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Abstract

What constitutes timely intervention during a systemic crisis? Intervention that is
‘too early’ may not be appropriately designed due to the uncertainty surrounding the
systemic nature of the crisis and may trigger panic. Intervention that is ‘too late’ may
exacerbate the severity and duration of the crisis and ultimately prove ineffective in
limiting financial contagion. In this paper, I develop a model to study optimal timing
for intervention in a Core-Periphery interbank network of the financial system. Op-
timal timing for intervention during a cascade depends on two trade-offs: resilience
of nodes against maturity of liabilities (‘speed of financial contagion’) and welfare of
defaulting nodes against the cost of a systemic bailout. I find that faster contagion
necessitates more immediate intervention and there is a threshold of speed beyond
which immediate intervention becomes optimal. A ‘too-interconnected-to-fail’ effect
arises endogenously in my model where a systemic bailout is warranted earlier when
core nodes default even when it is more expensive. This finding is robust even when
core nodes contribute less welfare to the financial system.
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1 Introduction

Optimal intervention arguably depends on distinguishing fundamental from self-fulfilling
crises. Intervention is meant to avert self-fulfilling crises – policy tools such as lender of
last resort (LOLR) and deposit insurance are designed to prevent coordination failures.
Nonetheless, it is difficult to distinguish between fundamental and self-fulfilling crises. As a
result, intervention has been the usual outcome. There is a growing debate in literature on
the optimality of such intervention decision. The dominant view is that intervention may
avert bad equilibria in a self-fulfilling crisis but may only delay a necessary adjustment in a
fundamental crisis.

Optimal timing is necessary for optimal intervention. However, the literature fails to
consider the optimality of intervention timing. Policy intervention during a systemic crisis is
time-sensitive. Empirical evidence suggests that the timing of such policy interventions vary
by 3-41 months from the crisis start date. Immediate intervention may be optimal in a self-
fulfilling crisis but is it also optimal in a fundamental-based crisis? The government typically
delays intervention due to its uncertainty about the specific cause of crisis and its systemic
nature. In turn, premature intervention may be inappropriately designed or unnecessary
which can trigger panic. Late intervention will ‘miss’ the crisis, exacerbate crisis’ severity
and duration, and ultimately prove ineffective in limiting financial contagion.

In this paper, I build a new model to study optimal timing for intervention in a financial
network setting. The methodology is applicable to any network topology. The economy
consists of a financial network of banks and a regulator. The set of possible linkages between
banks is fixed over the horizon of the model but each period, a random subset of these
linkages are due (i.e., maturity of liabilities is random). As a result, the economy may be
in a cascade state or a normal state each period. In a normal state, all nodes are able to
meet their obligations given their capital buffers. In a cascade state, however, some nodes
are unable to meet their obligations and intervention may be warranted. Intervention is in
the form of a one-time systemic bailout of all defaulting nodes in a period.

Two trade-off forces influence optimal timing for intervention. The first trade-off is the
maturity of liabilities against the resilience (i.e., capital buffers) of nodes. The speed of
financial contagion captures this trade-off and is measured as the number of nodes in default
per period. It represents the extent of shock propagation over time. Shorter maturity and/or
lower capital buffers accelerate contagion which may necessitate earlier intervention. The
second trade-off is the welfare contribution of otherwise defaulting nodes against the cost of
a systemic bailout. The cost of a systemic bailout is the shortfall amount of all defaulting

1



nodes. Lower welfare contribution and/or higher cost may delay intervention. The regulator
decides the optimal period for a systemic bailout given the above trade-offs.

Findings from a Core-Periphery network yield new insights into optimal timing for in-
tervention. The speed of financial contagion has direct bearing on the immediacy of optimal
intervention. Fast contagion necessitates earlier intervention and there is a threshold beyond
which immediate intervention becomes optimal. A ‘too-interconnected-to-fail’ effect arises
endogenously in the model. Earlier intervention is optimal when core nodes default relative
to when periphery nodes default even when it is more expensive. Effect holds even when
core nodes contribute less welfare to the financial system. The welfare-cost trade-off may
delay or stop intervention. The higher the cost or lower the welfare of defaulting nodes, the
less immediate and less likely the intervention. In addition, there is a lower bound on welfare
below which intervention is suboptimal in some cascade states.

Model predictions have implications on the optimal design of intervention policy. First,
the speed of intervention should be guided by the speed of financial contagion to be optimal.
Fast contagion may necessitate earlier intervention while slow contagion may allow the gov-
ernment more time to learn about the nature of the crisis and design appropriate policy prior
to intervention. Second, it is optimal to bailout core nodes first even when it is expensive as
the distress of core nodes accelerates the speed of financial contagion.

This paper alerts regulators to the fact that effective intervention should consider timing.
Timely intervention can minimize disruption to the financial system through reducing the
economic costs incurred by financial institutions and accelerating their recovery from the
crisis. Moreover, it can substantially reduce the fraction of institutions that face financial
distress or default during a systemic crisis. The 2008-2009 financial crisis highlights that
financial system stability is integral to the stability of the global economy. Timely interven-
tion that appropriately addresses vulnerabilities in the financial system will have the critical
macroeconomic consequences of limiting the extent of financial contagion which will ulti-
mately reduce the severity and duration of systemic crises.

1.1 Literature Review

This paper relates to three strands of the literature: (1) financial networks and the extent
of financial contagion, (2) optimality of bailouts, and (3) financial crises.

The link between interconnectedness and the extent of financial contagion is well-established
in the literature. In contrast with this literature, this paper measures the speed of financial
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contagion (i.e., the extent of financial contagion over time) and use it to identify an optimal
time for intervention. Allen and Gale (2000) develop a network model of liquidity shocks
where they show that increased interconnectedness improves the resilience of the financial
system by increasing risk-sharing. Acemoglu et al. (2015a) find that below some threshold of
severity, increased interconnectedness indeed provide the documented risk-sharing benefits
but beyond some threshold, facilitates financial contagion and fragility. Elliott et al. (2014)
study how two important features of the structure of the financial network - diversification
and integration - influence the extent of default cascades.

