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Abstract

New Keynesian models with sticky prices built on the Dixit-Stiglitz framework must have

countercyclical mark-ups conditional on monetary shocks, which is inconsistent with empirical

evidence based on labor share data. We pose a directed search style shopping friction in goods

market to model firms’ price setting, on top of Dixit-Stiglitz. Our theory allows for procyclical

mark-ups conditional on monetary shocks, without sacrificing the performance of the model

along other dimensions. We prove this in a static model, and test it in an estimated medium

scale DSGE model. Unlike the literature that criticizes the use of inverse labor shares to get

procyclical mark-ups, we provide a complementary view that New Keynesian models can in

fact be compatible with procyclical mark-ups conditional on monetary shocks, when there is

goods market shopping friction. These results come from the assumption that firms compete

via prices for higher production capacity realizations which is bounded above by 100%.
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1 Introduction

Markup cyclicality in New Keynesian models is puzzling. In the model, higher aggregate demand1

induces higher real wages, lower price markups, and higher inflation2. In the data, markup cyclicality

is likely to move in the opposite direction, according to a vast literature including Nekarda and

Ramey (2019); Stroebel and Vavra (2019); Anderson, Rebelo, and Wong (2018); Cantore, Ferroni,

and León-Ledesma (2019). The inconsistency between model and data on this mark-up channel

brings about a challenge to the micro-foundation of New Keynesian models.

We propose a theory of procyclical mark-ups conditional on monetary shocks via directed search

in goods market (shopping friction) to address this puzzle. When nested in an estimated medium

scale DSGE model, our shopping friction improves the quantitative performance on mark-ups, with

all other moments matched with data at least equally well.

Our theory addresses two issues in the mark-up puzzle. First, how can firms pay more to each

unit of labor (real waged) but still get higher profit margins (mark-ups)? In our theory, goods need

to be found before sold. Higher aggregate demand induces more shopping effort, and hence higher

matching probability that looks like higher productivity. This breaks the link between the cost of

inputs and profit margins. Second, why do firms still set higher prices when they have lower cost

pushing pressure? In our theory, firms care also about how much of their goods can be sold, which

is less sensitive to prices when matching probability gets closer to 100%. This generates variable

desired mark-ups naturally from matching frictions.

There are a few alternative ways to address this puzzle in literature. Alternative measures may

suggest countercyclical mark-ups (Bils, Klenow, and Malin, 2018). Labor market search may break

the link between inversed labor share and mark-ups (Cantore, Ferroni, and León-Ledesma, 2019),

Composition effects may induce procyclical mark-ups in aggregate (Anderson, Rebelo, and Wong,

2018). Countercyclical shopping efforts on price comparison may lead to procyclical mark-ups for

each firm (Kaplan and Menzio, 2016). However, none of them completely address the two issues.

1It can be induced by either monetary or fiscal shocks.
2There are three commonly asked questions: (1) what if there is no price rigidity, (2) what if there is real rigidity

via Kimball aggregator, (3) what if capacity utilization is variable. If there is only nominal wage rigidity, then price
mark-ups is constant, but higher inflation is still driven by the pressure of lower price mark-ups. Kimball aggregator
is observationally equivalent to additional price rigidity under first order perturbation. Capacity utilization chosen by
firms looks like increasing returns to scale, and will induce countercyclical inflation when mark-ups are procyclical.
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2 Puzzling Mark-ups

This section starts with a simple model showing under what assumptions can mark-up be measured

by the inverse of labor share. Then, a standard medium scale New Keynesian model satisfying these

assumptions and estimated by matching a structural VAR is used to demonstrate why the response

of labor share to a monetary shock is puzzling. We conclude by a discussion on the current debate

in literature for this puzzle, and briefly explain our contribution to this debate.

2.1 How are Markups Measured?

Mark-up, which is defined as the ratio between price and marginal cost of production subtracted

by 1, has no direct measures due to the .

the profit margin over marginal cost, neither of which can be directly measured. In literature,

it is usually indirectly measured, when some additional assumptions are imposed. Here introduces

the basic one that is widely used.

2.2 What is Wrong with Theory?

2.3 Why Was There No Quick Answer?

2.4 A Simple Model of Mark-ups

Consider a firm that chooses the vector of inputs x = {xi}ni to produce a given output y . The

production function is F (x), while the nominal cost function is G (x). The firm minimizes the cost

of producing y , and solves

maxx{−G (x)}, s.t. F (x) ≥ y .

Make Assumption 1 to further characterize firms’ optimal decision.

Assumption 1. Functions F , G : Rn
≥0 → R≥0 are twice continuously differentiable and strictly

increasing. F is and weakly concave, while G is weakly convex. G is additively separable across all

its inputs, and satisfies G (x) =
∑n

i=1 G i(xi).
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Assumption 1 allows us to take first order conditions for optimality. The additive separability

of the cost function captures the situation in which inputs are purchased from the factor markets

separately without a bundle. Note that firms do not have to be price takers in those markets. Given

Assumption 1, we can use Λ to denote the Lagrange multiplier, and obtain a first order condition

for ∀i ∈ {1, 2, · · · , n}:

0 = −Gxi (x) + ΛFxi (x).

Here Λ can be interpreted as the marginal cost of production that is equalized across all inputs.

Denote εFi ≡
xiFxi

F
as the elasticity of production function F with respect to the i ’th input xi ,

and εGi ≡ xiG
i ′

G i as the elasticity of input i ’s separate cost function G i . The first order conditions

of the firm yields Proposition 1.

Proposition 1. Denote p as the price of goods sold in the goods market, then mark-up τ that is

defined as profit margin over marginal cost must satisfy

τ =
εFi
εGi

(input i ′s share)−1 − 1 =
εFi
εGi

F/xi
G i/(pxi)

− 1.

Proof. See the appendix.

Proposition 1 provides two insights for mark-up cyclicality, when εFi and εGi are both constant.

First, mark-up can be measured by the cyclicality of inverse input shares in data. Second, mark-up

is driven by the ratio between input i’s productivity and its real average unit cost, and a model that

has procyclical endogenous productivity or countercyclical real average cost of inputs may have the

potential to generate procyclical mark-ups.3 In most New Keynesian models, production function

is Cobb-Douglas, and cost function is linear, then we have Example 1.

Example 1. F (x) = capitalαhours1−α with α ∈ [0, 1], G labor = wage × hours, and then

1 + τ = (1− α)(labor share)−1 = (1− α)(labor productivity)/(real wage).

3Note that constant εGi still allows for convex cost of inputs, so that average cost does not have to be equal to
marginal cost, and the firm still does not have to be a price taker.
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2.5 Inconsistency between Model and Data

Example 1 implies that the inverse of labor share can be used as a measure of mark-up under the

assumptions that we commonly use. In Figure 1, we compare the performance of DSGE to SVAR

following Christiano, Eichenbaum, and Trabandt (2016)4, highlighting the response of labor share.

For further reference, we also provide the responses of real wage, inflation, and federal funds rate.
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Figure 1: Anomalies in Labor Share Cyclicality

As is in Figure 1, the model implied labor share cyclicality is opposite to data5. The right-top

panel indicates that the decline in labor share cannot be explained by real wage, because it moves

in the opposite direction. The left-bottom panel indicates that the decline in labor share does not

induce lower inflation as in standard New Keynesian models. The main challenge here is to fix the

labor share response without sacrificing the fits of real wage and inflation.

4We take the “Calvo Sticky Wage” version of their model, and make some non-essential changes for tractability.
For consistency, we exclude all variables regarding labor search frictions in their SVAR. They need these variables
because most versions of their model has them. Both the SVAR and DSGE are estimated in the same way as theirs.
More technical details can be found in later sections.

5More robust empirical work can be found in Cantore, Ferroni, and León-Ledesma (2019), which also supports
our finds.
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2.6 Potential Solutions to the Puzzle

Measurement issues A long-standing view in the literature is that the inverse of labor share is

not a proper measure of mark-up for cyclicality related issues, because the average cost of labor

may be very different from the marginal one. Still, there is no consensus that procyclical mark-ups

should be rejected, especially when conditional on monetary shocks. For instance, Rotemberg and

Woodford (1999) argues that overhead labor and overtime premium would make the marginal cost

of labor more procyclical than the average, while Nekarda and Ramey (2019) still finds procyclical

mark-up both unconditionally and conditional on monetary shocks when examining related issues

in more details. A more recent example is Kudlyak (2014), which provides evidence from survey

data to show that wages for newly hired workers are much more cyclical than those who do not

change jobs. Basu and House (2016) confirms their findings, but also shows that a New Keynesian

model that features such heterogeneity would require very high level of price rigidity to keep the

response of inflation to monetary shocks comparable to data. Bils, Klenow, and Malin (2018) finds

procyclical intermediate input shares from industry level data, which indicates that price mark-ups

might be countercyclical. On the contrary, Anderson, Rebelo, and Wong (2018) and Stroebel and

Vavra (2019) use disaggregate level data from the retail sector in which the cost of goods sold

dominates other costs, and find that higher demand does cause higher mark-up, due to the change

of households’ shopping behavior.

