

resources; a technician with emotional attachment to his own lifetime project in-

variably craves for more budget. It is well-known that communication is extremely

difficult if the agent has state-independent preferences and the principal-agent re-

lationship lasts for only one period. Indeed, the only way for the agent to tell

truth is to assign the same expected action for all reported states.

The prospect for communication is much brighter when it comes to long-term

relationships with an evolving state. In order to induce truthful reports from

the agent, the principal now has additional degrees of freedom to adjust the

sequence of actions while still keeping the agent’s continuation payoff independent

of the current report. These degrees of freedom allows the principal to reallocate

actions inter-temporally in her favor. This is how a dynamic contract improves

communication.

As a first result, I show that the optimal dynamic contract generically induces
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non-babbling communication, only except when the weighted discounted future

target is always equal to the current target. In other words, the principal benefits

from the inter-temporal trade-off while respecting the agent’s incentives, as long

as there is a profitable trade-off to make.

The intuition lies in how the target depends on the state, i.e. the shape of

the target function. Dynamic optimality requires the principal to balance the

present and future distortions. If the target is linear, then the principal finds

herself in the spot where the current mismatch between the action and the target

exactly equals the expected future mismatch, such that there is no direction for

profitable trade-off and babbling is the best contract. Somewhat surprisingly,

communication could fail even if the target is non-linear with some particular

form, for the same reason.

More importantly, the second result shows that when communication is effec-

tive, the optimal contract could behave counter-intuitively: to increase the action

when the target falls, and vice versa. This poses a stark contrast to the literature

of allocation problems where a quota-like mechanism prescribes a high allocation

at high states, at the cost of reducing the future pool of allocations. In this paper,

it could be optimal to save the quota when the state demands high allocations,

and use it otherwise. I find a simple necessary and sufficient condition for this to

occur, which turns out to involve the third derivative of the target function.

Why is it ever optimal to act against the target, and why should the third

derivative determine the nature of the contract? For simplicity, suppose the state

process has no drift, and the target function is increasing with a positive third

derivative. If there is an increase in the state, then the current target is higher,

and naturally the principal is inclined to raise the action level. Meanwhile, due

to the persistence of the state, future targets are higher in expectation too, and

therefore the principal is also tempted to allocate higher actions in the future to

bridge the gaps. Unfortunately, because of the agent’s incentive constraints, the

principal cannot achieve both. To induce truth-telling, she has to either increase

the current action and decrease the future actions, or the other way around.

Which way is better? Again, the shape of the target matters. Since the target

has a positive third derivative, its slope is convex in the state. Due to the random

state evolution, the expected slope in the future is higher than the current slope

by Jensen’s inequality. In other words, the future targets are more sensitive to

the current increase of the state, and hence in the inter-temporal trade-off the
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principal optimally sacrifices the current matching quality in exchange for better

matches in the future.

Moreover, the model delivers predictions regarding the long-term well-being of

the two parties. The principal faces an ever-increasing cost on average, meaning

that the quality of match is deteriorating over time. This is not attributed to the

cost-backloading argument; rather, the incentive constraints cause distortions to

accumulate over time. The agent, on the other hand, is not necessarily immiser-

ated. His payoff may drift up or down without bound depending on the shape of

the target function.

I explore two extensions of the main model. The first is mean-reverting state

process. It turns out that some persistence in the state is necessarily for the action

to move against the target. If the state displays strong mean reversion, then the

future targets are insensitive to the current state change, and there is little reason

to sacrifice the current action for future. This explains why such contracts seldom

arise in allocation problems where the state takes only two values: mean-reversion

is automatically built in the two-state Markov chain.

The second extension is to allow for monetary transfers with limited liability.

Depending on the tightness of this constraint, the optimal contract behaves ac-

cordingly. When the relationship evolves to the point where the limited liability

is almost binding, then the predictions of the main model is qualitatively pre-

served. Otherwise, the principal uses money as a cheaper method than allocation

to discipline the agent.

This paper is connected to the literature of communication in general. Since

Vincent P. Crawford and Joel Sobel (1982) and Jerry R. Green and Nancy L.

Stokey (2007), there is a large body of literature on cheap talk with a fixed one-

dimensional state (Robert J. Aumann and Sergiu Hart (2003), Vijay Krishna and

John Morgan (2001, 2004), Maria Goltsman, Johannes Hörner, Gregory Pavlov

and Francesco Squintani (2009), etc.). In these papers the static nature of decision

requires significant congruence of preferences in order for informative equilibria

to exist. Commitment power of the principal brings my paper closer to the

literature of delegation (Bengt Robert Holmström (1977), Ricardo Alonso and

Niko Matouschek (2008), Manuel Amador and Kyle Bagwell (2013)), but dynamic

delegation with full commitment is relatively understudied.

The paper also belongs to the literature of multi-dimensional influence game or

allocation problem. Improved communication is found in static cheap talk games
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with higher dimensional state (Marco Battaglini (2002), Archishman Chakraborty

and Rick Harbaugh (2010)) or multi-stage cheap talk (Mikhail Golosov, Vasili-

ki Skreta, Aleh Tsyvinski and Andrea Wilson (2014)). Asymptotic efficiency is

obtained in repeated cheap talk relationships (Jérôme Renault, Eilon Solan and

Nicolas Vieille (2013), Chiara Margaria and Alex Smolin (2017)). Static or dy-

namic models of multiple competing agents (Nemanja Antič and Kai Steverson

(2016), Daniel Fershtman (2017)) find “strategic favortism” as an optimal way to

discipline agents. Andrey Malenko (2016) and Raphael Boleslavsky and Tracy R

Lewis (2016) are dynamic mechanisms of influence with either costly verification

or noisy observation of the state. Among this literature two papers are closely

related. Matthew O Jackson and Hugo F Sonnenschein (2007) consider multi-

ple allocations together, and introduce a quota mechanism that utilizes the Law

of Large Numbers to achieve asymptotic efficiency. Due to its dynamic nature,

my model also features a “quota” (continuation payoff of the agent) that links

decisions across periods, but the usage of quota can be completely against the

principal’s temptation in some cases. Also, my model gives the exact optimal

mechanism for a fixed discount rate, instead of asymptotic efficiency. Yingni Guo

and Johannes Hörner (2017) characterizes the optimal dynamic mechanism with-

out transfer, which features a generalized quota. My paper shares the feature

that the agent’s private information is serially correlated, and the conflicts of

interest is severe. However, in my model the agent’s payoff is state-independent

and the state is more persistent than a two-state Markov chain, and consequently

the qualitative nature of the optimal contract is different.

Last but not least, the paper benefits from the insight of the literature on

dynamic agency problems with transfer (Ana Fernandes and Christopher Phelan

(2000), Marco Battaglini (2005), Yuliy Sannikov (2008), Noah Williams (2011),

Marek Kapička (2013), Peter M DeMarzo and Yuliy Sannikov (2016), Zhiguo He,

Bin Wei, Jianfeng Yu and Feng Gao (2017)). The absence of transfers in my

model generates quite different implications for the optimal contract.

The remainder of the paper is organized as follows. Section I presents a two-

period example to illustrate the key trade-off in the optimal contract. Section

II lays out the setting for the continuous-time model. Section III simplifies the

problem through revelation principle and derives a necessary condition for incen-

tive compatibility. Section IV fully analyzes the optimal contract and gives some

applications. Section V discusses two extensions, and Section VI concludes.
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I. A Two-Period Example

To illustrate inter-temporal trade-offs that shape a dynamic contract, it is con-

venient to start with a static example and then contrast it with a two-period

example.

First suppose there is only one period. A random state θ has normal distribution

N (0, 1). The agent observes θ and reports θ̂ ∈ R to the principal, who then takes

an action x ∈ R according to a pre-committed mechanism x = x(θ̂). There is no

transfer. Given the true state θ and the actual action x, the principal’s cost is

(x − f(θ))2, and the agent’s payoff is simply x. In other words, while the agent

prefers higher actions regardless of the state, the principal tries to match the

action with some state-contingent target, f(θ). In this static environment with

severe conflict of interests, meaningful communication cannot be induced in any

mechanism. Indeed, a mechanism must map all states into the same expected

action to respect the incentives of the agent. Because of the convex loss function,

the principal cannot do better than committing to a constant action at Eθ = 0,

which is unresponsive to the reported state.