Literature shows that the anticipation of government intervention results in suboptimal
consequences with respect to network formation and bank risk-taking. Cordella and Yeyati
(2003), Freixas and Rochet (2013), Gorton and Huang (2004) among others document the
moral hazard consequences that takes the form of excessive risk taking behavior in the
presence of bailouts. Acemoglu et al. (2015b) and Erol and Vohra (2014) study endogenous
network formation in the presence of systemic risk. In this paper, I consider the role of
intervention timing in the optimality of intervention.

In addition, this paper is motivated by and contributes to the literature on financial
crises. Laeven and Valencia (2008, 2010, 2012, 2013) develop a comprehensive systemic
crises database that spans 1970-2011. The database contains the containment and resolution
measures for a subset of 65 systemic crises. The database illustrates that it takes on average
5 months from the date of the crisis for the crisis to be deemed systemic and 3-41 months
from the date of the crisis to observe the first form of government intervention. My paper
contributes to this strand of literature since optimal timing of intervention matters for the
duration and severity of systemic crises.

The paper proceeds as follows. Section 2 presents a model of optimal timing for a
systemic bailout in a financial network setting. Section 3 applies the model to a Core-
Periphery network and describes the findings. Section 4 concludes the paper.

2 Model: Optimal Timing of Systemic Bailouts

In this section, I develop a model to study optimal timing for a systemic bailout in a
financial network setting. The economy consists of a financial network with n banks and the
regulator. The regulator has uncertainty about the maturity of liabilities. The model has T
periods. Each period, the economy may be in a normal state or a cascade state. In a cascade
state, some nodes default and a systemic bailout may be warranted. The regulator decides

3



the optimal period for a systemic bailout given two trade-offs: resilience of nodes against
the maturity of liabilities and welfare of defaulting nodes against the cost of a systemic
bailout. In 2.1, I describe the financial network setting and its dynamics for the optimal
timing problem. In 2.2, I illustrate the trade-off forces that the regulator faces in the model
when deciding an optimal timing for intervention. In 2.3, I present the methodology for
solving an optimal stopping problem in this dynamic financial network setting.

2.1 Financial Network with n Banks

The set of possible linkages among n banks is fixed over the duration of the model. Let
Lij denote an n× n matrix that maps nominal obligations due from each node i to node j.
Let k̄i denote the total obligations of node i to all other nodes in the financial system.

k̄i =
n∑

j=1
Lij

Each period, a random subset of these linkages are effective (i.e., maturity of liabilities
is random). Let kt denote an n × 1 vector of liabilities due in a given period. In any given
period t, a node may owe some fraction of its outstanding liabilities to a subset of its links,
owe its total outstanding liabilities k̄i or have no liabilities due. Node obligations in a given
period cannot be deferred to future periods. Let Lt

ij denote an n×n matrix that captures the
map of liabilities due in period t and let Πt

ij denote an n×n matrix of liabilities proportional
to total obligations due in period t.

Πt
ij =

L
t
ij/k

i
t if ki

t > 0

0 otherwise
where ∀i,

n∑
j=1

Πt
ij = 1

Assumption 1. (No obligations deferral): Liabilities due in any given period cannot be
deferred to future periods.

For each node, there is a mapping from obligations that may be due each period to the
nodes/links to which obligations are due. Such construction ensures that the realization
of kt provides a mapping to liabilities owed Lt

ij and proportional liabilities due Πt
ij, where

liabilities that are not owed in a given period are replaced with zero entries. Consider an
example where a core node n1 owes $1 to n2, n3 and n4 where n2 and n3 are core nodes and
n4 is a periphery node. Suppose that the mapping each period is such that a node may owe
core or periphery but not both. Then, if the maturity realization of k1

t = $2 then this means
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that n1 only owes n2 and n3 (core nodes) in this period. If, however, the maturity realization
is k1

t = $1 then the node only owes n4 (periphery node) in this period. In this example,
a maturity realization of $1 for n1 entails zero entries for n2 and n3 in Lt

ij and similarly, a
maturity realization of $2 entails a zero entry for n4 in Lt

ij.

Assumption 2. (No recurrence of obligations to a node): Liabilities due in any given
period must satisfy obligations to a subset of nodes. This ensures that a node cannot owe the
same node more than once over the duration of the model.

Defaults in the financial network depend on a node’s cash flow relative to its liabilities.
Let et denote an n × 1 vector of cash flows used to pay liabilities owed within a period. If
a node’s cash flow ei

t exceeds liabilities owed ki
t, the node pays the liabilities it owes to the

network. If, however, a node’s cash flow ei
t falls below liabilities owed ki

t, the node defaults
and pays its cash flow to the network. Claimant nodes are paid in proportion to the amount
they were owed by the defaulting node. Let D(kt, et) denote the set of defaulting nodes i
such that kt > et. Defaults are pinned down by kt and et before any payments are made.1

Let pt denote an n × 1 vector of payments at any given period t. Payments determined by
the realization of kt and et today are cleared next period. The law of motion for a node’s
cash flow et depends on its previous cash flow et−1, previous period payment to the network
pt−1 and previous period payments received from the network Πt−1

ij pt−1.

pt = min(kt, et)

et = et−1 − pt−1 + Πt−1
ij pt−1

Assumption 3. (Proportionality): Claimant nodes are paid by the defaulting node in
proportion to the original amount owed.

Assumption 4. (Next period payment clearing): Payments due in the current period
are cleared next period.

The state of the economy depends on the realization of kt and et. At any given period
t, the economy can either be in a cascade state or in a normal state. If the realization of kt

is less than et for all nodes n in period t, all nodes are able to meet their obligations and
the economy is in a normal state. If, however, the realization of kt for at least one node i is
greater then et, there is at least one observed default and the economy is in a cascade state.

1If there is a payment clearing mechanism each period, the order with which payments are cleared would
change the sequencing and number of defaults.
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Let ct denote the state of the economy in period t.