Modeling issues Despite the unsettled debate, we provide a complementary view that procyclical

mark-ups conditional on monetary shocks are actually compatible with New Keynesian models at

least in the aggregate level. In Example 1, mark-ups are procyclical if labor productivities move

up (down) more than real wages during the boomings (recessions). Accordingly, the model must

have features such as endogenous productivity or increasing returns to scale. In addition, in order

to have higher (lower) inflation in the booms (recessions) when mark-ups are higher (lower), the

model must feature some endogenous desired mark-up (mark-up under flexible prices). Directed

search in goods market is such a friction that can naturally achieve both of these goals. Compared

with other papers that try to rationalize procyclical mark-up such at Anderson, Rebelo, and Wong

(2018), our model fully explores the macroeconomic implications.
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3 A Static Model

The essence of our theory can be captured by a static model with directed search and price rigidity

on top of the Dixit-Stiglitz model. We use the model to demonstrate why standard New Keynesian

models with price rigidity have countercyclical mark-ups conditional on monetary shocks, and why

directed search can help solve the problem. All results will be analytically proved.

3.1 Price Rigidity under Directed Search

Goods Market There is a measure one of varieties of goods j ∈ [0, 1], and each one is produced

by a monopoly that posts a price and has to deliver the amount of goods demanded at that price.

Each one of these firms or varieties has a measure one continuum of locations, each with its own

pre-installed labor nj (and capital later on) and produces yj . yj fully depreciates if not sold.

There is a measure one of identical households. They value both the number of varieties and

the quantity consumed of each variety. To obtain the varieties, households must search for them,

incurring a shopping disutility while doing so. Households that find a variety are randomly allocated

to only one of its locations. Each location can be filled with at most one household.

A directed search protocol determines the coordination of firms and households via submarkets

indexed by price and tightness {p, q}. Each household can send shoppers to multiple submarkets

while each firm can only go to one of them. Price change by a firm is implemented via switching

to a different submarket that has a different price and market tightness. When a firm goes to one

submarket, it moves all locations to it.

In submarket {p, q} with total shopping effect D(p, q) and measure of firms J(p, q)6, the total

number of matches is given by a CRS matching function ψ(D(p, q), J(p, q)). The corresponding

market tightness q is defined as q ≡ D(p,q)
J(p,q)

. The number of matches per unit of shopping effort is

ψh(q) = ψ(D(p,q),J(p,q))
D(p,q)

and that per firm is ψf (q) = ψ(D(p,q),J(p,q))
J(p,q)

. ψf (q) can also be interpreted as

the matching probability of a firm. By definition, these matching functions satisfy ψf (q) = qψh(q).

The matching function satisfies Assumption 2.

6These measure J of firms are producing different varieties. They are pooled into one single submarket because
households do not care about which variety to choose, but only how many varieties they find.

7



Assumption 2. ψf : R>0 → (0, 1) is differentiable, satisfies qψf ′(q)
ψf (q)

∈ (0, 1) for ∀q ∈ R>0, and

limq→0 ψ
f (q) = 0, and limq→+∞ ψ

f (q) = 1.

Assumption 2 is quite natural. qψf ′(q)
ψf (q)

∈ (0, 1) captures the congestion effect, under which

more shopping effort in a submarket increases the total number of matches but reduces the average

matches per unit of shopping effort. limq→+∞ ψ
f (q) = 1 ensures that the matching probability is

bounded above by 1. Note that this limit also rules out the Cobb-Douglas functional form for ψ,

and implies that limq→+∞
qψf ′(q)
ψf (q)

= 0. Only with this limit, can we have the standard Dixit-Stiglitz

model nested as a special case (more details later on).

Households’ problem Given the nominal expenditure e and the set of active submarkets Φ, the

representative household chooses the purchase of each variety c(p, q) and its total shopping effort

d(p, q) in each submarket {p, q}. Their decision rules {c(e, Φ, p, q), d(e, Φ, p, q)} solve

V (e, Φ) = max
{c(p,q),d(p,q)}{p,q}∈Φ

u(cA, dA),

s.t. e ≥
∫

Φ

d(p, q)ψh(q)p c(p, q)dpdq,

cA ≡
(∫

Φ

d(p, q)ψh(q)c(p, q)
ε−1
ε dpdq

) ε
ε−1

,

dA ≡
∫

Φ

d(p, q)dpdq,

where u is a twice differentiable, strictly increasing and strictly concave utility function, and ε > 1.

Consider a situation in which a firm chooses which submarket {p, q} to enter, given all other

firms in submarket {p, q}. If a submarket with higher price is potentially active, it must have lower

market tightness so that households would be willing to enter, and also lower level of demand due

to the substitution between varieties. The corresponding market tightness and demand are denoted

as qh(e, {p, q}, p) and c(e, {p, q}, p, q) respectively. Firms will take these functions as given when

choosing which submarket to enter. Unlike the directed search models in Moen (1997), we do not

explicitly have free entry to pin down the indifference condition for households when deriving these

two conditions, but instead rely on the first order conditions of households’ problem directly.
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Lemma 1. c(e, {p, q}, p, q) and qh(e, {p, q}, p) satisfy

p cp(e, {p, q}, p, q)

c(e, {p, q}, p, q)
= −ε,

q cq(e, {p, q}, p, q)

c(e, {p, q}, p, q)
= 0,

p qh
p(e, {p, q}, p, q)

c(e, {p, q}, p, q)
= − ε− 1

1− E(q)
,

where E(q) ≡ qψf ′(q)
ψf (q)

denotes the elasticity of matching function ψf (·).

Proof. See Appendix.

Lemma 1 characterizes the conditions that the firm needs to take into account when choosing

which submarket to go. These elasticities will be sufficient for the firm to consider, and their values

do not depend on the functional form of u(·, ·). The price elasticity of demand is the same as in

Dixit-Stiglitz, while the tightness elasticity of demand is zero. The price elasticity of tightness is a

function of E(q), which has the potential to generate endogenous desired mark-ups. For short, we

denote ch(e, {p, q}, p) ≡ c(e, {p, q}, p, q) for later use.

Lemma 1 helps characterize firms’ pricing decisions later on, but is insufficient for households’

decisions, unless we impose a specific functional form on the utility function u(·, ·). The functional

form that we use is GHH, as in Assumption 3.

Assumption 3. The utility function u(·, ·) has a GHH functional form

u(cA, dA) =
1

1− ω

(
cA − ζ (dA)1+ν

1 + ν

)1−ω

, with ν ≥ 0 and ω > 0.

Under GHH utility, we can obtain the closed form solutions of shopping effort and consumption

demand decisions for the firms choosing to stay in submarket {p, q} when all other firms do so.

Lemma 2. Under Assumption 3,

d(e, {p, q}, p, q) =

[(
ζ−1

ε− 1

e

p

)ε−1

ψh(q)

] 1
(1+ν)(ε−1)−1

,

c(e, {p, q}, p, q) =
1

d(e, {p, q}, p, q)ψh(q)

e

p
.

Proof. See Appendix.

9



Firms’ problem Firm j produces variety j using linear technology yj = nj in which labor nj has

unlimited supply at a fixed nominal wage rate W . Now suppose that all firms previously had price

p−. A firm sets price p to produce y = ch(e, {p, q}, p) in ψf
[
qh(e, {p, q}, p)

]
of its locations, at

the expense of price adjustment cost χ (p/p−) e. Function χ(·) is differentiable, strictly increasing

and strictly convex in R>0. The firm’s decision rule p(e, W , {p, q}, p−) solves

Ω(e, W , {p, q}, p−) = max
p

(
pψf

[
qh(e, {p, q}, p)

]
−W

)
ch(e, {p, q}, p)− χ

(
p

p−

)
e.

Note that the firm choose submarket {p, q} to enter only has the degree of freedom to choose p,

because for each p, there is only one market tightness q = qh(e, {p, q}, p) such that the existence

of submarket {p, q} is justified. The price adjustment cost is normalized by households’ nominal

expenditure for algebra simplicity. Taking first order condition w.r.t. p and applying Lemma 1 yield

Lemma 3, this it further implies Proposition 2.

Lemma 3. Firms’ pricing decision rule p(e, W , {p, q}, p−) solves

0 = ε

(
W

p
− ε− 1

ε

ψf (q)

1− E(q)

)
ch(e, {p, q}, p)− χ′

(
p

p−

)
e

p−
.

