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Abstract
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1 Introduction

A main role of financial markets is to aggregate private information held by economic
agents. Trading activity and subsequent adjustments in asset prices release this infor-
mation to the wider public, thereby making markets more efficient and increasing the
welfare of society. The main challenge facing any scientific study of this mechanism is
that neither private information nor the identities of its owners are readily observable.

Our paper proposes a proxy for private information. We combine a detailed dataset
of the UK government bond market, covering the identities and transactions of trading
parties, with insights from the microstructure literature. The idea is that, just like
in centralised markets where informed traders may split their trades over time to slow
down information revelation and avoid market-impact (Kyle, 1985), informed traders in
decentralised markets may submit orders to different dealers at the same time, thereby
splitting their trades in the cross-section. This implies that one should observe a trader
obtaining private information to trade with more dealers than usual. Accordingly, our
proposed proxy for private information in decentralised markets is the time-variation
in the number of dealers that clients trade with, which we will refer to as the clients’
connections.*

Our empirical analysis yields two sets of results. First, we confirm that connections
serve as a proxy for private information by showing that (i) clients make more profitable
trades when having more connections and (ii) time-variation of total client connections
in the market helps explain daily changes in yields. Second, we present two of the many
possible applications of our proxy: (i) we find suggestive evidence that dealers learn from
their informed clients and pass this information to their subsidiaries, and (ii) we also
show that the nature of private information proxied by connections pertains to future
order-flow, i.e. more connected clients better predict the order-flow intermediated by the
dealers they trade with.

To organise ideas and to guide our empirical strategy, we start our analysis by propos-
ing a simple model in the spirit of Glosten and Milgrom (1985). The model formalises the
insight that trading with more dealers may be advantageous because it helps the client

hide her private information. This, however, requires the client to reach out for quotes

1Our study focuses on the UK government bond market, because (i) being one of the most liquid
decentralised markets, it provides a particularly hard test to measure private information, (ii) our dataset
provides a detailed, almost universal coverage of all transactions on this market, and (iii) the government
bond market plays a crucial role in the economy as the yield curve serves as a benchmark in many financial
transactions, it affects government financing costs and plays an important role for the implementation
of monetary policy.



from more dealers, which is costly. Therefore, the client will do so only when the benefit
of hiding information is sufficiently large, that is, when her information is sufficiently
precise. In these periods, the client should overperform.

To illustrate the viability of this idea, we first analyse trading around the Brexit refer-
endum. Given the large uncertainty before the vote, market participants were motivated
to either reduce their exposure radically, or to generate private information and bet on
the outcome. In line with our hypothesis, we show that a change in their number of dealer
connections helps identify the client group with private information. In particular, the
group of clients who were connected with more dealers on the day before the referendum
persistently increased the duration of their positions for days before the referendum and,
subsequently, outperformed other clients when the yield curve dropped immediately as
the outcome of the poll became public.

Then we turn to systematic evidence. We expect that when a client is connected to
more dealers, her trades are more profitable even after controlling for the volume and
the number of her transactions in the given period. This effect should not be driven by
favourable transaction prices, but by forecasting future price movements. That is, the
price of gilts that connected clients buy (sell) should increase (decrease) in subsequent
days. We also expect this effect to be more pronounced in more information sensitive
periods, e.g. around macroeconomic announcements. We find empirical evidence for each
of these predictions. Including client and time fixed effects, we identify these results from
the time-series of a given client’s activity.

Moreover, we consider aggregate implications for yield dynamics. We construct a
market-wide measure of private information — the total number of client-dealer connec-
tions in the system in a time period. We then measure the response of yields to changes
in aggregate connections, and find a significant effect even after controlling for trading
volume and the total number of clients in the market.

Given our proxy for private information, we offer two of the many possible appli-
cations. As a first application, we provide suggestive evidence that dealers pass on in-
formation, acquired from their informed clients, to their subsidiaries. To show this, we
use a novel source of variation in our data: for each dealer, we are able to distinguish
between trading accounts that perform a market-making function from trading accounts
that correspond to other, client-like arms of the given dealer bank, i.e. the given dealer’s
subsidiaries. We then test whether dealers’ subsidiaries perform better when the given
dealer trades with a larger proportion of high-connection clients. We find that this is in-

deed the case, suggesting that these subsidiaries obtain the information that their dealers



learn from informed clients.

As a second application, we search for the source of private information captured by
the time-variation in clients’ connectedness. We find that more connected dealers can
better predict the maturity structure of other clients’ order-flow, especially the part of the
order-flow received by their own dealers in subsequent days. For instance, when a more
connected dealer orders is concentrated on the short-end of the yield curve in a given day,
her dealer is more likely to receive a disproportionate share of orders for short bonds in
the following five days. We also show that trading in line with the maturity structure
of clients’ future orders can be profitable because of the resulting pressure on prices.
A limitation of this analysis is that we cannot observe whether the client is gathering
information from the quotes she receives from her dealers, or dealers leak the information
to its best clients.

Finally, we present further extensions and additional robustness checks that include
(i) re-estimating our empirical model on data at daily (instead of monthly) frequency, (ii)
considering alternative performance measures and additional decompositions, (iii) chang-
ing the definition of macroeconomic announcements, (iv) considering other market-wide
measures of asymmetric information that aggregate connections explain, (v) revisiting

the role of the centrality of dealers.

Related Literature Our paper is the first to suggest clients’ connections as a measure
of private information in decentralized markets. Our study is related to several streams
of the literature.

There is a vast literature on measuring private information in financial markets. A
large group of these papers focus on security based measures (e.g. Fasley, Kiefer, O’Hara,
and Paperman, 1996; Chakravarty, Gulen, and Mayhew, 2004; Duarte and Young, 2009;
Roll, Schwartz, and Subrahmanyam, 2010; Johnson and So, 2018). These papers identify
securities for which a large share of transactions are likely to be motivated by private
information in a given period, typically using the aggregate volume characteristics of
those securities, and study the implied return patterns. Instead, our measure allows to
study informed transactions of any given client. As our applications show, this feature
changes the range of relevant questions we can address with our approach.

A more related group of papers identify informed transactions focusing on the activity
of a specific group of clients such as large shareholder activists or corporate insiders
(Cohen, Malloy, and Pomorski, 2012; Collin-Dufresne and Fos, 2015) often during specific
episodes (Boulatov, Hendershott, and Livdan, 2013; Hendershott, Livdan, and Schurhoff,



2015). By design, these studies are mostly focusing on the cross-sectional heterogeneity
in information, building on ex-ante assumptions of which clients should be more informed
and in which periods private information should be concentrated.? Instead, we use time-
series heterogeneity to identify client specific periods of informed trading. That is, our
measure can systematically identify periods of informed trading for any given client, even
if these periods are uncorrelated across clients.

Our first application studies potential information leakages across clients, their deal-
ers, and the subsidiaries of these dealers.> While there are many empirical works studying
the trading process in decentralised markets (e.g. Gabrieli and Georg, 2014; Hollifield,
Neklyudov, and Spatt, 2017; Li and Schurhoff, 2019) most of these do not focus on the
role of private information.* Instead, the most related work to this application is Mag-
gio, Franzoni, Kermani, and Sommavilla (2019). Just as we do in this application, they
use the network of transactions across market participants to study the flow of private
information among them. Apart from the context — they focus on brokers and their
clients in stock markets — their proxy of informed trades and the suggested mechanism
are also different from our approach. They identify a client’s informed transactions as
those which are executed by a more connected broker. The argument is that central bro-
kers gather information by executing informed trades, which is then leaked to their best
clients through these transactions. Instead, we identify informed transactions as those
which are executed when the client is more connected. Our argument is that the client
chooses to be more connected when her information is more precise in order to hide it.”?

Our second application is related to the literature on price discovery in government
bond markets (Fleming and Remolona, 1999; Balduzzi, Elton, and Green, 2001; Green,
2004; Brandt and Kavajecz, 2004; Pasquariello and Vega, 2007; Hortacsu and Kastl,
2012; Valseth, 2013). This literature emphasises the informational role of clients’ and/or
dealers’ orderflow. We add to this literature by highlighting the empirical link between

variation in connections and order flow predictability. We are able to do so due to the

2 Another approach is to study the effect of transactions which ex-post turns out to be private infor-
mation driven. For instance (Meulbroek, 1992; Kacperczyk and Pagnotta, 2019) investigates the effect
of transactions that subsequently became subject to SEC investigations of insider trading activities.

3There is a related, growing theoretical literature on the role of private information in decentralized
markets such as Duffie, Malamud, and Manso (2009), Golosov, Lorenzoni, and Tsyvinski (2014), Babus
and Kondor (2018), Brancaccio, Li, and Schurhoff (2017) amongst others.

1A notable exception is Hagstromer and Menkveld (2019) which uses short-term comovement across
quotes of different dealers to map information percolation.

5To make this difference salient, we show in Section 5.1 that the results in our first application are
robust to the inclusion of dealers’ centrality as a control. Also, in Section 6.6 we show that the variation
in clients’ connections and in their dealers’ centrality is largely independent.



important feature of our dataset: for each trade we can observe the identity of both
parties. This allows us to map out the dynamics of connections of government market
participants and explore their links with the price discovery process.

The remainder of the paper is as follows: Section 2 introduces the environment,
concepts and hypotheses illustrated by the example of financial betting around the Brexit
referendum; Section 3 describes the data sources and provides summary statistics; Section
4 presents the empirical results on using connections as proxy for private information;
Section 5 presents the two applications of our measure; Section 6 presents robustness

checks and further extensions; Section 7 concludes.

2 Concepts and Hypotheses

We start this section with a basic description of the micro-structure of the UK gilt market.

Then, with the illustration of a simple model, we discuss our main hypotheses.

2.1 Primary Dealers in the UK Gilt Market

The key actors in the UK gilt market are the primary dealers, also known as gilt-edged
market markers (GEMMs). In our sample period between 2011 and 2017, their number
fluctuates between 20 and 24. From now on, we refer to this group as dealers. The
UK Debt Management Office (DMO) tenders new issues of government securities to
dealers. Clients, as asset managers, commercial banks and foreign central banks buy and
sell government securities mostly through bilateral transactions to this group.® Primary
dealers are committed to make, on demand, continuous and effective two-way prices to
their clients by regulation. They must also maintain a minimum market share (DMO,
2011).7

When a client trades in the UK gilt market, she can observe quotes of all dealers
on electronic trading platforms. However, these observed quotes are merely indicative
and only small trades can be executed at these prices. If the client wishes to trade a
larger quantity, she directly contacts the dealers typically via the phone. Unlike other,
centralised exchanges (e.g. the UK gilt futures market) that are increasingly automated,
the gilt cash market, which our study focuses on, continues to retain its traditional OTC

characteristics where reputation and trading relationships matter largely for dealers (to

In our sample, only about 1% of client trades are directly between clients.
"See Benos and Zikes (2018) for further details about the institutional arrangements of the UK gilt
market.



continue to attract order flow and thereby trading profitably) as well as for clients (to
receive favourable price quotes).

In our sample, we observe that clients tend to trade with a relatively small and
persistent subset of all the dealers. In practice, this subset corresponds closely to the
subset they requests quotes from. Based on interviews with traders, we understand that
clients perceive that asking quotes from many dealers can be costly.® In particular, the
main (perceived or real) cost of asking for quotes, but not trading with some of the
dealers is that it might damage the relationship between the client and the given dealers.
For example, a dealer might feel that she gives out information on her inventory when
providing tight quotes. This information might be used against the dealer. If this is not
reciprocated with executed trades, the dealer might decide to give less informative, that

is, less tight quotes to that particular client next time.

2.2 The Mechanism and Main Implications

Our main conjecture is that the time-variation in clients’ connections can be a proxy for
the time-varation in the precision of their private information. The underlying mechanism
is that, just like in centralised markets where informed traders may split their trades over
time to slow down information revelation and avoid market-impact (Kyle, 1985), informed
traders in decentralised markets may submit orders to various dealers, thereby splitting
their trades in the cross-section. However, this requires the client to reach out for quotes
from those dealers, which might be costly. The client will do so only when the advantage
is large, that is, when its information is sufficiently precise. This implies that one should
observe a trader obtaining more precise private information to trade with more dealers
than usual.” This mechanism provides a number of testable predictions.

First, consider the time-variation of the performance of a given client. Under our
main conjecture, we should observe that when clients are connected to more dealers, they

overperform. However, overperformance could come from multiple sources. For instance,

8Moreover, even the dealer whose quote is accepted by the client pays some informational cost, as all
the other dealers who have also been requested to provide quotes will know that the transaction took
place. (In fact, the runner-up in the auction gets informed specifically that her quote was the second
best.) Especially in the case of a large transaction, the dealers whose quotes were not accepted might
use this price and quantity information against the dealer (with the accepted quote) when she tries to
manage the resulting change in her inventory in the inter-dealer market.

9Since Kyle (1985), the micro structure literature has extensively studied how private information
can be concealed by splitting informed orders in smaller amounts over time to avoid market impact
(e.g. Garleanu and Pedersen, 2013; Mascio, Lines, and Naik, 2017; Back, Collin-Dufresne, Fos, Li, and
Ljungqvist, 2018)



even if connections were not related to information, clients requesting more quotes would
confront their dealers to more competition, possibly resulting in more favourable trans-
action prices. Instead, according to our conjectured mechanism, we should expect that
the price of government bonds, purchased by the client in these periods, should increase
in subsequent days compared to the price of bonds they sell. That is, a more connected
client’s overperformance should come from the correlation of the direction of their trans-
actions and future price movements. Finally, we expect these differential effects to be
more pronounced in more information-sensitive periods, for example, around important
macroeconomic announcements. The idea is that in these periods informed traders signals

are more precise. We summarize these predictions in the following hypotheses.

Hypothesis 1 More connections for a client © in a given interval should be associated

with higher trading profit.

Hypothesis 2 This relationship would be stronger in periods with more precise private

information, i.e. around public announcements and news events.

Hypothesis 3 More connections for a client i in a given interval should be associated
with a stronger connection between her buy (sell) transactions and subsequent positive

(negative) returns.

Second, we consider implications to the price discovery process. In the absence of news,
innovations in the yield curve should be driven by private information. Also, under our
conjecture, average connections in a given time period is a measure of the amount of
private information present in the market. Therefore, we should expect a comovement

between this measure and innovations in the yield curve. This gives our last hypothesis.

Hypothesis 4 Periods with higher aggregate connections should be associated with larger

absolute innovations in yields.

While these predictions are intuitive, it is important to show that they are consistent
with a rational framework. For instance, in equilibrium dealers might foresee that an
unusual request for a quote from a client might imply that that client has private infor-
mation. Their provided quote should adjust to this belief. For this purpose, we build a
simple model of trading and network formation in Appendix A. The model is a variant
of Glosten and Milgrom (1985). Informed clients and uninformed liquidity traders inter-

acting with market makers. The new element of the trading protocol is that clients can



decide whether to seek bid and ask quotes from one or more risk neutral, competitive
market makers in each round. Sampling quotes from more market makers is costly. After
observing the quotes, clients can decide which dealer to trade with. The informative-
ness of clients’ signals varies in the time-series and in the cross-section. We assume that
announcements correspond to periods with more informative signals for many clients.