State of the Economy:

kt > et ct = 1 (cascade state)

kt ≤ et ct = 0 (normal state)

2.2 Regulator

Since kt is stochastic and et is deterministic, the regulator cannot foresee whether the
degree of resilience of the financial system is sufficient to avert a cascade state next period.
Each period, the regulator observes the state of the economy and optimally decides whether
or not to intervene. Intervention is in the form of a systemic bailout where all nodes in
default at the time of intervention are bailed out. The regulator decides the optimal period
for a systemic bailout (i.e., may only intervene once over the horizon of the model).

Assumption 5. (Systemic or untargeted bailout): In the case of intervention, the regu-
lator must bailout all nodes in default in a given period. This assumption implicitly entails
that the regulator has enough budget to do so.

Assumption 6. (One-shot bailout): Regulator can only intervene once over the horizon
of the model.

Identifying an optimal period for a systemic bailout depends on two trade-off forces in
the model. The first trade-off is the maturity of liabilities against the resilience of nodes.
This trade-off influences how quickly distress propagates through the financial system in a
cascade state. I refer to this trade-off as the speed of financial contagion. Keeping maturity
kt fixed, the greater the resilience et, the slower the propagation of the shock. Keeping
resilience et fixed, the shorter the maturity of liabilities kt, the faster the cascade.

Speed of financial contagion critically depends on both maturity kt and resilience et as
a node with little or no cash flow will not default unless it has outstanding obligations in
a given period. Therefore, I define a measure for speed that accounts for the interaction of
kt and et – the number of nodes in default per period. Slow contagion allows the regulator
more time to learn about the systemic nature of the crisis and design appropriate policy for
later intervention. Fast contagion, on the other hand, may necessitate earlier intervention.
The speed of financial contagion thus constitutes the first important trade-off in identifying
an optimal time for intervention.
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The second important trade-off in identifying an optimal time for intervention is the
welfare-cost of a systemic bailout. Given the realization of kt and et, the regulator can
identify nodes in default and incur the shortfall needed to restore the system to a normal
state. The shortfall for each node i takes a value of ki

t − ei
t when a node defaults and zero

otherwise. The cost of a systemic bailout is the shortfall amount of all nodes in the default set
in each period t. The benefit of a systemic bailout lies in the welfare contribution of otherwise
defaulting nodes. Let w denote an n × 1 vector that specifies the welfare contribution of
each node to the economy. Keeping cost fixed (kt − et), the higher the welfare contribution,
the earlier the intervention. Keeping welfare contribution fixed (w), the higher the cost, the
later the intervention.

The cost and benefit of a systemic bailout are endogenous to the state of the economy as
the set of defaulting nodes is pinned down by each pair (kt, et). The set of defaulting nodes
can identify the exact cost of a systemic bailout since it depends of the shortfall amount
(kt − et) of all defaulting nodes. It also identifies the benefit of a systemic bailout since it
depends of the welfare contribution of all otherwise defaulting nodes.

Cost of Systemic Bailout =
∑
i∈D

(ki
t − ei

t)

Benefit of Systemic Bailout =
∑
i∈D

wi

Assumption 7. (Welfare contribution of each node is not time-varying): The welfare
contribution of each node to the financial system is constant over the horizon of the model.

2.3 Optimal Stopping Problem

Using the above setting, I develop a finite horizon stochastic optimal control model for
optimal intervention timing during a cascade.

State Space (kt, et). For each node, a state space for ki
t is defined such that it encom-

passes possible liabilities due in a period. Maturity of liabilities is random. Each period, a
node may have no obligations due, owe some fraction of its obligations or all of its obliga-
tions. The state space for each node is constructed such that it can identify the subset of
nodes that are due payment in a period. Using the state space defined for each node, we can
generate all possible permutations of the kt vector and its corresponding mapping to Lt

ij and
Πt

ij. Let K denote the number of unique permutations of the kt vector based on the defined
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state space for each node.

The cash flow vector et depends on the realization of maturity kt. At each time step, the
new cash flow is the old cash flow less payments made to the network plus payments received
from the network. In a cascade state, each node pays the minimum of what it has and what
it owes. In a normal state, each node pays only what it owes. Let e0 denote an n× 1 vector
with the initial cash flow for each node in the financial system. Pairing e0 with each of the
possible K realizations of kt yields K realizations of e1. Repeating this process for each of
the K realizations of e1 yields K×K new realizations of e2 and so on. The state space for et

expands with each transition to include the new unique vectors of et+1. The computational
cost substantially increases with the number of transitions. For tractability, I limit the state
space of et to the first transition. Let E denote the number of unique vectors in the state
space of et.

et+1 =

et − pt + Πt
ij
′pt ct = 1 where pt = min{kt, et}

et − kt + Πt
ij
′kt ct = 0

We can now construct the state space for the problem KE = K ×E where each state is
a pair of vectors (kt, et).

Action (Control) Space (X). In each state, the regulator observes (kt, et) and opti-
mally decides whether a systemic bailout is warranted. Let xt denote the regulator’s decision.

xt ∈ X = {bailout(1), no bailout(0)}

.
Reward Function (kt, et, xt). For each pair (kt, et), we can identify the set of defaulting

nodes (if any) and compute the reward from intervention. In the case of intervention, the
reward is the welfare contribution of otherwise defaulting nodes less the cost of a systemic
bailout (kt − et). There is no immediate reward from the regulator’s decision to wait. Let
R denote a KE × 2 matrix that contains the reward from intervention vs. waiting in each
(kt, et) state.

f(k, e, x) =


0 x = 0, ct = 1∑
i∈D

w − ∑
i∈D

(k − e) x = 1, ct = 1

Joint Transition Map (kt, et). A probability transition matrix is defined over the
liabilities state space for each node such that liabilities due in the current state cannot reoccur
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in the future. If the current maturity state is no liabilities owed, then all states tomorrow are
equally likely (i.e., assigned equal probability). Otherwise, a positive probability is assigned
to states other than the current state and a transition probability of zero is assigned to the
current state. We can now construct an K × K probability transition matrix where each
entry in the matrix is an n× 1 vector that maps the transition probability of each element
from kt to kt+1 according to the probability transition matrix defined for each node. The
maturity realizations across nodes are independent and therefore, the joint probability can
be computed as the product of vector elements. This simplifies each entry of the probability
transition matrix from an n × 1 vector of element-wise probabilities corresponding to the
maturity of each node to a scalar that represents the transition probability for kt as a vector.
This yields an K ×K probability transition matrix (Kij) for kt.

