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Abstract

This paper is at the intersection of macroeconomics and modern computer arithmetic. It

seeks to apply arbitrary precision arithmetic to resolve practical di¢ culties arising in the iden-

ti�cation analysis of log linearized DSGE models. The main focus is on methods in Qu and

Tkachenko (2012, 2017) since the framework appears to be the most comprehensive to date.

Working with this arithmetic, we develop the following three-step procedure for analyzing local

and global identi�cation. (1) The DSGE model solution algorithm is modi�ed so that all the

relevant objects are computed as multiprecision entities allowing for indeterminacy. (2) The

rank condition and the Kullback-Leibler distance are computed using arbitrary precision Gauss-

Legendre quadrature. (3) Minimization is carried out by combining double precision global and

arbitrary precision local search algorithms, where the criterion for convergence is set based on

the chosen precision level, so that it can be e¤ectively examined whether the minimized value

equals zero. In an application to a model featuring monetary and �scal policy interactions

(Leeper, 1991 and Tan and Walker, 2015), we �nd that the arithmetic removes all ambiguity

in the analysis. As a result, we reach clear conclusions showing observational equivalence both

within the same policy regime and across di¤erent policy regimes under generic parameter val-

ues. We further illustrate the application of the method to medium scale DSGE models by

considering the model of Schmitt-Grohé and Uribe (2012), where the use of extended precision

again helps remove ambiguity in cases where near observational equivalence is detected.

Keywords: Arbitrary precision arithmetic, dynamic stochastic general equilibrium models,

local identi�cation, global identi�cation.

JEL classi�cation: C1, E1.
�We thank Pavel Holoborodko and seminar and conference participants at the 30th (EC)^2 Conference on Identi�-

cation in Macroeconomics, NBER-NSF Time Series Conference, Frontiers in Econometrics Conference (Connecticut),
Identi�cation in Econometrics Conference (Vanderbilt), Academia Sinica, Columbia, and HKUST for helpful com-
ments and suggestions.

yDepartment of Economics, Boston University, 270 Bay State Rd., Boston, MA, 02215 (qu@bu.edu).
zDepartment of Economics, National University of Singapore, 1 Arts Link, 117570, Singapore (ecstd@nus.edu.sg).



1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models have become a widely applied modeling

framework both in academia and in policy institutions due to important insights about the con-

sequences of monetary, �scal and macro-prudential policies as well as economic forecasts obtained

through their lens. DSGE models typically feature various frictions, often involving a relatively

large number of equations and parameters with complex cross-equation restrictions. Identi�cation

and computation are central issues in developing DSGE models. This paper seeks to introduce

arbitrary precision arithmetic to this literature in order to resolve important practical di¢ culties

arising in the identi�cation analysis of DSGE models.

Identi�cation analysis in DSGE models can potentially touch on the following four issues.

Firstly, within a given DSGE model, are there parameter values close to the default parameter

value that can generate observational equivalence (i.e., local identi�cation)? Secondly, within a

model, can there be parameter values that are potentially distant from the default value that can

lead to observational equivalence (global identi�cation)? Thirdly, comparing two di¤erent DSGE

model structures (e.g., models with di¤erent policy rules), can there exist di¤erent parameter values

that make them observationally equivalent (identi�cation allowing for di¤erent model structures)?

Lastly, in the above three situations, can there be parameter values that lead to near observa-

tional equivalence, i.e., lead to models that are hard to tell apart based on sample sizes typically

encountered in practice (weak identi�cation)?

Substantial theoretical progresses have been made in answering these issues. Canova and Sala

(2009) documented the types of identi�cation failure that can arise in DSGE models. Iskrev (2010)

gave su¢ cient conditions, while Komunjer and Ng (2011) and Qu and Tkachenko (2012) gave

necessary and su¢ cient conditions for local identi�cation. Qu and Tkachenko (2017) developed a

framework for addressing the second to the fourth issues allowing for indeterminacy. In particular,

they considered the frequency domain expression for the Kullback-Leibler distance between two

DSGE models and showed that global identi�cation fails if and only if the minimized distance equals

zero. Further, they proposed a measure for the empirical closeness between two DSGE models for

assessing the strength of the identi�cation. This measure represents the highest possible power

when testing a default DSGE model speci�cation against a local alternative under Gaussianity.

The measure is related to but di¤erent from Cox�s (1961) test for non-nested hypotheses; Pesaran

(1987) provided a fairly thorough study of the local asymptotic power properties of Cox�s test.

Implementing the above theoretical results requires at least three of the following steps: (i) solv-

ing the DSGE model; (ii) constructing a criterion function for identi�cation; (iii) evaluating whether
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the criterion function is rank de�cient, and (iv) minimizing a distance function and determining

whether the minimized value is zero. Among them, (i), (iii) and (iv) always require numerical

operations for DSGE models that are relevant in practice. These operations introduce numerical

uncertainty that can blur the di¤erence between weak identi�cation and lack of identi�cation. From

the model builder�s perspective, it is important to distinguish the two cases, as exact identi�cation

failure found numerically may point to useful analytical results such as those we document later in

the paper about equivalence between di¤erent policy regimes. This distinction is also important,

as a starting point, if one wishes to further quantify the strength of the identi�cation within or

between di¤erent models.

Progresses have been made toward reducing the numerical uncertainty. Iskrev (2010) provided

closed-form expressions for �rst order derivatives of covariances of observables with respect to

structural parameters. Nevertheless, to determine these covariances, a Lyapunov equation still

needs to be solved numerically. As a result, the procedure still faces challenges (i) and (iii).

Komunjer and Ng (2011) experimented with using di¤erent step sizes to compute the numerical

derivatives in (ii), and with di¤erent tolerance levels when determining the rank in (iii). However,

occasionally the result can still be ambiguous. Qu and Tkachenko (2012, 2017) suggested to use non-

identi�cation curves to check local identi�cation and also conducted sensitivity checks. However,

the same concern as in Komunjer and Ng (2011) still lingers. So far, it has remained unclear

whether the numerical uncertainty can be e¤ectively eliminated in practice, which may prevent the

identi�cation analysis from being e¤ectively carried out in applied research.

This paper develops a solution by utilizing arbitrary precision arithmetic, also commonly re-

ferred to as multiple precision or bignum arithmetic. It involves operating on numbers whose

precision digits are in principle limited only by the memory resources of the host system. This

contrasts with the �xed-precision arithmetic natively supported by most modern processors, which

typically o¤ers up to 64 bits of precision. Working with this arithmetic, we develop the following

three-step procedure for analyzing local and global identi�cation. Step 1: The DSGE model solu-

tion algorithm is modi�ed so that all the relevant objects are computed as multiprecision entities.

Step 2: The rank condition and the Kullback-Leibler distance are computed using arbitrary pre-

cision symmetric di¤erence quotient rule and Gauss-Legendre quadrature. Step 3: Minimization

is carried out using double precision hybrid global search (such as Matlab�s ga and particleswarm

followed by fmincon) algorithms followed by arbitrary precision local search algorithm (Matlab�s

fminsearch). The criterion for convergence is set based on the chosen precision level, so that whether

the minimized value is zero can be evaluated e¤ectively.

We developed a Matlab code with the aid of the Multiprecision Computing Toolbox by Ad-
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vanpix. The code can run on a usual desktop computer with Matlab version 2016b or later. To

apply the code to the four issues outlined above, the researchers mainly need to write down the log

linearized model, the default parameter values, the tolerance levels, and the step sizes for numerical

di¤erentiation. Beside requiring the multiprecision toolbox, the implementation is similar to what

it would be under the standard double precision environment. We provide a thorough illustration

of the steps involved and will make the code available. The code can be useful for solving DSGE

models with user speci�ed precision when the interest is not in identi�cation analysis.

We apply the procedure to a small scale DSGE model featuring monetary and �scal policy

interactions. The model is a cashless version of Leeper (1991) analyzed in Tan and Walker (2015). It

exhibits three stable regimes characterized by: i) Active monetary and passive �scal policy (AMPF,

there is a unique equilibrium, i.e., determinacy); ii) Passive monetary and active �scal policy

(PMAF, determinacy); and iii) Passive monetary and �scal policies (PMPF, there are a continuum

of equilibria, i.e., indeterminacy). The model has analytical solutions under both determinacy and

indeterminacy, which we make use of to examine to what extent the arbitrary precision arithmetic

sharpens the identi�cation analysis. That is, for each regime, we �rst obtain results using the

standard double precision arithmetic, then apply the arbitrary precision arithmetic, and �nally use

the analytical solutions to compare the results and convey the intuition behind them. The following

results are worth noting. i) The parameters are not locally identi�ed in the two determinate policy

regimes, while they are locally identi�ed in the indeterminate regime if the sunspot variance is not

zero. ii) When each of the two determinate regimes is taken as the default speci�cation, we always

�nd parameter values in the indeterminate regimes that generate observational equivalence. This

implies that, if the data were generated by this model, and if the monetary and �scal authorities

operated according to either the AMPF or the PMAF rule, then we would be unable to rule out the

PMPF rule possibility even with an in�nite sample size. iii) We also trace out parameter values in

the PMPF regime that generate the equivalence. The values demonstrate how the parameters can

be altered without causing any change in the dynamic properties of the model. The analysis here

further advances the work by Leeper (1991), Leeper and Walker (2013), and Tan and Walker (2015)

about potential observational equivalence between di¤erent �scal-monetary regimes. Comparison

with their results is included in Subsection 5.5.

The procedure we develop is directly applicable to medium scale DSGE models, which is illus-

trated with the model of Schmitt-Grohé and Uribe (2012). The salient feature of the model is that

its exogenous shock processes contain anticipated, or news, components, which have been argued

to explain a large portion of business cycle �uctuations. The model does not have an analytical

solution, and hence the researcher must rely on numerical results when conducting identi�cation
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analysis. The following results are worth noting. i) We �nd that the model is locally identi�ed

at the posterior median reported in Schmitt-Grohé and Uribe (2012), but there are small eigen-

values that can potentially be labelled zero, and hence arbitrary precision computation is helpful

in verifying this. ii) The global identi�cation analysis within the model structure points to weak

identi�cation of some of the news shock parameters. iii) We conduct additional analysis and doc-

ument di¤erences in the relative importance of news shocks by process and by horizon in terms

of generating the model dynamics. We �nd that the 8-horizon shocks tend to be in general less

important, and that news in the wage markup plays the most important role. iv) We further ex-

amine whether a di¤erent model structure featuring unanticipated moving average shocks can be

e¤ectively distinguished from the news benchmark. The �ndings suggest that, although imposing

the alternative structure on all shock processes at once results in a model su¢ ciently distinct to tell

apart in �nite samples, doing so for individual shocks may produce near observational equivalence.

Somewhat surprisingly in light of earlier results, it is found that such near equivalence is obtained

for the model with unanticipated moving average wage markup shocks.

Besides identi�cation analysis, the arithmetic may �nd applications in other contexts where

numerical stability is of high importance, such as solving nonlinear DSGE models, inverting large

matrices, and solving Lyapunov equations. These issues are all of substantial importance to macro-

economic research. In implementation, the researcher can switch on the arbitrary precision arith-

metic when higher resolution is needed, and switch o¤ when the double precision is su¢ cient. This

simplicity permits achieving an acceptable balance between precision and speed of computation.

The paper proceeds as follows. Section 2 describes identi�cation procedures in Qu and Tkachenko

(2012, 2017). It also explains where the numerical issues for identi�cation analysis arise. Section

3 gives an easily accessible and self-contained explanation of the idea behind the arithmetic with

relevant resources in order to facilitate its adoption in macroeconomics. Section 4 explains how the

arbitrary precision arithmetic can be applied to identi�cation analysis to deliver clearer conclusions.

Sections 5 and 6 provide the applications. Section 7 concludes. The three online appendices contain

some additional details on derivation, model solution, and results from the two applications.

2 Identi�cation analysis allowing for indeterminacy

This section outlines the identi�cation procedures in Qu and Tkachenko (2012, 2017). The results

themselves are not new. However, without �rst explaining them in some detail, the subsequent

analysis (i.e., how the arbitrary precision arithmetic operates inside these results and the empirical

applications) will be confusing. We �rst describe the underlying framework, and then discuss the

conditions for local and global identi�cation, together with the implementation details.
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2.1 The framework

Consider a DSGE model log linearized around its steady state (Sims, 2002):

�0St = �1St�1 +	"t +��t; (1)

where St is a vector that includes the endogenous variables, the conditional expectations, and

variables from exogenous shock processes if they are serially correlated. The vector "t contains

serially uncorrelated structural shocks and �t contains expectation errors. The elements of �0;�1;	

and � are known functions of structural parameters of the model. Depending on �0 and �1, the

system can have none, a unique, or multiple stable solutions (indeterminacy). Under indeterminacy,

the structural parameters alone do not uniquely determine the dynamics of the observables. Below

we brie�y explain the steps Qu and Tkachenko (2017) take to overcome this obstacle, paying

attention to the numerical issues that can arise.

Lubik and Schorfheide (2003) show that the full set of solutions can be represented as

St = �1St�1 +�""t +���t; (2)

or equivalently, St = (1��1L)�1[�" ��]("0t �0t)0, where L is the lag operator. For completeness, the
appendix outlines the main steps of the solution method. This helps to reveal the main numerical

issues involved and to better understand the arbitrary precision code that we make available.

In (2), �1, �" and �� depend only on �0;�1;	 and �, therefore are functions of the structural

parameters only. The vector �t contains the sunspot shocks. The DSGE model alone imposes few

restriction on �t: it needs to be a martingale di¤erence, i.e., Et�t+1 = 0, however can be arbitrarily

contemporaneously correlated with the fundamental shocks "t. Intuitively, the properties of �t

depend on how agents form their expectations, which, under indeterminacy, is not fully revealed

by the model. To re�ect this, Qu and Tkachenko (2017) adopt the following parameterization that

expresses �t as an orthogonal projection onto "t and a residual term: �t =M"t +e�t, where M is a

matrix of constants and e�t is now uncorrelated with "t. Let �D be a p-by-1 vector consisting of all
the structural parameters in (1). Let �U be a q-by-1 vector consisting of the sunspot parameters

�U = (vec (��)
0 ; vec (M)0)0. Then, an augmented parameter vector can be denoted as � = (�D0; �U 0)0.

In practice, the estimation is typically based on a subset of St or some linear transformations

involving its current and lagged values. To be consistent with this, let A(L) denote a matrix of

�nite order lag polynomials to specify the observables and write Yt (�) = A(L)St = H(L; �)("0t �
0
t)
0,

where H(L; �) = A(L)(1��1L)�1[�" ��]. Then, the spectral density of Yt(�) is given by

f�(!) =
1

2�
H(exp(�i!); �)�(�)H(exp(�i!); �)�; (3)
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where � denotes the conjugate transpose and

�(�) =

0@ I 0

M I

1A0@ �" 0

0 ��

1A0@ I 0

M I

1A0 :
The elements of f�(!) can be considered as mappings from the augmented parameter space to

a space of complex valued functions de�ned over [��; �]. Local or global identi�cation holds if
and only if the overall mapping is locally or globally injective. Henceforth, we let fYtg denote a
stochastic process whose spectral density is given by f�0(!) with ! 2 [��; �].

Numerical issues. When solving the model to obtain (2) from (1), the important steps are

the generalized Schur decomposition (see (A.1)) and the singular value decomposition (see (A.3)).

These steps are done numerically, thus contributing to the numerical uncertainty when computing

the solution, and ultimately the identi�cation criterion functions. These two numerical issues

are not particular to the current identi�cation method. They a¤ect all methods that apply the

generalized Schur decomposition and the singular value decompositions to solve the model.

2.2 Local identi�cation

The parameter vector � is said to be locally identi�able from the second order properties of fYtg
at � = �0 if there exists an open neighborhood of �0 in which f�1(!) = f�0(!) for all ! 2 [��; �]
necessarily implies �1 = �0. Intuitively, if this holds, then it is potentially possible to locally

determine both the parameters describing technology and preferences (�D) and those governing the

equilibrium beliefs of agents (�U ).

De�ne

G(�) =

Z �

��

�
@ vec f�(!)

@�0

���@ vec f�(!)
@�0

�
d! (4)

and assume �0 is a regular point, that is, G(�) has a constant rank in an open neighborhood of �0.

Then, Qu and Tkachenko (2017) show that � is locally identi�able from the second order properties

of fYtg at � = �0 if and only if G(�0) has full rank. If the regular point assumption is dropped,

then the nonsingularity of G(�0) is su¢ cient but not necessary for local identi�cation.

Some useful extensions follow immediately from the above result. Firstly, one could be interested

in the identi�cation of a subset of � holding the rest �xed at some values, e.g., of �D conditional on

�U = �U0 . Then, when computing the condition, we only need to take the derivative with respect to

the parameters in the subset of interest. Moreover, if G(�0) has already been computed for some �0,

investigating conditional local identi�cation does not bring about any further computational cost:

it su¢ ces to examine the rank of the submatrix of G(�0) formed by the intersection of the rows and
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columns of G(�0) corresponding to the parameters of interest. Secondly, one could be interested

in studying identi�cation using a subset of frequencies, e.g., those corresponding to business cycle

�uctuations. The relevant result obtains by modifying the integral in (4):

GW (�) =

Z �

��
W (!)

�
@ vec f�(!)

@�0

���@ vec f�(!)
@�0

�
d!;

where W (!) is an indicator function symmetric about zero to select the frequencies of interest.

Thirdly, one could be interested in studying identi�cation using both the steady state restrictions

and the dynamic properties, in which case one should replace G(�) by

G(�) =

Z �

��

�
@ vec f�(!)

@�0

���@ vec f�(!)
@�0

�
d! +

@�(�)0

@�

@�(�)

@�0
;

where �(�) is a vector of steady states.

If local identi�cation failure is detected, one could be interested in which parameters, or para-

meter subsets, are not separately identi�able. Qu and Tkachenko (2012) show that the number of

zero eigenvalues of G(�) implies that observational equivalence can be maintained by varying some

parameters along the same number of orthogonal directions, and hence corresponds to the mini-

mum number of parameters that need to be �xed in order to achieve local identi�cation. In order

to pinpoint the nonidenti�ed parameter subsets, they propose a procedure that involves recursive

application of the conditional local identi�cation analysis outlined above and can be summarized

in four steps. Step 1: check whether G(�) has any zero eigenvalues, and proceed to the next step

if identi�cation failure is present. Step 2: Apply the conditional identi�cation analysis to each

individual parameter. If a zero eigenvalue is found, then the corresponding parameter is not locally

identi�ed. Step 3: Increase the number of parameters in the considered parameter subsets by one,

and single out those that satisfy: i) they do not contain any previously detected subset as a proper

subset; ii) the corresponding submatrix of G(�) has only one zero eigenvalue. Such subsets will

have the following property: varying the parameters jointly in a particular way would maintain

observational equivalence and thus they are not separately identi�ed. Fixing one parameter in such

a subset will identify the rest. Step 4: repeat Step 3 until all possible subsets are considered. Since

this procedure does not enforce orthogonality, it is possible to �nd more nonidenti�ed parameter

subsets than there are zero eigenvalues of G(�). This analysis could be taken further by tracing

out nonidenti�cation curves corresponding to each detected subset that show how the parameters

inside the subset change in the neighborhood of �0 to preserve observational equivalence, see Qu

and Tkachenko (2012, Subsection 3.1) for more details.

Numerical issues. Two numerical issues are present when implementing the local identi�cation

conditions. First, the derivatives need to be computed numerically, involving the choice of a step
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size and approximation method. Second, the integral needs to be approximated using, say, the

Gaussian quadrature method. Note that if an eigenvalue of G(�) is zero, then the error from

Gaussian quadrature alone will not make it nonzero. In this sense, the quadrature introduces

approximation error only when the eigenvalue is not zero.