Proof. See Appendix.

Proposition 2. The mark-up under flexible prices that is consistent with p(e, W , {p, q}, p−) is

ε

ε− 1
[1− E(q)]− 1.

Proof. See Appendix.

Proposition 2 indicates time varying desired mark-up. We expect E(q) to be decreasing in q̄,

as it converges to 0 from above. Then, the desired mark-up will be increasing in q. The economic

implication is that when the market tightness is higher, the goods market is more congested, and it

becomes more difficult to increase matching probability further by cutting prices. In another word,

price competition along the dimension of directed search is less fierce when the market tightness is

higher. This result also indicates that Cobb-Douglas matching function is no long innocuous under

directed search when used to study mark-up related issues.
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Directed search equilibrium All other firms in the same submarket {p, q} that we have taken

as given should be consistent with firms’ pricing decisions, and households’ shopping decisions. We

focus on symmetric equilibria, define it in Definition 1, and characterize it in Proposition 3 after

combing Definition 1 with Lemma 2 and Lemma 3.

Definition 1. The directed search equilibrium is defined as a pair of {p, q} satisfying the following

consistency conditions:

d(e, {p, q}, p, q) = q, p(e, W , {p, q}, p−) = p.

Proposition 3. In the directed search equilibrium, {p, q} must satisfy the following two conditions:

0 =
q1+ν

ψf (q)
1
ε−1

− ζ−1

ε− 1

e

p
,

0 = ε

(
W

pψf (q)
− ε− 1

ε

1

1− E(q)

)
− χ′

(
p

p−

)
p

p−
.

Proof. See Appendix.

These two equations characterize the directed search equilibrium. The first equation captures

households’ optimal shopping decisions, while the second equation captures firms’ optimal pricing

decisions. The consistency conditions in Definition 1 have been imposed on both of these equations.

We denote the solution for {p, q} as {p(e, W , p−|ζ), q(e, W , p−|ζ)}. Combined with the definition

of mark-up, we have

τ(e, W , p−|ζ) =
p(e, W , p−|ζ)ψf [q(e, W , p−|ζ)]

W
− 1,

and then Proposition 3 implies Corollary 1. Corollary 1 is a mirror of Proposition 3.

Corollary 1. {q(e, W , p−|ζ), τ(e, W , p−|ζ)} solve

0 =
q1+ν

ψf (q)
ε
ε−1

− ζ−1

ε− 1

e

(1 + τ)W
,

0 = ε

(
1

1 + τ
− ε− 1

ε

1

1− E(q)

)
− χ′

(
(1 + τ)W

p−ψf (q)

)
(1 + τ)W

p−ψf (q)
.
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3.2 What Makes the Mark-up Procyclical?

No search The case without search as in standard New Keynesian models is nested in our model.

When the utility cost of shopping goes to 0, households will make infinite shopping effort, allowing

firms to sell all of their products for sure. Combining Assumption 2 with Proposition 3 and Corollary

1 yields Corollary 2.

Corollary 2. q(e, W , p−|0) = +∞ and {p(e, W , p−|0), τ(e, W , p−|0)} must satisfy

0 = ε

(
W

p
− ε− 1

ε

)
− χ′

(
p

p−

)
p

p−
,

0 = ε

(
1

1 + τ
− ε− 1

ε

)
− χ′

(
(1 + τ)W

p−

)
(1 + τ)W

p−
.

Proof. See Appendix.

Assumption 4. χ′(p)p is strictly increasing in p, and satisfies χ′(1) = χ(1) = 0.

As monetary expansions lead to higher nominal expenditure and nominal wage, Corollary 2 and

Assumption 4 allows us to unambiguously show that mark-up is lower during monetary expansions

because nominal expenditure does not affect either price or mark-up, while nominal wage partially

transmits to price, leading to countercyclical mark-ups. As a result, we have Proposition 4.

Proposition 4. In the equilibrium with no search, {p, τ} must satisfy the following conditions:

pe(e, W , p−|0) = 0, pW (e, W , p−|0) > 0;

τ e(e, W , p−|0) = 0, τW (e, W , p−|0) < 0.

Proof. See Appendix.

Undirected search Undirected search is insufficient to solve the problem. Suppose firms have to

commit to a price ex ante, then households’ problem reduces to the case in which Φ = {p, q}, and

firms no long take into account qh(e, {p, q}, p) when setting prices. This is equivalent to impose

E(q) = 0 in Corollary 1. As a result, τ and p must move in opposite directions, which implies that

we must have either countercyclical mark-up or countercyclical inflation under undirected search.
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Directed search Comparing Proposition 3 and Corollary 1 with Corollary 2, we find that directed

search introduces two additional terms ψf (q) and E(q). ψf (q) captures the effect of endogenous

productivity, while E(q) captures that of endogenous desired mark-up. ψf (q) breaks the positive

connection between real wage and labor share, and E(q) breaks the positive connection between

labor share and inflation. For further characterization, we need the following assumptions.

Assumption 5. q1+ν

ψf (q)
ε
ε−1

is strictly increasing in q.

Assumption 6. E(q) is weakly decreasing in q.

Assumption 7. The matching function ψf (·) has functional form

ψf (q) =
(
1 + q−γ

)− 1
γ , with γ ≥ 1.

Proposition 5. Under Assumption 2, 3, 4, 5, 6, Proposition 3 and Corollary 1 yield

qe(e, W , p−|ζ) > 0, qW (e, W , p−|ζ) < 0;

τ e(e, W , p−|ζ) > 0, τW (e, W , p−|ζ) < 0;

pe(e, W , p−|ζ) ?? 0, pW (e, W , p−|ζ) > 0.

Assumption 7 is a sufficient condition for Assumption 2, 6. Under Assumption 3, 4, 5, 7, and when

p− is the directed search equilibrium price for (e, W |ζ) under flexible prices,

pe(e, W , p−|ζ) ≥ 0,
∂

∂e

[
W

p(e, W , p−|ζ)

]
≤ 0,

∂

∂W

[
W

p(e, W , p−|ζ)

]
≥ 0.

Proof. See Appendix.

Proposition 5 helps us understand the cyclicality of mark-up, real wage, and inflation conditional

on monetary shocks, in partial equilibrium. In general equilibrium, monetary expansion will increase

both nominal expenditure e and nominal wage rate W . The impact from W can induce procyclical

real wage rates, yet it can not be too strong compared with the impact of e, such that mark-ups

can also be procyclical. Whether it is plausible is left for the quantitative work in an estimated New

Keynesian model following Christiano, Eichenbaum, and Trabandt (2016) in the next section.
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4 Medium Scale DSGE

Our quantitative work is based on the “Calvo Sticky Wage” model in Christiano, Eichenbaum, and

Trabandt (2016) with a few variations. Like them, we also model consumption habit, investment

adjustment cost, capital utilization, Calvo wage, and Taylor Rule. Unlike them, our baseline model

uses Rotemberg pricing instead of Calvo pricing, and removes the government sector, such that the

directed search friction can be introduced in a more tractable way. We embed the directed search

style shopping friction as is shown in the previous section into the baseline model. It preserves the

analytic tractability of Euler equations and the Rotemberg-style New Keynesian Phillips Curve.

4.1 The Model Economy

Time is discrete: t = 0, 1, 2, 3, · · · . The economy is populated by a measure one of representative

labor contractors, infinitely lived households indexed by i ∈ [0, 1], and infinitely lived firms indexed

by j ∈ [0, 1]. Each firm j is a monopoly in variety j . The shopping friction in goods market between

households and firms is the same as in the static model.

Contractors The representative contractor produces the homogeneous labor input by combining

differentiated labor inputs, `i ,t , i ∈ [0, 1], using the technology

Lt =

(∫ 1

0

`
εw−1
εw

i ,t di

) εw
εw−1

, εw > 1.

Labor contractors are perfectly competitive and take as given the nominal wage rate Wt of Lt and

wage Wi ,t of the ith labor type as given. Profit maximization on the part of contractors implies

`i ,t =

(
Wi ,t

Wt

)−εw
Lt . (1)

Households Each household i ∈ [0, 1] is the monopoly supplier of `i ,t and chooses Wi ,t subject

to (1) and Calvo wage frictions. That is, the household optimizes the wage Wi ,t , with probability

1− θw . With probability θw , the wage rate is given by

Wi ,t = Wi ,t−1.
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With discount factor β ∈ [0, 1), each household i ∈ [0, 1] has preference on consumption aggregator

cA
i ,t and shopping effort aggregator dA

i ,t defined as in the static model, as well as labor supply `i ,t :

E0

+∞∑
t=0

βt
{

u(cA
i ,t , dA

i ,t , cA
i ,t−1, dA

i ,t−1)− v(`i ,t)
}

,

with the following functional forms:

u(cA
i ,t , dA

i ,t , cA
i ,t−1, dA

i ,t−1) =
1

1− ω

[(
cA
i ,t − zy

t ζ

(
dA
i ,t

)1+ν

1 + ν

)
− h

(
cA
i ,t−1 − zy

t−1ζ

(
dA
i ,t−1

)1+ν

1 + ν

)]1−ω

,

v(`i ,t) = (zy
t )

1−ω
η
`1+ξ
i ,t

1 + ξ
.