We can now construct the probability transition matrix for the problem KE ×KE. For
each pair (kt, et), we compute et+1 based on the law of motion defined for the cash flow
vector. If a pair’s et+1 falls within the defined state space for et, we parse out the kth row
corresponding to the pair’s kt from the Kij matrix into the respective et+1 columns. If,
however, the computed et+1 does not fall within the state space, then we assign a transition
probability of 1 to the state that corresponds to the current state. Essentially, this creates
an absorbing state for any pair with an et+1 that falls outside the state space for et. All
other entries in the matrix are zero.

Value Function (k, e). Let Vt(k, e) denote the value of a systemic bailout for a financial
system with liabilities-resilience pair (~kt, ~et). In a cascade state, the payoff from intervention
is the welfare gained from otherwise defaulting nodes less the amount of the shortfall needed
to bailout all nodes in default. When the regulator decides to wait, there is no immediate
value but regulator retains the option to intervene in the next state where with some prob-
ability the cascade stops or continues. The option to step in expires at the terminal period
and therefore, the post-terminal value is zero.

Vt(k, e) = max{
∑
i∈D

w −
∑
i∈D

(k − e), 0 + δEVt+1(k′, e′)}

VT +1(k, e) = 0
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3 Optimal Timing for a Systemic Bailout in a Core-
Periphery Network

In this section, I apply the framework from section 2 to study optimal timing for a
systemic bailout in a core-periphery network with n = 6 nodes and T = 5 periods. In 3.1, I
describe the environment. In 3.2, I apply the methodology for constructing the state space
and transition map given the network topology. In 3.3, I show the parameter calibration for
the problem. In 3.4, I present the findings for this core-periphery network.

3.1 Environment

Suppose that there are five periods, T = 5. The regulator decides the optimal period for
a systemic bailout. Intervention in t = 1 is deemed immediate.

Financial Network. Consider an economy with 6 banks where n1, n2, and n3 are Core
nodes and n4, n5, and n6 are Periphery nodes. In this economy, Core nodes are systemically
important not due to their size but due to their degree of interconnectedness with the financial
system. Each core node is linked to two core nodes and one periphery node. Each periphery
node is linked to one core node. These linkages represent the set of possible interconnections
between nodes over the horizon of the model. Suppose that each node owes $1 to each link
it forms with a counterparty. We can now construct the map of obligations due (Lij) from
each node i to node j and compute the total obligations due (k̄) for each node i. Figure 1
illustrates the map of liabilities owed Lij and total obligations due k̄ for this network.

Figure 1: A Core-Periphery Network

  𝑛ଵ

  𝑛ଶ   𝑛ଷ

  𝑛ହ   𝑛଺

  𝑛ସ   𝑛ଵ   𝑛ଶ   𝑛ଷ   𝑛ସ   𝑛ହ   𝑛଺

𝑳𝒊𝒋 ൌ 𝒌ഥ ൌ

  𝑛ଵ

  𝑛ଶ

  𝑛ଷ

  𝑛ସ

  𝑛ହ

  𝑛଺

  𝑛ଵ

  𝑛ଶ

  𝑛ଷ

  𝑛ସ

  𝑛ହ

  𝑛଺

Based on the set of possible linkages, the maximum amount each node may owe to the
financial system is $3 for a core node and $1 for a periphery node. The uncertainty about
maturity of liabilities entails that some fraction of these liabilities may become due to a
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subset of links/nodes each period. If the cash flow in the financial system is not sufficient
to cover the liabilities due, some nodes default and the economy enters a cascade state. The
regulator then optimally decides when to intervene.

3.2 Problem State Space and Transition Map (kt, et)

State Space (kt, et). I describe below the steps required to construct the state space
for the problem. Steps 1 and 2 construct the state space for kt. Steps 3 and 4 use the state
space for kt to pin down the state space for et. Step 5 uses the state space for kt and et to
construct the final state space for the problem which is composed of 25, 272 (kt, et) pairs.

Step 1: Define a liabilities state space for each node and its mapping to linkages. Each
element in the state space represents liabilities owed to a subset of possible linkages. As a
result, the state space has a mapping to Lt

ij where liabilities that are not due in period t are
replaced with zero entries. I define the state space and mapping to linkages to be identical
for each core and periphery node. For each core node, the state space for ki=1:3

t is {0, 1, 2}
where a realization of {0} indicates no liabilities due, a realization of {1} indicates liabilities
due to the periphery node and a realization of {2} indicates liabilities due to core nodes. For
each periphery node, the state space for ki=4:6

t is {0, 1} where a realization of {0} indicates
no liabilities due and a realization of {1} indicates liabilities due to the core node.

Figure 2: Node State Space and Mapping to Linkages

  𝑛ଶ

  𝑛ଷ

  𝑛ଵ

  𝑛ସ

  𝑛ହ

  𝑛଺

0, 1, 2

kt =

0, 1

Core has no liabilities 𝐿௜௝
௧ ൌ 0

Periphery owes Core 𝐿௜௝ୀସ:଺
௧ ൌ 0

Core owes Core 𝐿௜௝ୀସ:଺
௧ ൌ 0

Core owes Periphery 𝐿௜௝ୀଵ:ଷ
௧ ൌ 0

Periphery has no liabilities 𝐿௜௝
௧ ൌ 0

Step 2: Use the defined state space for each node to generate permutations of the kt

vector. Given that the defined state space is {0, 1, 2} for each core node and {0, 1} for each
periphery node, we can generate all possible permutations of the kt vector. Each kt vector
(6× 1) specifies what each node in the financial system owes the network in a given period.
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This step results in 216 unique vectors for kt.