Some further numerical issues arise when interpreting the result. The matrix G(�) is real,

symmetric and positive semide�nite by construction, hence its rank can be determined by counting

the number of nonzero eigenvalues. In practice, the computed eigenvalues are usually not exactly

zero, and hence a certain tolerance level must be chosen, so that the eigenvalues falling below

this level are considered zero. There is no generally accepted way to choose tolerance in the

literature, but computational software often provides certain rules of thumb. For example, the

default tolerance level for determining matrix rank in Matlab depends on the properties of the

matrix - it equals the product of the larger dimension of the matrix and the positive distance from

its largest singular value to the next largest �oating point number of the same precision. Using

the nonidenti�cation subset and curve analysis discussed above for verifying the robustness of rank

determination, Qu and Tkachenko (2012) found that, for a suitably chosen numerical di¤erentiation

step, using this default tolerance level generally delivers sensible results. Hence, we will also adopt

the same default tolerance level for the baseline analysis under double precision.

However, at times the results could be unclear due to some eigenvalues being close to the

tolerance level from either side, or the tolerance level not being appropriate given the structure of

the matrix, e.g., as documented by Komunjer and Ng (2011) for the case of sparse matrices. We

will show how such situations can be e¤ectively dealt with using arbitrary precision arithmetic.

Note that when some of the true eigenvalues of G(�) equal zero, it is possible to obtain small

negative numbers of the order of magnitude close to the roundo¤ error despite the theoretical

positive semide�niteness property of G(�). This is a well known phenomenon and is due to some

degree of numerical error inherent in any eigenvalue computation routine. When we obtain such

results, we report the small negative eigenvalues as is.

2.3 Global identi�cation

This section considers the global identi�cation of � at �0 allowing for di¤erent model structures.

Relevant examples of the two structures can correspond to two DSGE models with di¤erent mone-

tary policy rules, models with di¤erent determinacy properties, or models of di¤erent scale. Global

identi�cation within the same model structure can be considered as a special case.

Suppose Yt (�) and Zt (�) are two vector linear processes generated by two DSGE structures

(Structures 1 and 2) with spectral densities f�(!) and h�(!), where � 2 �; � 2 �, and � and �
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are �nite dimensional and compact. Suppose we treat Structure 1 with � = �0 as the benchmark

speci�cation and are interested in whether Structure 2 can generate the same dynamic properties.

As a de�nition, we say that Structure 2 is distinct from Structure 1 at � = �0 if, for any � 2 �,
h�(!) 6= f�0(!) for some ! 2 [��; �]. De�ne

KLfh(�; �) =
1

4�

Z �

��
ftr(h�1� (!)f�(!))� log det(h

�1
� (!)f�(!))� nY gd!:

Then, Qu and Tkachenko (2017) prove that Structure 2 is distinct from Structure 1 at � = �0 if and

only if inf�2�KLfh(�0; �) > 0. Similarly to local identi�cation analysis, one can consider global

identi�cation based on a subset of frequencies. In this case, we just need to replace KLfh(�0; �) by

KLWfh(�; �) =
1

4�

Z �

��
W (!) ftr(h�1� (!)f�(!))� log det(h

�1
� (!)f�(!))� nY gd!: (5)

When studying global identi�cation within the same model structure, let

KL(�0; �1) = KLff (�0; �1) =
1

4�

Z �

��
ftr(f�1�1 (!)f�0(!))� log det(f

�1
�1
(!)f�0(!))� nY gd!: (6)

Qu and Tkachenko (2017) show that � is globally identi�ed from the second order properties of

fYtg at �0 if and only if KL(�0; �1) > 0 for any �1 2 � with �1 6= �0.

The above results reduce the problem of checking global identi�cation to minimizing a deter-

ministic function. For illustration, suppose the condition in the previous subsection shows that �0 is

locally identi�ed. Then, to study global identi�cation within the same model structure, we proceed

to check whether

inf
�12�nB(�0)

KL(�0; �1) > 0; (7)

where B(�0) is an open neighborhood of �0 that serves two purposes. First, it excludes parame-

ter values that are arbitrarily close to �0. Second, its shape and size can be varied to examine

the sensitivity of identi�cation. For example, one can examine how identi�cation improves when

successively larger neighborhoods are excluded or when some parameters are �xed.

Numerical issues. The implementation encounters two numerical issues. First, the integral needs

to be approximated. We continue to use Gaussian quadrature. As in the local identi�cation case, if

the true distance is zero, then the error from Gaussian quadrature alone will not make it nonzero.

Second, the optimization needs to be done numerically with a speci�ed tolerance level, and hence

one needs to decide on whether the minimized value of KL is zero or only close to zero. This is

similar to determining whether the eigenvalue is zero in the local identi�cation case, but facing

more uncertainty due to the usage of a convergence tolerance level.
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2.4 Empirical distance between two models

When global identi�cation holds, there may still exist parameter values di¢ cult to distinguish when

faced with �nite sample sizes. For example, Del Negro and Schorfheide (2008) observed that the

data provide similar support for a model with moderate price rigidity and trivial wage rigidity, and

the one in which both rigidities are high. More generally, even models with di¤erent structures

(e.g., di¤erent policy rules) can produce data dynamics that are quantitatively similar. This section

describes a measure developed by Qu and Tkachenko (2017) for gauging the feasibility of distin-

guishing a model structure with spectral density h�0(!) from a structure with f�0(!) constrained

by a hypothetical sample size T . The measure re�ects the feasibility of distinguishing one model

from another using likelihood ratio tests based on a �nite number of observations generated by the

two models. It represents the highest power under Gaussianity when considering local alternatives.

De�ne Vfh(�0; �0) = 1=(4�)
R �
�� trf[I � f�0(!)h

�1
�0
(!)][I � f�0(!)h

�1
�0
(!)]gd! and Vhf (�0; �0) =

1=(4�)
R �
�� trf[I � h�0(!)f

�1
�0
(!)][I � h�0(!)f

�1
�0
(!)]gd!. Let Z � N(0; 1), and

q� = �T 1=2KLfh(�0; �0) +
q
Vfh(�0; �0)z1��;

where z1�� is the 100(1��)th percentile of Z. The empirical distance measure of h from f equals

pfh(�0; �0; �; T ) = Pr

 
Z >

q� � T 1=2KLhf (�0; �0)p
Vhf (�0; �0)

!
:

To obtain it, the main work is in computingKLfh(�0; �0),KLhf (�0; �0), Vfh(�0; �0) and Vhf (�0; �0).

They depend only on the spectral densities f�0(!) and h�0(!) without any reference to any data.

Computing them thus only requires solving the two models once to compute the respective spectral

densities. No simulation is required.

As with the KL criterion, the empirical distance measure can be applied to structures with

overlapping but di¤erent sets of observables. This, in particular, permits measuring the dis-

tance between a small and a medium scale DSGE model. It can also be computed using a

subset of frequencies. In this case, KLfh(�0; �0) and KLhf (�0; �0) need to be replaced with

KLWfh(�0; �0) and KL
W
hf (�0; �0) (see (5) for their de�nition) and Vfh(�0; �0) and Vhf (�0; �0) with

V Wfh (�0; �0) = 1=(4�)
R �
��W (!) trf[I � f�0(!)h

�1
�0
(!)][I � f�0(!)h

�1
�0
(!)]gd! and V Whf (�0; �0) =

1=(4�)
R �
��W (!) trf[I�h�0(!)f

�1
�0
(!)][I�h�0(!)f

�1
�0
(!)]gd!, respectively. This extension is valu-

able as it can decompose to what extent the quantitative di¤erences between models are driven by,

for example, the business cycle frequencies as opposed to others.

Numerical issues. They include matrix inversion, computing integrals, and computing a tail

probability with respect to a standard normal distribution.
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3 Introduction to arbitrary precision arithmetic

This section presents an accessible and self-contained explanation of the idea behind this arithmetic,

along with relevant resources to facilitate its wider adoption in macroeconomics. This will not only

pave the way for applying the arithmetic to DSGE models, but also show why it can be useful for

other applications in macroeconomics, such as accurately solving nonlinear DSGE models.

3.1 The basic idea

On modern computers, real numbers are represented using a �oating point arithmetic system. This

subsection examines the factors determining the precision of such a system, and then explains how

they can be engineered to achieve arbitrary precision. The discussion mainly follows Kneusel (2017,

Chapter 3) and Muller et al. (2010, Chapter 2), which can be consulted for more details.

A �oating point number system F is a subset of the real numbers whose elements have the form

(�1)sd0:d1d2:::dp�1 � �e; (8)

where d0:d1d2:::dp�1 is the p-digit signi�cand with 0 � di < � for all i = 0; :::; p � 1, representing
the value d0+d1��1+d2��2+ :::+dp�1��(p�1). Note that s; d0; d1; :::; dp�1; � and e are all integers.

This system is thus characterized by four integers: the base � � 2; the precision p, which

controls the number of bits allocated to store the signi�cand; the exponent range emin and emax

such that emin � e � emax. The most commonly used base is 2, as it is e¢ cient on binary computers.

Henceforth, we will only consider � = 2. This means that all the numbers are binary and the only

allowed digits in the signi�cand are 0 and 1. The �rst digit d0 is required to be 1 to make the

representation unique. An equivalent (normalized) representation of (8) is therefore given by

(�1)s1:d1d2:::dp�1 � �e;

which implies that to store a number, it su¢ ces to save the integers s, d1d2:::dp�1 and e.

For general values of emin; emax and p, the range of positive �oating point numbers that can be

represented is given by [2emin ; 2emax(1 � 21�p)]. The lower bound is obtained by letting d1 = d2 =

::: = dp�1 = 0 and e = emin. The upper bound is obtained by letting d1 = d2 = ::: = dp�1 = 1 and

e = emax. It is important to note that �oating point numbers do not cover all real numbers. For a

positive �oating point number with exponent e, the next larger �oating point number is di¤erent

from it by 21�p2e. This shows that the distribution of �oating point numbers on the real line is not

uniform. It also follows that for any real number in the range of F , it can always be approximated

by an element of F with a relative rounding error no larger than

u = (1=2)21�p: (9)
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The value �M = 21�p is often referred to as the machine epsilon.

It is now clear what determines the precision of the system: (1) Because emin and emax are

�nite, numbers that are too large or too small in absolute values will have to be approximated. (2)

Because p is �nite, the spacing between two �oating point numbers is always nonzero. Therefore,

the precision can be improved by increasing the exponent range [emin; emax] and by increasing

p. Consider an example of storing 0.001956 on a computer as a �oating point number. Suppose

p = 3, and emin = �8, then the closest �oating point number to it is 1:00 � 2�8 � 0:003906.

The di¤erence is about 0.001950, roughly of the same magnitude as the original number. If emin

is reduced to �9, then the closest �oating point number is 1:00 � 2�9 � 0:001953. The di¤erence
is reduced to 0.000003. If p is further increased to 11, then the closest �oating point number is

1:0000000001� 2�9 �0.001955. The di¤erence is further reduced to 0.000001.
The above description can be used to understand the IEEE 754, the universally accepted stan-

dard for �oating point arithmetic, which was created in 1985 and revised in 2008 (IEEE, 2008).

Most software commonly used in economic research, e.g., Matlab, R and Stata, use the IEEE 754

binary double precision (binary64) as default. In this standard, the �rst of the 64 bits is allocated

to the sign s 2 f0; 1g, the next 11 digits are allocated to store the exponent e in excess-1023
format (that is, instead of e, e + 1023 is stored using 11 digits taking values between 20 = 1

and 211 � 1 = 2047; as a result, emin = �1022 and emax = 1023), and the �nal 52 bits are used

to store d1d2:::d52 (therefore, p = 53). The corresponding maximum relative roundo¤ error is

u = 21�53=2 t 1:1102E-16, so that the roundo¤ level is about 16 decimal digits. Here, the group of
64 bits form what is called a "word" - the number of bits that the computer can process in a single

operation. Therefore, every number is stored using one word.

Higher precision arithmetic involves specifying p to values higher than 53 used in the IEEE

754 double format and widening the exponent range. For example, IEEE 754 also speci�es the

quadruple precision as a basic binary format where p = 113; emin = �16382; emax = 16383, and

the roundo¤ error is approximately 9.6296E-35 yielding approximately 34 decimal digits. Further

increasing the number of signi�cand bits p would result in increased range and smaller roundo¤

errors. There is no practical limit to increasing the precision except the one implied by the available

memory of the machine the program runs on. This gives rise to the so called arbitrary precision

arithmetic where the user is able to set p to achieve the desired level of accuracy.

Remark 1 In practice, the researcher can �rst decide the desired decimal digits for the computa-

tion. Then, the corresponding precision parameter p can be determined by solving

�oor(p� log10(2)) = desired decimal digits. (10)
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This operation, though simple, entails an important conceptual change. That is, the computing

precision is no longer a constraint that one has to take as given, but an input that the researcher

can choose, and experiment with, to better serve the task at hand.

There are four immediate consequences from increasing p. First, a number is now expressed

using more than one word. Second, the computer needs to keep track of more than one address in

order to access one number. Third, operations such as addition need to operate on an increased

number of digits. Finally, some standard double precision operations such as addition and multi-

plication are implemented at the hardware level through the processor�s integrated �oating point

unit. With a larger p, software instead of hardware implementations for these operations are needed.

These four factors increase memory requirements and also potentially slow down the operations.

Fast algorithms for implementation are thus essential for the practicality of the arithmetic.

3.2 Software implementation

Software tools are currently actively developed to tackle the above mentioned computational cost

challenge. The GNUMultiple Precision Arithmetic Library (GMP) and its extensions (GNUMPFR

and others) is by far the most successful free library for arbitrary precision arithmetic. It is avail-

able at https://gmplib.org/. The basic interface is for C but wrappers exist for other languages

including Julia, Python, R, and the Wolfram Language. As stated there, GMP operates on signed

integers, rational numbers, and �oating point numbers. It provides fast algorithms for multiplica-

tion, division, raising to power, factorial, etc.; see the "Algorithms" section of the manual.

The GMP libraries are often used as foundations for building more user oriented software ap-

plications. These softwares bridge the gap between basic arbitrary precision arithmetic operations

(such as addition of two numbers) and the more speci�c user applications (such as inversion of a

matrix or numerical integration). For example, mpmath is a free (BSD licensed) Python toolbox for

arbitrary precision �oating point arithmetic, developed by Fredrik Johansson since 2007. Among

other things, it supports numerical integration and di¤erentiation, Fourier and Taylor series ap-

proximation, and linear algebra functions such as matrix inverse and singular value decomposition.

Rmpfr is an R package available from CRAN since August 2009 that supports the use of arbitrary

precision numbers with some R functions through the interface with GNU MPFR. The functionality

of these software packages is expected to substantially expand with further development.

In our implementation, we utilize the Multiprecision Computing Toolbox (MPC) for Matlab by

Advanpix. (A free 1-week trial of the toolbox can be downloaded at www.advanpix.com.) To our

knowledge, this is so far the most feature rich software implementing arbitrary precision arithmetic.

Although Matlab has a built-in Variable Precision Arithmetic (VPA) toolbox, it lacks the support
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for some functions crucial for obtaining our results and is substantially slower. In particular,

the MPC toolbox supports the fully arbitrary precision versions of the main numerical aspects of

our computations: 1) the complex generalized Schur decomposition that is necessary for solving

the DSGE model; 2) e¢ cient numerical integration techniques such as Gaussian quadrature; 3)

optimization using Nelder-Mead simplex method (overloading Matlab�s fminsearch function). The

MPC toolbox uses quadruple precision (34 decimal digits) by default and most of its functions

are heavily optimized at this level to the extent that they sometimes execute faster than the

corresponding Matlab commands in double precision. We always start with this default level of

precision in our applications. Then, we alter the precision level, e.g., to 50 digits by executing the

command mp.Digits(50), where 50 refers to decimal digits and the binary precision p is as in (10).

The MPC toolbox de�nes a new numeric object type mp in the Matlab environment that

stores values in the speci�ed precision format. Once the object is de�ned as mp type, all further

operations applied to it and supported by the toolbox, from basic arithmetic to most commonly

used Matlab functions, will be automatically performed with their overloaded arbitrary precision

versions. The mp objects can be constructed by passing a string with a mathematical expression

to the mp() function, e.g., mp(�pi�), or converting an existing Matlab matrix or expression of any

numeric type, e.g., mp(pi). The important caveat to note is that objects previously stored as double

and converted to mp will not have the same accuracy as �oating point numbers calculated directly

in arbitrary precision. E.g., in the example above, conversion from double (mp(pi)) yields a less

accurate answer than direct computation (mp(�pi�)):

mp(pi) = 3:141592653589793 115997963468544185;

mp(�pi�) = 3:141592653589793 238462643383279503;

where the di¤erence can be seen after the 15th decimal digit. Because of the above features, the

existing Matlab code can be ported to arbitrary precision by rede�ning inputs as mp objects and

in some cases precision independent code can be produced by utilizing a wrapper function that

uni�es processing of di¤erent numeric types.

We emphasize that the use of software environments other than Matlab should be eventually

feasible. This is important to note because the scope of potential uses for arbitrary precision

arithmetic in macroeconomics can be much wider than the applications in this paper.

4 Arbitrary precision arithmetic and identi�cation analysis

As highlighted in Section 2, three numerical steps reside within local identi�cation analysis: (i)

The model is solved numerically. (ii) The integral is approximated. (iii) The derivative is computed
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numerically. For the global analysis, the �rst two are still present, in addition: (iv) the convergence

of the minimization is up to some tolerance level. We now discuss these aspects in more detail and

explain how we address them using arbitrary precision arithmetic.

4.1 Model solution

All the available methods for solving empirically relevant DSGE models involve some numerical

steps. Here, as in Qu and Tkachenko (2012, 2017), we build the analysis on the GENSYS algorithm

of Sims (2002) with the Lubik and Schorfheide�s (2003) generalization to allow for indeterminacy.

As seen from the Appendix A, starting with the representation (1), the main steps of the solution

algorithm are as follows. (i) Apply the generalized Schur decomposition to transform the system to

have an upper triangular structure, c.f. Display (A.1). (ii) Apply the singular value decomposition

and reduced column echelon form to isolate the e¤ective restrictions imposed by the model on the

conditional expectation errors �t, c.f. (A.3). (ii) Solve a linear system of equations with �t as

unknowns to obtain its entire set of solutions, c.f., (A.6). This expresses �t as a function of the

structural shocks and sunspot shocks if there are any. (iv) Plug the expression for �t into the

triangular system and then reverse Step (i) to express the state vector St in terms of its lagged

value, structural shocks and sunspot shocks. Note that Steps (ii) and (iv) involve only simple

matrix inversions and multiplications. Among the software mentioned above, only the Advanpix

toolbox has implemented the generalized Schur decomposition in multiple precision. This appears

to be the only constraint precluding the use of other software for local identi�cation analysis.

We will make the Matlab code for solving a DSGE model to any precision available. The

user can provide a desired precision level. Anderson (2008) compared the numerical precision of

di¤erent solution methods under double precision. Here, the constraint is lifted and the solution

precision becomes an input that can be altered by the user. Fernández-Villaverde, Rubio-Ramírez

and Schorfheide (2016) discussed the importance of solution precision. They in fact pointed to

the possibility of using GNU multiple precision arithmetic library to achieve any arbitrary level of

accuracy, but without providing details on implementation.