In equilibrium, each client requests quotes only from her regular dealer when her
information precision is low and from multiple dealers when it is high. In the latter case,
she receives identical quotes and she mixes her choice of a dealer. As a result, in periods
with higher information precision she will trade with more dealers in expectation. We
carefully derive the results supporting each hypothesis above.

In Section 4, we test these hypotheses and find empirical evidence for each one of
them in the data.

3 Measurement and Summary Statistics

In this section we describe the data and construct the two main variable of interest:

clients’ connections and performance.

3.1 Data Source

To analyse how the dynamics of client-dealer connections are related to clients’ trad-
ing performance and information, one needs a detailed transaction-level dataset which
contains information on the identity of both sides of a trade. The proprietary ZEN
database maintained by the UK Financial Conduct Authority (FCA), fittingly provides
this information together with information on the transaction date and time; the ex-
ecution price and quantity; the International Securities Identification Number (ISIN);
the account number, the buyer-seller flag. The ZEN database contains trade reports for
all secondary-market transactions, where at least one of the counterparties is an FCA-
regulated entity. We focus exclusively on conventional gilts. Given that all dealers in
our sample are FCA-regulated, we have at least one report for each dealer-client trans-
action, thereby giving us virtually full coverage of the client trade universe. Our sample
covers the period between October 2011 and June 2017. We match our transaction-level
data with information on bond duration and end-of-day closing prices obtained from
Datastream.

A key aspect of our empirical analysis is to exploit the time-variation in client-dealer



connections, which requires the matching of each transaction with a client identifier.
The names of clients are recorded as unstructured strings of text in the ZEN database.
Moreover, a typical client tends to have multiple accounts with different client names
across accounts and also within the same account. We use a textual algorithm that
searches the unstructured strings of names and accounts, and assigns a unique client
identifier to each transaction. When constructing client identifiers, we aim at the highest
possible level of consolidation by treating parent companies, subsidiaries and different
arms as one client. We end up with 474 identified clients and about 1.67 million trades
transacted by them. The trading activity of these clients covers around 80% of all client

activity (in terms of trading volume) in the UK gilt market.

3.2 Client-Dealer Connections

Our baseline measure of connections is the number of dealers a given client is connected
to in a given time period. A client is connected to a dealer if she trades with the dealer at
least once.'” Since client connectivity is a key variable in our analysis, we provide some
descriptive statistics to describe it.

Table 2 presents summary statistics based on our baseline regression sample that is
aggregated to the client-month level. We find that the average client in a given month
is connected to four dealers and carries out about 19 transactions with them. There is
substantial sample variation: the average difference in connections between the 90th and
10th percentile is 11. To illustrate how much of the variation in client connectivity is a
cross-sectional phenomenon, we compute the averages of our measures at the client-level,
and plot the resulting distribution in a histogram (Top Row of Figure 5). We find that
the distribution of the connectivity measure is positively skewed, with the mass of clients
having low values and a few clients exhibiting large values.

Clients that are on average more connected can differ from less connected clients along
other time-invariant characteristics such as size, business model etc. To control for this,
we purge out client fixed effects from our connectivity measures and plot the resulting
distribution in a histogram (Bottom Row of Figure 5). We find substantial within-client
variation: the average difference in connections between the 90th and 10th percentile

is 4.5, which is non-negligible compared to the corresponding value using across-client

10To check for the robustness of our results, we also use eigenvector centrality (Bonacich and Lloyd,
2001) as an alternative measure of connectivity. This measure, used in recent papers (Maggio, Kermani,
and Song, 2017), not only takes into account the number of dealers a given client trades with but also
the number of other clients that are connected to those dealers that the given client trades with.

10



variation (7.5). Similarly, the standard deviation of first-order connections is around 3.3
in the cross-section and still as high as 1.9 when using only the within-client variation.
This substantial within-variation in connections is an important feature of the data, which

our empirical analysis will primarily rely on.

3.3 Trading Performance
3.3.1 Baseline Measure

To measure trading performance, we follow Maggio, Franzoni, Kermani, and Sommavilla
(2019) and compute the T-day-horizon return on each trade of client ¢ in month ¢, mea-
sured as the percentage difference between the transaction price and the closing price T'
days after the transaction date.!’ Formally, for each trade j, we construct the measure

Per formancel, as follows:

Performancef = [ln (PT) —In (P]*ﬂ X 1pg, (3.1)

where P is the transaction price, PT is the T-day ahead closing price of the corresponding
gilt, and 1p g is an indicator function equal to 1 when the transaction is a buy trade,
and —1 when it is a sell trade. All transactions-specific returns are then averaged within
month ¢ using the pound value of the trades as weights. As robustness, we also present
the results using unweighted monthly average returns.

Table 2 summary statistics of the 3-day and 5-day (weighted and unweighted) per-
formance measures. Panel B shows that average performance is significantly larger for
clients with more dealer connections compared to clients with fewer connections. More
importantly, as shown in Panel C, we also find that the average client performs signif-
icantly better in months with more dealer connections compared to months when the
same client has fewer connections. For example, the average client has a 1.5bp higher

5-day performance in high-connection months compared to low-connection months.

3.3.2 Decomposing Trading Performance

We now propose a decomposition method which extends our baseline performance mea-

surement. The T-day performance of a client on a trade can be high because the given

' The T-day horizon starts at the start of each day and ends after T days. We use overlapping time
windows. For example, to compute one-day performance measures (T' = 1), we compare all trades on
day 1 to the closing price on day 2, and compare all trades on day 2 to the close price on day 3, and so
on.

11



client faces lower price impact compared to other clients trading at the same time. We
refer to this as the transaction component of performance. Alternatively, trading perfor-
mance can be high because the given client can better anticipate future prices changes.
We refer to this as the anticipation component of performance. Building on 3.1, we

compute the decomposition for each transaction j as follows:

n (P") = In (Pf) = [In (P") —=In (P)] + [In (P) = In (P})], (3.2)

Anticipation Transaction

where P is the only new term which denotes the average transaction price (based on
all available dealer-client trades in the corresponding gilt) measured around the time of
transaction j. To estimate P, we experiment with two time definitions. First, we use
all relevant trades on the day of transaction j to compute the average transaction price
P. As a second, more accurate measure, we split each trading day into three parts, and
compare the transaction price to the corresponding one of the three intra-day averages.!?
Given the trade-level decomposition, we then collapse our dataset at the client-month
level using both volume-weighted and unweighted monthly average returns.

Note that most of the recent empirical work on financial networks (Afonso, Kovner,
and Schoar, 2014; Hendershott, Li, Livdan, and Norman, 2017; Hollifield, Neklyudov, and
Spatt, 2017; Maggio, Kermani, and Song, 2017) focused on the transaction component.
Distinguishing between the transaction component and the anticipation component allows
us to test whether more connections increase performance because clients can achieve

more favourable deals (at lower mark-ups) or because clients have private information

about future price changes.

4 Client Connections as Proxy for Private Informa-
tion

This section presents our main empirical results, supporting the key message of our paper:
time-variation in client-dealer connections can be used to proxy time-variation in private
information. We proceed in three steps. First, we illustrate the viability of the hypotheses
laid out in Section 2.2 by taking a closer look at the gilt trading activity around the

Brexit referendum. Second, we turn to clients’ performance and supporting evidence for

12The intra-day time windows are <1lam, 1lam-15pm and >15pm, which are set to have an approx-
imately even number of transactions across the time windows.

12



Hypotheses 1-3. Using panel-data regressions, we show that clients’ trading performance
systematically increases when the given client trades with more dealers. Third, we study
innovations in yields and Hypothesis 4. We provide evidence that variation in total client-
dealer connections in the market comove with the day-to-day innovations in the level and

slope of the yield curve.

4.1 Betting on Brexit: An Event Study

As a motivating example, we take a close look at the connectedness-performance rela-
tionship during the days around the Brexit referendum on leaving the European Union.
The referendum took place on Thursday 23 June 2016, and the results that 51.9% of the
participants voted to leave became public on Friday morning (24 June 2016). Based on
polls, the chances of a leave or a remain vote were close to 50-50 leaning slightly towards
remain immediately before the vote. Either way market prices were expected to jump.
In particular, the common perception was that a leave result would likely trigger a rate
cut soon, leading to an immediate downward shift in the yield curve on 24 June. Indeed,
this is what happened with the 1-year, 5-year and 25-year yields dropping by 14bp, 30bp
and 24bp, respectively, on 24 June. This was followed by the Bank of England cutting
the policy rate by 25bp in August.

Given the large uncertainty before the vote, market participants were motivated to
either reduce their exposure radically, or to generate private information and bet on the
outcome. Reportedly, major hedge funds ordered private opinion polls to generate an

13 Our main hypothesis implies that we should be able to separate

informational edge.
these two groups from each other based on the change of their connectivity before the
vote. We should see that clients with private information increase the number of dealers
they trade with to hide this information. Furthermore, they should be the group who,
in average, increases the duration of its portfolio to speculate on the leave outcome and

when the yield curve eventually drops, they should overperform the others.

I3Reportedly, major hedge funds ordered private opinion polls to generate an informational edge for
this bet and earned handsomely on those bets:

“Behind the scenes, a small group of people had a secret — and billions of dollars were at stake. Hedge
funds aiming to win big from trades that day had hired YouGov and at least five other polling companies
[...]. Their services, on the day and in the days leading up to the vote, varied, but pollsters sold hedge
funds critical, advance information, including data that would have been illegal for them to give the public.
Some hedge funds gained confidence, through private exit polls, that most Britons had voted to leave the
EU, or that the vote was far closer than the public believed — knowledge pollsters provided while voting
was still underway and hours ahead of official tallies.” ( “The Brexit Short: How Hedge Funds Used Private
Polls to Make Millions”, Bloomberg Businessweek, 25th June, 2018)

13
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To verify this hypothesis, we group all those private clients who traded on the refer-

endum day 23 June into two groups based on the following client-specific measure:
a; = connections; junaz — connections;, (4.1)

where connections; jun23 is the number of dealers that client ¢ traded with on the day
of the referendum; the term connections; is the average daily connectivity of client i
based on the whole sample (2011 Oct — 2017 Jun). The variable «; captures whether the
given client, on the referendum day, had unusually high or low connectivity compared

to its own long-run average. We identify 126 private clients who traded on the day

Table 1: Summary Statistics of the 126 Clients Trading on 23 June 2016

Client Number e Volume  Net Duration 5-day Performance
Type of Clients Mean Mean Mean Mean Median
Low-« 63 -0.80 14.1m 5.5m -0.425 -0.013

High-« 63 0.96 25.2m 107m 0.434 0.327

Notes: this table provides descriptive statistics of the 126 identified private clients that traded on 23 June 2016. These
clients are placed in two groups depending on whether their « is below (top row) or above (bottom row) the median value
of a. Performance is measured in 100*log points. The variable « is measured in terms of number of connections. Volume
and Net Duration are in £.

of the referendum, and Table 1 provides summary statistics of their performance and
connectedness. High-a clients traded with approximately one (0.96) additional dealer
compared to their respective average. In turn, low-a clients traded with approximately
one (0.8) fewer dealer compared to their respective average.

We find that high-« clients performed much better on the referendum day compared to
low-« clients. For example, the mean 5-day performance of the high-a clients was about
43bp which was more than 86bp higher than the mean performance of the low-a clients
(-43bp). This is primarily due to the fact that high-« clients substantially increased their
long position in gilts before prices increased sharply in the following days: the average
high-a client’s change in net duration was about 20 times (107m) that of the low-« client
(5.5m), with this difference being much sharper than the difference in trading volume
across the two groups.

We illustrate these stylised facts in panels (a) and (b) of Figure 1, showing the duration
and cumulative performance of the two groups in the days around the vote. While this
episode is intuitive, note that the differences in performance of the high- and low-« groups
might come from other, unobserved heterogeneity in these two groups. Indeed, it is quite

likely that the traders who decide to bet on the outcome of the Brexit vote are very
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Figure 1: Connectivity and Performance around the Brexit Referendum

(a) Aggregate Daily Net Duration of High-a and Low-a Clients
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(b) Cumulative Returns of Low-a and High-« Clients.

Notes: In Panel a, the red squared line depicts the evolution of the duration-weighted net position of those 63 clients that
have high within-connectedness (high a 4.1) on the day of the referendum. The blue circled line evolution of the duration-
weighted net position of those 63 clients that have low within-connectedness (low « 4.1) on the day of the referendum. In
Panel b, the red squared line depicts the cumulative average returns of those 63 clients that have high within-connectedness
(high « 4.1) on the day of the referendum. The blue circled line depicts cumulative average returns of those 63 clients that
have low within-connectedness (low « 4.1) on the day of the referendum. The average returns for both groups are weighted
by the individual clients’ daily trading volume. The returns are computed using the closing price on 29 June 2016 as the
reference price.

different from those institutions that decide to cut back their exposure in this volatile
period. Also, this particular episode might be special. Hence we turn to systematic
evidence in the next Section, where we can include client- and time- fixed effects as well

as additional controls to decompose the different forces at play.

4.2 Client Profitability

In this part, we connect the time-variation in clients’ connections with the time-variation

in their performance along the lines of Hypotheses 1-3.
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4.2.1 Baseline Results

To estimate whether a client’s trading performance increases when the client increases its

connections with the primary dealer sector, we run the following monthly panel regression:
Performancezt = B x ClientConnections;; + X, + o + it + €4, (4.2)

where Per formance], is the trading performance (3.1) of client 4 in month ¢ at horizon
T; ClientConnections; ; is the number of dealers the given client is connected to in month
t; oy and g, are client and time fixed effects; X;; includes controls such as the number
of transactions and trading volume. These controls are important for checking that our
connections variable is not simply picking up the effect of increased trade size (Easley
and O’Hara, 1987; Merrick, Naik, and Yadav, 2005; Maggio, Franzoni, Kermani, and
Sommavilla, 2019).

Throughout the analysis, in computing standard errors we take the most conservative
approach, and employ two-way clustering at the client and time level. This allows for
arbitrary correlation across time and across clients. Our baseline results use data at
monthly frequency. This is to reduce measurement noise and also to avoid oversampling
those clients who trade actively, possibly on most trading days. Nevertheless, as will be
shown in Subsection 6.1, our results are robust to using data at daily frequency as well.