Step 3: Initialize the cash flow vector e0. In order to generate the state space for et, we
must initialize the cash flow vector. I assume that each node has an initial cash flow of $1
(i.e., e0 = ~1).

Step 4: Compute et+1 for each unique permutation of the kt vector and keep unique et

vectors. Use e0 and the law of motion for the cash flow vector to compute e1 for each unique
permutation of the kt vector. Recall that the law of motion is et+1 = et − pt + Πt

ij
′pt where

pt = min{kt, et}. This step results in 216 vectors for e1. Note that pairing each of the
e1 vectors with 216 possible kt vectors yields 216 × 216 possible e2 vectors and so on. For
tractability, I limit the state space of et to e0 and the 216 e1 vectors from the first transition.
Each et vector (6 × 1) specifies the cash flow that each node in the financial system has to
meet its obligations in a given period. This step yields 117 unique vectors for et.

Step 5: Construct the joint state space (kt, et) from unique kt and et vectors. Using the
216 unique vectors for kt from Step 2 and the 117 unique vectors for et from Step 4, we can
now construct the final state space for the problem. The problem state space is composed
of all possible (kt, et) pairs (i.e., 216× 117 states). This step results in 25, 272 states where
each state is a pair of vectors (kt, et).

Figure 3: Problem State Space: Selected Steps

kt
 1

kt
 2

kt
 3

kt
 216

e0
 

kt
 1

kt
 2

kt
 3

kt
 216

et
 1

et
 2

et
 3

et
 216

216 Unique k Vectors 117 Unique e Vectors

kt
 1

kt
 216

et
 1

et
 1

kt
 1

kt
 216

et
 117

et
 117

Step 4Step 2 Step 5

State Space 216 x 117 (k,e)

Using the problem state space, we can now compute the reward from intervention for each
pair (kt, et). The reward is the welfare contribution of otherwise defaulting nodes less the cost
of a systemic bailout. The cost of a systemic bailout is the shortfall of all defaulting nodes
(i.e., kt − et). The benefit from intervention is the welfare contribution of bailed out nodes.
I assign equal welfare contribution to all nodes and compare findings using two calibrations:
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high welfare (w = ~20) and low welfare (w = ~2). Let R denote a 25, 272 × 2 matrix that
contains the regulator’s reward in each (kt, et) state from intervention vs. waiting.

Joint Transition Map (kt, et). I describe below the steps required to construct the
joint probability transition matrix for the problem. Steps 1 and 2 construct the probability
transition matrix for kt. Steps 3 and 4 construct the final transition map for the problem
25, 272× 25, 272.

Step 1: Define a probability transition matrix over the liabilities state space for each
node. The transition probabilities are assigned such that liabilities owed this period cannot
reoccur in the future. I define an identical probability transition matrix for each core and
periphery node. For a core node, the defined mapping to linkages is such that a node may
have liabilities due to core {2}, liabilities due to periphery {1} or no liabilities due {0} in any
given state. Therefore, a core node that owes $2 in the current state can transition to states
{1} or {0} with equal probability. Similarly, a core node that owes $1 in the current state
can transition to states {2} or {0} with equal probability. For a periphery node, the defined
mapping to linkages is such that a node may have liabilities due to core {1} or no liabilities
due {0} in any given state. Therefore, a periphery node that owes $1 in the current state
will transition to state {0} with probability 1 since it satisfied all its obligations. A core or
periphery node with no liabilities due in the current state can transition to all states with
equal probability in the next state.

Figure 4: Node Probability Transition Matrix

  𝑛ଶ

  𝑛ଷ

  𝑛ଵ

  𝑛ସ

  𝑛ହ

  𝑛଺

kt =

s0

0.33 0.33 0.33
0.5 0 0.5
0.5 0.5 0

s0
s1
s2

s1 s2

0.5 0.5
1 0s1

s0 s1
s0

Step 2: Construct a probability transition matrix for kt. Use the defined probability
transition matrix for each node to map the probability of each element in each permutation
of kt to transition to kt+1. This step yields 216× 216 vectors where each vector contains the
probability for each node to transition from ki

t to ki
t+1. Next, compute the joint probability
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that each kt vector transitions to kt+1. This step simplifies each transition vector to a scalar
(product of vector elements) assuming independence of realizations across nodes. As a result,
the probability transition matrix for kt simplifies from 216×216 vectors to 216×216 elements
where each element represents the probability that kt transitions to kt+1.

Figure 5: Probability Transition Matrix for kt

kt
 1 ൌ

kt
 2

kt
 216

kt
 1 kt

 2 kt
 216

0
0
0
0
0
0

0.33
0.33
0.33
0.5
0.5
0.5

pt
 1, 216

pt
216 , 216pt

 216, 1

216 x 216 Vectors

kt
 2

kt
 216

kt
 1 kt

 2 kt
 216

jpt
 1, 216

jpt
216 , 216jpt

 216, 1

216 x 216 Elements

0.0046kt
 1

Step 2

Step 3: Compute et+1 for each (kt, et) pair in the state space. Given a pair (kt, et), et+1

is known with certainty while kt+1 is not. Recall that the only source of uncertainty in
this economy stems from the realization of kt+1 (Step 2). In order to identify the transition
probability from (kt, et) to (kt+1, et+1), we first compute et+1 for each (kt, et) pair. This step
allows us to limit possible transition states for (kt, et) to pairs with et+1.

Step 4: Construct a joint probability transition matrix for (kt, et). For (kt, et) pairs where
et+1 falls within the state space for et, parse out the row corresponding to the pair’s kt from
Step 2 to the columns corresponding to et+1. For (kt, et) pairs where et+1 falls outside the
state space for et, assign a transition probability of 1 to the current state. This step yields
25, 272 × 25, 272 matrix for the joint transition probability of (kt, et). Let P denote this
probability transition matrix.
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3.3 Calibration

Using the below calibration, this finite horizon stochastic optimal control problem is
solved numerically using dynamic programming.