4.2 Integration

The local and global analysis both require computing an integral over a compact set [��; �].
We approximate the integral using Gauss-Legendre quadrature. Generally, the integral I(f) =R �
�� f(x)dx is approximated as �

Pn
j=1wjf (�xj), where wj = 2=f(1 � x2j )[P

0
n (xj)]

2g, and xj (j =
1; :::; n) are the n roots of the n-th order Legendre polynomial Pn (x) :

The integral is exact for polynomials of order not exceeding 2n � 1. In the general case, its
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precision depends on n, the abscissas xj and weights wj . Note that these values are independent

of the function to integrate. We pre-compute these values once, save them as multiple precision

entities, and then load the values to compute the summation as needed.

It is useful to consider what happens to the approximation when the parameters are indeed

not identi�ed. In this case, f(x) = 0 for all x belonging to [��; �]. Assuming there was no error
in computing f(x), even if the abscissas xj and weights wj were imprecisely computed, we would

still have �
Pn
i=1wif (�xj) = 0. Therefore, the increased precision helps only when the parameters

are weakly identi�ed. Higher precision can better reveal that the value is indeed distinct from

zero. Because of its wide usage, high precision computation of the quadrature is readily available in

several language environments. For example, it is also implemented in the mpmath Python library.

4.3 Di¤erentiation

The local identi�cation requires computing derivatives @ vec f�(!)=@�j for j = 1; 2; :::; q. In im-

plementation, we mainly use the symmetric di¤erence quotient method. This involves solving the

model at ��hej and �+hej and compute the derivative as [vec f�+hej (!)� vec f��hej (!)]=(2h) for
j = 1; 2; :::; q. With a step size h, the error is of rate O(h2). We also experiment with a four point

method, for which the error rate is O(h5). Previous experimentations with double precision in Qu

and Tkachenko (2012) suggest to set h to values between 1E-6 and 1E-7. Here, when higher preci-

sion is used, we can further decrease h to improve derivative accuracy. When quadruple precision

is used, we set h =1E-10. This makes the error from di¤erentiation of orders O(E-20) and O(E-50)

respectively. When an n-point method is used, the model will need to be solved n� q times, where
q stands for the number of parameters. Thus, the computational cost increases linearly with n.

4.4 Optimization

As discussed in Qu and Tkachenko (2017), the minimization of KL(�0; �) over � is a �rst order

challenge to the suggested approach. It faces two di¢ culties: KL(�0; �) may have multiple local

minima and the dimension of � can be high. Meanwhile, the problem has two desirable features,

i.e., KL(�0; �) is a deterministic function of � and it is typically in�nitely di¤erentiable with respect

to it. These two features help make global optimization possible.

For implementation, we �rst carry out the minimization in two steps under double precision.

The �rst step conducts global searches with gradient free methods. This permits exploring wide

parameter regions under multimodality. These searches return a range of parameter values that

correspond to the regions where the values of KL(�0; �) are small. The second step applies multiple

local searches, using the values returned from the �rst step along with additional uniformly ran-
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domly generated initial values within the relevant parameter bounds. These local searches exploit

the smoothness in KL(�0; �) and are e¢ cient in locating the nearby locally optimal solution. In

both steps, we employ optimizers that are parallelizable, thus maintaining computational feasibility

even when the dimension of � is high.

After these two steps in double precision are completed, further local minimization is carried

out using fminsearch in multiple precision. The initial values are set to the outputs from the second

step. The resulting optimizers are compared with their initial values. We check whether the KL

values and the parameter vectors are nontrivially di¤erent. For the non-identi�ed cases, the KL

values are expected to be substantially smaller due to the increased precision. For the identi�ed

cases, the KL values should remain essentially the same. If the result is still not clear cut, then we

further increase the precision level and repeat the optimization using fminsearch.

5 Application: a small scale model

The model is a cashless version of the Leeper (1991) model studied by Tan and Walker (2015) and

can be solved analytically. The latter feature is useful because it can reveal to what extent the

arbitrary precision arithmetic helps in sharpening the numerical analysis.

5.1 Model solutions under alternative policy regimes

The model describes an endowment economy with lump-sum taxes. A representative household

chooses fct; Btg to solve maxE0
P1
t=0 �

t[log(ct)], subject to ct + Bt=Pt + � t = y + Rt�1Bt�1=Pt,

where ct is consumption, Bt is a bond that costs $1 and pays Rt = 1 + it dollars at t + 1, y is a

constant quantity of goods, � t is lump-sum taxes (or transfers if negative). The government chooses

fBt; � tg to satisfy the budget constraint:
Bt
Pt
+ � t =

Rt�1Bt�1
Pt

: (11)

Denote real debt by bt = Bt=Pt and the gross rate of in�ation by �t = Pt=Pt�1. After imposing the

market clearing condition ct = y, the household�s Euler equation reduces to the Fisher relation:

1

Rt
= �Et

�
1

�t+1

�
: (12)

The policy rules for setting interest rate Rt and taxes � t are speci�ed as follows:

Rt = R�(�t=�
�)� exp ("rt ) and � t = ��(bt�1=b

�)
 exp ("�t ) ; (13)

where

"rt = ert + �re
r
t�1 with e

r
t � i:i:d:N(0; �2r); (14)
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and

"�t = e�t + ��e
�
t�1with e

�
t � i:i:d:N(0; �2� ): (15)

Linearizing (11), (12) and (13), and solving Rt and � t out of the system yields:

Etb�t+1 = �b�t + "rt ; (16)bbt + b�t
�

= (1=� � 
(1=� � 1))bbt�1 + �

�
b�t�1 � (1=� � 1)"�t + 1

�
"rt�1; (17)

where �b�denotes the log deviation of a variable from its steady state value.

Henceforth, we study identi�cation properties based on dynamic properties of fbbt; b�tg speci�ed
by (16) and (17) with the shocks satisfying (14) and (15). As shown by Leeper (1991) and Tan and

Walker (2015), the existence and uniqueness of solutions to this linearized system depend on the

values of � and 
 (they are assumed to be nonnegative throughout the paper):

(i) When � > 1 and 
 > 1, this corresponds to a regime with active monetary and passive �scal

policy (AMPF). There is determinacy; the solution exists and is unique.

(ii) When � < 1 and 
 < 1, this corresponds to a regime with passive monetary and active �scal

policy (PMAF). The solution exists and is unique.

(iii) When � < 1 and 
 > 1, this corresponds to a regime with passive monetary and �scal policies

(PMPF). There is indeterminacy; there is a continuum of solutions.

(iv) When � > 1 and 
 < 1, this corresponds to a regime with active monetary and �scal policies.

There exist no nonexplosive solutions.

Tan and Walker (2015) obtained analytical solutions for (i) and (ii), but not for (iii). Because

we use a di¤erent way to solve the model, we provide analytical solutions for (i) to (iii). The

derivation is in the appendix.

Case (i): � > 1 and 
 > 1 (AMPF). The unique solution is given by

b�t =

�
� 1
�
� 1

�2
�r

�
ert �

1

�
�re

r
t�1; (18)

bbt = (1=� � 
(1=� � 1))bbt�1 + 1

�

��
1

�
+
1

�2
�r

�
ert

�
� (1=� � 1)"�t :

In general, b�t is an MA(1) process and bbt an ARMA(1,1) process. However, as documented in Tan
and Walker (2015), if we let �r = �� and �� = �(1=� � 
(1=� � 1)), then the solution becomes

b�t = ert�1;bbt = �(1=� � 1)e�t : (19)
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Both b�t and bbt are now i.i.d. processes. Below, we will consider both generic parameter values and
also this special set of parameter values.

Case (ii): � < 1 and 
 < 1 (PMAF). The unique solution is given by

b�t = �b�t�1 � �(1=� � 1)� 1

1=� � 
(1=� � 1)�� + 1
�
e�t + "

r
t�1; (20)

bbt =
1=� � 1

1=� � 
(1=� � 1)��e
�
t :

In general, bbt is i.i.d. and b�t is an ARMA(1,3) process. However, if we set �� = �(1=��
(1=��1))
and �r = ��; then, again, b�t and bbt both follow i.i.d. processes as given by (19).
Case (iii): � < 1 and 
 > 1 (PMPF). There is a continuum of solutions in this regime. The

entire set of solutions can be written as

b�t = �b�t�1 + "rt�1 + �t;bbt = (1=� � 
(1=� � 1))bbt�1 � (1=� � 1)"�t � 1

�
�t;

where �t is a sunspot shock that satis�es Et�1�t = 0 and can be correlated with ert and e
�
t . To

model this, we consider projections of �t onto e
r
t and e

�
t : �t = Mre

r
t +M�e

�
t + �t, where �t is now

uncorrelated with ert and e
�
t . Because of the potential correlation between �t and e

r
t , b�t is in general

an ARMA(1,4) process. Because of the potential correlation between �t and e
�
t , bbt is in general an

ARMA(1,2) process. Therefore, under indeterminacy, the potential dynamics can be richer than

under determinacy, a feature that is also documented in Lubik and Schorfheide (2004).

If we let Mr =M� = �� = 0, �r = �� and �� = �(1=� � 
(1=� � 1)), then, again, the solution
reduces to (19). This implies that we can have observational equivalence between the three policy

regions under a particular set of parameter values. Meanwhile, whether there can be observational

equivalence under generic parameter values is not known. This provides an opportunity to evaluate

the algorithms�capability to detect such cases.

The analysis below is organized as follows. We �rst consider local identi�cation, then global

identi�cation, and �nally empirical distances between policy regimes. For each case, we �rst obtain

results using the standard double precision arithmetic. Then, we apply the arbitrary precision

arithmetic. In these two steps, the models and identi�cation conditions are computed numerically

using the algorithms described in the previous sections. Finally, we further validate the results

and provide intuition for them in light of the analytical solutions. Note that in cases (i) and
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(ii), the structural parameter vector is � = [�; �; 
; �r; �� ; �r; �� ]. In case (iii), it is given by

� = [�; �; 
; �r; �� ; �r; �� ;Mr;M� ; ��].

Presentation of results. Since more than a few results will be reported, we adopt the following

structure for clarity. For each analysis, we �rst use a few sentences to highlight the main result

(e.g., Result 1). Subsequently, we provide details on how this �nding is reached.

5.2 Local Identi�cation

We focus on the full spectrum case in the main paper and report the results based on the business

cycle frequencies in the online appendix.

5.2.1 Local identi�cation based on the full spectrum

We start with a generic parameter value, and then consider the special parameter value chosen

according to Tan and Walker (2015) that leads to i.i.d. processes in all three regimes.

Case (i): AMPF. We begin with considering the following baseline generic parameter value

�1AMPF = [�; �; 
; �r; �� ; �r; �� ] = [1:5; 0:9804; 1:2; 0:5; 0:5; 1; 1];

where �; � and 
 are set to values in Tan and Walker (2015), and �r; �� ; �r and �� are set arbitrarily

since the literature has not considered calibrations with MA shocks.

Result 1 �; �r and �r are not separately identi�able; �xing any of them leads to local identi�cation.

Under double precision, the eigenvalues ofG(�1AMPF ) in decreasing order are 8:72E+06, 8941:019,

4:689, 0:005, 8:24E-07, 1:81E-09 and �6:46E-11. The two smallest eigenvalues are below the Matlab
default tolerance level of 1.30E-08. This suggests that the rank equals 5 with 7 parameters in total.

However, because the two eigenvalues 8.24E-07 and 1.81E-09 are close to the tolerance level, the

result is not clear cut. Using quadruple precision, the eigenvalues of G(�1AMPF ) are: 8:72E+06,

8941:019, 4:689, 0:005, 8:24E-07, 1:81E-09 and �1:70E-29. Note that the smallest eigenvalue drops
signi�cantly to -1.70E-29, while other eigenvalues all remain essentially unchanged. Therefore, the

results show that the rank of the matrix in fact equals 6. The precision can be increased even

further. We increase it to 50 digits and �nd that the �rst 6 eigenvalues remains virtually the same,

while the smallest eigenvalue further shrinks to 2.32E-45. This rea¢ rms the conclusion.

The above result shows that there is either one unidenti�ed parameter or one subset of parame-

ters that are not separately identi�able. In order to pinpoint this parameter subset, we apply the
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procedure outlined in Subsection 2.2. This analysis ultimately points to (�; �r; �r). When all the

other parameters are �xed, the smallest eigenvalue of the relevant submatrix of G(�1AMPF ) equals

3.39E-12 under double precision. For the computation in quadruple precision, its magnitude is

reduced to -9.20E-30. Therefore, the three parameters �; �r and �r are not separately identi�able,

but �xing any one of them can lead to identi�cation.

This identi�cation feature can also be seen from the analytical solution. Looking at (18), we

can see that the three parameters enter the solution only through two transformations: ��1�r�r

and
�
��1 + ��2�r

�
�r. Therefore, there is one degree of freedom to change the three parameters

jointly without a¤ecting the above two quantities, which explains the obtained result.

We repeat the above analysis using the 4-point rule for numerical derivative and �nd that

the conclusions about identi�cation are the same. This follows because the smallest eigenvalue

is of similar magnitude and the tolerance level does not change. Therefore, using progressively

higher precision resolves the uncertainty about the rank and sources of identi�cation failure thus

sharpening the conclusion about identi�cation. Further, although the rank is computed only at

�1AMPF , once the nonidenti�ed parameter subsets are pinned down and the mechanism behind

identi�cation failure is established, it follows that the lack of identi�cation is a generic feature not

con�ned to this parameter value. This suggests one way in practice how identi�cation features at

a single point can be generalized to other parameter values.

Now, consider the special parameter value for the �rst regime:

�2AMPF = [�; �; 
; �r; �� ; �r; �� ] = [1:5; 0:9804; 1:2;�1:5;�0:996; 1; 1]:

Result 2 �2AMPF can be changed along three orthogonal directions with observational equivalence.

In this case, the rank of G(�2AMPF ) equals 4 in both double and quadruple precision, implying

that three parameters need �xing to achieve local identi�cation. In the former case, the eigenvalues

equal 9.972, 0.598, 2.76E-04, 8.11E-07, 2.39E-15, 5.42E-17, 1.02E-18, of which the last three fall

below the default tolerance of 1.24E-14. In the latter case, the largest four eigenvalues remain

essentially the same at 9.972, 0.598, 2.76E-04, 8.11E-07, while the three smallest eigenvalues fall to

-6.98E-34, -7.22E-35 and -1.66E-37. Increasing precision to 50 digits, we again see no discernible

change in the eigenvalues above the tolerance level, while the three smallest eigenvalues are further

reduced to 2.03E-40, 8.89E-42, -6.86E-52, thus con�rming our conclusion.

This result shows that the parameters can be moved along each of three orthogonal directions

with observational equivalence. We again apply the procedure from Subsection 2.2 to locate the

relevant parameter subsets. The same tolerance level of 1.24E-14 is used throughout. The analy-

sis pinpoints subsets (�; �r); (
; �� ); (�; 
; �� ) and (�; �� ; �� ). In double precision, the smallest
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eigenvalues pertaining to the submatrices are 4.44E-16 for (�; �r), 1.10E-18 for (
; �� ), 4.35E-20 for

(�; 
; �� ) and 2.48E-20 for (�; �� ; �� ). In quadruple precision, the respective values are 3.85E-34,

3.15E-39, -5.43E-41 and -4.56E-38. Note that the number of subsets exceeds 3 because orthogonal-

ity is not enforced. These parameter subsets can again be understood using the analytical solution.

Note that the model remains unchanged as long as the conditions for the root cancellation �r = ��
and �� = �(1=� � 
(1=� � 1)) are satis�ed, and the values of (1=� � 1)�� and �r stay the same.
Moving �r and � in exactly opposite directions will satisfy these requirements. This leads to the

�rst subset. Increasing 
 by one unit and increasing �� by (1=�� 1) also satis�es this requirement.
This leads to the second subset. Further, because the restriction �� = �(1=� � 
(1=� � 1)) also
involves �, moving 
 and � together can also keep it satis�ed. In the meantime, (1=�� 1)�� needs
to be kept �xed, so �� has to adjust accordingly. This gives rise to the third set. The fourth set

follows from an analogous mechanism to the third.

In summary, the arbitrary precision arithmetic e¤ectively removes the ambiguity regarding the

rank of the matrix G(�). Subsequently, the procedure outlined in Subsection 2.2 pinpoints the

parameter subsets that contribute to the identi�cation failure. Although the parameter values

considered here are subject to arbitrariness, the methods themselves are of general applicability.

For example, in bigger models with more parameters, the number of parameter combinations that

the procedure needs to search over is greater but the implementation remains the same.

Case (ii): PMAF. We structure the analysis in the same way as for the AMPF regime. Some

details are omitted to avoid repetition. The baseline generic parameter values we consider are

�1PMAF = [�; �; 
; �r; �� ; �r; �� ] = [0:3; 0:9804; 0:1; 0:5; 0:5; 1; 1]:

Result 3 �1PMAF can be changed along two orthogonal directions with observational equivalence.

In double precision, the eigenvalues equal 7.926, 0.418, 0.020, 3.12E-04, 2.49E-09, 9.81E-18 and

2.41E-18, with the latter two being below the default tolerance level of 6.22E-15. This suggests

that G(�1PMAF ) has rank 5 with 7 parameters. The computation in quadruple precision shows that

the �rst �ve eigenvalues do not change noticeably, but the remaining two go down to -8.17E-35

and 2.12E-37 respectively. Further increasing precision to 50 digits shows that these eigenvalues

shrink to 2.90E-51 and -2.65E-53, while the rest are virtually una¤ected. Therefore, the arbitrary

precision arithmetic con�rms the rank. Switching the numerical derivative to the 4-step method

does not alter the conclusion. Applying the procedure in Subsection 2.2, we �nd that the parameter

subsets responsible for identi�cation failure are (
; �� ); (�; 
; �� ) and (�; �� ; �� ). The analytical
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solution (20) shows that both b�t and bbt contain a term multiplying e�t that can be maintained by

varying parameter combinations given in the nonidenti�ed subsets.

The special parameter value is given by:

�2PMAF = [�; �; 
; �r; �� ; �r; �� ] = [0:3; 0:9804; 0:1;�0:3;�1:018; 1; 1]:

Result 4 �2PMAF can be changed along three orthogonal directions with observational equivalence.

In double precision, the tolerance level equals 7.77E-16 with the eigenvalues being 0.700, 0.637,

2.66E�04, 5.37E-08, 1.46E-16, 4.22E-17 and -1.13E-17. This suggests that G(�2PMAF ) has rank

4. In quadruple precision, the only notable change is that the three smallest eigenvalues shrink

to -9.75E-39, 3.91E-36 and -1.49E-34. When using 50 digits precision, the values fall further to

2.33E-54, 4.00E-51 and 2.04E-40. The nonidenti�ed parameter subsets and their interpretation

in light of the analytical solution coincide with those in the case of �2AMPF due to the identical

structure of the solution given parameter restrictions in both special cases.

Case (iii): PMPF. The parameter value considered in the indeterminacy regime is

�PMPF = [�; �; 
; �r; �� ; �r; �� ;Mr;M� ; ��] = [0:3; 0:9804; 1:5;�0:3;�1:018; 1; 1; 0:3; 0:3; 1];

where Mr and M� are parameters determining the correlations between the sunspot shock and the

monetary and �scal shocks, respectively, and �� is the standard deviation of the sunspot shock.

Result 5 �PMPF is locally identi�ed, a result clear under arbitrary but not double precision.

Using double precision, the following eigenvalues are obtained: 1.01E+08, 5501.153, 274.015,

3.098, 0.372, 0.021, 0.002, 4.26E-05, 4.25E-07 and 9.07E-09. As the default tolerance level equals

1.49E-07, one would conclude that the rank of G(�PMPF ) equals 9 instead of 10. However, the

computation in quadruple precision shows that G(�PMPF ) has full rank. The smallest eigenvalue

remains of similar magnitude, being equal to 1.60E-08, and not going toward zero when the 50-digit

precision is used. Therefore, the model is locally identi�ed at �PMPF .