The main coefficient of interest in 4.2 is 5 which captures the relation between client
connections and trading performance. Table 3 reports our baseline results with panel A
and panel B showing the results for value-weighted and unweighted trading performance,
respectively. Each column corresponds to a different trading horizon going from 7" = 0
to T'=5. We find a positive relationship between client connections and trading perfor-
mance, which is statistically significant at every horizon for both types of performance
measures. Moreover, we find little evidence that variation in a client’s trading volume or
number of transactions would affect the given client’s trading performance.*

The results are also economically significant. For example, using the estimate (0.48bp)

in Column 6 of Table 3, we find that if a client’s connections increase in a given month

MPigure 19 in the Appendix shows the results from a pooled regression with client fixed effects ex-
cluded. While client connections continue to have a significantly positive relationship with trading
performance, the coefficients on trading volume and transaction number also appear statistically signif-
icant in the cross-section. This may be explained by the fact that our clients include a range of investor
types (e.g. insurance companies, hedge funds, pension funds). Also, the cross-sectional distribution
of size and transaction number may be correlated with other characteristics, as studied extensively by
the mutual fund literature (Elton, 1993; Chen, Jegadeesh, and Wermers, 2000; Kacperczyk, Sialm, and
Zheng, 2005).
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by one, then her trading performance doubles relative to her mean (we are using the fact
that the median and mean 5-day returns are 0.45bp and 0.43bp, respectively). Table 4
further illustrates the economic significance of the performance-connection relationship.
Panel 4a compares months when clients have low connectedness to months when they
have high connectedness. Single-sorting using the within-variation in connections, we find
that the difference in median performances is about 0.5bp, consistent with our baseline
regression results (Table 3). Moreover, clients trade much more when they are more
connected: the median trading volume is about £ 15million (£53million) in months when
the client has fewer (more) dealer connections than its sample average. The performance
difference coupled with the difference in trading volume in high and low connectivity
months implies that the majority of positive trading performance is concentrated in high

connectivity months. To reinforce that our results are not simply picking up the effect

Figure 2: Baseline Performance Regressions over 0-20 day Horizons

Connection Effects at Longer Horizons
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Notes: this figure plots the estimated 8 coefficients from our baseline regression 4.2 up to 20-day horizon (T = 20), using
the value weighted performance variable as the regressand, measured in basis points. We include as a control the natural
logarithm of the pound trade volume of each client (“Volume”) and the natural logarithm of the number of monthly
transactions (“Transactions”). To reduce noise, we winsorise the sample at the 1%-level and use month-client observations
that are based on at least 2 transactions in the month. The shaded area denotes the 90% confidence band, It is based on
robust standard errors, using two-way clustering at the month and the client level.

of trading volume (driving both connections and performance), in panel 4b, we extend
this analysis and double-sort our sample using the within-variation both in connections
and in trading volume. The performance difference in high and low connectivity months

is approximately the same irrespective of whether the client’s trading volume is high or
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low, and thereby the majority of positive trading performance continues to coincide with
high connectivity months.

Moreover, we assess the persistence of the effect of connections and gradually increase
the trading horizon up to 20 days (7" = 20) while re-estimating our baseline regression
4.2. In Figure 2, we present the 20 estimated (s, using the value weighted performance
measure, together with the 90% confidence bands. We find that the effect peaks at the
5-day horizon, but we still find that client connectivity significantly affects performance
at the 10-day horizon. The effect then gradually decays, with the point estimate reaching
zero at the 18-day horizon.

According to our model, the intuition is as follows. The precision of clients informa-
tion varies with time. If she systematically chooses her counterparty from a wider set
of dealers whenever her private information is more precise (i.e. requests quotes from
more dealers), the adverse selection her regular dealer faces is smaller. Therefore, her
regular dealer can provide a narrower bid-ask spread in average. This is how the client
can recover the (reputational or search) cost of multiple quotes. At the same time, as
periods with multiple connections will coincide with periods with more precise private
information, this mechanism provides a positive relationship between clients’ connections
and subsequent trading performance. Note that our theory does not imply causality be-
tween connections and performance in any direction. Instead, both higher performance

and higher connectedness are caused by more private information.

4.2.2 Decomposing Trading Performance into Transaction and Anticipation

Components

Given our baseline results, we now explore the channels through which client connectivity
is related to trading performance. Specifically, we test whether more connected clients
may perform better because they get better deals compared to other clients trading
around the same time (transaction component) and/or because they can better antici-
pate future price changes over the coming trading days (anticipation component). Our
mechanism does not have strong predictions on the earlier, but requires the latter effect
to be present. To this end, we estimate two modified versions of our baseline specifi-
cation (4.2) with the trading performance measure replaced with the anticipation and
transaction components (3.2). Table 5 shows the decomposition results for the 5-day
value-weighted performance measure.

Our results show that a client, when more connected, tends to perform significantly
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better in each component. When more connected, she tends to trade at a more favourable
price and to the direction of future price movements. Quantitatively, we find that the
anticipation component has much larger role in the overall higher performance of clients
when they are more connected. In particular, less than 20% of our baseline effect is
explained by the transaction component, with the anticipation component (0.4bp) being
responsible for the majority of our baseline effect (0.5bp).

So far, our empirical results provide support for Hypotheses 1 and 3. We now turn to
Hypothesis 2, namely, that the relationship between connectivity and trading performance

is stronger when price volatility is higher.

4.2.3 The Role of Macroeconomic Announcements

Since Fleming and Remolona (1999); Brandt and Kavajecz (2004), there has been ample
empirical evidence on the effect of scheduled macroeconomic announcements on govern-
ment bond prices and volatility. Green (2004) finds that the informational role of trading
increases following announcements, indicating that the release of public information raises
the level of information asymmetry in the government bond market. His evidence sug-
gests that some market participants have an advantage at processing the newly arrived
information. Motivated by this empirical evidence and the related theoretical literature
(Pasquariello and Vega, 2007; Kondor, 2012), we now explore whether the relation be-
tween connections and performance is different during the arrival of public information.
Our baseline analysis relies on UK monetary policy announcements and the release of the
consumer price index. Policy announcements include the publication of the quarterly in-
flation report, the policy interest rate decision of the Monetary Policy Committee (MPC)
and the release of the minutes (Table 11).1°16 Out of the 1470 trading days in our sam-
ple, we end up with 196 trading days that coincide with news about the policy interest
rate and inflation. In the spirit of our analysis above, we compute two sets of monthly
performance measures for each of our client: one that is based on all announcement days,
and another based on all other trading days without announcements. Accordingly, we

extend our baseline regression 4.2. and estimate the following model:

15See Gerko and Rey (2017) for further details on the institutional arrangements of the UK and US
monetary policy decision making process.

16Tn Subsection 6.4, we show that our results are robust to using alternative definitions of macroeco-
nomic announcements.
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Figure 3: Performance Regressions over 0-20 day Horizons: Trading Days With and
Without Release of Macroeconomic News

Connection Effects During and Outside Announcement Days
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Notes: the black line plots the estimated 8 coefficients from the regression 4.3 up to 20-day horizon (T" = 20), using the
value weighted performance variable (based on non-announcement days) as the regressand, measured in basis points. The
blue line plots the sum of the estimated coefficients p + 3, representing the effect on announcement days. We include as a
control the natural logarithm of the pound trade volume of each client (“Volume”) and the natural logarithm of the number
of monthly transactions (“Transactions”). To reduce noise, we winsorise the sample at the 1%-level and use month-client
observations that are based on at least 2 transactions in the month. The shaded area denotes the 90% confidence band
associated with the estimated 8 coefficients, It is based on robust standard errors, using two-way clustering at the month
and the client level.

T

itp Ann o ClientConnections;

4,p
(4.3)
+ 8 x ClientConnections;; + X;¢ + o + pts + €itp,

Per formance;, = p x D

where D;‘};‘" is a dummy variable taking value 1 if the performance measure is based
on trading days with macroeconomic announcements and 0 otherwise. The term p is
the coefficient of interest which measures whether connectedness has differential effect
on performance during announcements, compared to non-announcement days. Table 12
and 13 show that the effect of client connections on trading performance is substantially
stronger on trading days of scheduled inflation or interest rate announcements. For
example, the point estimate 0.0032 in Table 12 suggests that the effect of trading with
an additional dealer on the 3-day performance is twice as strong on an announcement
day than on a trading day without announcements, with the difference being highly

statistically significant.
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To assess the persistence of the effect, we gradually increase the trading horizon up
to 20 days (7" = 20), and re-estimate our regression model 4.3. The black line in Figure 3
represents the 20 estimated (s associated with non-announcement days, using the value
weighted performance measure, together with the 90% confidence bands. The blue line
shows the effect of connectedness on announcement days. We find that, at all trading
horizons, the relationship between connections and trading performance is stronger during
macroeconomic announcements than on non-announcement days. This is consistent with

Hypothesis 2.

4.3 Aggregate Connections and the Yield Curve

Having presented evidence on the positive relationship of a client’s connections and her
individual performance, now we turn to the implications of our mechanism to price dis-
covery. Specifically, we test whether time-variation in aggregate client-dealer connections
in the market can explain variation in the level and slope of the yield curve.

To estimate the relationship between day-to-day variation in yields and aggregate
connections, we first construct an aggregate measure of connections defined as the total
number of unique client-dealer connections on a given trading day. We then examine the
relationship between changes in aggregate connections and changes in the absolute value
of the 5-year yield and of the term spread, defined as the difference between the 25-year
and 1-year yields.!”

Results are summarised in Table 17. Our specification draws on the extensive litera-
ture on the relation between price changes and trading volume (Karpoff, 1987; Bessem-
binder and Seguin, 1993; Chan and Fong, 2000; Malinova and Park, 2011). Following this
literature, we also include volume as a control in our regressions.

We find a statistically strong relationship between daily changes in aggregate con-
nections and absolute deviations in yields levels (Top Panel) as well as deviations in the
term spread (Bottom Panel). We find that both connections and volume are significant
when including them separately in the regression, as shown by Columns 1-2 in Table
17. However, most of the explanatory power of volume disappears once we include both
variables in the regression, while connections continue to be strongly significant (Col-
umn 3).'® From a theoretical point of view, this is not surprising as volume more likely

captures large liquidity trades as well as informational trades.

1"We focus on changes in the absolute value of yields, because informationally intensive trading days,
captured by aggregate connections, can coincide with both positive and negative price changes.
18Table 29 in the Appendix shows similar results for the 10-year and 25-year yields as well.
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To show that our result is not mechanically driven by simply more clients being present
in the market on high information days, we include as control the total number of unique
clients (Tauchen and Pitts, 1983). As shown by Column 5, we find that it is, effectively,
the changes in the total number of dealer connections per client (and not the changing
number of clients) that drive day-to-day yield changes. Overall, these results suggest
the aggregate connections are an important conduit by which new (private and public)

information impounds in prices, consistent with Hypothesis 4.

5 Applications

Having established that client connections serve well as a proxy for private information
in dealer markets, one can use this proxy to empirically investigate a number of long-
standing issues in the finance literature.

In this section, we turn our attention to two questions in particular. First, in Subsec-
tion 5.1, we explore the leakage of information from dealers to their preferred clients. In
particular, we present suggestive evidence that dealers learn from their informed clients
and pass this information to their subsidiaries.'®

Second, in Subsection 5.2, we are interested in the the nature of private information
in treasury markets. This is an intriguing topic as this market is often viewed as a market
with little role for private information. We show evidence that information proxied by
connections is partially related to future order-flow, i.e. more connected clients better

predict the order-flow intermediated by the dealers they trade with.

5.1 Information Leakages

In this part, with the help of our specially detailed data set, we investigate the information
leakage from dealers to their preferred clients.

We capture the special relationship between dealers and some of their clients as fol-
lows. For each dealer, we are able to distinguish between trading accounts that perform
a market-making function (trading primarily with clients, executing large number of
transactions, participating in primary auctions) from trading accounts that correspond
to other, client-like arms of the given dealer bank (trading primarily with other dealers,

executing lower number of transactions, e.g. asset-manager arms). We refer to these

Tn a related set of papers, Maggio, Franzoni, Kermani, and Sommavilla (2019); Barbon, Maggio,
Franzoni, and Landier (2017) shows that brokers in corporate bond and stock markets pass on order-flow
information to the clients that they have had a strong trading relationships.
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accounts as the given dealer’s subsidiaries. We then test whether dealers’ subsidiaries
perform better when the given dealer trades with a larger proportion of high-connection
clients.

Separating dealers from their subsidiaries also provides a useful source of variation
to disentangle inventory effects from information effects. That is, focusing on the trades
of dealers (instead of the trades of their subsidiaries) would make it more difficult to
tell whether dealers trade (on the inter-dealer broker market) into the same direction as
their informed clients simply because dealers want to offset these trades thereby reducing
inventory risk or because dealers indeed learn profitable information from their informed
clients. Focusing on dealers’ subsidiaries, instead of dealers, helps us better isolate in-
formational effects from inventory management — an integral part of market making (see
Goldstein and Hotchkiss (2019) and references herein).

To use our connectivity measure to proxy the informativeness of client order flow that

a given dealer faces, we construct the following measure for each dealer ¢ on day t:

Volft

InfSharey = ——r———7,
nfSharei, Voll, + Vol

(5.1)

where Volft and VoliL,t are the trading volume of dealer ¢ with clients whose connectivity
on day t is higher and lower, respectively, than their sample average. Again, we rely purely
on the time-series variation in connectivity when sorting clients, so that half the daily
observations of each client contribute to measure Volfft and the other half of observations
contribute to measure VoliL’t.

We use measure 3.1 to compute the daily trading performance of dealers’ subsidiaries,
SubsidPer formance; ;. To test whether subsidiaries perform better when their dealers
trade with more connected clients, we estimate the following daily panel regression for

each dealer ¢ and day ¢:
SubsidPerformanceZt =B x InfShare; + X1 + a; + iy + €, (5.2)

where o; and p, are firm and time fixed effects; and X;; includes four control variables
such as the number of transactions and trading volume of dealers’ subsidiaries as well
as the dealers. The main coefficient of interest in 5.2 is § which captures the relation
between dealers’ enhanced interaction with high-connection clients and the performance
of dealers’ subsidiaries.

The results in Table 14 show that when a dealer’s clientele goes from low connectivity
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to high-connectivity, then the trading performance of the dealer’s subsidiaries improves
by 1-2 basis points over the 1-2 day horizon. Interestingly, there is no effect at the 0-
day horizon suggesting that we are not simply picking up that dealers’ subsidiaries get
better information about bid-ask spreads; the information they learn is informative about
imminent changes in the yield curve over the coming days. It is worth noting that these
results are not just detecting that larger/better dealers who tend to attract more informed
(and connected) clients might have higher performing subsidiaries: the inclusion of dealer
fixed effects absorbs this type of time-invariant heterogeneity across dealers.

Moreover, it is worth emphasising that we control for dealers’ trading volume as
well, so the estimated [ is not simply picking up that dealers’ increased trading volume
itself (Campbell, Grossman, and Wang 1993; Wang 1994) conveys important information
about yields to dealers’ subsidiaries while potentially being correlated with the quality
of the dealer’s clientele. The composition of dealers’ clientele is indeed the factor that
determines how dealers’ subsidiaries perform (against other dealers), suggesting that
subsidiaries obtain the information that their dealers learn from informed clients.

Two possible concerns with this conclusion are that (i) the information, which in-
creases the profitability of dealers’ subsidiaries, might originate from other dealers that
these clients are connected to, or (ii) it might originate from the subsidiaries themselves.
The information could then be passed on to these clients’ dealers who disseminate it
across their other clients — and this is what regression 5.2 might be picking up.

To reinforce our story, that the information flows from dealers to their subsidiaries and
not the other way around, we perturb our research design by adding two control variables
to regression 5.2. First, we build on measure 5.1 to compute the average informativeness
of all other dealers that the given subsidiary is connected to (excluding the given sub-
sidiary’s own dealer from this average measure). The constructed variable (“InfShare of
OtherDealers”) is aimed to control for the first identification concern. Second, we include
as a control the number of dealer connections of subsidiaries (“Subsid Connections”) to
address the second concern. Table 15 shows that these additional controls are statistically
insignificant and their inclusion in the regression makes little difference to the coefficient
on InfShare;;. We interpret these results that the information is in fact flowing from
dealers to their subsidiaries and not the other way around.