Parameters
Variable Name Description Value
T Horizon 5
δ Discount Factor 0.96
w Welfare Contribution ~20, ~2

There are 5 inputs to the problem: horizon (T = 5), discount factor (δ = 0.96), decision
(xt = {0, 1}), intervention reward (R matrix), and probability transition matrix (P matrix).
I compare findings under a high welfare (w = ~20) relative to a low welfare (w = ~2) calibration.

3.4 Findings

Table 1 shows the state space decomposition of optimal timing decision under both
welfare calibrations. Immediate intervention is optimal in 74.9% and 72.3% of all states
under high and low welfare calibrations, respectively. Intervention delay is optimal in 16%
and 14% of all states under high and low welfare calibrations, respectively. In a cascade
state, intervention is always optimal under a high welfare calibration but is suboptimal in
4.3% of all states under a low welfare calibration. As would be expected, intervention is
strictly suboptimal when the economy is in a normal state under both welfare calibrations.

Table 1: State Space Decomposition and Timing of Intervention
Number of States (in % of all states)

Cascade Normal Cascade Normal

Immediate t=1
18,263

 (72.3%)
18,925

 (74.9%)

Wait until t=2
126

 (0.5%)
34

 (0.1%)

Wait until t=3
332

 (1.3%)
77

 (0.3%)

Wait until t=4
1,288

 (5.1%)
1,380

 (5.5%)

Wait until t=5
1,850

 (7.3%)
2,531

 (10.0%)

No Intervention
1,088

 (4.3%)
2,325

 (9.2%)
2,325

 (9.2%)

Timing of 
Intervention

Low Welfare High Welfare
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3.4.1 There is a Threshold of Speed Beyond Which Intervention is Optimal

The higher the number of defaults per period (speed), the more immediate the inter-
vention. Defaults of two or more nodes within a period accounts for 77.6% and 75.9% of
states where immediate intervention is optimal under high and low welfare calibrations,
respectively. Table 1 shows that there is a threshold of speed beyond which immediate inter-
vention is optimal. Under high welfare calibration, immediate intervention is optimal when
three or more nodes default. Under low welfare calibration, on the other hand, immediate
intervention is optimal when four or more nodes default. This indicates that the greater
the welfare, the sooner we approach the threshold at which immediate intervention becomes
optimal.

Table 2: Speed of Contagion and Timing of Intervention
Number of States (in % of states with same # of defaults)

Fast Slow

5 4 3 2 1

Immediate t=1
15

 (100%)
492

 (100%)
4,317

 (100%)
9,859

 (99.92%)
4,242

 (51.4%)

Wait until t=2
4

 (0.04%)
30

 (0.4%)

Wait until t=3
4

 (0.04%)
73

 (0.9%)

Wait until t=4
1,380

 (16.7%)

Wait until t=5
2,531

 (30.7%)

High Welfare

Defaults per Period

Timing of 
Intervention

Speed of Contagion

Fast Slow

5 4 3 2 1

Immediate t=1
15

 (100%)
492

 (100%)
4,247

 (98.4%)
9,114

 (92.4%)
4,395

 (53.2%)

Wait until t=2
6

 (0.1%)
40

 (0.4%)
80

 (1.0%)

Wait until t=3
11

 (0.3%)
94

 (1.0%)
227

 (2.7%)

Wait until t=4
29

 (0.7%)
295

 (3.0%)
964

 (11.7%)

Wait until t=5
16

 (0.4%)
216

 (2.2%)
1,618

 (19.6%)

Timing of 
Intervention

Speed of Contagion

Defaults per Period

Low Welfare
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3.4.2 The Higher the Cost, the Less Immediate and Less Likely the Intervention

The cost of intervention is considered ‘high’ if the amount of the shortfall is greater than
4, ‘medium’ if the amount is greater than 2 and less than or equal to 4, and ‘low’ if the amount
is less than 2. Table 2 shows how optimal timing varies with the cost of intervention. Under
high welfare calibration, the likelihood of intermediate intervention when the cost is ‘high’
is 1.2% relative to 38.3% and 60.4% under ‘medium’ and ‘low’ cost, respectively. Under low
welfare calibration, the likelihood of immediate intervention when the cost is ‘high’ is 0.9%
which indicates that intervention becomes more suboptimal under high cost and low welfare.
Under both calibrations, we can also observe that the regulator is less likely to step in with
a delay under ‘high’ cost relative to ‘medium’ or ‘low’ cost.

Table 3: Cost and Timing of Intervention
Number of States (in % of states with same intervention decision)

High Medium Low

Immediate t=1
236

(1.2%)
7,249

(38.3%)
11,440
(60.4%)

18,925
(100%)

Wait until t=2
3

(8.8%)
31

(91.2%)
34

(100%)

Wait until t=3
3

(3.9%)
74

(96.1%)
77

(100%)

Wait until t=4
1,380

(100.0%)
1,380

(100%)

Wait until t=5
2,531

(100.0%)
2,531

(100%)

Cost of Intervention

Timing of 
Intervention

High Welfare

High Medium Low

Immediate t=1
173

(0.9%)
6,578

(36.0%)
11,512
(63.0%)

18,263
(100%)

Wait until t=2
6

(4.8%)
25

(19.8%)
95

(75.4%)
126

(100%)

Wait until t=3
11

(3.3%)
70

(21.1%)
251

(75.6%)
332

(100%)

Wait until t=4
22

(1.7%)
263

(20.4%)
1,003

(77.9%)
1,288

(100%)

Wait until t=5
16

(0.9%)
211

(11.4%)
1,623

(87.7%)
1,850

(100%)

Cost of Intervention

Timing of 
Intervention

Low Welfare
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3.4.3 Immediate Intervention is More Likely When a Core Node Defaults Even
at the Expense of Higher Cost

Although the calibration assigns equal welfare to core and periphery nodes, I observe
that intervention is more immediate when a core node defaults than when a periphery node
defaults. Table 3 shows that, under high welfare calibration, the default of three, two and
one core nodes corresponds to an immediate intervention likelihood of 5.7%, 35.4% and
47.4%, respectively. This compares to only 1%, 12.4% and 42.8% when three, two and one
periphery nodes default, respectively. Similar finding holds under low welfare calibration.
This emphasizes the systemic importance of core nodes to the network topology and is
consistent with the ‘too-interconnected-to-fail’ effect.