Parameter h captures the degree of habit persistence, parameter ξ the inverse of Frisch elasticity

of labor supply, parameter η controls the size of working disutility, and variable zy
t is a composite

technology level that measures the trend of output level. Both the shopping disutility and working

disutility need to be normalized by this zy
t such that there exists a balanced growth path.

At time t, household i chooses the shopping effort aggregator dA
i ,t , with total shopping effort

di ,t(p, q), and the purchase of each variety yi ,t(p, q) in each active submarket {p, q} ∈ Φt to make

goods aggregator yA
i ,t , using the technology

yA
i ,t =

(∫
Φt

di ,t(p, q)ψh(q)yi ,t(p, q)
ε−1
ε dpdq

) ε
ε−1

, ε > 1,

dA
i ,t =

∫
Φt

di ,t(p, q)dpdq,

and nominal expenditure

ei ,t =

∫
Φt

di ,t(p, q)ψh(q)p yi ,t(p, q)dpdq.

yA
i ,t is used to make either consumption aggregator cA

i ,t or investment related goods via

iAi ,t + a(ui ,t)ki ,t−1 = z i
t(yA

i ,t − cA
i ,t).
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Here ki ,t denotes the capital holding, ui ,t denotes the capability utilization of capital, a(·) denotes

an differentiable, increasing and convex function of maintenance cost incurred by ui ,t , iAi ,t denotes

the investment aggregator for new capital, and z i
t denotes level of investment specific technology.

The inverse of z i
t can be interpreted as the relative price of investment goods over consumption

goods. Capital ki ,t is accumulated according to the following law of motion

ki ,t = (1− δk)ki ,t−1 +

[
1− S

(
iAi ,t

iAi ,t−1

)]
iAi ,t ,

where S(·) is an differentiable, increasing and convex adjustment cost function. Note that S(·) in

our model prevents households from slightly increasing shopping effort to obtain a wedge between

the price of variety goods and the rent value of capital made from these variety goods.

Household i ’s budget constraint is

ei ,t ≤ Wi ,t`i ,t + Ai ,t + Rk
t uk

i ,tki ,t−1 + Rt−1bi ,t−1 − bi ,t + Tt .

Here Ai ,t denotes a state contingent insurance that makes sure that household i ’s wage income is

Wi ,t`i ,t + Ai ,t = WtL
s
t when optimal decisions are made, Rk

t denotes the rental rate of capital, Rt

denote the nominal interest rate from period t to t + 1, bi ,t denotes the holding of risk-free bond

carried from period t to t + 1, and Tt denotes the net lump sum transfer of profit from firms.

Due to the insurance on wage incomes, households’ optimal decisions are homogeneous except

for labor supply {`i ,t}. Hence, we can still derive the counterpart of Lemma 1 for variety demand

yh
t ({pt , qt}, p) and market tightness qh

t ({pt , qt}, p) in the potentially active submarket with price

p, when all other firms enter a submarket {pt , qt}. Since ei ,t is endogenous, we are no longer able

to fully characterize {yh
t ({pt , qt}, p), qh

t ({pt , qt}, p)} in analytical forms. Yet, it does not prevents

us from characterizing firms’ optimal decisions because only the price elasticities of these functions,

which still have analytical expressions, are needed. We use {yh
t (p), qh

t (p)} for short notations.

Lemma 4. The two functions {yh
t (p), qh

t (p)} satisfy

p yh
t
′(p)

yh
t (p)

= −ε,
p qh

t
′(p)

qh
t (p)

= − ε− 1

1− E(q)
.

Proof. See Appendix.
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Firms Each firm j produces goods variety j , with production function

yt = kαt (zn
t `t)

1−α.

Since firms are symmetric, the subscript j is omitted. kt denotes the capital service rented by the

firm, ` denotes the homogeneous labor input hired by the firm, and zn
t denotes the level of neutral

technology. Firms take rental rate Rk
t and nominal wage rate Wt as given. Wage has to be paid

before production in each period t, so that firms need to borrow from households at gross nominal

interest rate Rt−1 for the cost of labor7. Under the optimal allocation of capital and labor inputs,

the marginal nominal cost of producing one unit of goods variety becomes

MCt =

(
Rk
t

α

)α(
Rt−1Wt/zn

t

1− α

)1−α

.

The corresponding demands for capital and labor inputs are

kt =
αMCt

Rk
t

yt , `t =
(1− α)MCt

Rt−1Wt/zn
t

yt .

The firm is selling goods variety it produces in two types of markets. The first market is subject

to the directed search style shopping friction, in which goods are sold only to households as in the

static model. The second one is centralized, in which goods are sold only to firms to alleviate price

adjustment costs. The prices for both markets are identical and equal to pt . The demand function

in the first market is denoted by yh
t (pt), and the demand function in the second market is denoted

by xh
t (pt), which has elasticity ε > 1. Use χt(·) to denote the function of price adjustment costs

at time t, and λet for the marginal value of one dollar for households. When all firms are owned

evenly by the households, the present value of a firm to be maximized becomes

E0

+∞∑
t=0

βtλet

{[
ptψ

f (qh
t (pt))−MCt

]
yh
t (pt) + (pt −MCt)xh

t (pt)− χt

(
pt

pt−1

)}
.

In equilibrium, this yields a New Keynesian Phillips Curve in which market tightness plays a role.

7Note that our timing of the loan is different from Christiano, Eichenbaum, and Trabandt (2016), in which firms
take within period loan at each period t, with gross nominal interest rate Rt . We change the timing to make it
logically consistent with the timing of monetary shocks that requires Rt to be unknown when firms hire labor input.
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Consistency and market clearing The consistency conditions for directed search are∫ 1

0

di ,t(pt , qt)di = qt ≡ Qt , pt = pt ≡ Pt .

Market clearing in rental and labor markets requires that

kt =

∫ 1

0

uk
i ,tki ,t−1di , `t = Lt .

Market clearing in variety goods markets requires that∫ 1

0

yi ,t(pt , qt)di = yh
t (pt) ≡ Y h

t , χt

(
pt

pt−1

)
= ptx

h
t (pt) ≡ PtX

h
t , Y h

t + X h
t = yt ≡ Yt .

Market clearing in loanable fund market requires that

Wt`t =

∫ 1

0

bi ,t−1di .

National accounts The insurance on wage income allows us to omit subscript i for the variables

(yA
i ,t , cA

i ,t , iAi ,t , uk
i ,t , ki ,t−1, bi ,t−1) = (Y A

t , CA
t , IAt , uk

t , Kt−1, Bt−1).

Real GDP, real aggregate consumption, and real aggregate investment are defined as

Yt ≡ ψf (Qt)Y h
t , Ct ≡

CA
t

Y A
t

Yt , It ≡
IAt + a(uk

t )Kt−1

Y A
t

Yt .

Gross inflation rate and real wage rate are defined as

Πt ≡
Pt

Pt−1
, wt ≡

Wt

Pt
.

Labor productivity and labor share are defined as

`pt ≡
Yt

Lt
, `st ≡

wtLt

Yt
.
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Aggregate shocks We adopt the following specification of monetary policy:

ln

(
Rt

RSS

)
= ρR ln

(
Rt−1

RSS

)
+ (1− ρR)

[
φπ ln

(
Πt

ΠSS

)
+ φy ln

(
Yt

Yt,SS

)]
+ σRεR,t+1

Here, ΠSS denotes the steady state gross inflation rate targeted by the monetary authority, RSS

denotes the corresponding steady state federal funds rate, Yt,SS denotes the value of Yt along the

non-stochastic steady state growth path, εR,t+1 denotes the monetary (federal funds rate) shock

that is consistent with short-run restriction, and σR denotes the standard deviation of it.

We assume that lnµn
t ≡ ln(zn

t /zn
t−1) is i.i.d. We also assume that lnµi

t ≡ ln(z i
t/z i

t−1) follows

a first order autoregressive process. The standard deviations of the innovations in both processes

are denoted by σn and σi , respectively. The autocorrelation of lnµi
t is denoted by ρi . The sources

of growth in our model are neutral and investment-specific technological progress. Let

zy
t ≡ (z i

t)
α

1−α zn
t , zk

t ≡ z i
tz

y
t , µy

t ≡ zy
t /zy

t−1, µk
t ≡ zk

t /zk
t−1.