In addition, we relate this analysis to that of Maggio, Franzoni, Kermani, and Som-
mavilla (2019) which focuses on the cross-sectional heterogeneity in the eigenvalue-centrality
of stock-market brokers to study information diffusion. The main premise of their paper

is that more central brokers gather and disseminate more information than less central
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brokers do. This begs the question of whether the eigenvalue-centrality of a dealer in
our application proxies the time-variation in the share of connected clients in the dealer’s
total client base, measured by InfShare;;. To check this, we include the eigenvalue-
centrality of dealers as a control in regression 5.2. Table 16 shows that dealer centrality
is statistically insignificant and including it in the regression makes little difference to the

coefficient on InfShare; ;.

5.2 The Nature of Private Information

In this part, we investigate the nature of private information clients’ connections may
proxy. Our starting point is the empirical literature (Fleming and Remolona 1999; Evans
and Lyons 2002; Brandt and Kavajecz 2004; Menkveld, Sarkar, and van der Wel 2012) on
the role of order flow in driving prices in various dealer markets. This literature observed
that agents who have information about the future order flow in these markets can use
this information profitably.

Motivated by this, we proceed in three steps. First, as presented in Subsection 5.2.1,
we propose a measure of co-movement of the composition of client’s orders with the
future aggregate order flow of a given group of clients. The idea is that whenever this
measure is positive, the client, intentionally or by chance, is effectively front-running that
group of clients. We test whether this measure identifies profitable trades. We indeed
find that whenever the duration composition of a client’s trade is similar to that of all
the other clients in subsequent days, her performance is higher. Second, as presented
in Subsection 5.2.2, we connect our baseline results to order flow information: we show
that whenever a client is more connected, the composition of her trades tend to be more
similar to the group of clients in subsequent days who are served by the same dealer.
We also show that a client who is a regular counterparty of the given dealer can predict
the composition of the order flow better. This suggests that dealers have an important
role in disseminating order flow information towards their own, regular clients. Finally,
as presented in Subsection 5.2.3, we also show that all our findings are stronger for the

group of clients who drive our baseline performance result.

5.2.1 Measuring Co-movement between Client Trades and Future Order
Flow

Our proposed measure aims to capture whether a client trades in the same direction as

other clients in the subsequent trading days. First, we partition all transactions in K
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equal-sized segments based on the modified duration of all traded gilts. We then compute
the net trading position of client i, on day d, in duration segment k, W; 45.2° We then
calculate the cumulative net trading position of group g between days d+ 1 and d+ T in
duration segment k, denoted by W5 1k The identity of group g will play an important
role in section 5.2.2 where we identify the group whose order flow connected clients can
forecast. For now, we set g for the group of all the clients in the market. Our daily

. T .
covariance measure, ¥, 7 is then computed as follows:

\IIT’9—1§:W 1KW Wi 1KWQ 5.3
id — ? i,d,k T E kZ i,d,k d+T,k — ? kz:l d+Tk | - ( : )
=1 =

When \IJZf is high, the given client tends to concentrate her orders in the same segment as
group ¢ in the subsequent T" days. Figure 8 in the Appendix provides a pictorial illustra-
tion of measure 5.3.2! Given this measure, we first check whether it is profitable to guess
right the segments of the yield curve where future demand pressure will be concentrated.
For each client i we partition the trading days into two sets, p € {Low, High}. A day is
in the high (low) set, if \Ifz:;lg for the given day is larger (smaller) than the median in the
full sample. Then we estimate the following regression:

PerformanceT =X Qi,p + 52-,t + €itp; (5-4)

L,t,p

T
2,t,p

is aggregated only over set p of trading days in months ¢ for client i. @;, is a dummy

where Per formance;,  is the version of our baseline performance measure (3.1) which
taking value 1 if the performance measure of client 7 is based on high-covariance trading
days and 0 if it is based on low-covariance days. The term d;; is a client-month fixed
effect. Table 7 summarises the results. Panel A shows the results when the covariance
measure uses the cumulative order flow of the market (¢ = Total) at the 3-day horizon
(columns 1-3) or 5-day horizon (columns 4-6). For both cases, we compute the turnover-
weighted performance measures at the 1-, 3- and 5-day horizons. We find that the trading
performance of a client can be 2-3bp higher on high covariance days, i.e. predicting the
order flow of the market is profitable. Panel B shows the results when the covariance

measure uses the cumulative order flow of the subset of the market that is intermediated

20Clients’ net positions corresponds to their order flow in this market, as client-dealer trades are
initiated by clients.

21The scatter plot in this illustration (bottom panel of Figure 8) can in fact be estimated using our
dataset. Figure 4 below will do exactly that.
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by the dealers that the given client is connected to (¢ = Own). We find that if a client
can predict this subset of the aggregate order flow, it is still profitable with performance

being 1-2bp higher on high covariance days.

5.2.2 Connected Clients Predict the Order Flow

Let us return to our baseline result that the time-variation in a client’s number of connec-
tions is a proxy for her level of private information. In this section, we provide evidence
that this private information is on the duration composition of the future order flow of
certain group of other clients, as measured by our covariance measure 5.3. In this case,
we expect that the covariance measure of a given client in a given month tends to be
higher when this client is more connected. Hence, we compute monthly averages of \IIZ(’ig,

denoted as \I/Zgg to estimate the following panel regression:
\Ifﬂg = ¢ x ClientConnections;; + X + a; + 4 + €iz, (5.5)

where the terms on the right-hand-side are identical to our baseline specification 4.2.

Panel A of Table 8 shows the results for the total order flow (g = Total). While we
see a positive relationship between the time-variation in connections and the duration
decomposition of client’s current trades at that of the aggregate order flow, this relation-
ship is not strong. Instead, in Panel B and C, we decompose aggregate order flow as
follows. We isolate the part of the aggregate order flow that is intermediated through the
dealers which a given client is connected to (¢ = Own) from the part that goes through
all the other dealers that the given client is not connected to (¢ = Non — Own). We
further decompose the Own measure based on whether the given client has a more reg-
ular relationship with a dealer (¢ = Regular), distinguishing it from other client-dealer
connections that are relatively new (¢ = New). We regard a client-dealer connection
regular if the client traded with the given dealer in the current as well as in the previous
month; whereas we regard a connection new if a client traded with the dealer in the
current month but not in the previous month.??

Perhaps the most intriguing finding of this part is in Panel B of Table 8. It de-

composes the aggregate private client flow into the part that is intermediated by those

22Note that, by the additivity of covariance, our measure is additive in the following sense:
cht,Total _ YOZ;Own + YCTt,Nonwan _ YCZ;;REQUZGT + YCZt,New + cht,Nonwan' (56)

/L)

This property helps the interpretation of our results.
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dealers that the given client is connected to (Columns 1-3) in contrast with the order
flow that is channelled through dealers that the client is not connected to (Columns 4-6).
We find that it is the covariance with Own dealer order flow that correlates with the
client’s connectivity, and the effects for Non — Own dealer order flow are economically
and statistically insignificant. Our interpretation is that dealers, intentionally or uninten-
tionally, disseminate information about future orders towards (some of) their clients. We
have little evidence on the exact mechanism. In principle, dealers’ private information
on their clients expected orders in the subsequent days might be revealed accidentally
by the dealers’ quotes. Or it might be that there is an intentional information flow from
dealers to their best clients helping dealers to keep these clients (Maggio, Kermani, and
Song, 2017). Indeed, Panel C shows that higher client connectivity predicts more the
order flow intermediated by Regular dealers and predict less the order flow that goes
through newly connected dealers.

We provide further evidence on the importance of dealers in forecasting future flows,
by using our dataset at a more disaggregated level. First, for each client 7, we compute
the daily net trading position in each duration bucket & (5.3). Second, we compute the
future net trading position (cumulated over the subsequent 7" days) aggregated across all
clients that trade with those dealers who are connected with client ¢ in the given month.
We refer to this as the future flow of Own dealers. We also compute the aggregate future
client flow that is intermediated by those dealers who are not connected with client ¢ in the
given month. We refer to this as the future flow of Non-own dealers. Consistent with the
evidence in Table 8, we expect to find that the relationship between client order flow and
future flow of Own dealers should be higher in those months when the client has higher
level of connectivity. In turn, we do not expect the relationship between client order flow
and future flow Non-own dealers to be different in high and low connectivity months.
Figure 4 shows the estimated regressions slopes from four separate linear regressions.
The top (bottom) row shows the relationship between client flow and future flow of Own
(Non-own) dealers. The right (left) column shows the relationship between the flows
when the client is more (less) connected compared to its own average. We find that client
flows co-move more strongly with Own dealer flows than with Non-own dealer flows,
reflected by the statistically insignificant slope coefficients in the bottom row of Figure
4. Importantly, we find the strongest co-movement between client flows and future Own
dealer flows when clients are more connected. This is shown by the regression coefficient
in the top right panel (0.59) being almost four times larger than the slope in the top left
panel (0.16).
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Figure 4. Contemporaneous Client Order Flow and Future Aggregate Order Flow: the
Roles of Connectivity and Client-Dealer Relations
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Notes: Each panel shows the estimated regression slope (with associated 90% confidence interval) that corresponds to the
relationship between contemporaneous order flow of an individual client i and the aggregate cumulative future order flow of
all clients. The units of observation are daily and duration-specific net trading positions of a given client 7 that are regressed
against daily and duration-specific aggregate cumulative future net trading positions of all clients that are intermediated
by all the dealers that client 4 is connected to (top row) and by all other dealers that client ¢ is not connected to (bottom
row). The left (right) column looks at the flow relationships in those months when client 4 is in the bottom (top) quartile
of client connectedness (using within variation). The axes are measured in £000,000s.

Overall, the results of this and the previous subsections suggest that the nature of pri-
vate information, proxied by client connectivity, is related to the order flow intermediated

by the given client’s dealers.

5.2.3 Variation in Clients’ Performance Sensitivity

The results in this Section suggest that when a client is more connected her trades predict
better the future order flows of his client. But is this behind the higher performance
in this period? To establish a connection to our baseline results, we now exploit the
heterogeneity across clients masked by Figure 2.

For some of our clients there is a stronger co-movement between connections and per-

formance while for others this comovement could be much weaker. Our interpretation
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is that not all clients are in the market to profit from short-term bets based on private
information. In this section, we explore variation in the sensitivity of client’s trading
performance to connections to provide additional evidence to our narrative. In particu-
lar, we enforce the insights that (1) time-variation in connections is a proxy for private
information on the duration composition of future order flows, (2) this information is
disseminated by dealers to their own clients only, (3) regular clients tend to be more the
recipients of this information.

We proceed in two steps. First, we re-estimate our baseline regression (3.1) for each
client separately, and then sort the clients based on the their estimated ( coefficients. We
define a dummy variable, Dfl # which takes value 1 if the client’s estimated 3 is above the
median ("high-f clients’) and takes value 0 otherwise ('low-5 clients’). Second, we extend
the empirical model 5.5, by adding the interaction term DiH fx ClientConnections; to

it, and estimate the following panel-regression:

\Ifﬁg = p X DlHﬁ x ClientConnections; ; (5.7)
+ B x ClientConnections;; + X, + o; + iy + €it.p, .

where p is the coefficient of interest which measures whether the effect of connections on
the covariance measure is higher amongst those clients whose trading performance is more
sensitive to connections (DlH A ). Tables 9-10 confirm that the effect between connections
and the ability to predict the order flow is significantly stronger amongst high-$ clients
compared to low-3 clients. This is true for the aggregate order flow just as well, as for
our decompositions. This group can forecast better the order flow of their own clients
and the effect is stronger for clients who are regular than for those who are new comers

to the particular dealer.

6 Sensitivity Analysis and Further Explorations

6.1 Performance Regressions Using Daily Data

Our baseline results were based on data at monthly frequency. This was to reduce mea-
surement noise and also to avoid oversampling those clients who trade actively, possibly
on most trading days. However, one concern might be that monthly averaging introduces
problems of time aggregation which makes it difficult to accurately measure the dynamics

of client-dealer connections. To address this, we re-estimate most of our regressions on
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daily data. Interestingly, the time-series variation in client connections continues to be
substantial when we go to daily frequency. Table 22 shows that the standard deviation
of connections is about 1.5 when using only the within-variation, i.e. the average client
frequently changes the number of dealers that she trades across trading days.

Results for our performance regressions, presented in Table 23, are similar to our
monthly regression results — though seem less persistent with the connectivity effect peak-
ing at the four-day horizon. In Figure 7, we plot the estimated connectedness coefficients
for longer horizons along with the interaction effects of monetary policy announcements,
corroborating the increased strength of the performance-connectedness relationship dur-
ing the arrival of public information.

We also test at daily frequency whether information about the duration composition of
future market order flow increases performance.?® Table 24 shows that when the duration
composition of the client’s order flow has high covariance with that of the market one day
(Table 25a) or three days (Table 25b) after the client traded, then the client’s short-run
performance increases by 2-3bp. We argued that clients are less likely to predict the total
market order flow than the order flow intermediated by the client’s own dealers. We use
our daily data to test whether such partial but more accessible information about the
order flow still significantly profitable, by changing out dummy variable to G = Own.
Table 25 shows that the estimated coefficients for fp are roughly halved compared to
Table 24, suggesting that predicting the order flow intermediated by the client’s own
dealers is, on average, about half as valuable for making profits than predicting the order
flow of the whole market.

We now connect our results about client performance (Table 23) and about order flow
predictions (24-25), and estimate whether clients can better predict their own dealer’s
order flow on trading days with unusually high connectedness. Unlike in our monthly
specification, note that we define the client’s own dealers with reference to the given
trading day: own dealers are the ones that the client traded with on the day of the
trade as well as during the past 10 trading days. The more accurate measurement of
the timing of client-dealer connections allows us to better separate the time-variation in
connectedness from the formation of client-dealer relationships, thereby assessing whether
client connectedness is part of the information acquisition process or it is merely an

instrument of concealing information.

23To show this, we estimate the daily variant of regression 5.4, Performancegjt =X th + Xt +

o + (it + €5+, where pr (with G = Total) is a dummy taking value 1 if the performance measure of
client ¢ is based on high-covariance trading days and 0 if it is based on low-covariance days (Formula 5.3),
with respect to the total market order flow.
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To assess this, we turn to our covariance-connectedness regressions (5.5). Specifically,
we estimate whether client connectedness predicts the covariance of the client’s order flow
with the whole market. As shown by Panel a of Table 26, we find only weak evidence
for this, consistent with our monthly results. Moreover, as presented in Panel b of Table
26, we estimate whether higher connections predict higher covariance with the order flow
of those dealers that the client traded with on the given trading day as well as during
the preceding 10 trading days (columns 1-3). This is contrasted with the results when
the covariance between the client’s order flow and its dealer’s is based on those dealers
that the client only traded with on the given trading day, but not during the preceding
10 trading days (columns 4-6). The fact that more connected clients cannot predict the
order flow of newly connected dealers (only that of the regular dealers) suggests that
connectedness is not instrumental in the information acquisition process, but it merely

helps transform information into better performance.