We take 1000 uniform random draws of parameter points to examine to what extent this is a

generic feature of the model under indeterminacy. The parameters are random uniform draws within

the following bounds: Lower bound: [0:01; 0:90; 1:01; 0:005; 0:005;�0:99;�0:99;�3;�3; 0:005]; Up-
per bound: [0:99; 0:999; 2; 1; 1; 0:99; 0:99; 3; 3; 1]. Note that the variance of the sunspot shock is

constrained to be nonzero. We �nd that the computation in double precision produces quite het-

erogeneous results. The rank of the criterion matrices �uctuates between 6 and full rank of 10
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across the 1000 points, with 689 out of 1000 points indicating some degree of local identi�cation

failure. The default tolerance levels �uctuate between 1.42E-13 and 3.81E-05, while the smallest

eigenvalues range from 3.96E-15 to 1.96E-05. In contrast, using quadruple precision, we �nd that

all of the 1000 considered parameter vectors are locally identi�ed. The smallest eigenvalues re-

main largely the same in all cases and do not shrink to zero. Therefore, local identi�cation under

indeterminacy seems a generic property of the regime.

5.2.2 Computational time

We now document the computational costs, measured as the median runtime over 50 runs of the

program, associated with computing the model solution and G(�) on an 8-core Intel 2.4 Ghz proces-

sor. In double precision, it takes on average 0.001 seconds to solve the model for all cases considered.

In quadruple and 50-digit precision, the computational cost rises to 0.021 and 0.028 seconds, re-

spectively. When computing G(�) for cases (i) and (ii), it takes about 0.5, 8.6 and 14.3 seconds to

compute G(�) in double, quadruple and 50-digit precision respectively using the symmetric quotient

rule and 500 points for Gauss-Legendre quadrature. It takes longer to compute G(�) in case (iii) due

to the higher number of parameters in the model. Double precision computation completes in 0.6

seconds on average, while quadruple and 50-digit precision computations take 12.1 and 22.9 seconds

respectively. When the derivative is computed using the four point rule, the respective times rise

to 1, 16.1 and 27.2 seconds when AMPF and PMAF regimes are considered, and 1.2, 22.8 and 43.7

seconds in case of indeterminacy. We can see that using arbitrary precision arithmetic leads to

substantial increases in computation time. The increase is exponential when switching from double

to quadruple precision, but appears close to linear when going from quadruple to 50-digit precision.

Nonetheless, it is clear that it is feasible to utilize the arithmetic for local identi�cation analysis of

the small scale models even using serial computation on a relatively low frequency CPU.

To further reduce computational cost, we parallelize part of the code to utilize all 8 cores. In

case of double precision, the parallel overhead prevents any speedup. However, arbitrary precision

computations bene�t substantially: 1) the quadruple precision computations using 2-point deriva-

tive take 5 and 6.9 seconds for determinate and indeterminate regimes, respectively, and increase

to 7.5 and 10.6 seconds when the 4-point rule is used; 2) the respective 50-digit computation times

fall to 5.2 and 10.2 seconds using the 2-point rule, and to 8.3 and 20.5 seconds using the 4-point

rule. Thus, the largest gains from parallelization are obtained for cases where the 4-point rule is

used. There is also ample room for further reduction of computational cost by using modern CPU�s

with higher clock frequency, more cores or both.
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5.2.3 Summary

In the above example, using double precision with default tolerance for rank determination delivers

correct conclusions about local identi�cation in 8 out of 10 cases considered. The use of arbitrary

precision arithmetic leads to sharp results in all the cases. In the two cases, which concern �1AMPF

and �PMPF , the common feature is that the determined rank of G(�) is spuriously lower by 1,

which occurs due to the large disparity between the largest and the smallest nonzero eigenvalues.

Interestingly, when identi�cation from only the business cycle frequencies is considered in both

cases (c.f. Appendix C), this issue is no longer present and the computed ranks are higher. Since

limiting the frequencies considered cannot improve identi�cation, this points to a potential prob-

lem with the full spectrum result. Thus, computing the identi�cation condition at business cycle

frequencies, apart from the obvious insight it provides, could act as another informal robustness

check in double precision in cases where the low frequency properties of the model may result in

G(�) possessing disproportionate eigenvalues. These �ndings suggest two conclusions. First, the

numerical procedure of Qu and Tkachenko (2012) does tend to deliver relatively robust results in

double precision. Second, utilizing arbitrary precision arithmetic is indeed helpful in sharpening

the results whenever there are any doubts about the conclusions.

The analysis also suggests that the following steps for carrying out the local identi�cation

analysis can be e¤ective. First, apply the standard double precision arithmetic to estimate the rank.

Then, use the arbitrary precision arithmetic to remove the ambiguity if there is any. Subsequently,

use the procedure in Subsection 2.2 to pinpoint the parameter subsets and obtain their values that

contribute to the identi�cation failure. This way, we will know not only whether local identi�cation

holds, but also know which parameters are behind the identi�cation failure and what values they

may take to yield observational equivalence.

5.3 Global identi�cation

We examine the global identi�cation properties of the model both within and across the three

regimes. Finding observational equivalence, or lack thereof, across regimes would be particularly

interesting, as this can reveal whether di¤erent monetary-�scal policy combinations can generate

the same observed outcomes. The analysis focuses on the full spectrum. Using the business cycle

frequencies only leads to the same conclusions. The presentation of the results follows the same

structure as in the local identi�cation case.
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5.3.1 Potential observational equivalence between the AMPF and the PMPF regime

We examine whether there can be observational equivalence between the AMPF regime at the

generic parameter value �1AMPF and the PMPF regime at some unknown parameter values. Specif-

ically, we treat the AMPF regime at �1AMPF as the default speci�cation and minimize the KL

divergence between it and models in the indeterminacy region over all 10 parameters. It has been

noted above that in the special case where the solutions of the model are white noise in all three

regimes, it is possible to have observational equivalence across all of them.

Result 6 Starting with the AMPF regime at � = �1AMPF as the default, the method shows that

there are a continuum of parameter values in the PMPF regime that can lead to observational

equivalence. Furthermore, this is a generic feature of the model because the equivalence also holds

at parameters di¤erent from �1AMPF . Consequently, even if the the monetary policy has been active,

it is impossible to rule out that it has been passive, even with an in�nite sample size.

Detecting observational equivalence. The minimized KL equals 2.16E-12 in double precision,

which suggests observational equivalence. The minimized parameter values are

[�; �; 
; �r; �� ; �r; �� ;Mr;M� ; ��] (21)

= [0:6644; 0:9804; 1:2000; 0:8609; 0:5000; 0:2572; 1:0000;�3:4554; 2:80E-07; 1:46E-04]:

It is apparent that three parameters di¤er substantially from the values under the default speci�-

cation: �, �r and �r, while the rest stay relatively unchanged from those in �1AMPF . Among the

sunspot parameters, which do not appear in the determinate regime, all except Mr take on values

close to zero. This leads to the tentative conclusion that some values of �, �r,�r and Mr within

the PMPF regime can generate observational equivalence to the AMPF regime at �1AMPF .

Meanwhile, one can argue that the value 2.16E-12 could be di¤erent from zero. We further apply

the arbitrary precision arithmetic to see whether this can be the case. In quadruple precision, the

minimized KL equals 5.09E-29 with the parameter values being

[0:6645; 0:9804; 1:2000; 0:8607; 0:5000; 0:2574; 1:0000;�3:4540; 2:63E-15; 1:39E-08]:

Further increasing precision to 50 digits leads to a minimized KL of 1.95E-35, with parameters at

the minimizer remaining the same as above except for M� and ��; which now equal 1.64E-18 and

3.46E-10 respectively. It should be noted that KL can still be reduced further in 50-digit precision,

however, the optimization algorithm converges slowly in this case, making small improvements at

every iteration, most likely due to values of M� and �� slowly approaching zero. We interpret the
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obtained substantial reduction in the minimized KL over 200000 function evaluations in this case

as further evidence of observational equivalence.

We notice that the parameters M� and �� get closer to 0 when the precision is increased. Does

it imply that equivalence obtains when they are set to exactly zero? To see this, we repeat the

analysis in the previous two paragraphs imposing this restriction. In double precision, we �nd that

KL reaches exactly 0 with the parameter values equal to

[�; �; 
; �r; �� ; �r; �� ;Mr;M� ; ��] (22)

= [0:6193; 0:9804; 1:2000; 0:9506; 0:5000; 0:2172; 1:0000;�4:0929; 0; 0]:

Minimizing KL in quadruple and 50-digit precision yields 3.57E-37 and 4.74E-51, respectively, with

virtually the same parameter values as above (di¤erences are of order E-06 and lower). We can

see that making relevant restrictions makes the equivalence much easier to detect even in double

precision. Furthermore, validating the result in increased precision is less costly as convergence is

much faster. It may seem counter intuitive that an exact zero result is obtained in double precision,

while small nonzero numbers are obtained in extended precision. Exact zeros do not arise often

in nontrivial �oating point computation output, however, they can be a consequence of integer

subtraction or accidental cancellation. Also, su¢ ciently close real numbers may be represented

by the same number in binary �oating point format so that their subtraction will produce an

exact zero. This implies that obtaining an exact zero does not necessarily mean that the result is

absolutely precise. When higher precision is used, such close numbers can be approximated more

accurately and hence their subtraction will yield a small number comparable to the machine epsilon

of the precision level. This is indeed what seems to happen in this example. This reasoning also

applies to exact zero results obtained in some other cases below.

Tracing out observationally equivalent parameter values. We also notice the following

feature from the optimization outcomes. Aside from the point reported, the procedure returns over

10 points for which the KL divergence is of orders E-12 and E-11, all of which have di¤erent values

of the above mentioned four parameters (�, �r,�r andMr), while the other 6 parameter values stay

relatively constant and close to their values under AMPF. Furthermore, when the zero restrictions

on M� and �� are imposed, the number of the minima with such features grows to 50. Thus, there

can be multiple values in the PMPF region that are observationally equivalent to �1AMPF .

To study this, we �rst check whether the parameters are locally identi�able at (22). Identi�-

cation failure is detected with the only nonidenti�ed parameter subset being (�; �r; �r;Mr). We

then trace out the nonidenti�cation curve that corresponds to this subset using the method in Qu
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and Tkachenko (2012) in order to collect observationally equivalent points. The step size of 1E-04

is chosen for the Euler approximation. Along the curve, the parameters �, �r and Mr move in

the opposite direction to �r, while the rest of the parameters are �xed at their values in (22). In

the direction where � increases (call it Direction 1), the curve is terminated right before � reaches

1, which is the boundary of the PMPF region. In the other direction, where �r increases (call it

Direction 2), the curve is truncated right before �r reaches the invertibility bound of 1. Table 1

reports 10 equally spaced points in both directions, together with the KL distances and empirical

distance measures to convey the scope of the nonidenti�ed parameter set. From the table, we can

see that the curve covers a wide range of values of the four parameters. Along the curve, both �

and �r take values between 0.60 and 0.99, �r varies between 0.20 and 0.56, and Mr ranges from

-4.44 to -1.60. The corresponding KL and empirical distances suggest exact or near equivalence to

(22) along the whole curve. To verify whether equivalence is indeed exact, we perform additional

minimization in quadruple precision using the reported points on the curve as starting values. The

largest parameter di¤erences at the resulting minimizers are of order E-03 in one case and E-04 in

the rest, while the corresponding KL values are of order E-33 and below. The results thus further

con�rm observational equivalence at all considered points on this curve.

Comparing the parameter values from the nonidenti�cation curve computed above and the

multiple minima from the original KL minimization procedure, we can see that almost half of these

points appear to be on this curve. The other half features much smaller values for � and opposite

signs for �r and Mr. One such point is given by

[�; �; 
; �r; �� ; �r; �� ;Mr;M� ; ��]

= [0:0522; 0:9804; 1:2000;�0:0607; 0:5000; 0:2869; 1:0000; 3:0980; 0; 0]:

The KL divergence at this point equals 5.99E-13 in double precision, and further shrinks to 3.79E-

36 in quadruple precision without noticeable changes in parameter values. Local identi�cation

analysis again pinpoints the subset (�; �r; �r;Mr) as the source of identi�cation failure. We extend

the nonidenti�cation curve from this point in the same way as in the previous paragraph. Along

this curve, the parameters � and Mr move in the opposite direction from �r and �r. The values

along the curve are reported in Table 2. In the direction where � increases (Direction 1), the

curve is terminated at the point where �r is closest to the boundary of the invertible region at

-1. In the opposite direction (Direction 2), the curve is truncated when � reaches zero. Along

the curve, � varies between 0 and 0.27, �r ranges from being close to 0 to being close to -1, �r

moves between 0.09 and 0.33, and Mr takes values in the range from 2.70 to 9.78. Similarly to the

previous paragraph, we use optimization in quadruple precision to verify exact equivalence for the
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values reported in Table 2. This curve incorporates all the remaining minima found.

This suggests that, in practice, observing multiple parameter vectors with KL close to zero

can be a signal that there are multiple observationally equivalent points. All such points can be

evaluated using arbitrary precision arithmetic to validate exact equivalence. Tracing out noniden-

ti�cation curves can help further characterize the observationally equivalent parameter values.

Analytical characterization. We now demonstrate this result analytically. The solution for b�t
under the default AMPF regime takes on an MA(1) form b�t = (�1� ��r=�� � ��rL) e�rt =��, where
an asterisk has been added because these quantities can di¤er from their values under PMPF in

(21). Multiply both sides of the preceding equation by (1� �L) :

(1� �L)b�t = (1� �L)
�
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The solutions for b�t under the PMPF regime satisfy b�t = �b�t�1+ "rt�1+�t; �t =Mre
r
t +M�e

�
t + �t.

Setting M� = �� = 0, we obtain, in lag operator notation

(1� �L)b�t = (Mr + L+ �rL
2)ert :

The two representations of b�t would be equivalent if the coe¢ cients on the right hand side match:�
� 1

��
� 1

��2
��r

�
��r = (�1)sMr�r; (23)�

�

��
+
���r
��2

� ��r
��

�
��r = (�1)s�r;

���r
��

��r = (�1)s�r�r;

where either s = 0 or s = 1 holds in all three equations. The solution for bbt under PMPF is
bbt = (1=� � 
(1=� � 1))bbt�1 � (1=� � 1)"�t � Mr

�
ert ;

which is the same form as (18) except for the term involving ert . Thus, for equivalence in bbt between
regimes, it su¢ ces to have �

� 1

��
� 1

��2
��r

�
��r = (�1)sMr�r;

which is also one of the conditions for equivalence of b�t in (23). Treating (Mr; �r; �r; �) as four

unknowns, each set of values for (��r ; �
�
r ; �

�) leads to a continuum of solutions because there are
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only three restrictions in (23). Setting s = 0 leads to the �rst curve, while s = 1 leads to the

second. Indeed, all the points reported above satisfy the restrictions in (23) numerically.

Noninvertibility. The above analysis has restricted the process for "rt to be invertible, i.e.,

j�rj < 1. Further observationally equivalent points can be obtained by considering noninvertible

speci�cations of the MA(1) shocks, i.e., j�rj > 1. One such point is given by

[�; �; 
; �r; �� ; �r; �� ;Mr;M� ; ��]

= [0:5755; 0:9804; 1:2000; 1:0765; 0:5000; 0:1782; 1:0000;�4:9886; 0; 0]:

At this value the KL equals 0 under double precision and remains at 0 in quadruple precision.

5.3.2 Potential observational equivalence between the PMAF and the PMPF regime

We treat the PMAF regime at �1PMAF as the default and search for observationally equivalent

points in the PMPF regime. The analysis is organized in the same way as in the previous case.

Result 7 Starting with the PMAF regime at �1PMAF as the default, the method �nds that there are

a continuum of parameter values in the PMPF regime that can lead to observational equivalence.

Furthermore, this feature is generic because the equivalence also holds for parameter values di¤erent

from �1PMAF . Consequently, even if the �scal policy has been active, it is impossible to rule out that

it has been passive, even with an in�nite sample size.

Detecting observational equivalence. The minimized KL in double precision equals 3.66E-11

with the parameter values at the optimum being

[�; �; 
; �r; �� ; �r; �� ;Mr;M� ; ��]

= [0:3000; 0:9036; 1:1587; 0:5000; 0:4285; 1:0000; 0:2112; 2:46E-08;�0:1384; 2:28E-05]:

It can be seen that in this case only �; 
, �� and �� di¤er from their original values at �
1
PMAF . Out

of the three sunspot parameters, only M� appears to be di¤erent from zero. Thus, here we could

tentatively conclude that: 1) varying �ve parameters (�; 
; �� ; �� ;M� ) can produce observational

equivalence between the PMAF and the PMPF regimes; 2) it could be impossible to test whether

�scal policy has been active if the monetary policy has been passive using samples of in�nite size.

However, the KL divergence of 3.66E-11 could be perceived as a manifestation of near rather

than exact equivalence. We perform further optimization in arbitrary precision restricting Mr =
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�� = 0 to reach a sharper conclusion. In both quadruple and 50-digit precision, the minimized KL

equals 0. The parameter values in both cases equal

[0:3000; 0:9625; 1:0208; 0:5000; 0:4775; 1:0000; 0:5270; 0;�0:0555; 0]: (24)

Tracing out observationally equivalent parameter values. As in the previous case, in dou-

ble precision, the optimization returns 10 other points with minimized KL of order E-11 and below.

Applying the local identi�cation condition to (24) reveals that two parameters need �xing to guar-

antee local identi�cation. The corresponding nonidenti�ed subsets are (
; �� ), (�; 
; �� ;M� ) and

(�; �� ; �� ;M� ). We extend the corresponding nonidenti�cation curves and report the associated

parameter values in Tables 3-5. Along the curve corresponding to (
; �� ), the two parameters move

in the opposite directions until 
 reaches the upper bound of 3 set in optimization in Direction 1

or reaches the boundary of the PMPF region at 1 in Direction 2. The values of �� along this curve

range between 0.4406 and 0.4779. The curve corresponding to (�; 
; �� ;M� ) involves all parameters

moving in the same direction. It is truncated for the same range of values of 
 as in the previous

case. The set of observationally equivalent points implied by this curve has � ranging between

0.9619 and 0.9838, �� ranging between 0.5199 and 1.2103, and M� ranging between -0.0562 and

-0.0241. The �nal curve involves parameters (�; �� ; �� ;M� ) moving in the same direction. It is

truncated when �� reaches its upper bound of 10 imposed in optimization in Direction 1, and at

the point where � is closest to 0.5 in Direction 2. Along this curve, �� moves between 0.1977 and

0.5044, �� moves between 0.0486 and 10, and M� moves between -0.6010 and -0.0029. As in the

case of the AMPF regime above, we verify exact equivalence along the curves using optimization

in quadruple precision. These curves cover all of the multiple minima found during the search for

equivalent PMPF values while imposing invertibility of "rt and "
�
t .

Analytical characterization. The above results can be veri�ed analytically. First, consider the

solution for b�t. In the PMPF regime it takes the form b�t = �b�t�1+ "rt�1+M�e
�
t . Contrasting this

with the expression for b�t in (20), we can see that, keeping �, �r and �r the same across the two
regimes, observation equivalence can be achieved if the following holds:

� ��(1=�� � 1)
�

1

(1=�� � 
�(1=�� � 1))�
�
� + 1

�
��� = (�1)sM��� ; (25)
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where, again, parameters taking potentially di¤erent values under the PMAF regime are marked

by asterisks, and s = 0 or 1. Moving on to the solution for bbt, in the PMPF regime it is given by
bbt = (1=� � 
(1=� � 1))bbt�1 � (1=� � 1)"�t � M�

�
e�t

= (1=� � 
(1=� � 1))bbt�1 � �(1=� � 1) + M�

�

� 
e�t +

(1=� � 1)��
(1=� � 1) + M�

�

e�t�1

!
;

which is an ARMA(1,1) process. The solution for bbt under the PMAF regime is a white noise
process given in (20). Therefore, two conditions need to be satis�ed for observational equivalence:

1) ARMA(1,1) root cancellation under PMPF, implying the restriction

(1=� � 
(1=� � 1) = � (1=� � 1)��
(1=� � 1) +M�=�

; (26)

2) equal variance of the resulting white noise process and the one in (20), which requires that

(1=�� � 1)������
(1=�� � 
�(1=�� � 1)) = �(�1)

s ((1=� � 1) +M�=�)�� ; (27)

where s = 0 or 1 as in (25).