Table 4: Systemic Importance and Likelihood of Immediate Intervention
Number of States (in % of states with immediate intervention)

3 2 1 0

3
0

 (0.0%)
6

 (0.0%)
168

 (0.9%)
906

 (4.8%)
1,080

 (5.7%)

2
9

 (0.0%)
261

 (1.4%)
2,187

 (11.6%)
4,233

 (22.4%)
6,690

 (35.4%)

1
63

 (0.3%)
1,107

 (5.8%)
4,652

 (24.6%)
3,144

 (16.6%)
8,966

 (47.4%)

0
117

 (0.6%)
974

 (5.1%)
1,098

 (5.8%)
0

 (0.0%)
189

 (1.0%)
2,348

 (12.4%)
8,105

 (42.8%)

High Welfare

# of Periphery Nodes in Default

 # of Core 
Nodes in 
Default 

3 2 1 0

3
0

 (0.0%)
6

 (0.0%)
168

 (0.9%)
844

 (4.6%)
1,018

 (5.6%)

2
9

 (0.0%)
261

 (1.4%)
2,179

 (11.9%)
3,746

 (20.5%)
6,195

 (33.9%)

1
63

 (0.3%)
1,107

 (6.1%)
4,418

 (24.2%)
3,106

 (17.0%)
8,694

 (47.6%)

0
117

 (0.6%)
950

 (5.2%)
1,289

 (7.1%)
0

 (0.0%)
189

 (1.0%)
2,324

 (12.7%)
8,054

 (44.1%)

# of Periphery Nodes in Default

 # of Core 
Nodes in 
Default 

Low Welfare

18



Table 4 illustrates how the cost of intervention influences the likelihood of immediate
intervention when core nodes default relative to when periphery nodes default. The likelihood
of immediate intervention under ‘high’ cost when two core nodes default is 0.8% relative
to 0.2% when two periphery nodes default. Similarly, under high welfare calibration, the
likelihood of immediate intervention under ‘medium’ cost when three and two core nodes
default is 4.2% and 19.6% relative to only 1% and 7.1% when three and two periphery nodes
default, respectively. The same result holds under low welfare calibration. This suggests that
more immediate intervention is optimal when two or more core nodes default even when it
comes at the expense of higher cost which further supports the ‘too-interconnected-to-fail’
effect. Notice, however, that this effect does not hold when only one core node defaults. The
likelihood of immediate intervention under ‘medium’ cost when only one periphery node
defaults is 17.4% and 16.9% relative to 13.9% and 13.3% when one core node defaults under
high and low welfare calibrations, respectively.

Table 5: Systemic Importance and Cost of Intervention
Number of States (in % of states with immediate intervention)

High Medium Low High Medium Low

3
92

(0.5%)
790

(4.2%)
198

(1.0%)
3

189
(1.0%)

2
144

(0.8%)
3,708

(19.6%)
2,838

(15.0%)
2

36
(0.2%)

1,338
(7.1%)

974
(5.1%)

1
2,634

(13.9%)
6,332

(33.5%)
1

120
(0.6%)

3,288
(17.4%)

4,697
(24.8%)

High Medium Low High Medium Low

3
36

(0.2%)
784

(4.3%)
198

(1.1%)
3

189
(1.0%)

2
137

(0.8%)
3,250

(17.8%)
2,808

(15.4%)
2

36
(0.2%)

1,338
(7.3%)

950
(5.2%)

1
2,427

(13.3%)
6,267

(34.3%)
1

113
(0.6%)

3,080
(16.9%)

4,861
(26.6%)

Cost of Intervention

Low Welfare

Cost of Intervention Cost of Intervention

# of Core 
Nodes in 
Default

# of 
Periphery 
Nodes in 
Default

High Welfare

Cost of Intervention

# of Core 
Nodes in 
Default

# of 
Periphery 
Nodes in 
Default
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Robustness: What if Core Nodes Contribute Less Welfare?
Table 5 shows the results under two welfare calibrations where core nodes contribute less

welfare relative to periphery nodes. Under a calibration of wc = 15 and wp = 20, we observe
that the same finding holds. Under a calibration of wc = 1 and wp = 200, however, the result
holds when two and three core nodes default but not when one core node defaults. Note that
this calibration assigns the lowest possible welfare contribution to core nodes. The default
of one core node may not trigger more immediate intervention due to the very low welfare
contribution. When more than one core node defaults, however, the systemic ramifications
on the network prevail and it becomes optimal to step in more immediately despite the low
welfare contribution.

Table 6: Robustness: Systemic Importance and Likelihood of Immediate Intervention
Number of States (in % of states with immediate intervention)

3 2 1 0

3
0

 (0.0%)
6

 (0.0%)
168

 (0.9%)
906

 (4.7%)
1,080

 (5.6%)

2
9

 (0.0%)
261

 (1.3%)
2,187

 (11.3%)
4,229

 (21.9%)
6,686

 (34.6%)

1
63

 (0.3%)
1,107

 (5.7%)
4,653

 (24.1%)
3,133

 (16.2%)
8,956

 (46.3%)

0
117

 (0.6%)
975

 (5.0%)
1,526

 (7.9%)
0

 (0.0%)
189

 (1.0%)
2,349

 (12.1%)
8,534

 (44.1%)

Welfare: C=15, P=20

# of Periphery Nodes in Default

 # of Core 
Nodes in 
Default 

3 2 1 0

3
0

 (0.0%)
6

 (0.0%)
168

 (1.2%)
173

 (1.2%)
347

 (2.4%)