6.2 Predicting Changing Yield Curve vs Noise

We also explore whether a client’s T-day performance on a trade can be high because the
client can better predict changes in the shape of the yield curve, or because the client
can better predict changes in the distance of individual gilt yields (pricing error) from an
otherwise unchanged yield curve. We compute the decomposition for each transaction j

as follows:

m (P7)=In (P7) = [In (M7) = I (M°)]+{[In (PT) = In (MT)] + [ (M°) —n (P})]},

Curve—Shift Pricing—Error

(6.1)
where M and M7T are the end of 0-day and T-day prices implied by standard yield curve
models (Nelson and Siegel, 1987; Svensson, 1994; Hu, Pan, and Wang, 2013).

Figure 6 shows the decomposition of our baseline connection effect into the component
of yield curve forecasts and noise forecasts as specified by (6.1). Looking at the two
figures together, there is some evidence that the yield curve component is stronger than
the pricing-error component. Note, that if pricing-errors are not persistent beyond a
day, than the transitional component in (3.2) is expected to be close to the pricing-error

component in (6.1).
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6.3 An Alternative Performance Measure

Our performance measure compares the transaction price with the future market price
of the security. Whether a client liquidates her position at that future price, or holds
on to it, does not influence our measure. That is, our performance measure might not
correspond to realised profits. This is in contrast to the bulk of previous empirical work
on over-the-counter markets which measures performance as the return on dealers’ round-
trip transactions. The reason why we do not follow that approach is that our focus is not
on the performance of dealers — who trade very frequently and tend to finish their day
with small net positions — but on clients. In our sample, clients trade for heterogeneous
reasons. In aggregate, they tend to persistently accumulate positions as they ultimately
purchase most of the issued securities by the DMO. Individually, some trade frequently,
some buy and hold. Some might aim for profit by turning over their portfolio quickly,
others might aim instead to acquire their desired positions at a favourable price. Our
performance measure is neutral to the objective of the client. If the client manages to
buy at a low price or sell at a high price compared to the price in the subsequent period,
we measure that as a high value transaction.

Still, as a robustness test, we construct a second performance measure which mea-
sures realised profit in a given month directly, building on the average-cost-approach of

inventory valuation. In particular, for each client ¢, gilt a, month m, we compute:

Jfa,m P Jfa,m P J{Sa m JiBa m
2552 PiajsQiags 252 PiajpQiasn T -
Riom = |In -3 —In 5 xmin | Y Qiagsy D Qiays |
252 Qiays 252 QiagE 3°=1 jP=1
(6.2)
where J7, ,,, with p = S, B, denote the total number of monthly, gilt-specific sale and buy

transactions, respectively, while P; , j» and @); 4 j» corresponds to the price and quantity
of transaction j”. We then compute the weighted average of R; ., across gilts (using the
client’s monthly trading volume in gilt a as weights) to obtain a realized profit measure
at the client-month level. We then re-estimate our baseline specification with our within-
month realized profit measure on the right hand side.

As the first panel of Table 6 shows, while more connections of a given client are as-
sociated with higher realised profit, this relationship is not significant in the full sample.
However, if we focus on those client-month observations when the given client trades
frequently (i.e. more than the median number of transactions), the relationship is sig-

nificant. Our interpretation is that our within-month realised profit measure captures
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high value trades only for those clients and for those periods when the client trades a lot

within a month.

6.4 Expanding the Definition of Macroeconomic Announcements

We found that the connected-performance relationships is stronger during days that coin-
cide with the announcement of macroeconomic news (Section 4.2.3). We now test whether
this result is robust to expanding the definition of macroeconomic announcements. To
do so, we include additional announcement days in our analysis such as the release of
UK real activity indicators (unemployment, average earnings, manufacturing production
and GDP) as these indicators have been found to strongly affect the government bond
markets in the US (Fleming and Remolona 1999). Moreover, we also add the days of the
release of US FOMC statements and minutes, as recent evidence showed strong effects
of US monetary policy shocks affecting global financial markets (Miranda-Agrippino and
Rey (2015); Gerko and Rey (2017)). This leaves us with 422 trading days that coincide
with macroeconomic announcements. Tables 27-28 show that the results are similar to

our baseline.

6.5 Aggregate Connections and Asymmetric Information

As an addition test, we check whether variation in aggregate connections may explain ag-
gregate measures of asymmetric information as well. Following Jankowitsch, Nashikkar,
and Subrahmanyam (2011); Friewald, Jankowitsch, and Subrahmanyam (2012), we com-
pute for each day the following transaction-based measure that has been shown to be

particularly suitable for OTC markets:

K
Q= J % > (log (pr) — log (p*))” - wy, (6.3)
2k=1Vk o
where K; is the number of observed transactions for all bonds on a given trading day,
pr (for £k = 1,..., K) is the transaction price, p* is the closing mid-price of the corre-
sponding bond, and v, is the size of each trade. Measure 6.3 is the root mean squared
difference between the traded prices and the respective market-wide valuation. Results
are summarised in Table 18 showing a similar picture to Table 17. A 1% increase in total
connections is associated with a 1-1.5% increase in aggregate price dispersion, depending

on the exact regression specification. Again, the effect of connections seems to dominate
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the effects of trading volume and number of clients in the market.

6.6 The Centrality of Dealers

As mentioned above, our first application on information leakages is related to the recent
work Maggio, Franzoni, Kermani, and Sommavilla (2019) which focuses on the hetero-
geneity in the eigenvalue-centrality of stock-market brokers to study information diffusion.
In contrast, our study is distinct as we identify informed transactions by focusing on the
time-variation in the connections of clients (who wish to hide private information). Nev-
ertheless, we revisit their analysis in our dataset and estimate their monthly regression
model (1) for client ¢, dealer j and month ¢:

T

Per formance; ;, = B x DealerCentrality;; + Xj; + iy + pj + €i 1, (6.4)

where Per formcmceat is the performance of client 7 against dealer j in month ¢; X, in-
cludes dealer-specific controls such as trading volume and average trade size as in Maggio,
Franzoni, Kermani, and Sommavilla (2019). Following their level of disaggregation, the
data is now collapsed at the client-dealer-month level, so that we can include a client-time
fixed effect, a;; (compared to the client-month level as in our baseline specification 4.2).
Table 30 in Appendix B.5 shows the results. Qualitatively, we can replicate their
results (Panel A of their Table 3): dealer centrality and volume are positively related
to client performance, while average trade size is negatively related. However, the sta-
tistical significance of dealer centrality substantially weakens once volume is included in
the regression. This might be because the effect they identified for stock market bro-
kers is harder to identify for the UK government bond market where dealers are more
homogeneous, leading to more limited cross-sectional variation in their centrality:.
Finally, we explore whether our measure of client connections captures information
that is independent of that captured by dealer centrality. The unconditional correlation
between the two variables at the client-month-dealer level is -0.03, suggesting that they
are close to being orthogonal to each other. To further check this, we exclude client-time
fixed effects, and include both client connections and dealer centrality in regression 6.4.%
In Table 31 shows the results for the value-weighted performance measure from 0-
to 5-day horizon. In Panel A, we only include dealer centrality in the regression. In

Panel B, we only include client connections. We find that both variables are statistically

24Recall that client connections vary only at the client-time level, hence client-time fixed effects need
excluding.
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significant, depending on the performance horizon. More importantly, as shown in Panel
C, we find that the estimated coefficients are similar, when including both variables in the
same regression, to those obtained when including them in separate regressions (Panel
A-B). This reinforces the point that the informational content of client connections is

distinct from that of dealer centrality.

7 Summary and Conclusion

Our paper provided evidence from the UK government bond market that clients better
predict future price movements when they have more dealer connections compared to
periods when they have fewer connections. This effect is stronger around macroeconomic
announcements. We also showed that innovations in the slope and level of the yield curve
are associated with days of higher aggregate connections in the market. Based on these
findings, we argued that time-variation in client connections serves as an empirical proxy
for time-variation in private information. We also presented two applications using this
proxy. We found evidence suggesting that dealers leak the information deduced from their
client base to their subsidiaries. We also established that part of the private information
identified by connections is related to the maturity structure of the order-flow the given
client’s dealer is receiving in subsequent days.

These results have several implications. First, our results highlight the relevance of
financial network formation to the price discovery process in government bond markets.
While the literature has extensively studied the role of private information and aggregate
order flow in determining yield curve dynamics, we find that a better understanding of
the network structure can sharpen our understanding of the price discovery process in
these markets. Second, while a number of recent papers have studied the core-periphery
structure of OTC markets (primarily focusing on the cross-sectional characteristics of
dealer-client relationships), our results emphasize the dynamic and endogenous nature of
networks. Third, slow trade execution is often regarded as optimal because it minimizes
price impact, thereby helping to hide private information (Kyle, 1985). We find that
trade execution with multiple primary dealers could serve a similar purpose, suggesting

that splitting trades over time and across dealers may be substitutable.

A clear caveat of our approach is that to calculate clients’ connections, a detailed,
transaction level data-set, including the identities of market participants, is required.
As the trend seems to be that such data-sets are becoming increasingly accessible to the
academic community, we expect that our approach opens up new avenues to better under-
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stand the role of private information in financial markets.

References

AFONSO, G., A. KOVNER, AND A. SCHOAR (2014): “Trading partners in the interbank lending market,”
Staff Reports 620, Federal Reserve Bank of New York. 3.3.2

BaBus, A., AND P. KONDOR (2018): “Trading and Information Diffusion in Over-the-Counter Mar-
kets,” Econometrica, 86(5), 1727-1769. 3

Back, K., P. CoLLIN-DUFRESNE, V. Fos, T. L1, AND A. LJUNGQVIST (2018): “Activism, Strategic
Trading, and Liquidity,” Econometrica, 86(4), 1431-1463. 9

Bawpuzzl, P., E. J. ELToN, AND T. C. GREEN (2001): “Economic News and Bond Prices: Evidence
from the U.S. Treasury Market,” The Journal of Financial and Quantitative Analysis, 36(4), 523-543.
1

BARBON, A., M. D. Macclo, F. FRANZONI, AND A. LANDIER (2017): “Brokers and Order Flow
Leakage: Evidence from Fire Sales,” NBER Working Papers 24089, National Bureau of Economic
Research, Inc. 19

BENoOS, E., AND F. ZIKES (2018): “Funding constraints and liquidity in two-tiered OTC markets,”

Journal of Financial Markets. 7

BESSEMBINDER, H., AND P. J. SEGUIN (1993): “Price Volatility, Trading Volume, and Market Depth:
Evidence from Futures Markets,” The Journal of Financial and Quantitative Analysis, 28(1), 21-39.
4.3

BonacicH, P., AND P. LLoyD (2001): “Eigenvector-like measures of centrality for asymmetric rela-
tions,” Social Networks, 23(3), 191 — 201. 10

BouraTov, A., T. HENDERSHOTT, AND D. L1vDAN (2013): “Informed Trading and Portfolio Returns,”
Review of Economic Studies, 80(1), 35-72. 1

Brancaccio, G., D. Li, AND N. SCHURHOFF (2017): “Learning by Trading: The Case of the U.S.

Market for Municipal Bonds,” mimeo. 3

BranDT, M. W., AND K. A. KAVAJECZ (2004): “Price Discovery in the U.S. Treasury Market: The
Impact of Orderflow and Liquidity on the Yield Curve,” Journal of Finance, 59(6), 2623-2654. 1,
4.2.3,5.2

CAMPBELL, J. Y., S. J. GROSSMAN, AND J. WANG (1993): “Trading Volume and Serial Correlation
in Stock Returns,” The Quarterly Journal of Economics, 108(4), 905-939. 5.1

CHAKRAVARTY, S., H. GULEN, AND S. MAYHEW (2004): “Informed Trading in Stock and Option
Markets,” Journal of Finance, 59(3), 1235-1258. 1

37



CHAN, K., AND W.-M. FONG (2000): “Trade size, order imbalance, and the volatility-volume relation,”
Journal of Financial Economics, 57(2), 247-273. 4.3

CHEN, H.-L., N. JEGADEESH, AND R. WERMERS (2000): “The Value of Active Mutual Fund Man-
agement: An Examination of the Stockholdings and Trades of Fund Managers,” Journal of Financial
and Quantitative Analysis, 35(03), 343-368. 14

CoHEN, L., C. MALLOY, AND L. POMORSKI (2012): “Decoding Inside Information,” The Journal of
Finance, 67(3), 1009-1043. 1

COLLIN-DUFRESNE, P.,; AND V. Fos (2015): “Do Prices Reveal the Presence of Informed Trading?,”
Journal of Finance, 70(4), 1555-1582. 1

DMO (2011): “A guide to the roles of the DMO and Primary Dealers in the UK government bond
market,” Discussion paper, Debt Management Office. 2.1

DUARTE, J., AND L. YOUNG (2009): “Why is PIN priced?,” Journal of Financial Economics, 91(2),
119-138. 1

DUFFIE, D., S. MALAMUD, AND G. MANSO (2009): “Information Percolation With Equilibrium Search
Dynamics,” Econometrica, 77(5), 1513-1574. 3

EAsLEY, D., N. M. KIEreER, M. O’HARA, AND J. B. PAPERMAN (1996): “Liquidity, Information, and
Infrequently Traded Stocks,” The Journal of Finance, 51(4), 1405-1436. 1

EAsSLEY, D., AND M. O’HARA (1987): “Price, trade size, and information in securities markets,”
Journal of Financial Economics, 19(1), 69 — 90. 4.2.1

ELTON, EDWIN J, E. A. (1993): “Efficiency with Costly Information: A Reinterpretation of Evidence
from Managed Portfolios,” Review of Financial Studies, 6(1), 1-22. 14

Evans, M., AND R. Lyons (2002): “Order Flow and Exchange Rate Dynamics,” Journal of Political
Economy, 110(1), 170-180. 5.2

FLEMING, M. J., AND E. M. REMOLONA (1999): “Price Formation and Liquidity in the U.S. Treasury
Market: The Response to Public Information,” Journal of Finance, 54(5), 1901-1915. 1, 4.2.3, 5.2,
6.4

FRIEWALD, N., R. JANKOWITSCH, AND M. G. SUBRAHMANYAM (2012): “Illiquidity or credit deteri-
oration: A study of liquidity in the US corporate bond market during financial crises,” Journal of
Financial Economics, 105(1), 18-36. 6.5

GABRIELI, S., AND C.-P. GEORG (2014): “A network view on interbank market freezes,” Discussion
paper. 1

GARLEANU, N., AND L. H. PEDERSEN (2013): “Dynamic Trading with Predictable Returns and Trans-
action Costs,” Journal of Finance, 68(6), 2309-2340. 9

38



GERKO, E., AND H. REY (2017): “Monetary Policy in the Capitals of Capital,” Journal of the European
Economic Association, 15(4), 721-745. 15, 6.4

GLOSTEN, L. R., AND P. R. MiLGROM (1985): “Bid, ask and transaction prices in a specialist market
with heterogeneously informed traders,” Journal of Financial Economics, 14(1), 71-100. 1, 2.2, A