The hope of meaningful communication is not entirely lost, however. Let us

move a step forward to the simplest dynamic example, with two periods t = {1, 2}.
The state θ evolves over time according to random walk:

θ1 = ε1, θ2 = θ1 + ε2,

where ε1 and ε2 are independently drawn from the normal distributionN (0, 1). In

each period t, the agent observes θt and reports θ̂t ∈ R to the principal, who then

relies solely on the report history to take action xt and ends period t. Again, there

is no transfer. The principal’s total cost from both periods is (x1−f(θ1))2 +(x2−
f(θ2))2, and the agent’s total payoff is x1+x2. Notice that the target function f(·)
is invariant to time. A dynamic contract is a pair (x1(θ̂1), x2(θ̂1, θ̂2)), mapping

report histories into actions. Without loss of generality I focus on contracts that

induce on-path truth-telling for the agent.
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To obtain the optimal mechanism, the principal solves the following:

min
x1(·),x2(·,·)

E
[
(x1 − f(θ1))2 + (x2 − f(θ2))2

]
s.t. x1(θ1) + E [x2(θ1, θ2)|θ1] > x1(θ̂1) + E

[
x2(θ̂1, θ̂2)

∣∣∣θ1

]
∀ θ1, θ̂1, θ̂2,(1)

x2(θ1, θ2) > x2(θ1, θ̂2) ∀ θ1, θ2, θ̂2.(2)

Constraint (2) requires that truth-telling is optimal for the agent in period 2

after a truthful report in period 1. Constraint (1) governs the period-1 incentive,

stating that the agent obtains the highest expected total payoff by truth-telling

in both periods, among all reporting strategies.

Since the agent’s payoff is completely state-independent, condition (2) implies

x2(θ1, θ2) = x2(θ1) for all θ2. That is, x2 must be independent of θ2, and I abuse

notation by writing x2(θ1) for short. Moving back to period 1, condition (1) is

then simplified to x1(θ1)+x2(θ1) > x1(θ̂1)+x2(θ̂1) for all θ1 and θ̂1. By switching

the pair of states, condition (1) reduces to:

x1(θ1) + x2(θ1) ≡W,

where W on the right-hand side is a constant, naturally interpreted as the (fixed)

total payoff of the agent. The optimal level of W is endogenously chosen by the

principal as part of the maximization problem.

At this point, the role of dynamics becomes clear. In the one-period case,

incentive compatibility requires the contract to specify an action independent

of the reported state, and therefore information is wasted and communication

fails. The logic is different when there are two periods. Indeed, period-2 report

is again ignored, reducing communication to babbling in that period. However,

the period-1 incentive constraint only requires the total payoff of the agent to be

unresponsive to θ̂1, but the action pair (x1, x2) still has one degree of freedom to

adjust. While the agent is indifferent among all action pairs that have the same

sum, the principal, who has different preferences, values the ability to reallocate

actions between periods in response to period-1 information.
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The optimal contract reads (derivation relegated to Appendix):

x∗1(θ1) =
1

2
(f(θ1)− E[f(θ2)|θ1]) +

1

2
(Ef(θ1) + Ef(θ2)) ,(3)

x∗2(θ1) = −1

2
(f(θ1)− E[f(θ2)|θ1])︸ ︷︷ ︸
responsive to θ1

+
1

2
(Ef(θ1) + Ef(θ2))︸ ︷︷ ︸

independent of θ1

.(4)

To interpret, both x∗1 and x∗2 can be decomposed into a term responsive to θ1, and

a constant term. The pair of actions add up to W ∗ ≡ x∗1(θ1) +x∗2(θ1) = Ef(θ1) +

Ef(θ2), meaning that the optimal choice of the total payoff is the unconditional

expectation of total targets across periods.1 Also, for either period, the constant

term is simply half of W ∗, a result from “cost smoothing”.

More importantly, the first terms in x∗1 and x∗2 respond to the period-1 report.

The period-1 incentive constraint x1 + x2 = W serves as a “budget” or “quota”

for inter-temporal allocation of actions. Along this budget line, x∗1 and x∗2 reacts

to period-1 report for cost minimization. To be precise, differentiating both sides

of (3) with respect to θ1 (assuming existence of f ′), we have:

dx∗1
dθ1

=
1

2

(
f ′(θ1)− d

dθ1
E [f(θ2)|θ1]

)
=

1

2

(
f ′(θ1)− E

[
f ′(θ2)|θ1

])
,(5)

where the second equality results from the random walk process. The sign of

this derivative is ambiguous. On one hand, a marginal change in the state θ1

calls for a corresponding change in the action x1 to better match the state, hence

the term f ′(θ1). On the other hand, the marginal change in θ1 also forecasts an

expected change in θ2, demanding an adjustment of action in period 2. Due to

the inter-temporal “budget constraint,” any adjustment of x2 is at the cost of x1,

causing an offsetting term −E [f ′(θ2)|θ1] in the bracket in (5). The relative sizes

of these competing effects shape the dynamic contract.

If the first effect is stronger, then it is more cost-efficient to let the action x∗1
move in the same direction as the target f(θ1), at the cost of worse expected

match in period 2. The action is thus called conformist at state θ1. If the

second effect is stronger, then cost-efficiency requires the action x∗1 to move in the

opposite direction as the target as a sacrifice, in exchange for a better match in

period 2. If this is the case, then the action is called conformist at state θ1. For

1This nice feature relies on the quadratic cost structure.
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Figure 1. Iso-cost curves and the budget line. Panel (a): the family of iso-cost curves and

the budget line. Panel (b): conformist—x1 and f(θ1) move in the same direction. Panel (c):

contrarian—x1 and f(θ1) move in opposite directions.

instance, when f(θ) = eθ, the action is contrarian at all θ1. For target function

f(θ) = θ− 1
2 |θ|, contrarian action occurs only at a subset of states. The action is

always conformist if f(θ) = θ
√
|θ|. Moreover, if f(θ) = θ or f(θ) = θ2, then the

two terms in the bracket of (5) always cancel out. As a result, the action pair

does not respond to information at all, indicating a failure of communication.

Figure 1 geometrically illustrates the cost minimization problem. In a (x1, x2)-

plane, incentive compatibility pins the action pair on a budget line with slope

−1, shown as the red line in Panel (a). The concentric circles are the principal’s

iso-cost curves. The center of the circles has coordinates (f(θ1),E [f(θ2)|θ1]),

namely, the period-1 target and the conditional expected period-2 target. Both

are determined by θ1 only. The constrained optimal choice of actions is found on

the tangent point (x∗1, x
∗
2), which spans a 45-degree line from the center. Panel (b)

shows conformist actions. Suppose a change in θ1 causes the current target f(θ1)

to increase, it also leads to a higher expected target E[f(θ2)|θ1] in period 2, due to

persistence of the state. Graphically, the change in θ1 shifts the center of circles

in the northeast direction from OA to OB, but the horizontal shift dominates (OB

lies below the 45-degree line OAA). In this case, the new contract (tangent point

B) asks for a higher current action x1 than before (point A). Panel (c) depicts

another possibility: the increase in expected period-2 target is more significant

than the increase in the current target. The new contract allocates lower current

action x1, against the agent’s report, in order to save for a higher action in period

2 for a better matching.
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In the next section, I lay out the formal model in continuous time and with

infinite horizon. Continuous time allows for the smooth evolution of information

and closed-form analysis. Infinite horizon enables the study of the asymptotics of

the contract.

II. The Continuous-Time Model

There is a principal (she) and an agent (he). Time t > 0 is continuous. A

stochastic process θ = (θt)t>0, called the state, evolves according to:

θt = θ0 + µt+ σZt,

where Z = (Zt)t>0 is the standard Brownian motion on the probability space

(Ω,F ,P). Constants µ and σ > 0 are drift and volatility, respectively. The

initial state θ0 is common knowledge.

Over time, the agent reports a manipulated version θ̂ = (θ̂t)t>0 of the state

process. Specifically:

dθ̂t = mtdt+ dθt,

where mt, chosen by the agent at every moment t > 0, is interpreted as the

“intensity of manipulation.” In other words, the reported process can drift away

from the true process. The principal takes action xt ∈ R at all times.

Interests are severely misaligned. While the principal’s favorite action depends

on the state, the agent only wishes to induce actions as high as possible. Specifical-

ly, the principal’s flow cost at time t from a state-action pair (θt, xt) is (xt−f(θt))
2,

i.e., she suffers a quadratic cost from the gap between the actual action xt and

the state-dependent target action f(θt).
2 The agent’s flow payoff is simply xt,

independent of the state.3 The linear payoff of the agent shuts down risk aversion

as a possible channel of rent extraction, as has been discovered in the literature.

The players discount future at rate r > 0. Given realized paths of action and

state, (xt, θt)t>0, the total cost of the principal and total payoff of the agent are,

2The quadratic assumption is for simplicity. It is not essential for the qualitative results.
3This insatiable preference of the agent can be interpreted as taking the bias b → ∞ in Vincent P.