2
9

 (0.1%)
261

 (1.8%)
2,187

 (15.0%)
1,073

 (7.4%)
3,530

 (24.3%)

1
63

 (0.4%)
1,107

 (7.6%)
4,651

 (32.0%)
1,124

 (7.7%)
6,945

 (47.8%)

0
117

 (0.8%)
975

 (6.7%)
2,624

 (18.0%)
0

 (0.0%)
189

 (1.3%)
2,349

 (16.2%)
9,630

 (66.2%)

Welfare: C=1, P=200

# of Periphery Nodes in Default

 # of Core 
Nodes in 
Default 
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3.4.4 There is a Welfare Lower Bound Above Which Intervention is Optimal

Table 7 shows how optimal timing varies with welfare. We can observe that above some
threshold of welfare, intervention becomes optimal in all cascade states. When w = 0,
intervention is suboptimal in all cascade states. When w = 1, intervention is suboptimal
in 16, 131 (70.3%) of all cascade states. This drops to only 4.7% of all cascade states when
w = 2 and to 0% thereafter. When w ≥ 2, all cascade states warrant intervention yet at
varying points in time. This suggests that the welfare lower bound in this example is w = 2.

Table 7: Welfare and Optimal Intervention
Number of States (in % of all cascade states)

w=0 w=1 w=2 w=3 w=20

Immediate
6,712

(29.3%)
18,263
(79.6%)

18,835
(82.1%)

18,925
(82.5%)

With Delay
104

(0.5%)
3,596

(15.7%)
4,112

(17.9%)
4,022

(17.5%)

No Intervention
22,947

(100.0%)
16,131
(70.3%)

1,088
(4.7%)

Intervention 
Decision

Welfare

4 Conclusion

When is it optimal to bailout the financial system during a systemic crisis? This paper
builds a model to study optimal timing for a systemic bailout in any financial network
setting. The regulator decides the optimal period for a systemic bailout. There are two
trade-off forces that influence optimal timing for intervention. The first trade-off is the
maturity of liabilities against the resilience of nodes which captures how quickly distress can
propagate through the financial system (i.e., the speed of financial contagion). The second
trade-off is the welfare benefit against the shortfall cost of a systemic bailout.

Applying the model to a Core-Periphery network setting yields new insights into optimal
timing for intervention. I show that the speed of financial contagion has critical bearing on
the immediacy of intervention as it can identify the point beyond which immediate interven-
tion becomes optimal. Moreover, I find that earlier intervention is optimal in states where
core nodes default relative to states where periphery nodes default even when it is more
expensive. This finding is robust to a calibration where core nodes contribute less welfare to
the financial system and is consistent with the ‘too-interconnected-to-fail’ effect.

21



Policy intervention during a systemic crisis should incorporate optimal timing to be ef-
fective. Immediate intervention may not be appropriately designed due to the uncertainty
surrounding the nature of the crisis which may trigger panic. Late intervention, on the other
hand, will incur substantial economic costs and ultimately prove ineffective in containing
financial contagion. The model illustrates the trade-off forces that influence optimal timing
for intervention. Findings introduce a sense of urgency in resolving problems faced by sys-
temically important nodes. They, further, validate the current macroprudential regulation
approach which calls for greater scrutiny over the most interconnected players.

There are several possible extensions to the model. One extension would be to allow the
set of possible linkages to change over the horizon of the model. This would provide a more
accurate representation of reality where banks attempt to limit their exposure to a shock
during a cascade by changing or diversifying their counterparties period-to-period. Other
extensions may include allowing for targeted bailouts where the regulator can optimally
choose which nodes to bailout in any given period and introducing a dynamic payment
clearing mechanism.

22



References

Acemoglu, D., Ozdaglar, A., and Tahbaz-Salehi, A. (2015a). Systemic risk and stability in
financial networks. American Economic Review, 105(2):564–608.

Acemoglu, D., Ozdaglar, A. E., and Tahbaz-Salehi, A. (2015b). Systemic risk in endogenous
financial networks. SSRN Electronic Journal.

Allen, F. and Gale, D. (2000). Financial contagion. Journal of Political Economy, 108(1):1–
33.

Cordella, T. and Yeyati, E. L. (2003). Bank bailouts: moral hazard vs. value effect. Journal
of Financial Intermediation, 12(4):300–330.

Elliott, M., Golub, B., and Jackson, M. O. (2014). Financial networks and contagion.
American Economic Review, 104(10):3115–3153.

Erol, S. and Vohra, R. (2014). Network formation and systemic risk. SSRN Electronic
Journal.

Freixas, X. and Rochet, J.-C. (2013). Taming systemically important financial institutions.
Journal of Money, Credit and Banking, 45:37–58.

Gorton, G. and Huang, L. (2004). Liquidity, efficiency, and bank bailouts. American Eco-
nomic Review, 94(3):455–483.

Laeven, L. and Valencia, F. (2008). Systemic banking crises: A new database. IMF Working
Papers, 08(224):1.

Laeven, L. and Valencia, F. (2010). Resolution of banking crises: The good, the bad, and
the ugly. IMF Working Papers, 10(146):1.

Laeven, L. and Valencia, F. (2012). Systemic banking crises database: An update. IMF
Working Papers, 12(163):33.

Laeven, L. and Valencia, F. (2013). Systemic banking crises database. IMF Economic
Review, 61(2):225–270.

23


	Introduction
	Literature Review

	Model: Optimal Timing of Systemic Bailouts
	Financial Network with n Banks
	Regulator
	Optimal Stopping Problem

	Optimal Timing for a Systemic Bailout in a Core-Periphery Network
	Environment
	Problem State Space and Transition Map (kt,et)
	Calibration
	Findings
	There is a Threshold of Speed Beyond Which Intervention is Optimal
	The Higher the Cost, the Less Immediate and Less Likely the Intervention
	Immediate Intervention is More Likely When a Core Node Defaults Even at the Expense of Higher Cost
	There is a Welfare Lower Bound Above Which Intervention is Optimal


	Conclusion