GOLDSTEIN, M. A., AND E. S. HoTcHKISS (2019): “Providing liquidity in an illiquid market: Dealer

behavior in US corporate bonds,” Journal of Financial Economics, Forthcoming. 5.1

GoLrosov, M., G. LORENZONI, AND A. TSYVINSKI (2014): “Decentralized Trading with Private Infor-
mation,” Econometrica, 82(3), 1055-1091. 3

GREEN, T. C. (2004): “Economic News and the Impact of Trading on Bond Prices,” Journal of Finance,
59(3), 1201-1234. 1, 4.2.3

HAGSTROMER, B., AND A. MENKVELD (2019): “Information Revelation in Decentralized Markets,”
The Journal of Finance, (Forthcoming). 4

HeNDERSHOTT, T., D. L1, D. LivDAN, AND S. NORMAN (2017): “Relationship Trading in OTC
Markets,” CEPR Discussion Papers 12472, C.E.P.R. Discussion Papers. 3.3.2

HENDERSHOTT, T., D. LIVvDAN, AND N. SCHURHOFF (2015): “Are institutions informed about news?,”
Journal of Financial Economics, 117(2), 249-287. 1

HoLLIFIELD, B., A. NEKLYUDOV, AND C. SPATT (2017): “Bid-Ask Spreads, Trading Networks, and
the Pricing of Securitizations,” Review of Financial Studies, 30(9), 3048-3085. 1, 3.3.2

HorTACsU, A., AND J. KASTL (2012): “Valuing Dealers’ Informational Advantage: A Study of Cana-
dian Treasury Auctions,” Econometrica, 80(6), 2511-2542. 1

Hu, G. X., J. PaN, AND J. WANG (2013): “Noise as Information for Illiquidity,” The Journal of
Finance, 68(6), 2341-2382. 6.2

JANKOWITSCH, R., A. NASHIKKAR, AND M. G. SUBRAHMANYAM (2011): “Price dispersion in OTC
markets: A new measure of liquidity,” Journal of Banking and Finance, 35(2), 343-357. 6.5

JonnsoN, T. L., AND E. C. So (2018): “A Simple Multimarket Measure of Information Asymmetry,”
Management Science, 64(3), 1055-1080. 1

KACPERCZYK, M., AND E. PAGNOTTA (2019): “Chasing Private Information,” Review of Financial
Studies, Forthcoming. 2

KACPERCZYK, M., C. SIALM, AND L. ZHENG (2005): “On the Industry Concentration of Actively
Managed Equity Mutual Funds,” Journal of Finance, 60(4), 1983-2011. 14

KARPOFF, J. (1987): “The Relation between Price Changes and Trading Volume: A Survey,” Journal
of Financial and Quantitative Analysis, 22(01), 109-126. 4.3

39



KONDOR, P. (2012): “The More We Know about the Fundamental, the Less We Agree on the Price,”
Review of Economic Studies, 79(3), 1175-1207. 4.2.3

KYLE, A. (1985): “Continuous Auctions and Insider Trading,” Econometrica, 53(6), 1315-35. 1, 2.2, 9,
7

L1, D., AND N. SCHURHOFF (2019): “Dealer Networks,” The Journal of Finance, 74(1), 91-144. 1

Macacio, M. D., F. FRANZONI, A. KERMANI, AND C. SOMMAVILLA (2019): “The relevance of broker

networks for information diffusion in the stock market,” Journal of Financial Economics. 1, 3.3.1,
4.2.1, 19, 5.1, 6.6, 6.6, 16, 77

Maccio, M. D., A. KERMANI, AND Z. SONG (2017): “The value of trading relations in turbulent
times,” Journal of Financial Economics, 124(2), 266 — 284. 10, 3.3.2, 5.2.2

MarLiNovA, K., AND A. PARK (2011): “Trading Volume in Dealer Markets,” Journal of Financial and
Quantitative Analysis, 45(06), 1447-1484. 4.3

Mascio, R. D., A. LiNEs, AND N. Y. NaIk (2017): “Alpha Decay,” mimeo. 9

MENKVELD, A., A. SARKAR, AND M. VAN DER WEL (2012): “Customer Order Flow, Intermediaries,

and Discovery of the Equilibrium Risk-Free Rate,” Journal of Financial and Quantitative Analysis,
47(04), 821-849. 5.2

MERRICK, J., N. Y. Naik, AND P. K. YAaDAvV (2005): “Strategic trading behavior and price distortion
in a manipulated market: anatomy of a squeeze,” Journal of Financial Economics, 77(1), 171-218.
4.2.1

MEULBROEK, L. K. (1992): “An Empirical Analysis of Illegal Insider Trading,” Journal of Finance,
47(5), 1661-99. 2

MIRANDA-AGRIPPINO, S.; AND H. REY (2015): “US Monetary Policy and the Global Financial Cycle,”
NBER Working Papers 21722, National Bureau of Economic Research, Inc. 6.4

NELSON, C. R., AND A. F. SIEGEL (1987): “Parsimonious Modeling of Yield Curves,” The Journal of
Business, 60(4), 473-489. 6.2

PASQUARIELLO, P., AND C. VEGA (2007): “Informed and Strategic Order Flow in the Bond Markets,”
Review of Financial Studies, 20(6), 1975-2019. 1, 4.2.3

RorL, R., E. SCHWARTZ, AND A. SUBRAHMANYAM (2010): “O/S: The relative trading activity in

options and stock,” Journal of Financial Economics, 96(1), 1-17. 1

SVENSSON, L. E. (1994): “Estimating and Interpreting Forward Interest Rates: Sweden 1992 - 1994,”
NBER Working Papers 4871, National Bureau of Economic Research, Inc. 6.2

TAUCHEN, G., AND M. PrrTs (1983): “The Price Variability-Volume Relationship on Speculative
Markets,” Econometrica, 51(2), 485-505. 4.3

40



VALSETH, S. (2013): “Price discovery in government bond markets,” Journal of Financial Markets,
16(1), 127-151. 1

WANG, J. (1994): “A Model of Competitive Stock Trading Volume,” Journal of Political Economy,
102(1), 127-168. 5.1

41



8 Figures and Tables

8.1 Summary Statistics

Figure 5: Time-series and Cross-sectional Variation in Connectivity

Mean First-order Connections in the Cross-section
Mean = 4.66; Median = 3.67; 90-10 range= 7.45; sd = 3.26
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Notes: these figures summarize the time-series and cross-sectional variation in our first-order (left column) and eigenvalue-
centrality (right column) measures. The top row plots the distribution of mean client connectedness. To construct the
bottom row, we first run a panel regression to purge out client and month fixed effects (Connections; s = o; + pt + €4,¢),

and plot the distribution of the residuals (e;,;).
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Table 2: Summary Statistics — Month-Client Level

(a) All Clients
(1) (2) (3) (4) (5) (6)

Mean  Median pl0 p90 sd N
First Order Connection 5.434 4 1 12 4.086 21,170
Eigenvalue-centrality 0.0275  0.0230 0.00483 0.0588 0.0206 21,170
Transaction Number 86.70 19 4 184 274.8 21,170
log(Volume) 17.29 17.50 13.40 20.82  2.821 21,170

Average Monthly Duration  8.621 8.288 3.379 14.03  4.232 21,170

(b) Well Connected vs Less Connected Clients [Across-Client Variation]

Below Median Connections Above Median Connections Diff.

Mean Median Mean Median t-stat
5-day Weighted Performance -0.0591 0 1.084 0.794 -4.40%F*
5-day Unweighted Performance -0.396 -0.0253 1.206 0.888 -3.05%%*
3-day Weighted Performance -0.591 -0.235 0.696 0.476 -3.25%%*
3-day Unweighted Performance -1.020 -0.502 0.661 0.418 -2.09%*

(c¢) Well Connected vs Less Connected Months [Within-Client Variation]

Below Median Connections Above Median Connections Diff.

Mean Median Mean Median t-stat
5-day Weighted Performance -0.0909 0.297 1.445 0.682 -2 TTH**
5-day Unweighted Performance -0.224 0.363 1.326 0.624 -2.98%%*
3-day Weighted Performance -0.473 -3.69e-07 0.828 0.424 -3.027%**
3-day Unweighted Performance  -0.648 -0.0521 0.449 0.221 -2 THHK

Notes: This table reports summary statistics for our baseline sample, covering 2011m10-2017m6, that is collapsed at
the month-client level. Panel A reports summary statistics for all clients. Panel B and C report summary statistics on
unweighted and volume-weighted performance measures at the 3-day and 5-day horizons, measured in basis points. Panel
B differentiates between more connected and less connected clients by placing clients, in each month, into two groups based
on whether their first-order centrality measure is below or above the median in the given month. Panel C places each
client observation into two groups based on the within-variation of connections, i.e. depending on whether the client’s
first-order centrality measure is below or above the client’s own median centrality measure based on the whole sample. The
last column in Panel B and C reports the t-statistics associated with the test of whether performance is different for low
and high connectivity clients (Panel B) and for low and high connectivity months (Panel C). Asterisks denote significance
levels (* p<0.1, ** p<0.05, *** p<0.01).
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8.2 Baseline Results

Table 3: Client Connections and Trading Performance: Baseline Results

M @) @) 1) )
1-day 2-day 3-day 4-day 5-day
Client 0.0019*  0.0033***  0.0039***  0.0048%**  0.0051***
Connections  (1.82) (2.66) (2.78) (2.74) (2.86)
-0.0004 0.0004 0.0003 -0.0013 -0.0018
Volume
(-0.24) (0.17) (0.11) (-0.43) (-0.51)
Tran. 0.0031 0.0005 -0.0023 -0.0049 -0.0041
(1.11) (0.12) (-0.53) (-0.95) (-0.64)
N 20839 20839 20839 20839 20839
R? 0.037 0.039 0.036 0.034 0.036
Time FE Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes
(a) Turnover-weighted Trading Performance
(1) (2) 3) (4) (5)
1-day 2-day 3-day 4-day 5-day
Client 0.0019*  0.0032*** 0.0033**  0.0046***  0.0051***
Connections (1.97) (2.76) (2.25) (2.75) (2.97)
-0.0011 0.0014 0.0028 0.0019 0.0007
Volume
(-0.64) (0.63) (1.06) (0.70) (0.21)
Tran. 0.0012 -0.0037 -0.0059 -0.0074 -0.0055
(0.37) (-0.94) (-1.34) (-1.54) (-1.02)
N 20839 20839 20839 20839 20839
R? 0.051 0.047 0.044 0.039 0.039
Time FE Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes

(b) Unweighted Trading Performance

Notes: this table regresses the value-weighted (panel A) and unweighted (panel B) trading performance at different time
horizons on client connections (4.2). The transaction-level data is collapsed at the client-month level. The performance
measures are in %-points. We include as a control the natural logarithm of the pound trade volume of each client (“Volume”)
and the natural logarithm of the number of monthly transactions (“Tran.”). To reduce noise, we winsorise the sample at
the 1%-level and use month-client observations that are based on at least 2 transactions in the month. T-statistics in
parentheses are based on robust standard errors, using two-way clustering at the month and the client level. Asterisks
denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table 5: Client Connections and the 5-day Performance: Transaction vs Anticipation

Effect
M ) ) @) &)
Baseline  Transaction [Id] Anticip. [Id] Transaction [D]  Anticip. [D]
Client 0.0051*** 0.0005 0.0044** 0.0011** 0.0037**
Connections (2.86) (1.54) (2.56) (2.28) (2.16)
-0.0018 -0.0006 -0.0012 -0.0014 -0.0004
Volume
(-0.51) (-1.00) (-0.32) (-1.57) (-0.10)
Tran. -0.0041 0.0005 -0.0042 -0.0007 -0.0028
(-0.64) (0.56) (-0.66) (-0.50) (-0.45)
N 20839 20839 20839 20839 20839
R? 0.036 0.082 0.034 0.073 0.034
Time FE Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes
(a) Turnover-weighted Trading Performance
(1) (2) (3) (4) (5)
Baseline  Transaction [Id] Anticip. [Id] Transaction [D]  Anticip. [D]
Client 0.0051*** 0.0008** 0.0043** 0.0012%*** 0.0037**
Connections (2.97) (2.39) (2.54) (2.74) (2.28)
0.0007 -0.0006 0.0012 -0.0012 0.0017
Volume
(0.21) (-1.11) (0.38) (-1.56) (0.54)
Tran. -0.0055 0.0004 -0.0058 -0.0003 -0.0052
(-1.02) (0.39) (-1.08) (-0.19) (-0.98)
N 20839 20839 20839 20839 20839
R? 0.039 0.143 0.035 0.116 0.034
Time FE Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes

(b) Unweighted Trading Performance

Notes: this table regresses the value-weighted (panel A) and unweighted (panel B) trading performance at the 5-day
horizon horizons on client connections (4.2). The decomposition is based on 3.2. The results in Columns (2)-(3) are based
on the average transaction price P that uses the trades (for the given gilt) in a 3-hour window within the trading day.
The results in Columns (4)-(5) are based on P being the average transaction price of all trades in the given trading day.
The transaction-level data is collapsed at the client-month level. We include as a control the natural logarithm of the
pound trade volume of each client and the natural logarithm of the number of monthly transactions. To reduce noise, we
winsorise the sample at the 1%-level and use month-client observations that are based on at least 2 transactions in the
month. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the month and the
client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table 6: Client Connections and Realised Performance

(1) (2)

Full Sample High Transaction Months

Client 0.0037 0.0058**
Connections (1.36) (2.03)

-0.0017 -0.0034
Volume

(-0.17) (-0.30)
Tran. -0.0032 -0.0077

(-0.63) (-1.02)
N 15242 9721
R? 0.059 0.073
Time FE Yes Yes
Client FE Yes Yes

Notes: this table regresses the realised trading performance (6.2) on connections. The transaction-level data is collapsed
at the client-month level. We include as a control the natural logarithm of the pound trade volume of each client and the
natural logarithm of the number of monthly transactions. To reduce noise, we winsorise the sample at the 1%-level and
use month-client observations that are based on at least 2 transactions in the month. T-statistics in parentheses are based
on robust standard errors, using two-way clustering at the month and the client level. Asterisks denote significance levels

(* p<0.1, ** p<0.05, *** p<0.01).
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Figure 6: Decomposing the Baseline Performance into Yield Curve Shifting and Changing
Noise Effects

(a) Decomposing Turnover Weighted Performance
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(b) Decomposing Unweighted Performance
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Notes: this figure plots the estimated 3 coefficients from variants of our baseline regression 4.2, where we use three measures
of performance according to 6.1: (i) the baseline performance measure, (ii) the yield-curve shift component, and (iii) the
noise component. We estimate the regression up to 20-day horizon (7' = 20), using the turnover weighted (unweighted)
performance variable as the regressand in panel A (panel B). The performance measure is in %. We include as a control
the natural logarithm of the pound trade volume of each client and the natural logarithm of the number of monthly
transactions. To reduce noise, we winsorise the sample at the 1%-level and use month-client observations that are based
on at least 2 transactions in the month. The shaded area denotes the 90% confidence band, It is based on robust standard
errors, using two-way clustering at the month and the client level.
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8.3 Connectivity and Predicting the Order Flow

Table 7: Trading Performance on High and Low Covariance Days

3-day Covariance 5-day Covariance
1-day Perf  3-day Perf  5-day Perf 1-day Perf 3-day Perf 5-day Perf
5y 0.0368*** 0.0207** 0.0001 0.0354*** 0.0299** 0.0156
(4.70) (2.26) (0.01) (3.05) (2.38) (1.14)
N 35130 34944 34770 35130 34944 34770
R? 0.520 0.503 0.501 0.523 0.512 0.502

(a) Covariance with the Total Order Flow

3-day Covariance 5-day Covariance
1-day Perf  3-day Perf 5-day Perf 1-day Perf 3-day Perf 5-day Perf
y 0.0189*** 0.0136** 0.0034 0.0162** 0.0169** 0.0143*

(3.95) (2.33) (0.51) (2.41) (2.11) (1.69)
N 34346 34300 34198 34346 34300 34198
R? 0.520 0.508 0.495 0.529 0.509 0.500

(b) Covariance with the Order Flow of Own GEMMs

Notes: this table regresses the turnover-weighted trading performance at different time horizons on a dummy taking value
1 if the performance measure is based on high-covariance trades and 0 if it is based on low-covariance days (5.4). The
two panels differ in terms of how the covariance is computed: Panel (a) computes the covariance with the total order flow
(g = Total); Panel (b) computes the covariance with the aggregate order flow intermediated by the client’s own GEMMs
(g = Own). The transaction-level data is collapsed at the client-month level. The performance measures are in percentage
points. We winsorise the sample at the 1%-level and use month-client observations that are based on at least 2 transactions
in the month. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the month and
the client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table 8: Client Connectivity and Covariance with the Aggregate Order Flow

1-Day 3-Day 5-Day

Client 0.0062* 0.0021 -0.0007
Connections (1.68) (0.48) (-0.16)

-0.0083 -0.0076 -0.0031
Volume

(-1.04)  (-0.93)  (-0.36)

0.0132 0.0283** 0.0226
Tran.