The variables {Yt/zy
t , Ct/zy

t , wt/zy
t , It/zk

t , Kt/zk
t } are constants in the non-stochastic steady state.

The means of {µn
t ,µi

t ,µ
y
t ,µk

t } in the non-stochastic steady state are denoted by {µn
SS ,µi

SS ,µy
SS ,µk

SS}.

Functional forms We assume that the cost of adjusting investment takes the form:

S

(
IAt

IAt−1

)
≡ 1

2

{
exp

[√
S ′′
(

IAt
IAt−1

− µk
SS

)]
+ exp

[
−
√

S ′′
(

IAt
IAt−1

− µk
SS

)]}
− 1.

The object, S ′′, is a parameter to be estimated. It is easy to verify that S(µk
SS) = S ′(µk

SS) = 0.

The cost associated with setting capacity utilization is given by

a(uk
t ) =

σaσb
2

(uk
t )2 + σb(1− σa)uk

t + σb

(σa
2
− 1
)

,

where σa and σb are positive scalars. For a given value of σa, we select σb so that the steady state

value of uk
t is unity. The object, σa, is a parameter to be estimated. The matching function ψ(Q)

has the following functional form suggested by den Haan, Ramey, and Watson (2000)

ψ(D, J) = (D−γ + J−γ)−
1
γ .
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The price adjustment cost function χt(·) satisfies

χt

(
pt

pt−1

)
=
κ

2
PtYt

(
pt

pt−1
− ΠSS

)2

.

Here, the adjustment cost has been normalized by the equilibrium nominal value of goods varieties

produced by all firms PtYt . We use notation χ̃t = κ
2

(Πt − ΠSS)2 for short.

New Keynesian Phillips Curve The main mechanism of directed search can be captured by a

New Keynesian Phillips Curve in which market tightness plays a role as in Proposition 6.

Proposition 6. In the equilibrium,

(Πt − ΠSS)Πt =
ε− 1

κ

{
ε

ε− 1
mct −

[
χ̃t + (1− χ̃t)I1−γ

t

]}
+ βEt [Mt+1(Πt+1 − ΠSS)Πt+1] ,

in which mct denotes the real marginal cost, It denotes the measure of matched locations for each

firm, and Mt denotes the stochastic discount factor. These three objects are defined as

mct ≡
MCt

Pt
, It ≡ ψf (Qt), Mt ≡

λet
λet−1

Yt

Yt−1
.

Proof. See Appendix.

An interesting feature is that when γ = 1, such that ψf (Q) = Q
1+Q

, the New Keynesian Phillips

Curve under directed search is observationally equivalent to the standard one with no search, up

to first order approximation around the steady state. As a result, the model can have endogenous

productivity It as a wedge between labor share and real wage rate, without affecting inflation. The

mechanism is more clear before the functional form of match function is imposed.

I1−γ
t =

ψf (Qt)

1− E(Qt)
.

The numerator is the effect of endogenous productivity, while the denominator is that of endogenous

desired mark-up. When γ = 1, these two effects exactly cancel out, and the New Keynesian Phillips

Curve converges to the standard model with no search.
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4.2 Mapping Model to Data

Our model is mapped to data via Baynesian Impulse Reponse Matching estimator as in Christiano,

Eichenbaum, and Trabandt (2016). Our procedures to obtain the structural VAR, non-estimated

parameters, calibrated parameters, estimated parameters, and mpulse response matchingn results

are all compared to theirs. We use “CET” for short to denote their Calvo wage model, “no search”

for our counterpart, and “directed search” for our shopping model, in tables and figures.

Structural VAR The structural VAR we estimate covers the same period 1951Q1− 2008Q4 as

Christiano, Eichenbaum, and Trabandt (2016), with the same data source. For model consistency,

we choose a subset of 9 from their 14 variables. The variables we choose are ∆ ln(relative price of

investment), ∆ ln(real GDP/hours), ∆ ln(GDP deflator), ln(capacity utilization), ln(hours), ln(real

GDP/hours)− ln(real wage), ln(nominal C/nominal GDP), ln(nominal I/nominal GDP), Federal

Funds rate. The variables not chosen include unemployment rate, ln(vacancies), job separation

rate, job finding rate, ln(hours/labor force). We choose two lags, and linearly detrend all variables

before the regression.

Like Christiano, Eichenbaum, and Trabandt (2016), monetary shocks are identified via short-

run restrictions, while neutral and investment specific technology shocks are identified via long-run

restrictions. The impulse responses of these 9 stationary variables are transformed into those of 9

variables in levels. We get the impulse responses of labor productivity and labor share in addition.

These two variables are not targeted by model, but used for validating model performance.

Non-estimated parameters We choose a set of non-estimated parameters outside the model in

Table 1, following Christiano, Eichenbaum, and Trabandt (2016) exactly. There are two additional

parameters in our models with shopping friction ν and γ. 1 +ν captures the curvature of shopping

disutility, and γ captures the curvature of matching function. We are agnostic about the values of

these two parameters, and hence choose 1 + ν = γ = 1 for simplicity.

Calibrated parameters The second set of parameters are chosen to target on their corresponding

steady state levels as in Table 2. Note that we do not estimate ε because it is not identifiable

with κ under Rotemberg pricing. Under Calvo pricing, the identification of ε is at best weak. We

calibrate it to target on 5% steady state profit margin (τSS = 0.05). The profit margin in the real
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Table 1: Non-Estimated Parameters

Parameter Value Description
Common in All Models

δk 0.025 Depreciation rate of physical capital
θw 0.75 Quarterly frequency of not adjusting nominal wage
εw

1.2
1.2−1

Labor demand elasticity by contractors
ω 1.0 Inverse of intertemporal elasticity of substitution
400 lnµy

SS 1.7 Annual output per capita growth rate
400 lnµk

SS 2.9 Annual investment per capita growth rate
400(ΠSS − 1) 2.5 Annual net inflation rate
400(RSS/ΠSS − 1) 3.0 Annual net real interest rate

Only in the Model with Directed Search
1 + ν 1.0 Curvature of shopping disutility
γ 1.0 Curvature of matching function

world may be higher, but our model with directed search has difficulty in generating much higher

profit margins due to the extra competition incurred by directed search. The impact of E(Q) can

range from 0 to 1. We are agnostic about the size of this effect, and let the steady state matching

probability be 0.70 (ISS = 0.70). Correspondingly, E(QSS) = 1− IγSS = 0.30.

Table 2: Calibrated Parameters

Parameter CET no search directed search Target
β 0.9968 (error) 0.9925 0.9925 400(RSS/ΠSS − 1) = 3.0
σb 0.036 0.040 0.040 uk

SS = 1
η cannot find 0.842 2.118 LSS = 0.945
ε 1.24

1.24−1
= 5.17 - - estimated

ε - 21 3 τSS = 0.05, ISS = 0.70
ζ - 0.0000 0.1942 τSS = 0.05, ISS = 0.70

Estimated parameters Table 3 summarizes the results of Bayesian estimation. All parameters

but κ are taking the same prior distribution as in Christiano, Eichenbaum, and Trabandt (2016).

For κ, we adjust the prior accordingly such that its relatively size to the slop of Phillips Curve ε−1
κ

is unchanged. The estimated parameters in our “no search” model are generally aligned with those

in CET. The “directed search” model fits data much better than the “no search” model.
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Table 3: Estimated Parameters

CET No Search Directed Search

Prior Dist. Posterior Dist.
D,Mode,[2.5-97.5%] Mode,[2.5-97.5%]
Preference and Technology Parameters

Capital Share, α B,0.33,[0.28-0.38] 0.33,[0.27-0.34] 0.24,[0.21-0.28] 0.26,[0.24-0.29]
Inverse Labor Supply Elasticity, ξ G,0.94,[0.57-1.55] 0.92,[0.33-1.01] 0.38,[0.26-0.53] 0.48,[0.35-0.58]
Consumption Habit, h B,0.50,[0.21-0.79] 0.68,[0.65-0.74] 0.76,[0.72-0.79] 0.78,[0.71-0.83]
Capacity Utilization Ajd. Cost, σa G,0.32,[0.09-1.23] 0.03,[0.01-0.16] 1.43,[0.92-2.19] 1.58,[1.16-2.23]
Investment Adjustment Cost, S” G,7.50,[4.57-12.4] 5.03,[4.15-7.95] 13.6,[9.71-18.2] 13.2,[9.58-17.7]

Price Stickiness Parameters
Rotemberg Adjustment Cost, κ G,139,[5.06-778] 371,[216-585]