Crawford and Joel Sobel (1982), although the main results do not rely on this extreme specification.
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respectively:

uP ((xt, θt)t>0) =

∫ ∞
0

re−rt(xt − f(θt))
2dt,

uA ((xt, θt)t>0) =

∫ ∞
0

re−rtxtdt,

whenever well-defined.

Other than the initial state θ0, the principal’s only information about the state

is the agent’s report history. That is, the principal does not observe her own flow

payoffs or any signals about past states.

The principal commits to a contract at time zero. I use superscript t to denote

a history up to time t. A contract x is a θ̂-measurable process specifying an action

xt(θ̂
t) ∈ R as a function of the report history, for all t > 0. There are no monetary

transfers.4 A strategy of the agent is a θ-measurable process m. It prescribes the

drift mt(θ
t) that the agent adds to the true state process as a function of the

state history, for all t > 0. I define the space of feasible strategies as:

M≡
{
m : E

[
e2α

∫ t
0 msds

]
<∞ ∀t, and lim

t→∞
e−rtE

[
e2α

∫ t
0 msds

]
= 0
}
,

where α ≡
√

2rσ2+µ2−|µ|
2σ2 , to exclude explosive strategies. This restriction is not

essential; In the end of Appendix I show the effect of relaxing the strategy set.

Given a contract-strategy pair (x,m), the total expected cost and payoff are

respectively:

UP (x,m) = Em
[∫ ∞

0
re−rt(xt − f(θt))

2dt

]
,

UA(x,m) = Em
[∫ ∞

0
re−rtxtdt

]
,

whenever well-defined, where Em denotes the expectation induced by strategy m.

Hereafter, “payoff” and “cost” refer to the agent’s total expected payoff and the

principal’s total expected cost, unless otherwise noted.

The agent chooses a strategy m to maximize his payoff given contract x. The

principal designs a contract x to minimize her cost given the agent’s optimal

4This is often the case in many organizations. Even if there are monetary transfers, I show in Section
V.B that as long as there is limited liability for the agent, the qualitative results are preserved when the
limited liability is close to be binding.
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choice of strategy in reaction to the contract.

III. Incentives of the Agent

This section performs two standard steps of simplification, facilitating the anal-

ysis of the optimal contract in Section IV. First, I restrict attention to truthful

contracts by invoking a version of the Revelation principle. Second, I use the

first-order approach to derive a necessary condition for incentive compatibility.

Sufficiency is verified after the candidate solution is obtained in Section IV.

A. Revelation Principle

A strategy m is called truthful if it is identically zero, denoted as m†. A contract

x is called truthful if the agent maximizes his payoff with the truthful strategy.

By Lemma 1 below, I can focus on truthful contracts without loss of generality.

LEMMA 1 (Revelation Principle):

Given any contract x that implements a mapping from state paths into action

paths, there exists a truthful contract x† that implements the same mapping.

Among truthful contracts (hereafter “truthful” is by default), the principal

solves:

min
(xt(·))t>0

E
[∫ ∞

0
re−rt(xt(θt)− f(θt))

2dt

]
(6)

s.t. E
[∫ ∞

0
re−rtxt(θt)dt

]
> E

[∫ ∞
0

re−rtxt(θ̂t)dt
]
,

where θ̂t = θt +

∫ t

0
msds, ∀ m ∈M.(7)

The incentive constraint (7) guarantees that any strategy achieves at best the

payoff from truth-telling. While the constraint is expressed as of time zero, it also

implies incentive compatibility at all later times since the agent faces a decision

problem with time-consistent preferences. Hidden behind (7) is the premise that

the payoff of the agent is well-defined. This is without loss of generality, because

if a contract generates non-integrable payoffs for the agent, it must bring infinite

cost to the principal, which is clearly suboptimal.
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B. Incentive Compatibility: Necessary Condition

The dynamic version of the first-order approach (Noah Williams (2011), Marek

Kapička (2013), Alessandro Pavan, Ilya Segal and Juuso Toikka (2014), Peter M

DeMarzo and Yuliy Sannikov (2016)) derives a local version of the incentive con-

straints, namely, conditions to prevent the agent from local deviations.

To apply this method, I define a process W = (Wt)t>0 for any contract x, by:

Wt(x) ≡ Et
[∫ ∞

t
re−r(s−t)xsds

]
,

as the agent’s on-path expected continuation payoff. The expectation Et is con-

ditional on the information generated by the state by time t. As is verified later,

this Wt together with θt suffices to summarize the history up to t.5 From now

on, I suppress the dependence of W on x to simplify notations.

Given a contract x, the evolution of W can be written as a diffusion process

according to Lemma 2.

LEMMA 2 (Martingale Representation Theorem):

For any contract x, there exists a θ̂-measurable process β = (βt)t>0 such that:

dWt = r(Wt − xt)dt+ rβt (dθ̂t − µdt).︸ ︷︷ ︸
=σdZt

(8)

The first term on the right-hand side of (8)represents the drift of Wt: it grows

at rate r and depletes as xt is paid out to the agent. The second term, which is the

diffusion, governs the incentives. On equilibrium path, it holds that dθ̂t − µdt =

σdZt, which has zero mean. The multiplier rβt is interpreted as the instantaneous

slope of the continuation payoff with respect to reported states, or “strength of

incentives” (Zhiguo He, Bin Wei, Jianfeng Yu and Feng Gao (2017), Peter M

DeMarzo and Yuliy Sannikov (2016)). Suppose the instantaneous slope rβt is

positive. By adding a drift m > 0 to the report for a short moment dt, the

5The use of the continuation payoff as one of the sufficient statistics for the history is common when it
comes to equilibrium payoffs (Dilip Abreu, David Pearce and Ennio Stacchetti (1986), Jonathan Thomas
and Tim Worrall (1990), etc.), but in a setting with persistent private information, an additional state
variable is often needed (Noah Williams (2011), Marek Kapička (2013), Yingni Guo and Johannes Hörner
(2017), etc.). In my model, the marginal continuation payoff does not appear as a state variable even
with persistent private information, because the agent’s payoff is independent of the state. Specifically,
the flow payoff and the evolution of the continuation payoff depend only on the action, which is publicly
observed. When the agent lies, the perception of the agent’s continuation payoff from the two parties
coincide, even if they hold different beliefs about the state.
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agent tricks the principal into believing that the state is mdt higher than it

actually is, and this results in an increase of rβtmdt in the agent’s continuation

payoff.6 Similarly, if rβt < 0, the agent can profit by shading the report. The

only way to deter a local deviation from truth-telling is to keep rβt identically at

zero. Proposition 1 formalizes the above reasoning as a necessary condition for

incentive compatibility.

PROPOSITION 1 (IC-FOC):

A necessary condition for incentive compatibility is βt = 0 for all t > 0.

According to the proposition, the only way to induce truth-telling from the

agent is to entirely disentangle his continuation payoff from the current report, a

theme already foreshadowed in the two-period model. While it may seem severe

as a constraint for the principal, there are lots of degrees of freedom to maneuver:

a given continuation payoff can be supported by infinitely many paths of actions.

Therefore, the choice of how the action paths responds to information, subject to

the IC-FOC, is the key to optimal utilization of information, and that is the task

of Section IV.

IV. Optimal Contract

In this section I find the optimal contract and derive its properties. When

using IC-FOC in place of the full incentive constraints, the solution is called a

“candidate” until verified to satisfy the original constraints.

From now on, I impose some regularity conditions on the target function.

ASSUMPTION 1 (Regularity):

(i) The target f is piecewise C2;

(ii) There exists α0 > 0, α1 ∈ [0, α) such that |f(θ)| 6 α0(eα1θ + e−α1θ).

Part (i) of the assumption puts some smoothness on the target function to enable

local analysis. Part (ii) uniformly bounds the target by some exponential function

with a low growth rate. It ensures the target does not drift to infinity too fast,

necessary for costs and payoffs to be finite. The definition of α is given in Section

II along with the strategy set M.

6With continuous time, the importance of the current flow payoff is negligible.
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A. Solving for the Optimal Contract

I use a recursive formulation to solve the relaxed problem where only the IC-

FOC is considered. As is conjectured in Section III.B, the optimal contract can

be written in terms of two state variables: the state θ and the continuation payoff

W . In Theorem 1 I formally prove that the candidate contract derived in the

recursive problem is indeed the solution to the original problem (6)-(7).