The values reported by the minimization procedure all satisfy (25), (26), and (27) with s = 0.

There are no points with s = 1 found because, given �1PMAF , the restrictions (25), (26), and (27)

cannot be satis�ed in this case by theoretically admissible values, as � in the PMPF regime would

need to exceed 1. One way to show this is to plug in numerical values for �1PMAF parameters on the

left hand sides of the two restrictions. The �rst restriction yields: �0:0292 = �M��� : The second,

after rewriting in terms of M��� , becomes M��� = � � 0:0098 + ��� � �� : Combining with the

�rst restriction, we get � � 0:0098 + �� (� � 1) = 0:0292, which cannot be satis�ed unless � > 1.

Noninvertibility. Further observationally equivalent points can be obtained by considering pa-

rameter values with noninvertible speci�cation for "rt . For example, one such point is given by

[�; �; 
; �r; �� ; �r; �� ;Mr;M� ; ��]

= [0:3000; 0:9081; 1:0425; 2:000; 0:4372; 0:5000; 0:2211; 0;�0:1322; 0]:

At this point the KL equals 2.07E-12 in double precision, and is further reduced to 0 in quadruple

precision with minor changes to parameter values. No observational equivalence is found when "�t
is restricted to be noninvertible.
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5.3.3 Potential observational equivalence between the AMPF and PMAF regimes

We consider �1AMPF and �
1
PMAF as benchmark speci�cations and search for the closest point in the

opposite regimes.

Result 8 No observational equivalence is detected. This no equivalence result can be viewed jointly

with the equivalence results reported in the previous two subsections. They imply that whether a

passive monetary (resp. �scal) policy always leads to di¤erent economic dynamics than an active

monetary (�scal) policy depends on how the �scal (monetary) policy is conducted. Within this

model, the statement that "an active monetary policy is more bene�cial to the economy" alone

has no content, because a passive monetary policy can lead to observational equivalence, or no

equivalence, depending on the �scal policy. Similarly, the statement that "a passive �scal policy is

more bene�cial to the economy" alone also has no content, because an active �scal policy can lead

to observational equivalence, or no equivalence, depending on monetary policy.

The results are reported in Tables 6 and 7, respectively. In the former case, the minimized KL

equals 8.8717 when "�t is restricted to be invertible, and 5.6198 when it is allowed to be nonivertible.

In the latter case, noninvertible speci�cations of "rt lead to minimized KL of 0.2665, with larger

KL of 0.9715 and 0.9807 in cases where the invertibility "rt is imposed. Additional optimization in

quadruple precision delivers the same results to four digits after the decimal.

5.4 Empirical distance between di¤erent policy regimes

Although no cross-regime observational equivalence between AMPF and PMAF was found when

generic parameter values were considered as benchmarks, it is of interest to assess how well one

could distinguish between the base model and the closest model in the alternative regime in �nite

samples. We thus compute the corresponding empirical distance measures in both double and

quadruple precision in order to interpret our identi�cation results relative to sample sizes commonly

encountered in empirical applications. Speci�cally, we �x the signi�cance level at 5% and compute

the empirical distance measures for sample sizes of 80, 150, 200 and 1000 observations using 100

points to approximate the integrals inside the KL divergence and asymptotic variance terms.

Result 9 It is quite feasible to distinguish between the base model at �1AMPF (resp. �
1
PMAF ) and

the closest model in the PMAF (AMPF ) regime in empirically relevant sample sizes.

We �rst consider the empirical distances between �1AMPF and the closest point in the PMAF

regime with invertible shock speci�cations (Table 6, row 3). The computations in double precision
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for all the sample sizes considered yield 1.0000 when rounded to 4 digits. The deviations from 1 are

of order E-05, E-09 and E-11 for T = 80; 150; 200 respectively, while the distance equals 1 exactly

at T = 1000. The computation in quadruple precision yields results that di¤er only slightly from

their double precision counterparts: for T = 80 and 150, the distances are larger by values of orders

E-18 and E-17, respectively and for T = 200 the resulting distance is smaller by E-18, while for

T = 1000 we again obtain exactly 1. Increasing the precision to 50 digits shows that for T=1000 the

di¤erence between 1 and the resulting empirical distance is of order E-49, so that the subtraction

of such a small quantity from 1 is rounded to exactly 1 in both double and quadruple precision.

We next turn to the closest PMAF parameter vector with both "rt and "
�
t noninvertible (Table

6, row 6). The results are qualitatively similar: the empirical distance stays very slightly below 1

for T = 80; 150; 200 (deviations of order E-06, E-11 and E-14, respectively) and reaches 1 exactly

at T = 1000 in double precision. Utilizing quadruple precision produces very similar empirical

distances. The results for the remaining cases (Table 6, rows 4 and 5) are virtually identical to the

second and the �rst cases considered above, respectively, and hence are omitted.

We further consider the AMPF parameter values found to be closest to �1PMAF . When both

"rt and "
�
t are invertible (Table 7, row 3), the empirical distances in double precision equal 0.9157,

0.9704, 0.9854 and 1.0000 for T = 80; 150; 200; 1000 when rounded to 4 digits. The di¤erence

between 1 and the latter value is of order E-07. When quadruple precision is used, the values

are slightly smaller than those obtained in double precision, di¤ering by values of order E-16 for

T = 80; 150; 200 and E-17 for T = 1000. When both MA shock processes are noninvertible (Table

7, row 6), the empirical distances obtained in double precision equal 0.9987 for T = 80 and 1.0000

for the rest of sample sizes considered. For T = 150 and 200 the deviations of the empirical

distances from 1 are of order E-06 and E-07 respectively, while at T = 1000 the distance equals 1

exactly. When the computation is performed in quadruple precision, the empirical distances are

slightly above their double precision counterparts by values of order E-18 for T = 80 and E-17

for T = 150; 200, while at T = 1000 the value is smaller than 1 by 2.27E-31. The results for the

remaining two cases are qualitatively similar and hence are omitted.

5.5 Discussion

The possibility of observational equivalence between the AMPF and PMAF regimes, as well as that

between determinacy and indeterminacy is well recognized in the literature. We therefore recount

selected studies in these areas to help put our results in context. To our knowledge, Leeper and

Walker (2013) were the �rst to provide an analytical example of observational equivalence between

the AMPF and PMAF regimes in a simple model with monetary-�scal policy interactions. Their
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policy rules are purposely simpli�ed to be deterministic. Tan and Walker (2015), whose model

we use in the illustration above, document observational equivalence between the two determinate

policy regimes only under a special parameterization of shock processes (see (19)). Regarding the

potential equivalence between determinate and indeterminate equilibria, Beyer and Farmer (2004)

and Cochrane (2011) provide numerical and analytical examples, respectively, illustrating such

observational equivalence in stylized New Keynesian models that do not contain �scal rules.

Our results in Subsections 5.3.1-5.3.2 demonstrate explicitly, for the �rst time, the observational

equivalence between the determinate and indeterminate regimes in a model with monetary-�scal

policy interactions. Finally, the existing literature does not appear to contain analytical results

showing such cross-regime equivalence in medium scale DSGE models, however, some recent em-

pirical studies involving such models, e.g., Leeper et al. (2017), report nearly identical �t of the two

policy regimes to data1. Therefore, one may conjecture that such identi�cation problems may still

persist in more sophisticated models. The global identi�cation methodology showcased here can

thus be useful in investigating these issues in more general setups. The feasibility of application to

medium scale DSGE models is demonstrated in the next section.

6 Application: a medium scale model

We analyze identi�cation in the model of Schmitt-Grohé and Uribe (2012). It is an interesting

application since the model features anticipated shocks, the quantitative importance of which is

actively investigated in the literature. Some recent studies highlighting the important role of such

shocks include Milani and Treadwell (2012), Christiano et al. (2014) and Forni et al. (2017), among

others. The model is founded on a real business cycle model with endogenous capital accumulation

and is augmented with real rigidities in investment, capital and wages, nonstandard consumer

preferences and anticipated components in all of the exogenous shock processes. We outline the

main building blocks of the model here, to ease the understanding of the results, while Schmitt-

Grohé and Uribe (2012) can be consulted for full details. The full list of model parameters and

their interpretations can be found in Table C1 of the online appendix.

The economy is populated with agents maximizing lifetime utility E0
P1
t=0 �

t�tU(Vt), where

�t is an exogenous preference shock, and U(Vt) = (V
1��
t �1)=(1��) with Vt = Ct� bCt�1� h�tSt,

where St = (Ct � bCt�1)
S
1�

t�1 so that consumer preferences are de�ned over Vt which represents

a bundle of consumption (Ct), labor (ht) and an additional variable St. Jaimovich and Rebelo

(2009) found that this form of preferences, together with other real rigidities, is key for generating

1See Leeper and Leith (2016) for a review of the empirical literature on discerning policy regimes.
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aggregate comovement in response to news about fundamental shocks.

Households own physical capital stock Kt, which evolves according to: Kt = (1� �(ut))Kt�1 +

zIt It [1� S (It=It�1)]. Here It is gross investment, and ut measures capacity utilization in period
t; so that the e¤ective amount of capital supplied to �rms is utKt�1. The depreciation rate �(ut)

satis�es �(ut) = �0 + �1(ut � 1) + (�2=2)(ut � 1)2, with �0; �1; �2 > 0. The investment adjustment
cost function S(�), due to Christiano et al. (2005), is given by S(x) = (�=2)(x � �i)2, where �i is

the steady state growth rate of investment. Finally, the stationary exogenous shock zIt a¤ects the

technology transforming investment goods into capital goods.

The production function is of Cobb-Douglas form:

Yt = zt(utKt�1)
�k(Xtht)

�h(XtL)
1��k��h ; (28)

where Yt is output, zt is an exogenous neutral productivity shock, Xt is a nonstationary labor-

augmenting productivity shock, and L is a �xed factor of production. The capital and labor shares

satisfy �k; �h 2 (0; 1); �k+�h � 1. The aggregate resource constraint is given by Yt = Ct+AtIt+Gt,

where Gt is government spending and At is a nonstationary shock to investment-speci�c technology.

The model features an imperfectly competitive labor market. The households supply labor to

monopolistically competitive labor unions, which sell di¤erentiated labor inputs to the �nal good

producers. The elasticity of substitution between di¤erentiated labor inputs is time-varying, with

the wage markup denoted �t. In equilibrium, the wage rate paid by the union to its members is

smaller than the wage rate �rms pay to unions, and all unions charge the same wage rate.

There are seven exogenous shocks in the model, and all of them are assumed to have antici-

pated components. They are: 1) the stationary neutral productivity shock zt, 2) the nonstationary

neutral productivity shock Xt, 3) the stationary investment-speci�c productivity shock zit, 4) the

nonstationary investment-speci�c productivity shock At, 5) the government spending shock Gt, 6)

the wage markup shock �t, 7) the preference shock �t. The shocks Xt and At are made stationary

using growth rates, with the respective variables being �xt = Xt=Xt�1 and �at = At=At�1. Gt is

detrended to form gt � Gt=X
G
t , where XG

t = (XG
t�1)

�xg(Xt�1A
�K=(�K�1)
t�1 )1��xg is the trend in

government spending . All seven processes xt (x = fz; �x; zi; �a; g; �; �g) are assumed to follow:
ln(xt=x) = �x ln(xt�1=x) + "x;t with "x;t = "0x;t + "4x;t�4 + "8x;t�8, where x denote the nonstochastic

steady state values of the variables and "jx;t are i.i.d. Normal disturbances with mean zero and stan-

dard deviation �jx. Since each exogenous process contains three disturbances realized at di¤erent

horizons, the total number of fundamental shocks is 21.

After stationarity inducing transformation and log linearizing the equilibrium conditions around

a nonstochastic steady state, Schmitt-Grohé and Uribe (2012) estimate the model on seven de-
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meaned observables: real GDP growth, real consumption growth, real investment growth, labor

hours, real government spending growth, TFP growth and relative price of investment growth. We

consider the same set of variables, except that for the �rst six variables we consider log deviations

from the steady state rather than growth rates, because otherwise the spectral density at the fre-

quency zero will be singular. For the seventh variable, we continue to use the growth rate because

the variable itself is nonstationary. The measurement variables are therefore

byt bct bit bht bgt bzt 100b�at . (29)

For analysis based on the business cycle frequencies, we consider both the levels and the growth

rates speci�cations to examine the result sensitivity.

6.1 Local identi�cation

We �rst examine the local identi�cation at the posterior median reported in Schmitt-Grohé and

Uribe (2012) Table II. The full vector of structural parameters is given by:

� = [�; 
; �; �2; b; �xg; ��a ; ��x ; �zi ; �z; ��; �g; �� ; �
0
�a ; �

4
�a ; �

8
�a ; �

0
�x ; �

4
�x ; �

8
�x ; �

0
zi ; �

4
zi ; �

8
zi ;

�0z; �
4
z; �

8
z; �

0
�; �

4
�; �

8
�; �

0
g; �

4
g; �

8
g; �

0
� ; �

4
� ; �

8
� ; �

me
gy ]:

The parameter values corresponding to the posterior median are denoted �0 and, for ease of refer-

ence, are included in Table C1. Schmitt-Grohé and Uribe (2012) previously applied Iskrev�s (2010)

condition in double precision and found that the model is locally identi�ed from their observables

at the estimated parameter values when the autocovariances of orders 0 and 1 are considered. Here

we conduct the local identi�cation analysis for the two sets of observables: 1) variables in (29); 2)

the original observables in Schmitt-Grohé and Uribe (2012). In both cases, we focus on the full

spectrum case in the main paper and report the results based on the business cycle frequencies

in the online appendix. It should be noted that since the observables in (29) do not contain the

measurement error in output, �megy is not considered in the corresponding identi�cation analysis.

Result 10 The model is locally identi�ed at the posterior median based on the full spectrum. How-

ever, relatively low magnitudes of the smallest eigenvalues indicate that there may potentially be

near observational equivalence.

Starting with the observables in (29), the �ve smallest eigenvalues of the G(�0)matrix computed

in double precision are: 1.83E-10, 3.63E-11, 1.21E-11, 3.48E-12, 7.55E-13. The default tolerance

level equals 6.04E-14, so the matrix is declared full rank. Even though the smallest 5 eigenvalues

above exceed the default tolerance level, they are small enough to be considered zero by practitioners

37



using rule of thumb tolerance levels. We repeat the computation in both quadruple and 50-digit

precision, and �nd that the smallest eigenvalues remain virtually the same in both cases. Hence,

this con�rms that the model is locally identi�ed at �0 using the observables in (29).

We consider the original set of observables from Schmitt-Grohé and Uribe (2012). The G(�0)

matrix has full rank in double precision, as its �ve smallest eigenvalues equal 1.20E-04, 8.92E-05,

6.37E-05, 1.65E-05 and 3.06E-06, and the default tolerance level equals 1.99E-12. Recomputing the

matrices in quadruple and 50-digit precision yields virtually the same eigenvalues, thus con�rming

local identi�cation.

6.1.1 Computational time

In double precision, the model solution can be obtained in 0.014 seconds on average, while the

corresponding times in quadruple and 50-digit precision are 0.50 and 0.78 seconds, respectively. It

takes approximately 21 seconds to obtain G(�0) on an 8-core Intel 2.4 Ghz processor using 500

points Gaussian quadrature and symmetric di¤erence quotient rule. In quadruple precision, the

mean computation time increases to 29.3 minutes on the same hardware, and further grows to

110.7 minutes on average when 50-digit precision is used. When the parallelized code is used, the

three times are reduced to 5.5 seconds for double, 13.9 minutes for quadruple, and 35.6 minutes in

50-digit precision. Although the costs are substantial, the computation remains feasible.

6.2 Global identi�cation

In this subsection we examine the global identi�cation properties of the model, which, to our

knowledge, have not been previously formally studied in the literature. We also study whether the

model structure can be altered to yield (near) observational equivalence.

6.2.1 Searching for observational equivalence

We search outside of a progressively larger neighborhood B(�0) de�ned as

B(�0) = f� : k�� �0k1 � cg;

with c increasing from 0.1 to 0.5, and then to 1. For all cases, we report the minimized KL divergence

and empirical distance measures for T = 80; 150; 200; 1000 in both double and quadruple precision.

Full results can be found in Tables 8 and 9.

Result 11 The model is globally identi�ed at �0. However, seven parameters need to be �xed in

order to have nontrivial ability to distinguish the closest alternative model outside the neighborhood
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given by c = 1:0 in sample sizes of empirical relevance. Most of the relatively weakly identi�ed

parameters in the model pertain to the anticipated shock components. This motivates a closer

investigation of the relative importance of these and other news shocks in the model speci�cation,

which is pursued in the next subsection.

When searching for the closest model with c = 0:1, we �nd that the constraint is binding for �8�.

The minimized KL equals 1.44E-07 in double precision. The empirical distance measures are close

to 0.05 and gradually increase to 0.0518 for T = 1000. Therefore, although not observationally

equivalent, the closest model outside the neighborhood is virtually impossible to distinguish in

practice from that at �0. Increasing c to 0.5 yields a higher KL of 1.14E-06, with empirical distance

reaching 0.0551 for T = 1000. The constraint is again binding for �8�. We can see that the

identi�cation hardly improves when a larger neighborhood is considered, and the closest model is

still nearly observationally equivalent for empirically relevant sample sizes. The results imply that

the standard deviation of the 8-quarter anticipated wage markup shock is di¢ cult to determine,

as nearly observationally equivalent models are obtained, with small adjustments to the rest of the

parameters, when it is reduced from its base value of 0.51 to 0.41 and further to 0.01. This �nding

is in line with the result obtained from a Bayesian perspective by Herbst and Schorfheide (2014)

using US data, where a bimodal posterior was obtained for �8�. The analysis here helps to show

that the weak identi�cation of �8� is an intrinsic property of the model at �0.

Finally, for c = 1; KL equals 1.02E-05 and empirical distance measures equal 0.0527, 0.0539,

0.0546 and 0.0617 for T = 80; 150; 200; 1000, respectively. Thus, near observational equivalence still

persists outside a fairly large neighborhood around �0. Di¤erently from the previous two cases,

here the constraint is binding for �4
zi
.

We repeat the analysis with �8� �xed at 0.51 in order to examine to what extent identi�cation

improves. The minimized KL equal 1.71E-07, 3.48E-06 and 1.03E-05 for c = 0:1; 0:5; 1 respectively.

The empirical distance measures remain similarly low, reaching only 0.0665 for T = 1000 when

c = 1. In all cases, the constraint binds for �4
zi
, and in the case where c = 1 the results are virtually

the same as in the previously examined respective case when �8� was allowed to vary.

For all the cases considered above, we perform additional optimization in quadruple precision in

order to clarify whether the low KL values obtained in some cases imply near or exact observational

equivalence. We �nd that, after 2000 iterations, there are no visible changes both in the value of

the objective function and in the parameter values of the minimizer. Therefore, we can conclude

that there are at least two parameters that can generate near equivalence and all of them pertain

to variances of anticipated shocks.
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We continue this process and successively �x parameters for which the constraint is binding

at their �0 values until the empirical distance for the case c = 1 at T = 200 is above 0.2. The

parameters thus �xed are:

�0zi; �
4
zi; �

8
zi; �

0
�; �

8
�; �

4
� ; �

8
� : (30)

The resulting KL equals 0.0024, and the empirical distance at T = 200 only equals 0.2863.