G,13.9,[0.51-77.8] 24.1,[11.0-53.7]
Calvo Price Stickiness, θ G,0.68,[0.45-0.84] 0.74,[0.67-0.77]

Implied (1−θ)(1−βθ)
θ

or ε−1
κ

0.09,[0.07-0.16] 0.05,[0.03-0.08] 0.08,[0.04-0.18]

Monetary Authority Parameters
Taylor Rule: Inflation, φπ G,1.69 [1.42-2.00] 2.02 [1.82-2.39] 2.00 [1.75-2.26] 1.95 [1.68-2.23]
Taylor Rule: GDP, φy G,0.08 [0.03-0.22] 0.01 [0.00-0.02] 0.20 [0.15-0.28] 0.15 [0.11-0.21]
Taylor Rule: Smoothing, ρR B,0.76 [0.37-0.94] 0.77 [0.75-0.81] 0.85 [0.83-0.88] 0.85 [0.82-0.87]

Exogenous Processes Parameters
Std. Dev. Monetary Policy, 400σR G,0.65 [0.56-0.75] 0.64 [0.57-0.71] 0.67 [0.60-0.74] 0.70 [0.63-0.77]
Std. Dev. Neutral Tech., 100σn G,0.08 [0.03-0.22] 0.32 [0.28-0.35] 0.33 [0.26-0.41] 0.35 [0.31-0.39]
Std. Dev. Invest. Tech., 100σi G,0.08 [0.03-0.22] 0.15 [0.12-0.19] 0.33 [0.26-0.41] 0.32 [0.25-0.40]
AR(1) Invest. Technology, ρi B,0.75 [0.53-0.92] 0.57 [0.44-0.66] 0.51 [0.39-0.62] 0.47 [0.36-0.59]

Overall Goodness of Fit
Log Marginal Likelihood (9 Observables): - 107.2 158.7

Impulse Response Matching results The quantitative results are summarized in Figure 2, 3,

4, and 5. Figure 2 demonstrates that our “directed search” model fixes the labor share cyclicality,

without sacrificing the fit of real wage and inflation responses. Moreover, Figure 3, 4, and 5 also

demonstrate the 9 impulse responses conditional on 3 structural shocks that we target on in our

Bayesian estimation. The last two impulse responses of labor productivity and labor share are not

directly targeted, but linear combination of other responses. Even though our “no search” can be

qualitatively aligned with the SVAR evidence in Figure 3 for the 9 targeted impulse responses, it

is not for the 2 untargeted ones. This can be fixed by the “directed search” model. Figure 4 and

5 indicate that the “directed search” model performs at least as well as the “no search” model

under neutral technology and investment specific technology shocks.
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Figure 2: The Solve Labor Share Puzzle
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Figure 3: Other Impulse Responses: Monetary Shocks
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Figure 4: Other Impulse Responses: Neutral Technology Shocks
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Figure 5: Other Impulse Responses: Investment Specific Technology Shocks
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A Proofs

A.1 Proof of Proposition 1

The complete derivation is

1 + τ ≡ p

Λ
=

pFxi

Gxi

=
xiFxi/F

xiG i
xi
/G i

(
G i

pF

)−1

≡ εFi
εGi

(input i ′s share)−1 =
εFi
εGi

F/xi
G i/(pxi)

.

A.2 Proof to Lemma 1

Use λ to denote the Lagrange multiplier on budget, the F.O.C.s to households’ problem are

0 =

(
c(p, q)

cA

)− 1
ε

ucA − λp,

0 =
1

ε− 1

(
c(p, q)

cA

)− 1
ε

ucA +
udA

ψh(q)c(p, q)
.

When one firm goes to {p, q}, while all others stay in {p, q}, the F.O.C.s imply that

0 =

(
c(e, {p, q}, p, q)

cA

)− 1
ε

ucA − λp, and 0 = (ε− 1)ζ
(dA)ν

cA
− ψh(q)

(
λp

ucA

)1−ε

,

0 =

(
c(e, {p, q}, p, q)

cA

)− 1
ε

ucA − λp, and 0 = (ε− 1)ζ
(dA)ν

cA
− ψh(q)

(
λp

ucA

)1−ε

.

Comparing these two sets of conditions yields

c(e, {p, q}, p, q) =

(
p

p

)−ε
c(e, {p, q}, p, q),

qh(e, {p, q}, p) = (ψh)−1

[(
p

p

)ε−1

ψh(q)

]
.

Given ψf (q) = qψh(q), it is easy to prove qψf ′(q)
ψf (q)

= qψh′(q)
ψf (q)

+1. Substitute this back to the previous

two equations, and we can obtain all the expressions for all the elasticities {pcp
c

, qcq
c

,
pqhp
p
}.

A1



A.3 Proof to Lemma 2

Rearranging the F.O.C.s to households’ problem yields

d(p, q)ψh(q)

(
c(p, q)

cA

) ε−1
ε

cA = −(ε− 1)
udA

ucA
d(p, q).

Taking integrals on both sides and imposing Assumption 3 yield

cA = (ε− 1)ζ(dA)1+ν .

When all households and firms will go to the same submarket {p, q}, this becomes

ψh(q)
ε
ε−1 c(e, {p, q}, p, q) = (ε− 1)ζ d(e, {p, q}, p, q)1+ν− ε

ε−1 ,

and the budget (binding) becomes

e = d(e, {p, q}, p, q)ψh(q)p c(e, {p, q}, p, q).

Combining these two equations and we can solve for c(e, {p, q}, p, q) and d(e, {p, q}, p, q).

A.4 Proof to Lemma 3

The F.O.C. to firms’ problem is

0 =

(
ψf +

qhψf ′

ψf

pqh
p

qh
ψf +

pch
p

ch
ψf − W

p

pch
p

ch

)
ch − χ′

(
p

p−

)
e

p−
.

Substituting in the expresions of elasticities in Lemma 1 directly yields Lemma 3.

A.5 Proof to Proposition 2 and 3

Let χ′(·) goes to 0 in Lemma 3, and use definition τ ≡ pψf (q)
W
− 1 to prove Proposition 2.

Combine Lemma 2, Lemma 3 and Definition 1 to prove Proposition 3.
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A.6 Proof to Corollary 2

We only need to prove that limζ→0 q(e, W , p−|ζ) = +∞.

Suppose not, then according to the first condition in Proposition 3, we must have limζ→0 p(e, W , p−|ζ) =

+∞, but then the second condition in Proposition 3 cannot hold.

A.7 Proof to Proposition 4

Define auxiliary functions

F p(e, W , p−, p|0) ≡ ε

(
W

p
− ε− 1

ε

)
− χ′

(
p

p−

)
p

p−
,

F τ (e, W , p−, τ |0) ≡ ε

(
1

1 + τ
− ε− 1

ε

)
− χ′

(
(1 + τ)W

p−

)
(1 + τ)W

p−
.

With Assumption 4, it is easy to verify that

F p
e (e, W , p−, p|0) = 0, F p

W (e, W , p−, p|0) < 0, F p
p (e, W , p−, p|0) < 0;

F τ
e (e, W , p−, τ |0) = 0, F τ

W (e, W , p−, τ |0) > 0, F τ
τ (e, W , p−, τ |0) < 0.

Since F p(e, W , p−, p|0) = F τ (e, W , p−, τ |0) = 0, we must have

pe(e, W , p−|0) = −F p
e

F p
p

= 0, pW (e, W , p−|0) = −F p
W

F p
p

> 0;

τ e(e, W , p−|0) = −F τ
e

F τ
τ

= 0, τW (e, W , p−|0) = −F τ
W

F τ
τ

< 0.

A.8 Proof to Proposition 5

Part 1: Eliminate p from Proposition 3, and define an auxiliary function F q(e, W , p−, q|ζ).

0 = (ε− 1)

(
εζW

e

q1+ν

ψf (q)
ε
ε−1

− 1

1− E(q)

)
− χ′

(
e

ζp−

ψf (q)
1
ε−1

(ε− 1)q1+ν

)
e

ζp−

ψf (q)
1
ε−1

(ε− 1)q1+ν ,

≡ F q(e, W , p−, q|ζ)
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With Assumption 4, 5, 6, it is easy to verify that

F q
e (e, W , p−, q|ζ) < 0, F q

W (e, W , p−, q|ζ) > 0, F q
q (e, W , p−, q|ζ) > 0.

For F q(e, W , p−, q|ζ) = 0, we must have

qe(e, W , p−|ζ) = −F q
e

F q
q

> 0, qW (e, W , p−|ζ) = −F q
W

F q
q

< 0.

Part 2: Define Auxiliary function

F τ (e, W , p−, q, τ |ζ) ≡ ε

(
1

1 + τ
− ε− 1

ε

1

1− E(q)

)
− χ′

(
(1 + τ)W

p−ψf (q)

)
(1 + τ)W

p−ψf (q)
.