(0.99) (2.03) (1.59)
N 20289 20284 20279
R? 0.033 0.031 0.028

Time/Client FE ~ Yes/Yes  Yes/Yes  Yes/Yes
(a) Total Client Order Flow

Own GEMMSs’ Order Flow Rest of GEMMs’ Order Flow

1-Day 3-Day 5-Day 1-Day 3-Day 5-Day

Client 0.0109**  0.0109**  0.0111%** 0.0027 0.0003 -0.0040
Connections (2.22) (2.21) (2.23) (0.56) (0.07) (-0.89)

-0.0048 -0.0126 -0.0083 -0.0085  -0.0143*  -0.0053

Volume (0.48)  (-1.22)  (-0.85)  (-1.00)  (-1.79)  (-0.62)
Tran. 0.0226 0.0201 0.0086 0.0071 0.0295** 0.0192

(1.50) (1.17) (0.56) (0.47) (2.26) (1.53)
N 18032 18020 18926 18932 18020 18926
R? 0.036 0.032 0.033 0031 0034 0031

Time/Client FE ~ Yes/Yes  Yes/Yes  Yes/Yes  Yes/Yes  Yes/Yes  Yes/Yes
(b) Total Client Order Flow via Own GEMMS vs Non-own GEMMs

Regular Client-GEMM Connections New Client-GEMM Connections

1-Day 3-Day 5-Day 1-Day 3-Day 5-Day
Client 0.0078*%  0.0125%* 0.0085* 0.0069* -0.0003 0.0071
Connections (1.71) (2.60) (1.81) (1.73) (-0.08) (1.65)

0.0041 0.0020 0.0036 0.0016 -0.0093 -0.0139
Volume

(0.52) (0.25) (0.41) (0.16) (-0.97) (-1.43)
Traw. 0.0114 0.0007 -0.0054 0.0033 0.0265* 0.0223

(0.81) (0.05) (-0.38) (0.23) (1.77) (1.51)
N 18932 18929 18926 18932 18929 18926
R? 0.037 0.033 0.033 0.028 0.028 0.030

Time/Client FE  Yes/Yes  Yes/Yes Yes/Yes Yes/Yes  Yes/Yes  Yes/Yes
(c) Total Client Order Flow via Own GEMMS: Regular vs New Connections

Notes: this table regresses different versions of the covariance measure 5.3 on our connectivity measure and controls (5.5).
The transaction-level data is collapsed at the client-month level. The performance measures are in basis points. In Panel (a)
the outcome variable is the client’s covariance with the aggregate client order flow in the market. In Panel (b) the outcome
variable is the client’s covariance with the aggregate order flow intermediated by the dealers that the client is connected
to (columns 1-3), and by all other dealers (columns 4-6). In Panel (c), the outcome variable is the client’s covariance with
the aggregate order flow intermediated by the dealers that the client is regularly trades with (columns 1-3) and by all
other dealers that the client trades with in the given month but not in the previous month. We include as a control the
natural logarithm of the pound trade volume of each client (Volume”) and the natural logarithm of the number of monthly
transactions (“Tran.”). To reduce noise, we winsorise the sélgple at the 1%-level and use month-client observations that
are based on at least 2 transactions in the month. T-statistics in parentheses are based on robust standard errors, using
two-way clustering at the month and the client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).



Table 9: Client Connectivity and Covariance with the Aggregate Order Flow: The Role
of High Performance Sensitivity Clients

Total Market Order Flow
1-Day 3-Day 5-Day
Connections -0.0055 -0.0036 -0.0048
(-0.96) (-0.56) (-0.83)
ConnectionsxDé’I 0.0166***  0.0071 0.0030
(4.04) (1.54) (0.57)
-0.0086 -0.0077 -0.0032

Volume

(-1.08) (-0.94) (-0.37)

0.0134 0.0284** 0.0227
Tran.

(1.02) (2.05) (1.59)
N 20289 20284 20279
R? 0.034 0.031 0.028
Time FE Yes Yes Yes
Client FE Yes Yes Yes

Notes: this table regresses the covariance measure 5.3 (with the aggregate market order flow) on our connectivity measure
interacted with a dummy indicating high-3 clients as well as other controls (5.7). The transaction-level data is collapsed at
the client-month level. The performance measures are in basis points. We include as a control the natural logarithm of the
pound trade volume of each client (“Volume”) and the natural logarithm of the number of monthly transactions (“Tran.”).
To reduce noise, we winsorise the sample at the 1%-level and use month-client observations that are based on at least 2
transactions in the month. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the
month and the client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, ¥*** p<0.01).
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Table 10: Client Connectivity and Covariance with the Aggregate Order Flow: The Role
of High Performance Sensitivity Clients

Own GEMMSs’ Order Flow Rest of GEMMs’ Order Flow
1-Day 3-Day 5-Day 1-Day 3-Day 5-Day
Connections -0.0026 0.0004 0.0016 -0.0025 -0.0042 -0.0081
(-0.37) (0.06) (0.25) (-0.42) (-0.63) (-1.34)
Connectionsng 0.0230***  0.0204***  0.0197***  0.0073 0.0044 -0.0003
(4.68) (3.52) (3.22) (1.36) (0.94) (-0.07)
-0.0050 -0.0128 -0.0085 -0.0086  -0.0144*  -0.0054
Volume
(-0.51) (-1.24) (-0.86) (-1.01) (-1.81) (-0.63)
Tran. 0.0230 0.0203 0.0089 0.0072  0.0296**  0.0193
(1.53) (1.20) (0.58) (0.48) (2.28) (1.54)
N 18932 18929 18926 18932 18929 18926
R? 0.037 0.032 0.034 0.031 0.034 0.031
Time FE Yes Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes Yes
(a) Total Client Order Flow via Own GEMMS vs Non-own GEMMs
Regular Client-GEMM Connections New Client-GEMM Connections
1-Day 3-Day 5-Day 1-Day 3-Day 5-Day
Connections -0.0037 0.0041 -0.0005 0.0005 -0.0081 0.0027
(-0.50) (0.61) (-0.07) (0.10) (-1.62) (0.52)
ConnectionsxDé{ 0.0182***  0.0201***  0.0165***  0.0127** 0.0067 0.0110%*
(4.09) (3.53) (3.09) (2.38) (1.12) (1.69)
0.0039 0.0019 0.0034 0.0015 -0.0095 -0.0140
Volume
(0.49) (0.23) (0.39) (0.15) (-0.98) (-1.43)
Traw. 0.0117 0.0010 -0.0052 0.0034 0.0267* 0.0224
(0.83) (0.07) (-0.36) (0.24) (1.79) (1.53)
N 18932 18929 18926 18932 18929 18926
R? 0.038 0.033 0.033 0.028 0.028 0.030
Time FE Yes Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes Yes

(b) Total Client Order Flow via Own GEMMS: Regular vs New Connections

Notes: this table the covariance measure 5.3 on our connectivity measure interacted with a dummy (Dg) indicating high-5

clients as well as other controls (5.7). The transaction-level data is collapsed at the client-month level. In Panel (a) the
outcome variable is the client’s covariance with the aggregate order flow intermediated by the dealers that the client is
connected to (columns 1-3), and by all other dealers (columns 4-6). In Panel (b), the outcome variable is the client’s
covariance with the aggregate order flow intermediated by the dealers that the client is regularly trades with (columns 1-3)
and by all other dealers that the client trades with in the given month but not in the previous month. The performance
measures are in basis points. We include as a control the natural logarithm of the pound trade volume of each client
(“Volume”) and the natural logarithm of the number of monthly transactions (“Tran.”). To reduce noise, we winsorise
the sample at the 1%-level and use month-client observations that are based on at least 2 transactions in the month.
T-statistics in parentheses are based on robust standard errors, using two-way clustering at the month and the client level.
Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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8.4 Macroeconomic Announcements

Table 11: Economic Announcements

Cumulated Number of
Announcement Source

Announcement Days

Panel A: Core Announcements

UK Inflation Report Bank of England

UK MPC Minutes Bank of England 127
UK MPC Decision Bank of England

UK Inflation Rate ONS 196

Panel B: Additional Announcements

UK Earnings/Unemployment ONS

UK Manufacturing ONS 356
UK GDP ONS

US FOMC Minutes Federal Reserve 499
US FOMC Statement Federal Reserve

Notes: The table lists the major macroeconomic announcements that our analysis focuses on. Panel A lists the announce-
ments related to UK nominal variables that we use for our benchmark analysis. Panel B includes additional announcements
related to UK real variables and US monetary policy decisions. The third column denotes the cumulated number of trading
days in our sample that coincide with macroeconomic announcements. In total, our sample includes 1470 trading days.

Table 12: Turnover-weighted Performance: Trading Days With and Without Inflation &
Monetary Policy News

1-day 2-day 3-day 4-day 5-day
Connections 0.0018*  0.0030** 0.0030* 0.0047**  0.0043**

(1.67) (2.09) (1.84) (2.47) (2.04)
Connectionsx AN N’ 0.0011 0.0016* 0.0032***  0.0030** 0.0026*

(1.66) (1.98) (3.30) (2.49) (1.71)

0.0013 0.0023 0.0038 0.0026 0.0017
Volume

(0.71) (1.01) (1.36) (0.90) (0.48)
Tran. 0.0003 -0.0023 -0.0082*  -0.0108** -0.0067

(0.10) (-0.51) (-1.68) (-2.05) (-1.12)
N 34483 34483 34483 34483 34483
R? 0.025 0.026 0.024 0.023 0.023
Time FE Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes

Notes: this table regresses the value-weighted trading performance at different time horizons on client connections and
connections interacted with a dummy that takes value 1 when the trading days coincide macroeconomic announcements.
The transaction-level data is collapsed at the client-month-dummy level, i.e. for each month and each client we compute
two sets of performance measures and controls, one set based on announcements days the other set based on trading days
without announcements. The performance measures are in basis points. We include as a control the natural logarithm
of the pound trade volume of each client (“Volume”) and the natural logarithm of the number of monthly transactions
(“Tran.”). To reduce noise, we winsorise the sample at the 1%-level and use month-client observations that are based on at
least 2 transactions in the month. T-statistics in parentheses are based on robust standard errors, using two-way clustering
at the month and the client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table 13: Turnover-weighted Performance: Trading Days With and Without Inflation &
Monetary Policy News

1-day 2-day 3-day 4-day 5-day

BANN 0.0011  0.0015*  0.0025**  0.0024*  0.0022
(1.62) (1.77) (2.29) (1.91) (1.44)
N 27174 27174 27174 27174 27174
R? 0.503 0.509 0.516 0.520 0.521
Client-Time FE Yes Yes Yes Yes Yes

Notes: this table regresses the value-weighted trading performance at different time horizons on client connections and
connections interacted with a dummy that takes value 1 when the trading days coincide macroeconomic announcements.
The transaction-level data is collapsed at the client-month-dummy level, i.e. for each month and each client we compute
two sets of performance measures, one set based on announcements days the other set based on trading days without
announcements. The performance measures are in basis points. We include as a control the natural logarithm of the
pound trade volume of each client (“Volume”) and the natural logarithm of the number of monthly transactions (“Tran.”).
To reduce noise, we winsorise the sample at the 1%-level and use month-client observations that are based on at least 2
transactions in the month. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the
month and the client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).