6.2.2 Identi�cation of anticipated shocks

Motivated by the �nding above, we proceed to evaluate the e¤ect of shutting down anticipated

shocks on identi�cation. We consider scenarios where such shocks are disabled all at once, as well

as one by one, in order to pinpoint the most important ones for generating model dynamics. The

empirical distance measures reported below correspond to T = 200, unless otherwise indicated.

Result 12 Anticipated shocks play an important role in generating model dynamics at �0, with

the closest model without such components still being feasible to distinguish even in small samples.

However, the anticipated components of the seven exogenous shock processes and their anticipation

horizons are not equally relevant. In some cases, the entire anticipated component or its 8-horizon

part can be shut down with only a modest e¤ect on the spectrum of the observables, so that the

resulting model becomes very di¢ cult to di¤erentiate from the benchmark in �nite samples. In line

with existing empirical �ndings, the news shocks in the wage markup are by far the most important

in generating the dynamics implied by the model at �0.

After shutting down all the anticipated shocks, the KL of the closest such model equals 0.0773,

with empirical distances above 0.99. The �nding suggests that the news shocks play a distinct

role in shaping the dynamics of the observables. When building models featuring news shocks, the

researcher typically needs to make speci�cation choices regarding: 1) the anticipation horizon(s) to

be considered; 2) which exogenous shock processes should feature the anticipated component. We

proceed to examine these aspects of the model in turn.

First, we consider the relative importance of anticipation horizons, by shutting down only the

4-period, and later only the 8-period news shocks. In the former case, the closest KL divergence

equals 0.0110, and the empirical distance equals 0.6828. This implies that it can be feasible to

distinguish between the model featuring news shocks at both horizons and the one with only the

8-period shocks using typical sample sizes. In the latter case, the minimized KL equals 0.0037

and the corresponding empirical distance equals 0.3129. Therefore, the 8-period news shocks are

relatively less important in matching the benchmark model dynamics. As Table 10 shows, the main

mechanism in obtaining the closest model in this case stems mainly from in�ating the 4-period news
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shock standard deviations, the most pronounced changes being the increases in �4zi (from 1.93 to

6.29) and �4� (from 1.89 to 2.64). The increases in the rest of the 4-period standard deviations are

less drastic, and �4� is the only such parameter that decreases slightly from 4.79 to 4.74. Among

the unanticipated components, the notable changes are the increases in �0� (from 0.50 to 0.82)

and �0� (from 4.03 to 4.33). Thus, it may be conjectured that at least for some of the exogenous

shock processes the 4-period and 8-period news shocks can have a similar e¤ect on dynamics when

standard deviations are suitably scaled.

Second, we examine whether the anticipated components of each of the exogenous shock processes

can be shut down without a¤ecting dynamics noticeably. The corresponding results are reported

in Table 11. When comparing the resulting KL and empirical distances, it becomes clear that the

anticipated innovations in the wage markup are by far the most important in this respect. We

obtain the KL of 0.0536 and the empirical distance of 0.9972 for the closest model when �4� and �
8
�

are set to zero. Interestingly, shutting down this anticipated component is costlier than removing

either all of the 4-period or all of the 8-period news shocks, and is of qualitatively similar magnitude

to the case of shutting down all of the news shocks in terms of the resulting KL of the closest model

obtained under such restrictions. This result is in agreement with the �ndings of Schmitt-Grohé

and Uribe (2012) and Sims (2016), who found that the anticipated shocks to wage markup (espe-

cially the 4-horizon component) explain the largest fractions of the forecast error variance of the

key observables when either the unconditional variance or only its pure news share is considered,

respectively. Here we show that such importance is a structural feature of the model at �0.

The second most important news component appears to be that of the investment-speci�c

productivity shock bzit. The minimized KL equals 0.0046, resulting in the empirical distance of
0.3669. This is qualitatively similar to disabling all of the 8-period news shocks based on the

results above. This is also broadly in line with the variance decomposition results of Schmitt-Grohé

and Uribe (2012) and Sims (2016), who �nd it the second most important news shock in driving

the output growth. The third and fourth largest KL magnitudes of the closest models equal 0.0031

and 0.0019, corresponding to cases where the news shocks in b�at and bgt are shut down, respectively.
The empirical distances equal 0.2912 and 0.2214. The relative importance of these news shocks can

be explained by the fact that both bgt and b�at are among the considered observables, and over 50%
of their own variance is due to their anticipated component (see Table VI in Schmitt-Grohé and

Uribe (2012)), which is seemingly hard to replicate by changing other parameters.

The remaining news shocks in b�xt , b�t and bzt appear much less important. The respective min-
imized KL values obtained are 0.0009, 0.0006 and 0.0002, while the respective empirical distances

equal 0.1394, 0.1212 and 0.0823. All empirical distance measures fall below 0.1 when T = 80.
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This implies that it may be practically impossible to distinguish between models with and without

anticipated components in these shocks. Such results are not surprising for the neutral productivity

shocks b�xt and bzt, as Schmitt-Grohé and Uribe (2012) documented that nearly all contribution of
these shocks to the variance of observables comes from their unanticipated components. In the

case of b�t, despite previous �ndings on its news component explaining relatively large fractions of
consumption and output variance, our result shows that the model closely matching the original

dynamics can be obtained by mainly increasing �0� and decreasing �
8
z.

Finally, we examine whether shutting down individual 8-horizon news shock could lead to (near)

observational equivalence. We �nd that the 8-horizon news shock in bzit is the most costly in terms
of KL divergence to shut down: the closest model has KL equal to 0.0030, implying an empirical

distance of 0.2708. The closest model is obtained mainly by amplifying �4zi from 1.93 to 6.20. The

next two most important 8-horizon news shocks are those in b�at and b�xt , for which the minimized
KL values are 0.0004 and 0.0001, and the empirical distances equal 0.1070 and 0.0756, respectively.

For these shocks appropriately rescaling the 4-horizon standard deviations (in the closest models,

�4�x and �
4
�a increase by roughly 60% and 40%, respectively) coupled with relatively small changes

in other parameters can closely replicate the e¤ect of 8-horizon shocks. For the remaining four

exogenous processes, we �nd near observational equivalence. The minimized KL values for the

cases of b�t, bgt; bzt and b�t equal 6.34E-05, 5.53E-05, 6.91E-06 and 1.14E-06, respectively. The

corresponding empirical distances equal 0.0684, 0.0672, 0.0555 and 0.0522, and all of them remain

below 0.1 even for T = 1000. Optimization in quadruple precision results in essentially the same

objective function values, thus ruling out exact observational equivalence. In all four cases, near

equivalence is achieved mainly by increasing the standard deviations of the 4-horizon news shocks.

6.2.3 Distinguishability from models with ARMA shocks

We consider whether an alternative information structure can deliver observationally equivalent

dynamics. Speci�cally, for all the seven shocks we consider the following speci�cation:

ln(xt=x) = �x ln(xt�1=x) + "x;t; (31)

"x;t = b0ex;t + b4ex;t�4 + b8ex;t�8;

where ex;t � i:i:d:N(0; 1), "x;t is allowed to be non-invertible, and b0 is normalized to be nonnegative.

This leads to a model with a total of 7 structural shocks in contrast to the 21 in the original model.

Result 13 The dynamics generated by the original news shock speci�cation are not easily replicable

with the ARMA speci�cation (31). However, near observational equivalence can arise when "x;t is
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replaced by the moving average in (31) one by one. This is the case for the wage markup shock b�t,
which implies that the importance of the wage markup shock dynamics does not necessarily stem

from its news component, but from introducing dynamics at 4 and 8 period horizons in some form.

When all the original shocks are replaced by (31), the minimized KL equals 0.02226 with the

corresponding empirical distance of 0.7991 at T = 200. Additional optimization in quadruple pre-

cision yields essentially the same values. Thus the model with the considered alternative structure

can be di¤erentiated from the benchmark in �nite samples of empirical relevance.

We now consider alternative model structures where the shocks are replaced by (31) one by one.

The closest models thus obtained for b�at , b�xt and bzt are essentially the same as in the previous sub-
section when the entire anticipated components of these shock processes were shut down, indicating

that augmenting their unanticipated components with lags does not help in matching dynamics at

�0. Relatively marginal reductions in empirical distances for bzit; bgt, and b�t are obtained, which im-
plies that the lags of unanticipated shocks help in generating news like dynamics only to a limited

extent in these cases. Finally, we �nd that for b�t the speci�cation in (31) yields near equivalence:
the closest model yields the KL of 1.25E-05 with the empirical distance of 0.0575 at T = 200. Even

at T = 1000, the empirical distance remains low at 0.0683. This result may be viewed as surprising,

given that the anticipated component of the wage markup shock is of key importance among such

components in generating model dynamics and as such the costliest to shut down.

The consideration of (31) is motivated by Walker and Leeper (2011), who contrasted di¤erent

shock speci�cations analytically within a stylized model, and numerically using an earlier version

of the model considered here (Schmitt-Grohé and Uribe (2008)), with a particular focus on the

nonstationary technological shock. Another related paper is Leeper et al. (2013), where tax news

are studied under di¤erent information �ow speci�cations. It is desirable to have a method that can

comprehensively study to what extent these alternative information structures can be distinguished

from each other. The method of this paper can potentially play such a role.

6.2.4 Computational time

The computation times are reported for a 12-core 2.3 Ghz Intel Xeon processor. The computation

times in double precision vary between 6 and 24 hours. For additional optimization in quadruple

precision the computational time varies between 5.5 and 11 hours. These time estimates can be

treated as conservative, as in all cases we let the algorithm run for 2000 iterations even though no

noticeable improvement is eventually obtained. Capping the iteration count at a lower but still

su¢ ciently large number, say, 1000, would reduce the computation time roughly by half. Although

the computation here does not bene�t to the same extent from the increased number of cores
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(some modest speedup can be expected due to the built-in parallelism of some of the multiprecision

toolbox operations), it would run much faster on processors with fewer cores but faster clock speeds.

7 Conclusion

This paper has applied arbitrary precision arithmetic to resolve practical di¢ culties arising in the

identi�cation analysis of DSGE models. We develop a three-step procedure for analyzing both local

and global identi�cation. The nonidenti�cation curve further traces out observationally equivalent

parameter values when identi�cation failure is detected. The empirical distance measure quanti�es

the closeness between di¤erent models. A Matlab code is developed to implement all these methods.

The applications suggest that it is feasible to apply the methods to small as well as medium scale

models to deliver informative results. We conjecture that resolving the numerical uncertainty can

substantially facilitate the identi�cation analysis for DSGE models in practice.
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Table 1. Nonidenti�cation curve 1, PMPF regime equivalent to AMPF

Leeper (1991) model

� �r �r Mr



�j � �0

 KL T = 100 T = 1000

�0 0.6193 0.9506 0.2172 -4.0929 � � � �

(a) Direction 1

�1 0.6355 0.9147 0.2316 -3.8381 0.2582 1.96E-10 0.0500 0.0501

�2 0.6541 0.8789 0.2481 -3.5835 0.5165 9.71E-10 0.0500 0.0501

�3 0.6754 0.8432 0.2670 -3.3293 0.7747 2.76E-09 0.0501 0.0502

�4 0.7001 0.8075 0.2890 -3.0756 1.0329 6.37E-09 0.0501 0.0504

�5 0.7293 0.7719 0.3149 -2.8228 1.2910 1.33E-08 0.0502 0.0505

�6 0.7639 0.7366 0.3457 -2.5711 1.5488 2.64E-08 0.0502 0.0507

�7 0.8058 0.7015 0.3829 -2.3215 1.8061 5.19E-08 0.0503 0.0510

�8 0.8570 0.6668 0.4284 -2.0749 2.0625 1.04E-07 0.0505 0.0515

�9 0.9204 0.6328 0.4848 -1.8334 2.3170 2.26E-07 0.0507 0.0522

�10 0.9999 0.6000 0.5554 -1.6004 2.5680 7.33E-07 0.0512 0.0541

(b) Direction 2

�1 0.6173 0.9555 0.2153 -4.1279 0.0355 2.95E-12 0.0500 0.0500

�2 0.6152 0.9604 0.2135 -4.1631 0.0711 1.15E-11 0.0500 0.0500

�3 0.6132 0.9654 0.2117 -4.1982 0.1067 2.53E-11 0.0500 0.0500

�4 0.6112 0.9703 0.2100 -4.2334 0.1423 4.39E-11 0.0500 0.0500

�5 0.6093 0.9753 0.2082 -4.2685 0.1779 6.69E-11 0.0500 0.0500

�6 0.6074 0.9802 0.2065 -4.3037 0.2135 9.40E-11 0.0500 0.0500

�7 0.6055 0.9852 0.2049 -4.3389 0.2491 1.25E-10 0.0500 0.0501

�8 0.6036 0.9901 0.2032 -4.3740 0.2847 1.59E-10 0.0500 0.0501

�9 0.6018 0.9950 0.2016 -4.4092 0.3203 1.97E-10 0.0500 0.0501

�10 0.6000 0.9999 0.2000 -4.4444 0.3559 2.37E-10 0.0500 0.0501
Note. �j represent equally spaced points taken from the curve determined by the smallest eigenvalue from
changing the four parameters. The curve is extended from �0 along two directions. Along Direction 1, the
curve is truncated when � reaches 1. Along Direction 2, the curve is truncated at the point where �r is
closest to 1. KL is de�ned as KLff (�0; �j). The last two columns are empirical distance measures de�ned
as pff (�0; �j ; 0:05; T ). The KL and empirical distance measures are computed in double precision using 500
quadrature points to approximate the integral.
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Table 2. Nonidenti�cation curve 2, PMPF regime equivalent to AMPF

Leeper (1991) model

� �r �r Mr



�j � �0

 KL T = 100 T = 1000

�0 0.0522 -0.0607 0.2869 3.0980 � � � �

(a) Direction 1

�1 0.1092 -0.1541 0.2363 3.7623 0.6752 3.50E-09 0.0501 0.0503

�2 0.1492 -0.2478 0.2007 4.4290 1.3504 8.72E-09 0.0501 0.0504

�3 0.1788 -0.3417 0.1744 5.0967 2.0255 1.32E-08 0.0502 0.0505

�4 0.2015 -0.4357 0.1542 5.7648 2.7005 1.67E-08 0.0502 0.0506

�5 0.2196 -0.5297 0.1382 6.4332 3.3755 1.94E-08 0.0502 0.0506

�6 0.2342 -0.6237 0.1252 7.1017 4.0505 2.15E-08 0.0502 0.0507

�7 0.2463 -0.7177 0.1144 7.7704 4.7256 2.32E-08 0.0502 0.0507

�8 0.2565 -0.8117 0.1053 8.4390 5.4006 2.45E-08 0.0502 0.0507

�9 0.2652 -0.9058 0.0976 9.1078 6.0757 2.56E-08 0.0502 0.0507

�10 0.2727 -0.9998 0.0909 9.7765 6.7507 2.65E-08 0.0502 0.0507

(b) Direction 2

�1 0.0476 -0.0546 0.2910 3.0548 0.0440 2.78E-11 0.0500 0.0500

�2 0.0429 -0.0485 0.2952 3.0115 0.0881 1.17E-10 0.0500 0.0500

�3 0.0381 -0.0424 0.2995 2.9684 0.1322 2.75E-10 0.0500 0.0501

�4 0.0331 -0.0364 0.3039 2.9252 0.1763 5.11E-10 0.0500 0.0501

�5 0.0280 -0.0303 0.3084 2.8820 0.2204 8.36E-10 0.0500 0.0501

�6 0.0228 -0.0242 0.3131 2.8389 0.2645 1.26E-09 0.0501 0.0502

�7 0.0173 -0.0182 0.3179 2.7959 0.3086 1.80E-09 0.0501 0.0502

�8 0.0117 -0.0121 0.3229 2.7528 0.3527 2.47E-09 0.0501 0.0502

�9 0.0060 -0.0061 0.3280 2.7098 0.3968 3.28E-09 0.0501 0.0503

�10 3.00E-05 -2.82E-05 0.3333 2.6669 0.4409 4.26E-09 0.0501 0.0503
Note. �j represent equally spaced points taken from the curve determined by the smallest eigenvalue from
changing the four parameters. The curve is extended from �0 along two directions. Along Direction 1, the
curve is truncated when �r is closest to -1. Along Direction 2, the curve is truncated at the point where �
is closest to 0. KL is de�ned as KLff (�0; �j). The last two columns are empirical distance measures de�ned
as pff (�0; �j ; 0:05; T ). The KL and empirical distance measures are computed in double precision using 500
quadrature points to approximate the integral.
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Table 3. Nonidenti�cation curve 1, PMPF regime equivalent to PMAF

Leeper (1991) model


 ��


�j � �0

 KL T = 100 T = 1000

�0 1.0208 0.4775 � � � �

(a) Direction 1

�1 1.2186 0.4738 0.1978 4.95E-17 0.0500 0.0500

�2 1.4164 0.4701 0.3957 1.14E-16 0.0500 0.0500

�3 1.6143 0.4664 0.5936 1.70E-16 0.0500 0.0500

�4 1.8122 0.4628 0.7915 1.44E-16 0.0500 0.0500

�5 2.0100 0.4591 0.9894 1.56E-16 0.0500 0.0500

�6 2.2079 0.4554 1.1873 1.53E-16 0.0500 0.0500

�7 2.4058 0.4517 1.3852 1.60E-16 0.0500 0.0500

�8 2.6036 0.4480 1.5831 1.53E-16 0.0500 0.0500

�9 2.8015 0.4443 1.7810 1.56E-16 0.0500 0.0500

�10 3.0000 0.4406 1.9795 1.57E-16 0.0500 0.0500

(b) Direction 2

�1 1.0188 0.4775 0.0020 6.52E-17 0.0500 0.0500

�2 1.0167 0.4776 0.0041 7.51E-17 0.0500 0.0500

�3 1.0146 0.4776 0.0062 8.54E-17 0.0500 0.0500

�4 1.0125 0.4777 0.0083 5.66E-17 0.0500 0.0500

�5 1.0104 0.4777 0.0104 5.83E-17 0.0500 0.0500

�6 1.0083 0.4777 0.0125 8.33E-17 0.0500 0.0500

�7 1.0062 0.4778 0.0146 6.94E-17 0.0500 0.0500

�8 1.0041 0.4778 0.0167 7.40E-17 0.0500 0.0500

�9 1.0020 0.4779 0.0188 8.36E-17 0.0500 0.0500

�10 1.0000 0.4779 0.0208 6.75E-17 0.0500 0.0500
Note. �j represent equally spaced points taken from the curve determined by the smallest eigenvalue from
changing the two parameters. The curve is extended from �0 along two directions. Along Direction 1, the curve
is truncated when 
 reaches the upper bound of 3. Along Direction 2, the curve is truncated at the point where

 is closest to 1. KL is de�ned as KLff (�0; �j). The last two columns are empirical distance measures de�ned
as pff (�0; �j ; 0:05; T ). The KL and empirical distance measures are computed in double precision using 500
quadrature points to approximate the integral.
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Table 4. Nonidenti�cation curve 2, PMPF regime equivalent to PMAF