Define C(θ,W ) as the cost function of the principal, which has the two argu-

ments as conjectured. According to (8) and Proposition 1, the second argument

evolves as dWt = r(Wt−xt)dt. Hence, the cost function must satisfy the following

functional equation:

rC(θ,W ) = min
x

r(x− f(θ))2

+r(W − x)CW (θ,W ) + µCθ(θ,W ) +
σ2

2
Cθθ(θ,W ).(9)

The right-hand side of the equation consists of four terms. The first term is the

normalized flow cost. The second and third terms are expected changes in cost

caused by the drift in W and θ. The last term, the Itô term, reflects the volatility

in θ. In order for the recursive form to make sense, the cost and the payoff must

also satisfy the transversality condition:

lim
t→∞

e−rtE [C(θt,Wt)] = 0, lim
t→∞

e−rtEWt = 0.(10)

Conditions (9) and (10) admit a candidate solution for the cost and policy

functions:

C(θ,W ) ≡ (W − γ ? f(θ))2 +
σ2

r
γ ? (γ ? f)′2(θ),(11)

x(θ,W ) ≡ f(θ)− γ ? f(θ) +W,(12)

where γ is a kernel with asymmetric Laplace distribution:

γ(z) ≡ r√
µ2 + 2rσ2

e
µ

σ2
z−
√
µ2+2rσ2

σ2
|z|,

and γ ? f is the convolution between the two functions. Panel (a) of Figure 2

shows the graph of the kernel γ for different values of the drift µ. When µ = 0,
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Figure 2. The kernel and the convolution. Panel (a): Graphs of the kernel γ for µ < 0,

µ = 0, and µ > 0. Panel (b): The target function f (solid curve) and the convolution γ ? f

(dashed curve) for µ = 0.

the Laplace distribution is symmetric, otherwise it is skewed according to the

sign of the drift. The convolution γ ?f is economically interpreted as the expected

discounted future target, which summarizes global information about the target

function with weights depending on the state process. Indeed, it can be shown by

Fubini Theorem that γ ? f(θ) = E
[∫∞

0 re−rtf(θt)dt
∣∣θ0 = θ

]
. Panel (b) of Figure

2 presents a typical target function and its convolution with γ, when µ = 0.

Theorem 1 below verifies that (11) and (12) achieve the minimum cost in the

original problem (6)-(7).

THEOREM 1 (Optimal Contract):

The principal’s minimum cost is σ2

r γ ?(γ ?f)′2(θ0), achievable with the essentially

unique optimal contract:

xt(θ
t) ≡ f(θt)− γ ? f(θt) + γ ? f(θ0)︸ ︷︷ ︸

W0

+ r

∫ t

0
(γ ? f(θs)− f(θs)) ds︸ ︷︷ ︸

Wt−W0

.(13)

Theorem 1 has several implications. First, since the principal is free to choose

any initial W0, the cost is minimized at W0 = γ ? f(θ0), which is the expected

discounted future targets. That is, the principal should not distort the actions

on average in the optimal contract; instead, the optimality comes from the way

in which the action responds to the state. This will be discussed in detail in

Subsection IV.B.

Second, the minimized cost is non-negative, and this cost is entirely due to
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agency problem. Indeed, without private information or preference misalignment,

the cost could have been zero.

Third, the optimal contract echoes that of the two-period example: the action

cashes out the agent’s continuation payoff smoothly, and responds to the current

state in two competing ways. Rearranging terms in the policy function, one

arrives at the Euler’s equation:

x(θ,W )− f(θ)︸ ︷︷ ︸
current distortion

= W − γ ? f(θ)︸ ︷︷ ︸
future distortion

,

which is more intuitive. The left-hand side is the gap between the current action

x and the current target f(θ), or simply, the current distortion. The right-hand

side is the gap between the expected discounted future action W and the expected

discounted future target γ ? f(θ), or, the future distortion. The distortions must

be balanced across time at optimum, meaning that it is optimal to set the current

distortion as a fixed share of the future distortion. This smoothing motive is built

in the convex flow cost of the principal.

The optimal contract sheds light on the effectiveness of communication from

the principal’s perspective. On one hand, the cost does not surpass the babbling

cost, i.e., the lowest cost if the principal uses a deterministic action path. On

the other, the cost is bounded below by zero—the cost as if there is complete

information. In fact, the shape of the target function determines when the two

bounds are achieved, as is summarized in Theorem 2.

THEOREM 2 (Impossibility):

(i) Zero cost is obtained if and only if the target is almost everywhere identical to

a constant.

(ii) For µ = 0, the cost reaches the babbling cost if and only if the target is almost

everywhere identical to a polynomial of order up to 2.

(ii) For µ 6= 0, the cost reaches the babbling cost if and only if the target is almost

everywhere identical to c0 + c1θ + c2e
− 2µ

σ2
θ for some constants c0, c1, c2.

The theorem is interpreted as two impossibility results. First, friction-less com-

munication is not achievable unless the state has no bearing on the principal’s

cost. Second, for some non-generic set of target functions, communication fails

even with a dynamic contract. Specifically, if the target is affine in the state,

then the action is a constant over time and babbling is the inevitable outcome.
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Stranger still, babbling is optimal even when the target has some particular form

of curvature. Theorem 2 conveys the message that it is necessary to investigate

higher order derivatives of the target than simply the curvature. This is explored

further in the next subsection.

B. Conformist or Contrarian Response?

With the optimal contract at hand, it is time to answer the questions raised

in the Introduction: Should the action always move in the same direction as

the target? When is it optimal to act “against” the agent’s report? The fol-

lowing analysis provides necessary and sufficient conditions for the action to be

conformist or contrarian. To proceed, I first formalize these two terms.

DEFINITION 1 (Contrarian vs Conformist):

At state θ where f ′(θ) exists, the action x is called conformist ( contrarian, resp.)

if:

f ′(θ)
∂x

∂θ
> 0 (< 0, resp.),

i.e., the action moves in the same (opposite resp.) direction as the target.

The above definition makes sense because, as is explained below, in the optimal

contract the conformist or contrarian property depends only the current state,

not the state history.

Theorem 3 below proposes two interchangeable criteria to check in which direc-

tion the optimal action should move. The first criterion (ii) involves a comparison

between f ′ and (γ ? f)′. The second criterion (iii) simply rewrites the same ex-

pression in terms of higher order derivatives.

THEOREM 3 (Conditions for Conformist and Contrarian):

The following statements are equivalent:

(i) The optimal contract stipulates a conformist (contrarian, resp.) action at state

θ.

(ii) (f ′(θ)− (γ ? f)′(θ))f ′(θ) > 0 (< 0, resp.).

(iii)
(

(γ ? f)′′(θ), (γ ? f)′′′(θ)
)
· (2µ, σ2)f ′(θ) < 0 (> 0, resp.).

According to the theorem, contrarian actions can occur in many scenarios.

Subsection IV.D is dedicated to enumerating economically meaningful examples

where contrarian actions arise. Why would contrarian action ever be optimal?
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After all, it is tempting to increase the action following a rise in the target, the

usual way that the “quota” of actions is used in the literature.

Here is the intuition. Heuristically, the slope f ′(θ) can be interpreted as the

information sensitivity of the principal at state θ. A steeper slope corresponds to

a target that is more sensitive to a state change. Suppose f ′ > 0 for simplicity.

If the current state has a shock dθ > 0, then the current target increases by

f ′(θ)dθ, and the principal is tempted to increase the current action. Meanwhile,

because of the persistence of the state process, the expected discounted future

target increases as well, by (γ ? f)′(θ)dθ. This also creates the motive to increase

total future actions to better match the higher expected targets. However, she

cannot achieve both due to incentive constraints: higher current action must be

followed with lower future actions, and vice versa. Therefore, if f ′(θ) is larger,

then the current information sensitivity is higher than future, and the inter-

temporal trade-off tips the scale in favor of the current action. In this way, the

current action increases along with the current target (conformist), at the cost

of future matching. Conversely, if the future information sensitivity (γ ? f)′(θ)

is higher, then the principal optimally sacrifices the current matching in order to

rebalance the Euler equation. As a result, the current action moves against the

current target (contrarian).

Either way, the ability to trade-off between the present and future benefits the

principal, and this is how a dynamic contract facilitates communication above the

babbling level. In the knife-edge case where f ′ = (γ ? f)′ for all states, there is

no direction for profitable trade-off, and the principal is stuck with babbling. As

is evident from Theorem 2, this can happen even if f is non-linear. For example,

suppose µ = 0 and f is quadratic. The information sensitivity f ′ is not a constant

but is affine. Hence, when computing the expected future information sensitivity,

the diffusion of the state cancel out and one arrives at the current information

sensitivity. Only when f ′ itself has curvature, can the state uncertainty generate

trade-off opportunities.