With Assumption 4, 6, it is easy to verify that

F τ
e (e, W , p−, q, τ |ζ) = 0, F τ

W (e, W , p−, q, τ |ζ) < 0,

F τ
q (e, W , p−, q, τ |ζ) > 0, F τ

τ (e, W , p−, q, τ |ζ) < 0.

For F τ (e, W , p−, q, τ |ζ) = 0, we must have

τ e(e, W , p−|ζ) = −
F τ
e + F τ

q qe

F τ
τ

> 0, τW (e, W , p−|ζ) = −
F τ
W + F τ

q qW

F τ
τ

< 0.

Part 3: Proposition 3 implies that

p =
eζ−1

ε− 1

ψf (q)
1
ε−1

q1+ν ≡ G q(e, W , q|ζ).

Since G q
W (e, W , q|ζ) = 0 and G q

q (e, W , q|ζ) < 0,

pW (e, W , p−|ζ) = G q
q (e, W , q|ζ) · qW (e, W , p−|ζ) > 0.

Part 4: Under Assumption 7, the elasticity E(q) in the following satisfies Assumption 2, 6.

E(q) =
qψf ′(q)

ψf (q)
=

q−γ

1 + q−γ
= 1− ψf (q)γ.
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Part 5: Under Assumption 7, Proposition 3 implies that

0 = ε
W

p
− (ε− 1)ψf (q)1−γ − ψf (q)χ′

(
p

p−

)
p

p−
.

For F q
q (e, W , p−, q|ζ) > 0 under Assumption 4, 5, 7, it is easy to verify that the solution for {p, q}

is unique. As a result, when p− is the directed search equilibrium price for (e, W |ζ) under flexible

prices, p = p−, and

ε
W

p
= (ε− 1)ψf (q)1−γ.

Given qe(e, W , p−|ζ) > 0 and qW (e, W , p−|ζ) < 0, it is easy to verify that when γ ≥ 1,

pe(e, W , p−|ζ) ≥ 0,
∂

∂e

[
W

p(e, W , p−|ζ)

]
≤ 0,

∂

∂W

[
W

p(e, W , p−|ζ)

]
≥ 0.

under such a p−.

A.9 Proof to Lemma 4

Household i ∈ [0, 1] solves

max
{yt(p,q),dt(p,q),cAt ,iAt ,kt ,ukt ,bt}

E0

+∞∑
t=0

βtu(cA
t , dA

t , cA
t−1, dA

t−1),

s.t. et ≡
∫
St

dp,q,tψ
h(q)p yp,q,tdpdq,

yA
t ≡

(∫
St

dp,q,tψ
h(q)y

ε−1
ε

p,q,tdpdq

) ε
ε−1

,

dA
t ≡

∫
St

dp,q,tdpdq,

(λet ) et ≤ Wt`t + Rk
t uk

t kt−1 + Rt−1bt−1 − bt + Tt ,

(λit) iAt ≤ z i
t(yA

t − cA
t )− a(uk

t )kt−1,

(λkt ) kt ≤ (1− δk)kt−1 +

[
1− S

(
iAt

iAt−1

)]
iAt .
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The first order conditions w.r.t. {yt(p, q), dt(p, q)} are

0 = −λet dt(p, q)ψh(q)p + λitz
i
t

(
yt(p, q)

yA
t

)− 1
ε

dt(p, q)ψh(q),

0 = (udA,t + βEtudA
−,t+1)− λetψh(q)p yt(p, q) +

ε

ε− 1
λitz

i
t

(
yt(p, q)

yA
t

)− 1
ε

ψh(q)yt(p, q).

For submarket {pt , qt} and {p, q}, these two conditions imply that

yt(p, q)

yt(pt , qt)
=

(
p

pt

)−ε
,

ψh(qt)

ψh(qt)
=

(
pt

pt

)ε−1

.

These conditions are identical to those in the static model.

A.10 Proof to Proposition 6

Given marginal cost of production {MCt}, each firm solves

max
{pt}

E0

+∞∑
t=0

βtλet

{[
ptψ

f (qh
t (pt))−MCt

]
yh
t (pt) + (pt −MCt)xh

t (pt)− χt

(
pt

pt−1

)}
.

The first order condition is

0 = λet
{
ψf
t yh

t + ptψ
f
t
′qh

t
′yh

t +
(
ptψ

f
t −MCt

)
yh
t
′ + xh

t + (pt −MCt)xh
t
′}

− λet
χ′t

pt−1
+ βEtλ

e
t+1

pt+1χ
′
t+1

p2
t

,

=

{
1 +

qh
t ψ

f
t
′

ψf
t

ptq
h
t
′

qh
t

+

(
1− MCt

ptψf
t

)
pty

h
t
′

yh
t

}
ψf
t yh

t +

(
1 +

ptx
h
t
′

xh
t

− MCtx
h
t
′

xh
t

)
xh
t

− χ′t
pt−1

+ βEt

λet+1

λet

pt+1χ
′
t+1

p2
t

,

= (ε− 1)

{
ε

ε− 1

MCt

pt
(xh

t + yh
t )− xh

t −
ψf
t

1− E(qh
t )

yh
t

}
pt −

pt

pt−1
χ′t + βEt

λet+1

λet

pt+1

pt
χ′t+1.

Imposing all functional forms, consistency and market clearing conditions yields Proposition 6.
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B Computation

B.1 Detrended Equilibrium Conditions

Variables {λit ,CA
t ,Qt ,λkt , rkt , ukt ,λet , h1,t , h2,t ,w

#
t ,wt , IAt ,Yt ,χt , It ,Yt ,Kt , Lt ,mct , Πt ,Rt+1,µnt ,µit ,µ

y
t ,µkt , τt} solves

0 = −λet + λitI
1
ε−1
t , (2)

0 = −λet + I
1
ε−1
t

[(
Ut − h Ut−1

(
µyt
)−1
)−ω

− βh
(
Ut+1µ

y
t+1 − h Ut

)−ω]
, (3)

0 = −I
1
ε−1
t Yt − (ε− 1)ζQ1+ν

t , (4)

0 = −λit + λkt (1− St − S ′tG
i
t ) + βEt

[
λkt+1(µut+1/µ

k
t+1)S ′t+1(G i

t+1)2
]

, (5)

0 = −λkt + βEt

[{
λet+1r

k
t+1u

k
t+1 − λit+1at+1 + λkt+1(1− δk )

}
(µut+1/µ

k
t+1)

]
, (6)

0 = −λet rkt + λita
′
t , (7)

0 = −λet + βEt

[
Rt+1

Πt+1
λet+1

]
, (8)

0 = −h1,t + η (wεwt Lt)
1+ξ + (βθw )Et

[
(Πt+1µ

y
t+1)εw (1+ξ)µut+1h1,t+1

]
, (9)

0 = −h2,t + λetw
εw
t Lt + (βθw )Et

[
(Πt+1µ

y
t+1)εw−1µut+1h2,t+1

]
, (10)

0 = −(w#
t )1+εw ξ +

εw

εw − 1

h1,t

h2,t
, (11)

0 = −w1−εw
t + (1− θw )(w#

t )1−εw + θw

(
wt−1

Πtµ
y
t

)1−εw
, (12)

0 = −IAt + I
1
ε−1
t Yt − CA

t − at
Kt−1

µkt
, (13)

0 = −Yt + (1− χt)ItYt , (14)

0 = −χt +
κ

2

(
Πt

ΠSS
− 1

)2

, (15)

0 = −It + (1 + Q−γt )
− 1
γ , (16)

0 = −Yt +

(
ukt Kt−1

µkt

)α
L1−α
t , (17)

0 = −Kt + (1− δk )
Kt−1

µkt
+ (1− St)I

A
t , (18)

0 = −αwtLt + (1− α)rkt
ukt Kt−1

µkt
, (19)

0 = −mct +

(
rkt
α

)α (
Rtwt

1− α

)1−α
, (20)

0 = −(Πt − ΠSS )Πt +
ε− 1

κ

{
ε

ε− 1
mct −

[
χt + (1− χt)I1−γ

t

]}
+ βEt [Mt+1(Πt+1 − ΠSS )Πt+1] , (21)

0 = − ln
Rt

RSS
+ ρR ln

Rt−1

RSS
+ (1− ρR)

(
φπ ln

Πt−1

ΠSS
+ φy ln

Yt−1

YSS

)
+ σRε

R
t , (22)

0 = −(lnµnt − lnµnSS ) + σnε
n
t , (23)

0 = −(lnµit − lnµiSS ) + ρi (lnµit−1 − lnµi ) + σi ε
i
t , (24)