Leeper (1991) model

� 
 �� M�



�j � �0

 KL T = 100 T = 1000

�0 0.9625 1.0208 0.5270 -0.0555 � � � �

(a) Direction 1

�1 0.9669 1.2185 0.5953 -0.0491 0.2093 5.41E-11 0.0500 0.0500

�2 0.9703 1.4164 0.6636 -0.0440 0.4187 1.78E-10 0.0500 0.0501

�3 0.9731 1.6142 0.7319 -0.0399 0.6281 3.30E-10 0.0500 0.0501

�4 0.9754 1.8121 0.8002 -0.0365 0.8375 4.89E-10 0.0500 0.0501

�5 0.9774 2.0101 0.8685 -0.0336 1.0469 6.45E-10 0.0500 0.0501

�6 0.9791 2.2080 0.9369 -0.0312 1.2563 7.95E-10 0.0500 0.0501

�7 0.9805 2.4059 1.0052 -0.0291 1.4656 9.36E-10 0.0500 0.0501

�8 0.9818 2.6038 1.0735 -0.0272 1.6750 1.07E-09 0.0500 0.0501

�9 0.9829 2.8017 1.1418 -0.0256 1.8844 1.19E-09 0.0500 0.0501

�10 0.9838 3.0000 1.2103 -0.0241 2.0941 1.31E-09 0.0500 0.0502

(b) Direction 2

�1 0.9624 1.0188 0.5263 -0.0555 0.0021 6.68E-15 0.0500 0.0500

�2 0.9624 1.0167 0.5256 -0.0556 0.0043 2.81E-14 0.0500 0.0500

�3 0.9623 1.0147 0.5249 -0.0557 0.0065 6.44E-14 0.0500 0.0500

�4 0.9623 1.0126 0.5242 -0.0558 0.0087 1.16E-13 0.0500 0.0500

�5 0.9622 1.0105 0.5235 -0.0558 0.0109 1.82E-13 0.0500 0.0500

�6 0.9622 1.0084 0.5228 -0.0559 0.0131 2.64E-13 0.0500 0.0500

�7 0.9621 1.0064 0.5220 -0.0560 0.0153 3.61E-13 0.0500 0.0500

�8 0.9621 1.0043 0.5213 -0.0561 0.0175 4.74E-13 0.0500 0.0500

�9 0.9620 1.0022 0.5206 -0.0561 0.0197 6.02E-13 0.0500 0.0500

�10 0.9619 1.0000 0.5199 -0.0562 0.0220 7.53E-13 0.0500 0.0500
Note. �j represent equally spaced points taken from the curve determined by the smallest eigenvalue from
changing the four parameters. The curve is extended from �0 along two directions. Along Direction 1, the
curve is truncated when 
 reaches 3. Along Direction 2, the curve is truncated at the point where 
 is
closest to 1. KL is de�ned as KLff (�0; �j). The last two columns are empirical distance measures de�ned
as pff (�0; �j ; 0:05; T ). The KL and empirical distance measures are computed in double precision using 500
quadrature points to approximate the integral.
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Table 5. Nonidenti�cation curve 3, PMPF regime equivalent to PMAF

Leeper (1991) model

� �� �� M�



�j � �0

 KL T = 100 T = 1000

�0 0.9625 1.0208 0.5270 -0.0555 � � � �

(a) Direction 1

�1 0.9867 0.4958 1.4727 -0.0198 0.9469 1.45E-08 0.0501 0.0505

�2 0.9919 0.4998 2.4201 -0.0121 1.8939 2.16E-08 0.0502 0.0506

�3 0.9942 0.5015 3.3675 -0.0087 2.8411 2.52E-08 0.0502 0.0507

�4 0.9955 0.5025 4.3149 -0.0068 3.7884 2.73E-08 0.0502 0.0507

�5 0.9963 0.5031 5.2623 -0.0056 4.7357 2.87E-08 0.0502 0.0507

�6 0.9969 0.5035 6.2097 -0.0047 5.6830 2.96E-08 0.0502 0.0507

�7 0.9973 0.5039 7.1571 -0.0041 6.6304 3.04E-08 0.0502 0.0507

�8 0.9976 0.5041 8.1045 -0.0036 7.5777 3.10E-08 0.0502 0.0508

�9 0.9979 0.5043 9.0519 -0.0032 8.5251 3.14E-08 0.0502 0.0508

�10 0.9981 0.5044 10.0000 -0.0029 9.4732 3.18E-08 0.0502 0.0508

(b) Direction 2

�1 0.9533 0.4707 0.4254 -0.0687 0.1032 1.94E-09 0.0500 0.0502

�2 0.9386 0.4600 0.3259 -0.0897 0.2061 1.25E-08 0.0501 0.0505

�3 0.9135 0.4419 0.2342 -0.1248 0.3070 4.63E-08 0.0502 0.0509

�4 0.8731 0.4138 0.1627 -0.1796 0.4003 1.17E-07 0.0504 0.0515

�5 0.8206 0.3789 0.1179 -0.2477 0.4839 2.00E-07 0.0506 0.0520

�6 0.7622 0.3420 0.0914 -0.3197 0.5640 2.81E-07 0.0508 0.0525

�7 0.7004 0.3050 0.0746 -0.3918 0.6452 3.64E-07 0.0511 0.0530

�8 0.6360 0.2685 0.0631 -0.4629 0.7290 4.51E-07 0.0514 0.0536

�9 0.5692 0.2327 0.0548 -0.5326 0.8156 5.42E-07 0.0517 0.0542

�10 0.5000 0.1977 0.0486 -0.6010 0.9048 6.33E-07 0.0520 0.0547
Note. �j represent equally spaced points taken from the curve determined by the smallest eigenvalue from
changing the four parameters. The curve is extended from �0 along two directions. Along Direction 1, the
curve is truncated when �� reaches 10. Along Direction 2, the curve is truncated at the point where � is
closest to 0.5. KL is de�ned as KLff (�0; �j). The last two columns are empirical distance measures de�ned
as pff (�0; �j ; 0:05; T ). The KL and empirical distance measures are computed in double precision using 500
quadrature points to approximate the integral.
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Table 6. Parameter values minimizing KL between �1AMPF and the PMAF region

Leeper (1991) model

� � 
 �r �� �r ��

�1AMPF 1.5000 0.9804 1.2000 0.5000 0.5000 1.0000 1.0000

All parameters vary

("rt ; "
�
t ) � � 
 �r �� �r �� KL KL34

(Inv; Inv) 0.0100 0.9000 0.9900 0.3663 -0.9990 0.8901 10.0000 8.8717 8.8717

(Inv;Noninv) 0.0100 0.9000 0.2279 0.8299 -3.0997 1.3140 10.0000 5.6198 5.6198

(Noninv; Inv) 0.0100 0.9000 0.9900 2.7299 -0.9990 0.3260 10.0000 8.8717 8.8717

(Noninv;Noninv) 0.0100 0.9000 0.2184 1.2050 -3.1027 1.0905 10.0000 5.6198 5.6198
Note. The parameter values represent the minimizers of KL(�1AMPF ; �) with � restricted to the PMAF region. KL and KL34
signify the minimized KL values obtained in double and quadruple precision respectively. The notation (Inv;Noninv) indicates
whether each of (�rt ; �

�
t ) is restricted to an invertible or noninvertible speci�cation. Bolded values denote the binding boundary

constraints.

Table 7. Parameter values minimizing KL between �1PMAF and the AMPF region

Leeper (1991) model

� � 
 �r �� �r ��

�1PMAF 0.3000 0.9804 0.1000 0.5000 0.5000 1.0000 1.0000

All parameters vary

("rt ; "
�
t ) � � 
 �r �� �r �� KL KL34

(Inv; Inv) 1.0100 0.9980 1.0100 -0.9990 0.0629 1.3285 10.0000 0.9715 0.9715

(Inv;Noninv) 1.0100 0.9000 3.0000 -0.9990 5.0000 1.3285 0.0359 0.9807 0.9807

(Noninv; Inv) 2.9839 0.9000 3.0000 -2.9842 -0.7778 1.3053 0.0884 0.2665 0.2665

(Noninv;Noninv) 3.0000 0.9000 3.0000 -3.0003 -1.2857 1.3053 0.0687 0.2665 0.2665
Note. The parameter values represent the minimizers of KL(�1PMAF ; �) with � restricted to the AMPF region. KL and KL34
signify the minimized KL values obtained in double and quadruple precision respectively. The notation (Inv;Noninv) indicates
whether each of (�rt ; �

�
t ) is restricted to an invertible or noninvertible speci�cation. Bolded values denote the binding boundary

constraints.
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Table 8. Parameter values miminizing the KL criterion, SGU(2012) model
(a) All parameters can vary (b) �8� �xed

�0 c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0
� 4.74 4.74 4.74 4.74 4.74 4.74 4.74

 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019
� 9.11 9.11 9.11 9.08 9.11 9.09 9.08

�2=�1 0.34 0.34 0.34 0.34 0.34 0.34 0.34
b 0.91 0.91 0.91 0.91 0.91 0.91 0.91
�xg 0.72 0.72 0.72 0.72 0.72 0.72 0.72
��a 0.48 0.48 0.48 0.48 0.48 0.48 0.48
��x 0.38 0.38 0.38 0.38 0.38 0.38 0.38
�zi 0.47 0.47 0.47 0.48 0.47 0.47 0.48
�z 0.92 0.92 0.92 0.92 0.92 0.92 0.92
�� 0.98 0.98 0.98 0.98 0.98 0.98 0.98
�g 0.96 0.96 0.96 0.96 0.96 0.96 0.96
�� 0.17 0.17 0.17 0.17 0.17 0.17 0.17
�0�a 0.21 0.21 0.21 0.21 0.21 0.21 0.21
�4�a 0.16 0.16 0.16 0.16 0.16 0.16 0.16
�8�a 0.16 0.16 0.16 0.16 0.16 0.16 0.16
�0�x 0.38 0.38 0.38 0.38 0.38 0.38 0.38
�4�x 0.08 0.08 0.08 0.08 0.08 0.08 0.08
�8�x 0.10 0.10 0.10 0.10 0.10 0.10 0.10
�0zi 11.72 11.72 11.72 11.64 11.71 11.67 11.64
�4zi 1.93 1.92 1.91 0.93 1.83 1.43 0.93
�8zi 5.50 5.50 5.50 5.53 5.50 5.52 5.53
�0z 0.65 0.65 0.65 0.65 0.65 0.65 0.65
�4z 0.11 0.11 0.11 0.11 0.11 0.11 0.11
�8z 0.09 0.09 0.09 0.09 0.09 0.09 0.09
�0� 0.50 0.51 0.52 0.54 0.50 0.52 0.54
�4� 4.79 4.80 4.82 4.79 4.79 4.79 4.79
�8� 0.51 0.41 0.01 0.45 0.51 0.51 0.51
�0g 0.62 0.62 0.62 0.62 0.62 0.62 0.62
�4g 0.57 0.57 0.57 0.57 0.57 0.57 0.57
�8g 0.37 0.37 0.37 0.37 0.37 0.37 0.37
�0� 4.03 4.03 4.03 4.02 4.03 4.03 4.02
�4� 1.89 1.89 1.89 1.89 1.89 1.89 1.89
�8� 2.21 2.21 2.21 2.22 2.21 2.21 2.22

Note. All values are rounded to the second decimal place except for 
. The bold value signi�es the binding constraint.

Table 9. KL and empirical distances between �0 and �c, SGU(2012) model
(a) All parameters can vary (b) �8� �xed
c=0.1 c=0.5 c=1.0 c=0.1 c=0.5 c=1.0

KL 1.44E-07 1.14E-06 1.02E-05 1.71E-07 3.48E-06 1.03E-05
T=80 0.0505 0.0514 0.0527 0.0505 0.0524 0.0543
T=150 0.0507 0.0519 0.0539 0.0507 0.0534 0.0559
T=200 0.0508 0.0522 0.0546 0.0509 0.0539 0.0569
T=1000 0.0518 0.0551 0.0617 0.0519 0.0592 0.0665

Note. KL is de�ned as KLff (�0; �c) with �c given in the columns of Table 9. The empirical distance
equals pff (�0; �c; 0:05; T ), where T is speci�ed in the last four rows of the Table. The KL and empirical
distance values computed in quadruple precision are identical to the ones reported above when rounded
to the same decimal.
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Table 10. The closest models with news shocks shut down, SGU (2012) model
�0 All news shut down 4-period news shut down 8-period news shut down

KL � 0.0773 0.0110 0.0037
T=200 - 0.9993 0.6828 0.3129
� 4.74 4.42 4.68 4.71

 0.0019 0.0011 0.0011 0.0019
� 9.11 10.80 8.86 9.24

�2=�1 0.34 0.29 0.34 0.33
b 0.91 0.93 0.91 0.91
�xg 0.72 0.72 0.72 0.72
��a 0.48 0.47 0.48 0.48
��x 0.38 0.38 0.38 0.38
�zi 0.47 0.73 0.50 0.47
�z 0.92 0.93 0.92 0.92
�� 0.98 0.99 0.98 0.98
�g 0.96 0.96 0.96 0.96
�� 0.17 0.24 0.17 0.18
�0�a 0.21 0.31 0.23 0.22
�4�a 0.16 0 0 0.22
�8�a 0.16 0 0.21 0
�0�x 0.38 0.40 0.38 0.38
�4�x 0.08 0 0 0.13
�8�x 0.10 0 0.13 0
�0zi 11.72 10.28 11.26 11.70
�4zi 1.93 0 0 6.29
�8zi 5.50 0 5.12 0
�0z 0.65 0.67 0.65 0.65
�4z 0.11 0 0 0.14
�8z 0.09 0 0.14 0
�0� 0.50 4.16 1.28 0.82
�4� 4.79 0 0 4.74
�8� 0.51 0 4.60 0
�0g 0.62 0.68 0.63
�4g 0.57 0.92 0 0.67
�8g 0.37 0 0.62 0
�0� 4.03 0 3.80 4.33
�4� 1.89 6.73 0 2.64
�8� 2.21 0 3.10 0

Note. All values are rounded to the second decimal place except for 
. The KL and empirical distance values computed
in quadruple precision are identical to the ones reported above when rounded to the same decimal.
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Table 11. The closest models with individual news shocks shut down, SGU (2012) model
�0 �at �xt zit zt �t gt �t

KL � 0.0031 9.07E-04 0.0046 1.75E-04 0.0536 0.0019 5.65E-04
T=200 - 0.2912 0.1394 0.3669 0.0823 0.9972 0.2214 0.1212
� 4.74 4.80 4.71 4.49 4.67 4.21 4.66 4.69

 0.0019 0.0020 0.0021 0.0014 0.0019 7.00E-06 0.0018 0.0022
� 9.11 9.22 9.28 8.63 9.26 11.36 9.22 9.16

�2=�1 0.34 0.34 0.34 0.29 0.34 0.27 0.34 0.34
b 0.91 0.91 0.91 0.91 0.91 0.92 0.91 0.91
�xg 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72
��a 0.48 0.47 0.48 0.48 0.48 0.48 0.48 0.48
��x 0.38 0.38 0.38 0.38 0.38 0.39 0.38 0.38
�zi 0.47 0.47 0.47 0.64 0.47 0.61 0.47 0.47
�z 0.92 0.92 0.92 0.92 0.92 0.93 0.92 0.92
�� 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
�g 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
�� 0.17 0.17 0.18 0.18 0.17 0.19 0.17 0.16
�0�a 0.21 0.31 0.21 0.21 0.21 0.21 0.21 0.21
�4�a 0.16 0 0.16 0.16 0.16 0.16 0.16 0.16
�8�a 0.16 0 0.16 0.16 0.16 0.16 0.16 0.16
�0�x 0.38 0.38 0.40 0.38 0.38 0.38 0.38 0.38
�4�x 0.08 0.08 0 0.06 0.08 4.54E-06 0.08 0.10
�8�x 0.10 0.10 0 0.11 0.10 0.11 0.10 0.08
�0zi 11.72 11.90 11.93 9.59 11.91 12.55 11.83 11.78
�4zi 1.93 2.08 2.03 0 2.08 6.26E-05 1.98 2.14
�8zi 5.50 5.58 5.51 0 5.52 4.23 5.48 5.50
�0z 0.65 0.65 0.65 0.65 0.67 0.67 0.65 0.65
�4z 0.11 0.10 0.08 0.09 0 2.81E-06 0.10 0.14
�8z 0.09 0.11 0.11 0.11 0 7.16E-06 0.09 1.87E-07
�0� 0.50 0.31 0.66 1.43 0.59 3.90 0.56 0.53
�4� 4.79 4.85 4.76 4.35 4.71 0 4.70 4.75
�8� 0.51 0.62 0.37 1.63E-04 0.68 0 0.71 0.38
�0g 0.62 0.62 0.62 0.63 0.62 0.63 0.92 0.62
�4g 0.57 0.57 0.56 0.56 0.57 0.54 0 0.58
�8g 0.37 0.37 0.38 0.37 0.37 0.39 0 0.36
�0� 4.03 4.06 4.20 4.39 4.09 4.87 4.10 4.97
�4� 1.89 1.82 1.70 2.73 1.83 1.75 1.83 0
�8� 2.21 2.24 2.23 0.0011 2.27 2.46 2.25 0

Note. All values are rounded to the second decimal place except for 
. The KL and empirical distance values computed
in quadruple precision are identical to the ones reported above when rounded to the same decimal.
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Online Appendix A. Model Solution under Indeterminacy

This appendix outlines the main steps for solving a DSGE model allowing for indeterminacy.

The algorithm is essentially the same as Lubik and Schorfheide�s (2003) algorithm that is a gener-

alization of Sims (2002). The same algorithm is used by Qu and Tkachenko (2017). The reason for

presenting this algorithm here is to help understand the relevant numerical issues that arise.

Applying the QZ decomposition to (1), we have Q��Z� = �0; Q�
Z� = �1, where Q and Z

are unitary, � and 
 are upper triangular. Let wt = Z�St and premultiply (1) by Q:24 �11 �12

0 �22

3524 w1;t

w2;t

35 =
24 
11 
12

0 
22

3524 w1;t�1

w2;t�1

35+
24 Q1:

Q2:

35 (	"t +��t) ; (A.1)

where an ordering has been imposed such that the diagonal elements of �11 (�22) are greater

(smaller) than those of 
11 (
22) in absolute values. Then, because the generalized eigenvalues

corresponding to the pair �22 and 
22 are unstable and "t and �t are serially uncorrelated, the

block of equations corresponding to w2;t has a stable solution if and only if w2;0 = 0 and

Q2:��t = �Q2:	"t for all t > 0: (A.2)

The condition (A.2) determines Q2:��t as a function of "t. However, it may be insu¢ cient to

determine Q1:��t, in which case it will lead to indeterminacy.

Because the rows of Q2:� can be linearly dependent, Sims (2002) and Lubik and Schorfheide

(2003) suggested to work with its SVD to isolate the e¤ective restrictions imposed on �t:

Q2:� = [ U:1 U:2 ]

24 D11 0

0 0

3524 V �:1

V �:2

35 = U:1D11V
�
:1; (A.3)

where [ U:1 U:2 ] and [ V:1 V:2 ] are unitary matrices and D11 is nonsingular. The submatrices

U:1 and V �:1 are unique up to multiplication by a unit-phase factor exp(i') (for the real case, up to

sign). The spaces spanned by U:2 and V:2 are also unique, although the matrices themselves are not

if their column dimensions exceed one. In the latter case, as a normalization, we use the reduced

column echelon form for V:2 when implementing the relevant procedures. Note that matrices with

the same column space have the same unique reduced column echelon form.

Applying (A.3), (A.2) can be equivalently represented as

U:1D11V
�
:1�t = �Q2:	"t for all t > 0: (A.4)

Premultiplying (A.4) by the conjugate transpose of [ U:1 U:2 ] does not alter the restrictions

because the latter is nonsingular. Thus, (A.4) is equivalent to (using U�:1U:1 = I and U�:2U:1 = 0)
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the following two sets of equations: D11V �:1�t = �U�:1Q2:	"t and 0 = �U�:2Q2:	"t for all t > 0.