The optimal contract works in the similar pattern as the “quota mechanism”

in the literature of allocation problems (Matthew O Jackson and Hugo F Son-

nenschein (2007), Jérôme Renault, Eilon Solan and Nicolas Vieille (2013), Yingni

Guo and Johannes Hörner (2017)). However, the important difference lies in how

the quota is used. The usage of quota is “conformist” in the literature: as long as

the quota is not depleted, spend it when the state is worth spending, and save it
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otherwise. In my paper, however, the optimal action can be contrarian depending

on two factors: the shape of the target function and the (persistent) state process.

When is contrarian action more likely to occur? Condition (iii) of Theorem 3

gives a neat breakdown. Ignoring f ′(θ), the left-hand side appears as the inner

product of two vectors. The former characterizes the expected future target in

terms of absolute prudence − (γ?f)′′′(θ)
(γ?f)′′(θ) , and the latter summarizes the state process

through normalized drift 2µ
σ2 . This inner product boils down to two additive terms:

2µ(γ ? f)′′(θ)︸ ︷︷ ︸
drift effect

+ σ2(γ ? f)′′′(θ)︸ ︷︷ ︸
volatility effect

.

If the expected future target is convex, i.e., (γ ?f)′′ > 0, then with a positive drift

the information sensitivity is increasing with time in expectation. This contributes

to a more contrarian action through the drift effect when f ′ > 0. On the other

hand, if the expected future target has positive third derivative ((γ ? f)′′′ > 0),

then due to the diffusion (σ2 > 0) the information sensitivity tends to increase

over time by Jansen’s inequality. This favors a contrarian action through the

volatility effect when f ′ > 0. The intuition for the case f ′ < 0 is similar.

C. Evolution of the Contract

Over time, the cost and payoff evolve stochastically on the equilibrium path. In

Proposition 2, I briefly explore the evolution of the contract to see the trends of

the principal’s costs and the agent’s continuation payoff as the relationship moves

on.

PROPOSITION 2 (Cost and Payoff Dynamics):

(i) The continuation cost is a sub-martingale, i.e.,
Et [dCt]

dt
> 0;

(ii) The continuation payoff monotonically increases (decreases, resp.) over time

if γ ? f(θ)− f(θ) > 0 (< 0, resp.), or equivalently 2µγ ? f(θ) + σ2(γ ? f)′(θ) > 0

(< 0, resp.), for all θ.

Part (i) of Proposition 2 claims that the principal faces higher and higher costs

in expectation as the contract is carried out over time. While the increasing cost

is usually attributed to the distortion back-loading motive of the principal, it

is not the case here. The actual reason is that with incentive constraints, the

continuation payoff that the principal commits to the agent diverges from the
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Figure 3. Binary target with parameters: r = 1, σ = 1, µ = 0, θ0 = −0.4. Panel (a): the target

function (solid curve) and its convoluted version (dashed curve). Panel (b): Simulated paths

of the target (blue dashed curve) and the optimal action (red solid curve). The action

always jumps one-for-one when the target jumps, otherwise it always moves in the opposite

direction of the state.

principal’s favorite level γ ? f almost surely, therefore the distortion accumulates

over time on average. It is shown in the proof that the continuation cost Ct always

has a non-negative drift, strictly positive if the target is not a constant.

Part (ii) predicts the drift of the continuation payoff in two cases, based on

the difference γ ? f − f , which can be equivalently expressed as 1
2r

(
(γ ? f)′, (γ ?

f)′′
)
· (2µ, σ2). In the case of µ = 0, the difference is solely determined by the

curvature of γ ? f . This result implies that the agent does not necessarily end up

immiserated; instead, his destiny depends on the nature of the target function.

D. Examples

The specific form of the target function varies by economic situations. This

subsection studies some typical target functions and their implications for the

optimal contract.

Binary Target

In some applications, the target takes only binary values. For instance, the

market size enjoys a discrete boost if a product-related parameter satisfies a min-

imum requirement, say, zero. In other words, there is an “active zone” [0,∞) in

which the target is higher.

To be specific, let f(θ) = 1{θ > 0}. While the target is discontinuous at 0, the

expected future target γ ? f is continuously differentiable. It can be shown that
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f ′ < (γ ? f)′ at all states except zero, the discontinuity point. Since the target

is flat at these states, the action is neither conformist nor contrarian. However,

the action does respond to the state in the opposite direction. Only at the cutoff

state 0 does the action jump in the same direction and with the same magnitude

as the target. Panel (a) of Figure 3 pictures the target and the expected future

target. Panel (b) simulates the time paths for the target and the action. Every

time the target jumps, the optimal action jumps one-for-one. This happens when

the state crosses the cutoff 0. At other times, the action moves against the state,

which is not shown in the picture.

The intuition is as follows. When the state increases from 1 to 2, the current

target does not change (stays at 1), but on average the future target increases.

As a result, the allocation should favor the future by lowering the action now to

make room for future increases.

Kinked Target

In some situations, the target action has a piece-wise nature. Initially the target

increases fast with the state, until the state reaches some threshold beyond which

the target becomes less responsive, or even stops growing. Such regime changes

can occur when some sub-market is saturated, or when the marginal return for

a technical parameter drops after meeting a certain threshold. Of course, the

regime shift can occur at multiple states with any type of kinks.

For concreteness, I study an example where the target function increases one-

for-one at states below 0 but the slope drops to b ∈ (0, 1) at states above 0:

f(θ) =

{
θ if θ 6 0

bθ if θ > 0
.

A little algebra shows that f ′(θ) < (γ ?f)′(θ) if and only if θ > 0, which, based on

Theorem 3, predicts conformist actions at states below 0 but contrarian actions

above 0. The target function and its expected future version are depicted in Panel

(a) of Figure 4. Panel (b) shows the simulated paths for the target and the action.

Perfectly aligned with the analysis, the action co-moves with the target whenever

the target f(θ) is below the kink (θ < 0), and it moves against the target above

the kink.

Intuitively, at low states the information sensitivity is already at its highest
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Figure 4. Kinked target with parameters: r = 1, σ = 1, µ = 0, θ0 = 0, b = 0.33. Panel (a): the

target function (solid curve) and its convoluted version (dashed curve). Panel (b): Simulated

paths of the target (blue dashed curve) and the optimal action (red solid curve). The dotted

curve shows the locus of the target at the kink. The cyclicality of the two paths depends

on whether the target is above the kink.

possible value, and thus the expected future slope can only be lower. At high

states where the information sensitivity is already lowest, it can only increase in

the future. This explains the conformist and contrarian patterns.

Exponential Target

Exponential target can be a good approximation if the target is monotone in

the state but displays increasing or decreasing sensitivity to state changes. For

instance, suppose the state is the profitability of a product in an industry where an

increase in profitability calls for disproportional increase in the level of operation.

Generally, an exponential target function can be written as f(θ) = b0e
b1θ such

that Assumption 1 is satisfied. The target is increasing if b0b1 > 0 and decreasing

if b0b1 < 0. With this exponential target function, the expected future marginal

target becomes (γ ? f)′(θ) = 2r
2r−2µb1−σ2b21

f ′(θ).

According to Theorem 3, the action is contrarian at all states as long as b1 is

not between 0 and −2µ
σ2 . When µ = 0, this condition is automatically satisfied.

Panel (a) of Figure 5 shows both the target function and the expected future

target function, when the target function is chosen to be exponential and the

drift is zero. Panel (b) displays simulated paths of the target and the optimal

action. The dotted curve represents the same trend for both paths (recall that

the action is “correct on average”). The action path and the target path, plotted
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Figure 5. Exponential target with parameters: r = 1, σ = 1, µ = 0, θ0 = 0, b0 = −1, b1 = −0.7.

Panel (a): the target function (solid curve) and its convoluted version (dashed curve).

Panel (b): Simulated paths of the target (blue dashed curve) and the optimal action (red

solid curve). The dotted curve is the same trend for both paths; it always separates the

target and the action on opposite sides.

in solid and dashed curves respectively, always lie on opposite sides of the dotted

curve.

It is important to compare this example with the previous one of kinked tar-

get. Both represent an increasing and concave target, but the implications for

the optimal contract are very different. This contrast corroborates the earlier

finding that it is insufficient to only look at the curvature of the target function

to determine the pattern of the optimal contract.

V. Extensions

This section extends the main model in two directions: to consider less per-

sistent state process by introducing mean reversion, and to partially relax the

no-transfer assumption by allowing for money with limited liability.

A. Mean Reverting State Process

Persistence of the state process has demonstrated its importance in the inter-

temporal trade-off: future information sensitivity can be important, and some-

times even more important than the current information sensitivity because of

the persistence in the state. In the main model the persistence is high in that

any current shock persists through time without decay.