0 = − lnµyt +
α

1− α
lnµit + lnµnt , (25)

0 = − lnµkt + lnµit + lnµyt , (26)

0 = −τt +
It
mct
− 1, (27)
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with abbreviation for {µu
t , Ut , It , G i

t , St , S ′t , at , a′t ,Mt}

µu
t ≡ (µy

t )1−ω, (28)

Ut ≡ CA
t − ζ

Q1+ν
t

1 + ν
, (29)

G i
t ≡

IAt
IAt−1

µk
t , (30)

St ≡
exp
[√

S ′′
(
G i
t − µk

)]
+ exp

[
−
√

S ′′
(
G i
t − µk

)]
2

− 1, (31)

S ′t ≡
√

S ′′
exp
[√

S ′′
(
G i
t − µk

)]
− exp

[
−
√

S ′′
(
G i
t − µk

)]
2

, (32)

at ≡
σaσb

2
(uk

t )2 + σb(1− σa)uk
t + σb

(σa
2
− 1
)

, (33)

a′t ≡ σaσbuk
t + σb(1− σa), (34)

Mt ≡
λet
λet−1

Yt

Yt−1
µu
t , (35)

and measured consumption and investment {Ct , It}

Ct = I−
1
ε−1

t CA
t ,

It = I−
1
ε−1

t

(
IAt + at

Kt−1

µk
t

)
.

In the steady state, (SSS , S ′SS , S ′′SS , aSS , a′SS , a′′SS) = (0, 0, S ′′, 0,σb,σaσb).

Observed variables:
(
Ytz

y
t , Ctz

y
t , Itz

k
t , Lt , uk

t , (z i
t)
−1, wtz

y
t , ln Πt , Rt+1, Ytz

y
t /Lt , wtLt/Yt

)
.

B.2 Steady State Solver

Initialized parameters:

(ISS , τSS , LSS , ukSS ,χSS) = (0.70, 0.10, 0.945, 1, 0),

(400 ln ΠSS , 400 lnRSS) = (2.5, 3.0),

(β,ω, ν, ξ, γ, εw , θw ,α, δk) = (ΠSS/RSS , 1, 0, 1, 1, 6, 0.75, 0.33, 0.025),

(400 lnµy
SS , 400 lnµk

SS , lnµi
SS , lnµn

SS) =

(
1.7, 2.9, lnµk

SS − lnµy
SS , lnµy

SS −
α

1− α
lnµi

SS

)
.
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Solved Steady States:

QSS =
(
I−γSS − 1

)− 1
γ

mcSS =
ISS

1 + τSS
,

ε = (1−mcSSIγPC−1
SS )−1,

σb = β−1(µy
SS)ωµi

SS − (1− δk),

rkSS = I−
1
ε−1

SS σb,

wSS = (1− α)R−1
SS mc

1
1−α
SS

(
rkSS
α

)− α
1−α

,

w#
SS =

[
1− θw

1− θw (ΠSSµ
y
SS)εw−1

] 1
εw−1

wSS ,

KSS =
α

1− α
wSS

rkSS
LSSµ

k
SS ,

YSS =

(
KSS

µk
SS

)α
L1−α
SS ,

IASS =

(
1− 1− δk

µk
SS

)
KSS ,

CA
SS = I

ε
ε−1

SS YSS − IASS ,

ζ =
CA
SS + IASS

(ε− 1)Q1+ν
SS

,

UA
SS = CA

SS − ζ
Q1+ν

SS

1 + ν
,

λeSS = I
1
ε−1

t [1− βh(µy
SS)−ω]

[
(1− h/µy

SS)UA
SS

]−ω
,

h2,SS =
λeSSw

εw
SS LSS

1− βθw (ΠSSµ
y
SS)εw−1(µy

SS)1−ω ,

h1,SS =
εw − 1

εw
(w#

SS)1+εwξh2,SS ,

η =

[
1− βθw (ΠSSµ

y
SS)εw (1+ξ)(µy

SS)1−ω] h1,SS

(wεw
SS LSS)1+ξ

,

λiSS = I−
1
ε−1

SS λeSS ,

λkSS = λiSS ,

YSS = ISSYSS ,

CSS = I−
1
ε−1

SS CA
SS ,

ISS = I−
1
ε−1

SS IASS .
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B.3 Bayesian Impulse Response Matching

The model is estimated following Christiano, Eichenbaum, and Trabandt (2016):

• Denote ψ(θ0) as the true model implied impulse response functions.

• In finite sample T , the VAR impulse response functions from simulated data satisfy

ψ̂ → N (ψ(θ0), V (θ0, ζ0, T )).

• The asymptotically valid approximation of this likelihood is

f (ψ̂|θ, V ) = (2π)−
N
2 |V |−

1
2 exp

[
−1

2

(
ψ̂ − ψ(θ)

)′
V−1

(
ψ̂ − ψ(θ)

)]
.

• The Bayesian posterior is

f (θ|ψ̂, V ) =
f (ψ̂|θ, V )p(θ)∫
f (ψ̂|θ, V )p(θ)dθ

.

• A consistent estimate of V can be obtained through bootstrap:

V =
1

M

M∑
i=1

(ψi − ψ)(ψi − ψ)′.

In order to improve the small sample efficiency, the off-diagonal elements of V are all imposed

to be zeros as in Christiano, Eichenbaum, and Trabandt (2016).

• Given the dynare solution of the model, the likelihood function has analytical solution, and

we only need to figure out how to perform MCMC Bayesian approach to obtain the posterior.

• We have 100,000 draws for the MCMC chain, and use the last 8,000 for posterior distribution.
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B.4 Implement Estimation

Θ = {Θ1, Θ2, Θ3, Θ4, Θ5, Θ6}.

1. Predetermined parameters: Θ1 = {ω, ν, γ, γPC , εw , θw , δk}.

2. Predetermined steady state: Θ2 = {χSS , ΠSS ,µy
SS ,µk

SS ,µi
SS}.

3. The steady state to be targeted: Θ3 = {ISS , τSS , LSS , uk
SS , RSS}.

4. Estimated parameters: Θ4 = {α, ξ, h,σa, S ′′,κ,φπ,φy , ρR ,σR ,σn,σi , ρi}.

5. Calibrated parameters to target the steady state: Θ5 = {β, ε,σb, ζ, η}.

6. The derived: Θ6 = {QSS , mcSS , r kSS , wSS , w #
SS , KSS ,YSS , IASS , CA

SS ,λeSS , h2,SS , h1,SS ,λiSS ,λkSS , YSS ,µn
SS}.

In the estimation:

1. Read {Θ1, Θ2, Θ3, Θ4} from params.m.

2. If M .params is empty, use params.m to solve for {Θ5, Θ6} in model steadystate.m.

3. If M .params is not empty, replace params.m with M .params for Θ4 to solve for {Θ5, Θ6}.

4. {Θ1, Θ4, Θ5} are assigned to M .params, while {Θ2, Θ3, Θ6} are assigned to model steadystate.m.
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B.5 Code Adjustment from Christiano, Eichenbaum, and Trabandt (2016)

Our estimation is based on Christiano, Eichenbaum, and Trabandt (2016) with adjustments:

1. The original code for SVAR is never provided, so that I did it by myself following Christiano’s

lecture note. It has to be recoded because we need the bootstrap confidence intervals for

labor productivity and labor share that are not provided in all their published papers.

2. In order to deal with timing issue of monetary shocks, Christiano, Eichenbaum, and Trabandt

(2016) define a model with only monetary shocks, and another model with only other shocks,

which is unnecessarily complex. We rewrite the code to get around this issue.

3. We have parameters that targets on steady state moments, and have to change values during

each loop of estimation. Hence we need to rewrite the structure or loops on parameters.

4. In order to do Bayesian Impulse Response Matching, Christiano, Eichenbaum, and Trabandt

(2016) customized the built function in dynare for likelihood evaluation in a specific way that

fits their model. We have made it specific for our model.

5. The code provided by Christiano, Eichenbaum, and Trabandt (2016) can run in dynare 4.4.3,

but not in dynare 4.5.6 (the newest version is 4.5.7 now). We have not yet solved the problem,

but use dynare 4.4.3 at this moment.

6. Codes are rewritten in a more readable way.

B.6 Mistakes in Christiano, Eichenbaum, and Trabandt (2016)

Our paper has identified and corrected a few mistakes in Christiano, Eichenbaum, and Trabandt

(2016) when trying to replicate their results in our model with no search.

1. The discount factor β is set to match 3% real annual interest rate, and the correct number

should be 0.9925 instead of 0.9968. The original code made this mistake because it did not

truly target on 3% real annual interest rate as it stated in the paper.

2. The timing of working capital loans is inconsistent with the timing of monetary shocks.
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