The second set of equations places no restrictions on �t. The �rst set is equivalent to: V
�
:1�t =

�D�1
11 U

�
:1Q2:	"t. This can be viewed as a system of linear equations of the form Ax = b with

A = V �:1 and b = �D�1
11 U

�
:1Q2:	"t. The full set of solutions for such a system is given by

fp+ v : v is any solution to Ax = 0 and p is a speci�c solution to Ax = bg: (A.5)

Here, a speci�c solution is given by p = �V:1D�1
11 U

�
:1Q2:	"t; while �t solves V

�
:1�t = 0 if and only if

�t = V:2�t with �t being an arbitrary vector conformable with V:2. Therefore, the full set of solutions

to (A.4) can be represented as�
�t : �t = �V:1D�1

11 U
�
:1Q2:	"t + V:2�t with Et�1�t = 0

	
: (A.6)

The restriction Et�1�t = 0 follows because �t is an expectation error and Et�1"t = 0. This

representation is the same as in Proposition 1 in Lubik and Schorfheide (2003).

We now provide some computational details on how to use (A.6) to solve for St in (1) as in Sims

(2002). De�ne � as the projection of the rows of Q1:� onto those of Q2:�: � = Q1:�V:1D
�1
11 U

�
:1.

Note that Q1:���Q2:� = Q1:��Q1:�V:1V �:1 = Q1:�(I � V:1V �:1), which equals zero under deter-
minacy. Multiplying (A.1) by 24 I ��

0 I

35
and imposing the restrictions (A.2):24 �11 �12 � ��22

0 I

3524 w1;t

w2;t

35 =
24 
11 
12 � �
22

0 0

3524 w1;t�1

w2;t�1

35+
24 Q1: � �Q2:

0

35 (	"t +��t) :
Further, using the expression (A.6),

(Q1: � �Q2:)��t = (Q1:�� �Q2:�)
�
�V:1D�1

11 U
�
:1Q2:	"t + V:2�t

�
= �Q1:�(I � V:1V �:1)V:1D�1

11 U
�
:1Q2:	"t +Q1:�(I � V:1V �:1)V:2�t:

The �rst term on the right hand side equals zero. Therefore24 �11 �12 � ��22
0 I

3524 w1;t

w2;t

35 =

24 
11 
12 � �
22
0 0

3524 w1;t�1

w2;t�1

35+
24 Q1: � �Q2:

0

35	"t
+

24 Q1:�(I � V:1V �:1)

0

35V:2�t:
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Call the most left hand side matrix G0. Multiply the above equation by ZG�10 and using wt = Z�St,

we obtain St = �1St�1 +�""t +���t, where

�1 = ZG�10

24 
11 
12 � �
22
0 0

35Z�; �" = ZG�10

24 Q1: � �Q2:
0

35	;
�� = ZG�10

24 Q1:�(I � V:1V �:1)

0

35V:2:
Further, applying the triangular structure of G�10 , the above matrices can be represented as �1 =

Z:1�
�1
11 [ 
11 
12 � �
22 ]Z�, �" = Z:1�

�1
11 (Q1: � �Q2:)	 and �� = Z:1�

�1
11 Q1:�(I � V:1V �:1)V:2,

where Z:1 includes the �rst block of columns of Z conformable with �11.
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Online Appendix B. Analytical Solutions to the Small Scale Model

Case (i): � > 1 and 
 > 1 (AMPF). Iterate Equation (16) forward:

b�t = 1

�k
Etb�t+k � Et k�1X

j=0

1

�j+1
"rt+j ;

which holds for any k > 0. Let k !1, we obtain

b�t = �Et 1X
j=0

1

�j+1
"rt+j : (B.1)

To obtain the solution for bbt, apply (B.1) to (17):
bbt � 1

�

1X
j=0

1

�j+1
Et"

r
t+j = (1=� � 
(1=� � 1))bbt�1 � �

�

1X
j=0

1

�j+1
Et�1"

r
t+j�1 � (1=� � 1)"�t +

1

�
"rt�1;

which is equivalent to

bbt = (1=� � 
(1=� � 1))bbt�1 (B.2)

+
1

�

1X
j=0

1

�j+1
Et"

r
t+j �

�

�

1X
j=0

1

�j+1
Et�1"

r
t+j�1 � (1=� � 1)"�t +

1

�
"rt�1:

The solution formulas (B.1) and (B.2) hold for generic stationary shock processes f"rtg and f"�t g.
In particular, when f"rtg is speci�ed by (14), the solution for b�t simpli�es to

b�t = � 1

�2
Et"

r
t+1 �

1

�
"rt =

�
� 1
�
� 1

�2
�r

�
ert �

1

�
�re

r
t�1:

The solution for bbt simpli�es to
bbt = (1=� � 
(1=� � 1))bbt�1 + 1

�

�
1

�
"rt +

1

�2
Et"

r
t+1

�
� �

�

�
1

�
"rt�1 +

1

�2
Et�1"

r
t

�
� (1=� � 1)"�t +

1

�
"rt�1

= (1=� � 
(1=� � 1))bbt�1 + 1

�

��
1

�
+
1

�2
�r

�
ert +

1

�
�re

r
t�1

�
� 1

��
�re

r
t�1 � (1=� � 1)"�t :

After cancellation, the right hand side expression reduces to that in the paper.

Case (ii): � < 1 and 
 < 1 (PMAF). Take the conditional expectation of (17):

Etbbt+1 + Et b�t+1
�

= (1=� � 
(1=� � 1))bbt + �

�
b�t � (1=� � 1)Et"�t+1 + 1

�
"rt :

Because of (16), the above equality implies Etbbt+1 = (1=� � 
(1=� � 1))bbt � (1=� � 1)Et"�t+1. To
simplify the notation, let � = (1=� � 
(1=� � 1)). Then, bbt = (1=�)Etbbt+1 + (1=�) (1=� � 1)Et"�t+1.
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Because 
 < 1, we have (1=�� 
(1=�� 1)) > 1. Therefore, the above equation for bbt can be solved
forward, leading to bbt = (1=� � 1)Et 1X

j=1

1

�j
"�t+j .

Plugging this expression into (17), we obtain

b�t = �b�t�1 � �(1=� � 1)Et 1X
j=1

1

�j
"�t+j

+�(1=� � 
(1=� � 1))(1=� � 1)Et�1
1X
j=1

1

�j
"�t+j�1 � �(1=� � 1)"�t + "rt�1:

The above solution for bbt and b�t holds for generic stationary shock processes f"rtg and f"�t g.
In particular, if f"�t g is an MA(1) process as in the paper, then

bbt = 1=� � 1
�

Et"
�
t+1 =

1=� � 1
1=� � 
(1=� � 1)��e

�
t :

This further implies that b�t satis�es
b�t = �b�t�1 � �(1=� � 1)

1=� � 
(1=� � 1)��e
�
t

+�(1=� � 1)��e�t�1 � �(1=� � 1)"�t + "rt�1

= �b�t�1 � �(1=� � 1)� 1

1=� � 
(1=� � 1)�� + 1
�
e�t + "

r
t�1:

Case (iii): � < 1 and 
 > 1 (PMPF). De�ne �t = b�t � Et�1b�t. Then, (16) can be written asb�t = �b�t�1 + "rt�1 + �t. Apply this to (17), we obtain
bbt = (1=� � 
(1=� � 1))bbt�1 � (1=� � 1)"�t � 1

�
�t:

Now, view �t as a disturbance (sunspot shock) to the system. Because the lagged coe¢ cients
in the above two equations, � and (1=� � 
(1=� � 1)), are both strictly less than 1, these two
equations both correspond to stationary and well de�ned solutions. In contrast, in case (i), � > 1;
in case (ii), (1=� � 
(1=� � 1)) > 1. In either case, one of the two equations needs to be further
solved forward to pin down the corresponding expectation error �t. This is why the multiplicity of
solutions does not arise in those two cases.

B-2



Online Appendix C. Additional Results from the Applications

1 Local identi�cation of the small scale model based on business
cycle frequencies

Result 14 The local identi�cation properties of the model at the business cycle frequencies are the

same as in the full spectrum case reported in Subsection 5.2.1 under the same parameter values

considered there.

The matrix GW (�1AMPF ) has rank 6 in both double and quadruple precision. In the former

case, the eigenvalues are 25.334, 0.890, 0.035, 1.70E-04, 2.73E-07, 2.91E-10 and -3.18E-15 with the

tolerance level of 2.49E-14. In the latter, only the smallest eigenvalue di¤ers noticeably, being much

closer to zero at -3.46E-33. We note that the magnitudes of all the eigenvalues are smaller than in

the full spectrum case above, re�ecting the fact that identi�cation is weaker since less information

is used. The subset (�; �r; �r) is the cause of identi�cation failure, as found previously using the

full spectrum. Furthermore, the conclusion about identi�cation in double precision now coincides

with that in quadruple precision, which was not the case when the full spectrum was considered.

In the case of �2AMPF ; the rank of G
W (�2AMPF ) remains equal to 4 in both double and quadruple

precision. As above, the eigenvalues are generally lower in magnitude compared to the full spectrum

case: 0.660, 0.046, 7.49E-05, 1.23E-11, 4.13E-17, 8.66E-19 and -1.51E-16. The last three eigenvalues

fall below the tolerance level of 7.77E-16. When quadruple precision is used, the three smallest

eigenvalues go down further to 1.44E-38, -3.94E-36 and -2.01E-35. The nonidenti�ed subsets and

hence the overall conclusions remain the same as in the full spectrum case.

For the generic value of the PMAF regime, the rank of GW (�1PMAF ) equals 5 at both precision

levels. In double precision, the tolerance level is 6.22E-15, with the eigenvalues being equal to

4.936, 0.110, 1.26E-04, 2.63E-05, 6.86E-10, 1.03E-18 and -9.79E-18. In quadruple precision, the two

smallest eigenvalues decrease to 5.93E-36 and -7.29E-40. Again, the conclusions about identi�cation

remain the same as in the full spectrum case.

At �2PMAF , the rank of G
W (�2PMAF ) equals 4 across the precision levels. The tolerance level in

double precision equals 3.89E-16 and the eigenvalues, the last three of which fall below this level,

are 0.438, 0.015, 7.20E-05, 2.19E-08, 7.34E-17, 1.02E-18 and -8.75E-18. In quadruple precision, the

three eigenvalues fall further below the tolerance level and equal 2.04E-35, 6.44E-39 and -6.95E-38.

The conclusion about identi�cation thus is the same as in the full spectrum case.

Finally, we consider the parameter �PMPF , as well as the 1000 randomly drawn parameter
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values from the PMPF region. The matrix GW (�PMPF ) is found to be full rank in both double

and quadruple precision. The default tolerance level in double precision is 1.42E-13, and the

eigenvalues obtained are all above it: 64.752, 16.886, 2.421, 0.696, 0.114, 0.001, 4.84E-05, 3.72E-06,

1.65E-08 and 5.05E-10. In quadruple precision the smallest eigenvalue does not change noticeably

remaining at 5.05E-10. As with �1AMPF , the spurious lack of local identi�cation that appeared

in the full spectrum case is no longer detected in double precision. Among the 1000 randomly

generated points, the ranks of GW (�) vary between 8 and 10, with 248 cases found to have local

identi�cation failure. Thus, the detection of spurious identi�cation failure due to numerical issues in

double precision still persists when using only the business cycle frequencies, although to a notably

lesser extent than in the full spectrum case. In quadruple precision all the criterion matrices have

full rank as in the full spectrum case. The parameter vectors in the indeterminacy region thus are

also locally identi�able using only the business cycle frequencies.

Therefore, the conclusions regarding local identi�ability are always the same as in the full

spectrum case. The results show that, using the suggested procedures and algorithms, it is feasible

to obtain clear cut conclusions regarding local identi�cation using business cycle frequencies.

2 Local identi�cation of the medium scale model based on busi-
ness cycle frequencies

Result 15 The local identi�cation properties of the model at the business cycle frequencies are

the same as in the full spectrum case reported in Subsection 6.1 under the same parameter values

considered there.

Starting with the observables in (29), we �nd that GW (�0) has full rank in double precision, with

�ve smallest eigenvalues being 6.16E-12, 1.66E-12, 9.80E-13, 6.71E-13, 1.07E-13. The respective

tolerance level equals 4.72E-16. Recomputing the result in quadruple and 50-digit precision does

not show any noticeable change in eigenvalues thus con�rming local identi�cation.

We now consider the original set of observables from Schmitt-Grohé and Uribe (2012). We

�nd that GW (�0) has full rank in double precision, with �ve smallest eigenvalues being 3.53E-05,

2.83E-05, 1.24E-05, 4.24E-06, 1.18E-06. The respective tolerance level equals 4.97E-13. Obtaining

the result in quadruple and 50-digit precision again con�rms local identi�cation.
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3 Global identi�cation of the medium scale model based on busi-
ness cycle frequencies

We repeat the global identi�cation analysis using only the business cycle frequencies. We also

examine whether our results obtained for the observables in (29) are robust to switching to the

growth rate observables considered in Schmitt-Grohé and Uribe (2012). The empirical distance

measures reported below refer to the case of T = 200 unless speci�ed otherwise

Result 16 The global identi�cation properties are qualitatively similar to those found based on the

full spectrum. The main di¤erence is that near observational equivalence is more pronounced: the

resulting empirical distances are often three times lower than those obtained with the full spectrum.

In particular, the empirical distance equals only 0.2617 at T = 200 when the original shock speci�-

cation is replaced by (31). These �ndings are corroborated by the results obtained using observables

in growth rates.

When searching outside the neighborhoods B(�0), �
8
� and �

4
zi again emerge as weakly identi�ed

as c increases from 0.1 to 1.0, and the corresponding minimizing parameter values remain largely

the same as the full spectrum case. The KL measures equal 4.24E-08, 3.37E-07 and 3.57E-06

for c =0.1, 0.5 and 1.0, respectively, while the corresponding empirical distance measures equal

0.0509, 0.0507 and 0.0594. Virtually the same results are obtained from additional optimization in

quadruple precision. Repeating the searches for the closest models while �xing the weakly identi�ed

parameters sequentially yields the same parameters as found previously in (30). When these seven

weakly identi�ed parameters are �xed, the minimized KL for c = 1:0 equals 2.06E-04 and the

empirical distance measure is 0.0961. The parameter values minimizing KL do not noticeably

change when compared to the full spectrum case. We can see that it becomes substantially more

di¢ cult to distinguish this model from the benchmark at the business cycle frequencies. These

results are robust to changing the observables to growth rates: very similar parameter values are

obtained, with the resulting KL and empirical distances generally slightly below those shown above.

Next, we repeat the global identi�cation analysis of the anticipated shocks at business cycle

frequencies. The results remain qualitatively similar when the news shocks are shut down altogether

as well as horizon by horizon. The closest model without the news shocks still remains relatively

easily distinguishable from the benchmark in �nite samples with the minimized KL of 0.0191 and

the empirical distance of 0.8681. The 4-horizon news shocks still remain more important than

the 8-horizon ones, however, in both cases the ability to di¤erentiate the closest model without

respective shocks decreases substantially. In the former case, when compared to the full spectrum

results obtained earlier, the KL decreases from 0.0110 to 0.0041 and the empirical distance shrinks
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to 0.3637. In the latter case, the KL equals 0.0010 with the corresponding empirical distance 0.1549.

When the relative importance of individual news shocks is considered, the wage markup shock again

emerges as the most crucial in forming the dynamics. Using only business cycle frequencies, the

closest model without news in the wage markup is still readily distinguishable in �nite samples

with the KL of 0.0150 and the empirical distance of 0.8074. As in the full spectrum case, news in

the investment-speci�c productivity shock bzit remain relatively important, with the di¤erence that
at the business cycle frequencies news in b�at have a similar, even marginally higher cost of shutting
down. The minimized KL are very similar for the two cases: 0.0009 for the former and 0.0010 for

the latter, which lead to respective empirical distances of 0.1507 and 0.1523. The �ndings for the

rest of the shocks also closely mirror the full spectrum case. Shutting down news in bgt delivers the
fourth largest KL of 0.0007 with the corresponding empirical distance of 0.1273. The other three

shocks, b�xt , b�t and bzt; remain the least important: the respective empirical distances equal 0.0905,
0.0840 and 0.0659. When growth rates are used as observables instead, the results obtained are

qualitatively very similar, with slightly lower KL and empirical distances in all cases.

Finally, we revisit the analysis of identi�cation from alternative shock structures. When all

the shocks are replaced by (31), the minimized KL equals 0.0025 and the empirical distance equals

0.2617. Therefore, when only business cycle frequencies are considered, it is possible to approximate

the original model dynamics much closer using models with the ARMA shock processes as in (31).

When the alternative shock structure is imposed on one exogenous process at a time, we obtain

results that qualitatively mirror those obtained using the full spectrum. In particular, in the

case of the wage markup shock, we again �nd near equivalence. Speci�cally, the minimized KL

equals 2.77E-06 and the empirical distance equals 0.0519. Furthermore, the empirical distance

at T = 1000 is still only 0.0579. These �ndings are corroborated by the results obtained using

observables in growth rates: there, qualitatively similar parameter values lead to the closest models

with marginally lower KL and empirical distances.

C-4



Table C1. List of structural parameters in the SGU(2012) model

Parameter SGU posterior median Interpretation
� 4.74 Frisch elasticity of labor supply (when 
 = b = 0)

 0.0019 Governs wealth elasticity of labor supply
� 9.11 Investment adjustment cost parameter

�2=�1 0.34 Ratio of depreciation parameters (see Section 6)
b 0.91 Habit parameter
�xg 0.72 AR coe¤. of government spending trend
��a 0.48 AR coe¤. of nonstationary investment-speci�c prod. shock
��x 0.38 AR coe¤. of nonstationary neutral productivity shock
�zi 0.47 AR coe¤. of stationary investment shock
�z 0.92 AR coe¤. of stationary neutral productivity shock
�� 0.98 AR coe¤. of wage markup shock
�g 0.96 AR coe¤. of gov. spending shock
�� 0.17 AR coe¤. of the preference shock
�0�a 0.21 Std. dev. of unanticipated shock in �at
�4�a 0.16 Std. dev. of 4-period anticipated shock in �at
�8�a 0.16 Std. dev. of 8-period anticipated shock in �at
�0�x 0.38 Std. dev. of unanticipated shock in �xt
�4�x 0.08 Std. dev. of 4-period anticipated shock in �xt
�8�x 0.10 Std. dev. of 8-period anticipated shock in �xt
�0
zi

11.72 Std. dev. of unanticipated shock in zit
�4
zi

1.93 Std. dev. of 4-period anticipated shock in zit
�8
zi

5.50 Std. dev. of 8-period anticipated shock in zit
�0z 0.65 Std. dev. of unanticipated shock in zt
�4z 0.11 Std. dev. of 4-period anticipated shock in zt
�8z 0.09 Std. dev. of 8-period anticipated shock in zt
�0� 0.50 Std. dev. of unanticipated shock in �t
�4� 4.79 Std. dev. of 4-period anticipated shock in �t
�8� 0.51 Std. dev. of 8-period anticipated shock in �t
�0g 0.62 Std. dev. of unanticipated shock in gt
�4g 0.57 Std. dev. of 4-period anticipated shock in gt
�8g 0.37 Std. dev. of 8-period anticipated shock in gt
�0� 4.03 Std. dev. of unanticipated shock in �t
�4� 1.89 Std. dev. of 4-period anticipated shock in �t
�8� 2.21 Std. dev. of 8-period anticipated shock in �t
�megy 0.30 Std. dev. of measurement error in output growth
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