When the state process exhibits mean-reversion, the persistence is weaker. For
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Figure 6. The effect of mean-reversion, with parameters r = 1, σ = 1, φ = .5, θ0 = 0. Panel (a):

The solid curve is the target f(θ) = θ and the dashed curve is Γf . Panel (b): The solid curve

is the target f(θ) = θ2 and the dashed curve is Γf .

simplicity, here I assume a mean-reverting state process:

dθt = −φ(θt − θ0)dt+ σdZt.

It can be shown that Proposition 1 still holds as a local version. With the same

procedure as in the main model, the cost and policy functions are obtained as

follows:

C(θ,W ) = (W − Γf(θ))2 +
σ2

r
Γ(Γf)′2(θ), x(θ,W ) = W + f(θ)− Γf(θ),

where the functional operator Γ is such that g = Γf gives the unique solution to

the ODE:

σ2g′′(θ)− 2(θ − θ0)µg′(θ)− 2rg(θ) = −2rf(θ), lim
θ→±∞

e−
√

r
2σ2
|θ|g(θ) = 0.(14)

Unlike the main model, the explicit form of Γ is not obtainable in general

with mean reversion. To gain an impression of the effect of mean-reversion, it

nonetheless suffices to look at some specific cases where closed-form solution is

available.

To begin with, let θ0 = 0 and f(θ) = θ, which is linear in the state. By method

of undetermined coefficients, it is easy to verify the solution Γf(θ) = r
r+φθ. While

the solution is still linear, the coefficient on θ is dampened towards zero by a fac-
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tor of r
r+φ < 1. Intuitively, states far away from θ0 are very likely to drift back

towards θ0 and hence take less weight than states near θ0 in the computation of

the expected future target. As a result, future information sensitivity is damp-

ened. Recall that communication is babbling and the action does not respond to

information when φ = 0, this dampening effect causes two changes: communica-

tion becomes effective and the action is always conformist. As µ→∞, the state

process approaches i.i.d., and Γf is completely flattened. In that case, the action

tracks the target exactly one-for-one, and the complete information cost obtain-

s. This example also explains the prevalence of “conformist” quota usage in the

literature where the private information follows a finite state Markov chain and

the target is linear. Panel (a) of Figure 6 how the future information sensitivity

(Γf)′ is dampened towards zero relative to the current information sensitivity f ′.

Next, let f(θ) = θ2 be quadratic. The solution becomes Γf(θ) = σ2

r+2φ + r
r+2φθ

2.

This time, the coefficient for θ2 is dampened even more by r
r+2φ . Communication

is effective, and the action is conformist as long as f ′ 6= 0. When φ = 0, we

are back in the main model: communication fails and the action path does not

respond to information. Panel (b) of Figure 6 belongs to this quadratic case.

If we take a step further to let f(θ) = θ3, the solution Γf = r
r+3φθ

3 +
3rσ2

(r+3φ)(r+φ)θ is more interesting. The action would have been contrarian at all

nonzero states if φ = 0, but now with mean reversion the set of states shrinks to(
−
√

r
3φ(r+φ)σ,

√
r

3φ(r+φ)σ

)
\{0}. As φ→∞, the measure of this set vanishes.

In sum, the mean reversion serves to undermine the importance of future in-

formation sensitivity, resulting in a more conformist action than before.

B. Transfer with Limited Liability

There are situations where monetary transfer is either legal or difficult to de-

tect or prohibit. How do the main results extend? If the transfer is entirely

unconstrained, then the socially efficient action is always taken, and the principal

always uses (positive or negative) monetary transfer to off set the effect of action

on the agent.

More realistically, money only moves from the principal to the agent, i.e., the

agent has a limited liability constraint. For simplicity I focus on the linear target

function: f(θ) = θ. The linearity would have resulted in babbling were there no

transfer allowed, but it is no longer the case here. Let y = (yt > 0)t>0 denote
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the process of non-negative transfer from the principal to the agent, as part of

the contract. Both players are risk-neutral with respect to money. The principal

solves:

min
(xt(·))t>0

(yt(·)>0)t>0

E
[∫ ∞

0
re−rt

(
(xt(θ

t)− f(θt))
2 + yt(θ

t)
)

dt

]

s.t. E
[∫ ∞

0
re−rt(xt(θt) + yt(θ

t))dt

]
> E

[∫ ∞
0

re−rt(xt(θ̂t) + yt(θ̂
t))dt

]
,

where θ̂t = θt +

∫ t

0
msds, ∀ m ∈M.

It can be shown that in the optimal contract, transfer never occurs in finite

time. Suppose it is used at some time t, then there is always another contract

delaying this payment with interest rate r that keeps the incentive of the agent

but relaxes the limited liability. However, the optimal contract is affected by the

mere existence of money. In fact, money serves as an option that can be used to

fulfill the continuation payoff W . If W is excessively high relative to the current

target, then the principal is promising too much, and has the cheaper option to

use money rather than high actions to fulfill the promise, considering the fact

that money has a linear instead of quadratic cost. In the limit as W → ∞, the

cost function converges to the “unlimited money” case. In contrast, when W

is excessively low, the principal wants to “charge” money from the agent, but

cannot due to limited liability. Hence, as W → −∞, the cost function converges

to the no-transfer case as in the main model.

Since f(θ) = θ is homogeneous, the cost function depends only on the difference

W −θ: C(θ,W ) = C(W −θ), with abuse of notations. The uni-variate function C

is shown in Panel (a) of Figure 7. As expected, it approaches the unlimited-money

lower bound as W − θ → ∞, and the no-money upper bound as W − θ → −∞.

The policy function reads x(θ,W ) = θ+ 1
2C
′(W − θ). This time, ∂x(θ,W )

∂θ depends

on W , meaning that whether the action is conformist or contrarian at a given

state is history-dependent. Panel (b) of Figure 7 represents a ratio of derivatives
∂x(θ,W )

∂θ /df(θ)
dθ fixing W = 0. When θ is high so that W is relatively low, this ratio

is nearly zero, consistent with the non-responsiveness result in the no-money case

when f is linear. When θ is very negative, the derivative is close to one, consistent

with the perfect conformist action in the unlimited-money case.

Similar results extend to nonlinear target functions. Panel (c) of Figure 7 shows
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W − θ0

C(W − θ)
no money

unlimited money

(a)

θ0

∂x(θ,0)
∂θ

/df(θ)
dθ

1

(b)

θ
0

∂x(θ,0)
∂θ

/df(θ)
dθ

1

(c)

Figure 7. Transfer with limited liability. Parameters: r = 1, σ = 1. Panel (a): cost function

in solid curve, with f(θ) = θ. Panel (b): the ratio of derivatives at W = 0 in solid curve, with

f(θ) = θ. Panel (c): the ratio of derivatives at W = 0 in solid curve, with f(θ) = −e−0.6θ.

the ratio of derivatives holding W = 0, for the target function f(θ) = −e−0.6θ.

Again, its behavior approaches either contrarian or perfect conformist based on

the tightness of money.

VI. Conclusion

I use the principal-agent model with dynamic contract to study the communica-

tion problem. Since the agent has state-independent preferences over the princi-

pal’s actions, one-shot communication is inevitably babbling even if the principal

can commit. In contrast, I show that a dynamic contract salvages partial value of

information in most cases, because of the principal’s ability to reallocate distor-

tions across time while respecting the incentives of the agent. Nonetheless, there

are cases in which the ability of inter-temporal trade-off disappears even if the

principal’s favorite action is non-linear the state.

More importantly, the optimal contract can behave in a counter-intuitive man-

ner: decrease the action when the target increase, and vice versa, despite the

obvious temptation to close the gap between the action and the target. This phe-

nomenon arises when future weighs more than present in terms of sensitivity to

information. I show that it is the third derivative, not only the curvature, of the

target function that plays a critical role in determining the shape of the contract.

The contrarian response can be viewed as a new implication from agency prob-

lems; it never arises if there is no conflict of interests. The more aligned the

preferences, the less likely that the optimal contract is contrarian. The contrari-

an action against the agent’s report does not come from the distrust towards the
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agent (recall that it is a truthful contract), instead it can be the most efficient

way of using information given the conflict of interests.
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Appendix

Solving the Two-Period Contract

PROOF:

The IC’s are simplified to one equation: x1(θ1) + x2(θ1) = W . Plug this back

to the objective to obtain the unconstrained problem:

min
x1(·),W

E
[
(x1(θ1)− f(θ1))2 + E

[
(W − x1(θ1)− f(θ2))2

∣∣θ1

]]
.

For every θ1, the FOC w.r.t. x1(θ1) gives

x1(θ1) =
1

2
W +

1

2
(f(θ1)− E [f(θ2)|θ1]) .

Plug the above to the objective, and then take FOC w.r.t. W :

W = Ef(θ1) + Ef(θ2).
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Replacing W in the expression of x1(θ1) with the above, we have the solution (3).

The IC condition then leads to (4).

Proof of Lemma 1

PROOF:

Suppose the given contract x induces a (not necessarily truthful) strategy m ∈
M, which generates a mapping from state paths into action paths. Let Mt ≡∫ t

0 msds be the accumulated manipulation. Consider a new contract x† such that

x†t(θ̂
t) ≡ xt((θ̂ + M)t). I claim that truth-telling m† is optimal for the agent

under the new contract. If not, then there exists a strategy m′ ∈ M along with

M ′t ≡
∫ t

0 m
′
sds such that E

[∫∞
0 re−rtx†t((θ +M ′)t)dt

]
> E

[∫∞
0 re−rtx†t(θ

t)dt
]
.

Contradiction arises as m+m′ ∈M outperforms m in the original contract:

E
[∫ ∞

0
re−rtxt((θ +M +M ′)t)dt

]
= E

[∫ ∞
0

re−rtx†t((θ +M ′)t)dt
]

> E
[∫ ∞

0
re−rtx†t(θ

t)dt

]
= E

[∫ ∞
0

re−rtxt((θ +M)t)dt

]
.

The new contract x† implements the original mapping from θt to xt by construc-

tion, ∀ t.

Proof of Lemma 2

PROOF:

Given a contract x, define the process of the agent’s total payoff evaluated at

time 0 but with information at time t:

Ŵ 0
t ≡

∫ t

0
re−rsxsds+ e−rtWt,

which is a martingale because for any 0 6 t′ 6 t,

Et′Ŵ 0
t =

∫ t′

0
re−rsxsds+Et′

[∫ t

t′
re−rsxsds

]
+e−rtEt′

[∫ ∞
t

re−r(s−t)xsds
]

= Ŵ 0
t′ .

By Theorem 1.3.13 in Karatzas and Shreve (1991), the martingale Ŵ 0
t has a RCLL

modification. Therefore by Theorem 3.4.15 in the same book, the martingale has
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a representation

Ŵ 0
t = Ŵ 0

0 +

∫ t

0
re−rsβsσdZs, ∀ t > 0.

Subtracting the two expressions for Ŵ 0
t and then differentiating w.r.t. t, we have

dWt = r(Wt − xt)dt+ rβtσdZt = r(Wt − xt)dt+ rβt(dθ̂t − µdt),

which has an equivalent integral form Wt = W0 +
∫ t

0 r(Ws − xs)ds+
∫ t

0 rβsσdZs.

Proof of Proposition 1

PROOF:

For any strategy m ∈ M, Novikov’s condition is satisfied. By Girsanov The-

orem there exists a martingale Y with Yt ≡ e
1
σ

∫ t
0 msdZs− 1

2σ2

∫ t
0 m

2
sds, serving as

the Radon-Nikodym derivative between the measure induced by m and the mea-

sure under truth-telling. It evolves according to dYt = Yt
mt
σ dZt with Y0 = 1.

Besides Yt, the cumulative manipulation Mt =
∫ t

0 msds is also a state variable,

with evolution dMt = mtdt. Then, the agent’s payoff from a strategy m ∈ M is

E
[∫∞

0 re−rtYtxtdt
]
.

Let pY be the costate variable for the drift of Y , and qY the costate for the

volatility of Y . Let pM and qM be the counterparts for M . The agent’s current

value Hamiltonian is rY x+ qY Y m
σ + pMm.

The first order condition for m = 0 to be optimal, evaluated at m = 0, Y = 1,

is

qY

σ
+ pM = 0.(A1)

The Euler equations for Y and M , evaluated at m = 0, Y = 1, are

dpY = r(pY − x)dt+
qY

σ
(σdZt),(A2)

dpM = rpMdt+
qY

σ
(σdZt),(A3)

with transversality conditions limt→∞ pYt e
−rt = 0 and limt→∞ pMt e

−rt = 0. The

solution to the above BSDE’s are pYt = Et
[∫∞
t re−r(s−t)xsds

]
= Wt and pMt = 0,

where Wt is the agent’s continuation payoff defined in Section III.B. Hence, by

comparing (A2) and (8), we have qY

σ = rβ. Plugging this back to (A1) and using
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the fact pM = 0, we have the necessary condition β = 0.

Proof of Theorem 1

PROOF:

The proof takes two steps. Step one, I show that the candidate cost function,

along with policy function (12), indeed achieves the lowest cost in the relaxed

problem. Step two, I show that the candidate solution is also satisfies the global

IC conditions.

Step one. For any contract x̂ satisfying the IC necessary condition and the

transversality condition of the agent, define Ŵ as the resulting continuation payoff

process with Ŵ0 = W0, and define

Ĉ0
t ≡

∫ t

0
re−rs(x̂s − f(θs))

2ds+ e−rtC∗(θt, Ŵt)(A4)

as the total cost process evaluated at time t. In this process, the policy follows the

arbitrary contract x̂ until time t and then the candidate cost function takes place

as continuation, promising Ŵt as continuation payoff. The goal is to show that Ĉ0
t

is a martingale if x̂ coincides with the optimal policy (12), and is a sub-martingale

if not. The total differential for Ĉ0
t is

ertdĈ0
t = r(x̂t − f(θt))

2dt− rC∗(θt, Ŵt)dt+ r(Ŵt − x̂t)C∗W (θt, Ŵt)dt

+σC∗θ (θt, Ŵt)dZt + µC∗θ (θt, Ŵt)dt+
σ2

2
C∗θθ(θt, Ŵt)dt

= σC∗θ (θt, Ŵt)dZt + r(x̂t − xt)(x̂t + xt − 2f(θt)− C∗W (θt, Ŵt))dt

= σC∗θ (θt, Ŵt)dZt + r(x̂t − xt)2dt,

where xt = x∗(θt, Ŵt) is the candidate policy, the second equality follows from

the HJB (9), and the third equality utilizes the policy function (12). It is clear

that

ert
EtdĈ0

t

dt
= r(x̂t − xt)2 > 0,(A5)

with equality if and only if x̂t = xt.

In the following I show that the arbitrary contract x̂ does not achieve a lower
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cost, given the agent’s truthful report. For any initial value (θ0,W0),

C∗(θ0,W0) = Ĉ0
0 6 EĈ0

∞ = E
∫ ∞

0
re−rs(x̂s − f(θs))

2ds+ lim
t→∞

Ee−rtC∗(θt, Ŵt).

If E
∫∞

0 re−rs(x̂s−f(θs))
2ds =∞, then this contract x̂ results in infinite cost. Now

suppose E
∫∞

0 re−rs(x̂s − f(θs))
2ds < ∞, i.e. E

∫∞
0 (x̂s − f(θs))

2d (−e−rs) < ∞.

This means, with respect to the finite product measure, x̂−f(θ) ∈ L2. At the same

time, it is straightforward to verify that f(θ) ∈ L2 with Assumption 1 (ii). By the

closure to addition of L2, one arrives at the conclusion that E
∫∞

0 re−rsx̂2
sds <∞.

For any Ŵ satisfying the agent’s transversality condition, we must have Ŵt =

Et
∫∞

0 x̂t+sd (−e−rs). Therefore,

ertEŴ 2
t = ertE

(∫ ∞
0

x̂t+sd
(
−e−rs

))2

6 ertE
∫ ∞

0
x̂2
t+sd

(
−e−rs

)
= E

∫ ∞
t

re−rsx̂2
sds <∞,

where the first inequality follows from Hölder’s inequality. Taking limit as t→∞,

we have limt→∞ E
[
ertŴ 2

t

]
= 0. Moreover, it is straightforward to verify that

E
[
ert(γ ? f(θt))

2
]

vanishes. Hence, limt→∞ E
[
e−rtC∗(θt, Ŵt)

]
= 0 by notic-

ing that (Ŵt − γ ? f(θt))
2 6 2(Ŵ 2

t + (γ ? f(θt))
2). This means C∗(θ0,W0) 6

E
∫∞

0 re−rs(x̂s − f(θs))
2ds.

Step two. It remains to check the IC conditions for global deviations. Suppose

the agent adopts an arbitrary misreporting strategy m, so that the reported

process is θ̂ = θ+M where Mt =
∫ t

0 mtdt. The resulting action and continuation

payoff processes are denoted as xm and Wm. Since dWm
t = r(Wm

t − xmt )dt, we

know that xmt dt = − ert

r d
(
e−rtWm

t

)
. Therefore the agent’s payoff from strategy

m is:

lim
t→∞

E
∫ t

0
re−rsxms ds = W0 − lim

t→∞
e−rtEWm

t ,

which means the IC conditions are met as long as limt→∞ e−rtEWm
t = 0 for

all m ∈ M. For any given strategy m ∈ M, there exists T > 0 such that
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Ee
√

2rσ2+µ2

σ2
Mt < ert for all t > T , so for those large t,∫ t

0
Eeα1(θs+Ms)ds 6

∫ t

0

√
Ee2α1θs

√
Ee2α1Msds

6 eα1θ0

∫ t

0
eα1(µ+α1σ2)s

(
Ee2αMs

)α1
2α ds

= eα1θ0

∫ T

0
eα1(µ+α1σ2)s

(
Ee2αMs

)α1
2α ds+ eα1θ0

∫ t

T
eα1(µ+α1σ2)s

(
Ee2αMs

)α1
2α ds

6 eα1θ0

∫ T

0
eα1(µ+α1σ2)s

(
Ee2αMs

)α1
2α ds+

eα1θ0

α2

(
eα2t − eα2T

)
,

where α2 ≡ α1(µ+α1σ
2) + rα1

2α < r. Hence, the first term in the last line is finite

while the second term grows slower than ert. Similarly,
∫ t

0 Ee−α1(θs+Ms)ds grows

slower than ert too. With the candidate policy function,∣∣∣∣dWm
t

dt

∣∣∣∣ = r
∣∣γ ? f(θt +Mt)− f(θt +Mt)

∣∣
6 rα0

2α1µ+ 4r − α2
1σ

2

2α1µ+ 2r − α2
1σ

2
e−α1(θt+Mt) + rα0

−2α1µ+ 4r − α2
1σ

2

−2α1µ+ 2r − α2
1σ

2
eα1(θt+Mt),

therefore with the above analysis, limt→∞ e−rtEWm
t = limt→∞ e−rtE|Wm

t | = 0.

Finally, to obtain the lowest cost for the principal as well as the explicit optimal

contract, I set W0 optimally at γ ? f(θ0). Also, with the policy function the

continuation payoff evolves as:

Wt = W0 +

∫ t

0
dWs = γ ? f(θ0) + r

∫ t

0
(γ ? f(θs)− f(θs))ds.

Hence, plug Wt in (12) to obtain (13).

Proof for Theorem 2

PROOF:

For part (i), the “if” direction is trivial. For the “only if” direction, since

(γ ? f)′2 > 0 and the convolution preserves the sign, we know that γ ? ((γ ?

f)′2)(θ0) = 0 if and only if (γ ? f)′ ≡ 0 almost everywhere. By Assumption 1,

γ ? f is continuously differentiable, so γ ? f is a constant, which means f is a

constant almost everywhere.
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For part (ii), the “if” direction can be verified by plugging f(θ) = c0+c1θ+c2θ
2.

The resulting action path xt = f(θ0) − σ2

2 2c2t is deterministic, achievable in a

babbling equilibrium. For the “only if” direction, define Ĉ0
t the same way as in

(A4) for the babbling contract x̂. The drift of Ĉ0
t satisfies ert

Et[dĈ0
t ]

dt = r(xt− x̂t)2.

In order to achieve the babbling cost, we need xt = x̂t almost surely, which

means the optimal policy should be state-independent almost surely. Through

(12), this requires f − γ ? f to be a constant for almost all θ. When µ = 0, this

implies that (γ ? f)′′ = − 2r
σ2 (f − γ ? f) is a constant almost everywhere. From

Assumption 1, γ ? f is twice differentiable, so that (γ ? f)′′ is a constant, meaning

γ ? f(θ) = c̃0 + c1θ + c2θ
2. This integral equation has the unique continuous

solution f(θ) =
(
c̃0 − c2σ2

r

)
+ c1θ + c2θ

2, where c̃0 − c2σ2

r can be denoted as c0.

Modification of the above on a zero-measure set generates an equivalence class.

For part (iii), the “if” direction can be verified by plugging f(θ) = c0 + c1θ +

c2e
− 2µ

σ2
θ. The resulting action path xt = f(θ0) − c1µt is deterministic. For the

“only if” direction, repeat the same procedure in the proof of part (ii). When

µ 6= 0, this implies that (γ?f)′′+ 2µ
σ2 (γ?f)′ = − 2r

σ2 (f−γ?f) is a constant, meaning

γ ? f(θ) = c̃0 + c1θ + c2e
− 2µ

σ2
θ. This integral equation has the unique continuous

solution f(θ) =
(
c̃0 − c1µ

r

)
+ c1θ + c2e

− 2µ

σ2
θ, where c̃0 − c1µ

r can be denoted as c0.

Modification of the above on a zero-measure set generates an equivalence class.

Proof for Theorem 3

PROOF:

By definition, it suffices to show that

∂x

∂θ
= f ′(θ)− (γ ? f)′(θ) = −2µ(γ ? f)′′(θ) + σ2(γ ? f)′′′(θ)

2r
.

In equation (13), taking the derivative of xt(θ
t) w.r.t. θt, one has

∂xt
∂θt

∣∣∣∣
θt=θ

= f ′(θ)− (γ ? f)′(θ).

Also, by definition of γ, it is easy to verify that g = γ ? f is a solution to the

following ODE:

−σ
2

2r
g′′ − µ

r
g′ + g = f.(A6)



38 MONTH YEAR

Therefore, further differentiation gives:

−σ
2

2r
(γ ? f)′′′(θ)− µ

r
(γ ? f)′′(θ) = f ′(θ)− (γ ? f)′(θ).

Proof for Proposition 2

PROOF:

To show (i), note that

Et [dC∗t ]

dt
=

d

dt
Et
[
(Wt − γ ? f(θt))

2 +
σ2

r
γ ? ((γ ? f)′2)(θt)

]
= σ2γ ? ((γ ? f)′2)(θt) > 0,

where the second equality follows from Ito’s lemma and the policy function, and

the inequality comes from the fact that (γ?f)′2 > 0 and the convolution preserves

the sign.

To show (ii), we start from the law of motion of Wt implied by the IC-FOC:

dWt = r(Wt−xt)dt = r(γ?f(θt)−f(θt))dt =

(
σ2

2
(γ ? f)′′(θt) + µ(γ ? f)′(θt)

)
dt,

where the second equality holds by the policy function, and the third equality

comes from (A6).

Relaxing the Strategy Set L

PROOF:

The strategy set L limits the speed that the agent can lie in an exponential

manner. It is assumed for technical simplicity. Now, I proceed to remove it.

Without it, the global IC is problematic for some “crazy” strategies: lie expo-

nentially at a very high rate. By doing that, the agent secures high flow payoffs

at the cost of the continuation payoff that explodes to −∞, although this does

not happen on path. In the following, I construct a sequence of contracts that

has a cost approaching C∗, so that the C∗ in the main model is the infimum, not

minimum.

Consider the optimal contract truncated at time T . Before the deadline T , do

exactly as in the optimal contract. At time T , the action is frozen forever at

xT = WT , so that the continuation payoff of the agent is promised even after the
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deadline. Obviously, with a finite deadline, the agent’s infinite global scheme of

deviation fails, since at the “Judgement Day” T , past deviations always factors

in WT which does not allow further Ponzi-like deviations.

I claim that this contract yields a cost CT that approaches C∗ as T →∞. At

time T , the (positive) cost gap between the truncated contract and the optimal

one is

∆(θT ) ≡ CT (θT ,WT )− C∗(θT ,WT )

= γ ? (W − f(θT ))2 − (W − γ ? f(θT ))2 − σ2

r
γ ? ((γ ? f)′2)(θT )

= γ ? f2(θT )− (γ ? f(θT ))2 − σ2

r
γ ? ((γ ? f)′2)(θT )

6 γ ? f2(θT )

6 2α2
0 + α2

0r

(
e−2α1θT

r + 2α1(µ− α1σ2)
+

e2α1θT

r − 2α1(µ+ α1σ2)

)
,

where the second inequality follows from Assumption 1. Hence,

CT (θ0,W0)− C∗(θ0,W0) = e−rTE [∆(θT )]

6 α2
0e
−rT

(
e2α1(−θ0−µT+α1σ2T )

r + 2α1(µ− α1σ2)
+
e2α1(θ0+µT+α1σ2T )

r − 2α1(µ+ α1σ2)

)
,

where the last expression vanishes as T →∞, by Assumption 1.