8.5 Dealers’ Subsidiaries

Table 14: Dealers’ Informed Clientele and the Performance of Dealers’ Subsidiaries: Base-
line

0-day 1-day 2-day 3-day
-0.0012 0.0155*%*  0.0231** 0.0191
InfShare
(-0.28) (2.69) (2.35) (1.43)
-0.0015 -0.0051* -0.0026 0.0007
DealerVolume
(-1.18) (-2.03) (-0.71) (0.15)
0.0017 0.0084 0.0005 -0.0024
DealerTran.
(0.72) (1.54) (0.06) (-0.28)
. -0.0019*  -0.0033* -0.0013 -0.0019
Subsid Volume
(-2.04) (-1.99) (-0.58) (-0.75)
. -0.0005 0.0045%* 0.0020 0.0001
SubsidTran.
(-0.33) (1.96) (0.72) (0.01)
N 20950 20950 20950 20950
R? 0.072 0.075 0.075 0.074
Time FE Yes Yes Yes Yes
Client FE Yes Yes Yes Yes

Notes: this table shows the results for regression 5.2, which regresses the value-weighted trading performance of dealers’
subsidiaries at different time horizons on our informativeness measure (5.1). The transaction-level data is collapsed at the
firm-day level. The performance measures are in %-points. We include as controls the natural logarithm of the pound
trade volume of dealers (“DealerVolume”) and subsidiaries (“SsubsidVolume”) the natural logarithm of the number of daily
transactions of dealers (“DealerTran.”) and subsidiaries (“SubsidTran.”). To reduce noise, we winsorise the sample at the
1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and the
client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table 15: Dealers’ Informed Clientele and the Performance of Dealers’ Subsidiaries:
Adding More Controls

0-day 1-day 2-day 3-day
-0.0016 ~ 0.0153**  0.0219**  0.0171
InfShare
(-0.36)  (2.72) (2.12)  (1.24)
Subsid -0.0000 -0.0006 0.0001 0.0021
Connections (-0.05) (-0.42) (0.07) (0.94)
InfShare of -0.0064 -0.0028 -0.0224 -0.0390

OtherDealers (-0.75) (-0.17) (-0.77) (-1.16)
-0.0015 -0.0051* -0.0026 0.0008

DealerVol
CHOTYOIME " (118)  (204)  (-0.70)  (0.17)
0.0017 0.0084 0.0005 -0.0022
DealerTran.
(0.72) (1.54) (0.07) (-0.26)
-0.0020*  -0.0034* -0.001 -0.001
SubsidVolume 0.0020 0.003 0.0013 0.0019
(-2.06) (-2.01) (-0.59) (-0.75)
. -0.0005 0.0051* 0.0019 -0.0019
SubsidTran.
(-0.29) (2.09) (0.67) (-0.43)
N 20950 20950 20950 20950
R? 0.072 0.075 0.075 0.074
Time FE Yes Yes Yes Yes
Client FE Yes Yes Yes Yes

Notes: this table shows the results for regression 5.2, which regresses the value-weighted trading performance of dealers’
subsidiaries at different time horizons on our informativeness measure (5.1). The transaction-level data is collapsed at
the firm-day level. The performance measures are in %-points. We include as controls the connections of the subsidiary
(“Subsid Connections”), the informativeness of client order flow of other dealers that the subsidiary is connected to (“In-
fShare of OtherDealers”), the natural logarithm of the pound trade volume of dealers (“DealerVolume”) and subsidiaries
(“SubsidVolume”) the natural logarithm of the number of daily transactions of dealers (“DealerTran.”) and subsidiaries
(“SubsidTran.”). To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust
standard errors, using two-way clustering at the day and the client level. Asterisks denote significance levels (* p<0.1, **
p<0.05, *** p<0.01).
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Table 16: Dealers’ Informed Clientele and the Performance of Dealers’ Subsidiaries: Con-
trolling for Dealers’ Eigenvalue Centrality

0-day 1-day 2-day 3-day
-0.0011 0.0157**  0.0234**  0.0192
InfShare
(-0.26) (2.71) (2.37) (1.44)
Dealer -0.0489 -0.0765 -0.1194 -0.0524

Eig. Centrality  (-1.37) (-1.15) (-1.51) (-0.46)
-0.0013 -0.0049* -0.0023 0.0008

DealerVol
CHETYOMIE o) ((1.95)  (0.64)  (0.18)
0.0031 0.0105* 0.0038 -0.0009
DealerTran.
(1.53) (2.05) (0.46)  (-0.10)
i -0.0019*  -0.0033* -0.0011 -0.0018
Subsid Volume
(-2.01) (-1.97) (-0.54) (-0.73)
. -0.0000 0.0053** 0.0033 0.0006
SubsidTran.
(-0.00) (2.36) (0.99) (0.16)
N 20950 20950 20950 20950
R? 0.0719 0.0753 0.0754 0.0743
Time FE Yes Yes Yes Yes
Client FE Yes Yes Yes Yes

Notes: this table shows the results for regression 5.2, which regresses the value-weighted trading performance of dealers’
subsidiaries at different time horizons on our informativeness measure (5.1). The transaction-level data is collapsed at
the firm-day level. The performance measures are in %-points. We include as controls the eigenvalue centrality of dealers
(“Dealer Eig. Centrality”) as in Maggio, Franzoni, Kermani, and Sommavilla (2019), the natural logarithm of the pound
trade volume of dealers (“DealerVolume”) and subsidiaries (“SubsidVolume”) the natural logarithm of the number of daily
transactions of dealers (“DealerTran.”) and subsidiaries (“SubsidTran.”). To reduce noise, we winsorise the sample at the
1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and the
client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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8.6 Aggregate Connections and the Yield Curve

Table 17: Daily Changes in Yields and Aggregate Connections

|AYield;Y |
(1) (2) 3) 4)
. 0.0277%** 0.0233%*F*%  0.0234**
Alog (Connections;)
(7.27) (4.17) (2.26)
0.0100%**  0.0025 0.0025
Alog (Volumey)
(6.11) (1.07) (1.06)
-0.0001
Alog (NumO fClients;) (:0.01)
N 1449 1449 1449 1449
R? 0.040 0.030 0.041 0.041
|A (Yield?Y — Yield})|
(1) (2) 3) 4)
0.0209*** 0.0173%**  0.0236***
Alog (Connections;)
(5.04) (3.07) (2.65)
0.0076***  0.0020 0.0019
Alog (Volumey)
(4.84) (1.00) (0.92)
-0.0082
Alog (NumO fClients;) (:0.98)
N 1449 1449 1449 1449
R? 0.072 0.064 0.072 0.073

Notes: this table regresses the absolute value of daily changes in the 5-year yield (Top Panel) and in the term spread
(Bottom Panel) on daily changes in the logarithm of the total number of aggregate connections, the total number of clients
and the total trading volume. The term spread is measured as the difference between the 25-year yield and the 1-year
yield. The transaction-level data is collapsed at the day level yielding 1450 trading days spanning the period 4 Oct 2011
to 30 June 2017. Data on yields are from the Bank of England Financial Database. T-statistics, based on robust standard
errors, are in parentheses. The coefficients for the deterministic variables (constant, linear and quadratic time trends) are
not shown. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table 18: Daily Changes in Price Dispersion and Aggregate Connections

Alog (©;) — Weighted

B ) 3) (4
1.6892%** 1.2892%**  1.2109***
Alog (Connections;)
(10.96) (5.42) (2.96)
0.6446***  0.2312**  0.2330**
Alog (Volumey)
(9.73) (2.27) (2.28)
0.1028
Alog (NumO fClients;) (0.24)
N 1449 1449 1449 1449
R? 0.079 0.062 0.082 0.082
Alog (9;) — Unweighted
0 ) 3) ()
1.5167%** 1.1224%**  (0.9860**
Alog (Connectionsy)
(10.60) (5.04) (2.51)
0.5879***  (0.2280**  0.2310**
Alog (Volumey)
(9.02) (2.31) (2.34)
0.1790
Alog (NumO fClients;) (0.42)
N 1449 1449 1449 1449
R? 0.066 0.053 0.069 0.069

Notes: this table regresses the %-change in daily price dispersion weighted by trade size (6.3) (Top Panel) and unweighted
(Bottom Panel) on daily changes in the logarithm of the total number of aggregate connections, the total market volume
and the total number of clients. The transaction-level data is collapsed at the day level yielding 1450 trading days spanning
the period 4 Oct 2011 to 30 June 2017. T-statistics, based on robust standard errors, are in parentheses. The coefficients
for the deterministic variables (constant, linear and quadratic time trends) are not shown. Asterisks denote significance
levels (* p<0.1, ** p<0.05, *** p<0.01).
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Appendix for Online Publication

A A 2-by-2 Model of Multi-dealer Trading

Consider many days of trading indexed by ¢ and informed clients indexed by 4. The
fundamental value of the asset is random walk with a drift, formalized as V; = V,_1 + &,
where ¢; is either 0 or 1 with equal probability, and independent across days. The
innovation, &;, becomes public information at the end of the day and all positions are
liquidated at the closing price V;. During the day informed clients with a signal on &;, noise
traders, and market makers trade determining the mid-day transaction prices P;. The
objective of clients is to maximize their trading profit z; (V; — P;;) each day by choosing
to buy or sell one unit at the prevailing ask or bid prices respectively, i.e., choosing
x;y = {1, —1}. The trading protocol is a modified version of Glosten and Milgrom (1985).
Clients and noise traders seek bid and ask quotes from one or more risk neutral, market
maker (MM) in each period. Just as in Glosten and Milgrom (1985), we assume that MMs
are competititve, hence, their quotes are determined by a zero expected profit condition.
Sampling quotes from more market makers might be costly.

To convey the intuition we focus on the simplest possible case. We consider four
potential MMs, m = R!, N serving two clients ¢ = 1,2. Client 7 is assigned to MMs
R', N* (for regular and potential new comer). We assume that client i’s signal, s; = B, S

(for buy and sell) is informative:

1
Pr(e, =1|s, = B) = 5t Ay,

where Ay > 0 might vary across clients and time. Ay; is observable to clients and has the
two point support of {A, Ay} with Ay > Ap. Before a client observes her signal, she
commits to a quote request function p (Ay) : {Az, Ag} — {R’, (R', N")} which describes
the states when dealer i requests quotes from one or both dealers. The cost of the earlier
is normalized to 0, while requesting two sets of quotes costs c¢. We think of ¢ as a non-
observable, non-pecuniary cost. It is a reduced form treatment to capture a search cost,
or the reputational cost coming from the unmodelled future punishment from the dealer
who provided a quote but did not received the trade. Importantly, client ¢ is present in
the market at ¢ with only probability (1 — «). Even if the client requests two sets of bid
and ask prices, eventually, she can trade only with one of the dealers. After observing

the bids and asks she decides whether to buy or sell at one of those prices. Whenever
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client ¢ is not requesting quotes from a given MM assigned to her, regardless it is by
choice or because she is not present at that period, a noise trader requests quotes instead
and buys or sells with equal probability. Therefore, MMs receive exactly one request for
quotes in any given period, but might or might not trade. We assume that MMs observe
A of their assigned client, but they do not observe whether she is present at the given
period. That is, they cannot observe whether a quote request comes from client ¢ or a
noise trader. After trading, positions are liquidated at the realised true value V.

The following Proposition characterizes the equilibrium in this stage game. The client
requests two quotes if and only if her information is sufficiently precise. In that case, she
gets identical quotes and trades with each of the MMs with equal probability. The
intuition relies on a simple idea. For fixed parameters, when the client ¢ asks a quote
only from R?, R trades with an informed dealer with probability (1 — a) , while N* trades
with only noise traders. Therefore, the bid-ask spread provided by R’ is relatively wide,
while the bid-ask spread provided by N® is zero. When i asks a quote from both MMs
and trades with only one of them randomly, R’ faces with an informed dealer with a
probability (1 — «) 7 only, where 7 is the mixing probability. Therefore, she will give
better quotes to the client. In equilibrium, 7 has to adjust in a way that N’ wants to give
identical quotes to R’. Therefore, mixing between two dealers helps the client better hide
her information, implying more favourable transaction prices. At the same time asking
for two sets of quotes is costly. Hence, the client chooses to do so if and only if Ay is

sufficiently high.

Proposition 1 Let
1+«

A:mc

be within the support of Ay;.

1. If Ay < A, the informed trader i trades only with R' and the equilibrium bid ask

quotes are

: - 1
Aﬁ (Ati<A>:‘/;_1+§+Ati(1_Q)

i ~ 1

AY (D < A) =BY (A <A) =V, + ;

2. If Ay > A, the informed trader i seeks quotes from both MM and trades with each
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with equal probability. The equilibrium bid ask quotes are

A (A > A) =AY (A > A) = Vi + ; + Atiiz
B (B> 8) = BY (B> B) = Vi + 5 — Ay o

Proof. The quotes are derived by Bayes Rule. For example, the ask price provided by
R to i when the MM understands that ¢ trades with her with probability 7 = 1 is

E (V;_1 + &| observing a buy in t,7 = 1) =
(a3 +(1-a)(3+20))}
(e +(1—a)(3+2u)) s+ (ad+(0-a)(1-(3+A4)))3

1
:Vt—1+§+Ati(1—Oé)-

=Vi1 +

When the trader observes quotes from both M M s, in equilibrium the two MMs have to
submit the same quotes given the mixed strategy of acceptance from the trader. For this,

the informed trader has to mix with probability half. In this case the ask price is given
by

!

=Vio1 + (a%—l—(l—@) (;+AHA) %)%—i—(aé-f—(l—o‘) <1_<%+A“>) %>%
v +1+A'1—a

V1T "T+a’

For a fixed Ay, the expected benefit of transacting at more favourable prices implied by

1
2

ScorPrieds = 1,80 (2~ (587 0)) (- (A awt-))) =

11—«
=Yy _01 P =H, A <Ai 1—a)—A; >
V;=0,1 r(¢]s t) t ) t1+&

mixing, m = 5, is

which is increasing in Ay;. The indifference condition given cost ¢ determines A. m
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To picture the implied time-series and cross-sectional evolution of prices and trades,
we assume that for each client ¢, this subgame is repeated in many time-periods. These
games are independent from each other because all random variables are redrawn in
each period and because the MMs are disjunct across the two clients. Suppose that
Ay > A > Ay. The correlation structure across time and clients in A;; can be arbitrary.

To see the implications, it is useful to compare implied profits of clients in the two
states. (Because of symmetry, it is sufficient to calculate the implied expected profit

conditional on a signal s = B.)

1 1 —«
11 (Ay) = Svimox Pr(ei]s = H, Ay) (gt— (2+AH1+Q>>
1 1 1—« 1 1 11—«
= (5 an) 0= (Grama D+ (G-2n) (0 (5+20700))
Ay
= 2 .
1+«

I1(AL) = S0 Pr(er]s = H, Ap) <gt _ (1 _AL(1— a)>>

2
- (1+A )(1— <1+A (1- )>)+(1—A > <0— (1+A (1- )))
—\9 L 9 L « 9 L 5 L «
= CYAL.
Clearly,
!
H(An) -1 (A0 =a (FoBu+ (A - Ar)) >0,
for any parameter values. Note also, that IT1(Ag) — I1(Ay) is increasing in Ay and in
(Ag —Ap).

Consider an interval with multiple, say, D periods. Within this interval, in each period
when A;; = Ay, client i trades with only R* with probability 1. In each period when
Ay = Ap, with probability % she trades with N¢. Hence, if &p is a counting process
for the periods with A;; = Ay within D, then the expected number of connections of
i within interval D is 1 4+ &2,
connections within an interval is a proxy for the number of periods with an interval

an increasing function of &p. That is, the number of

where the information precision of the client is Ag. These observations give the following

hypotheses.

Hypothesis 1 More connections for a client © in a given interval should be associated

with higher trading profit.
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Hypothesis 2 The positive relationship between connections for a client i in a given
interval and trading profit should be stronger in periods with more precise private infor-

mation.

For later use, note that aggregating connections over clients in a given interval D is a
proxy for the total private information present in the market.

Next, observe that the difference in the trading profit across A; = Ay and A; =
A comes from two sources: the change in probability that the client trades the right
direction, and the change in the transaction price. On one hand, the probability that
client ¢ is trading at the right direction, buying before the price moves up and selling
before the price moves down, is % + Ay, an increasing function of A,. This gives the

second hypothesis, which we refer to in the text as the anticipation component.

Hypothesis 3 More connections for a client i in a given interval should be associated
with a stronger connection between her buy (sell) transactions and subsequent positive

(negative) returns.

On the other hand, the transaction price can be more or less favorable when A;; = Ap.

In particular, if and only if
Ay

Ap

a client buys (sells) at a lower (higher) price when she is more informed. This relationship

<1+a,

drives the sign of the relationship between connections and the transaction component
defined in the text. The reason for the ambiguous result is that the client’s ability to

hide her higher quality signal better by trading with more dealers is limited. When

Ay

l+a< A, (A1)
then a client with higher information precision mixing between the two dealers gets a less
favourable price than the client with the lower information precision who trades with one
dealer only. Of course, the high precision client’s price is still more favourable than the
price which would prevail if she were to trade with her regular dealer only. Otherwise,

there would be a profitable deviation in equilibrium.
Finally, we turn to price discovery. For this, we calculate the expected average trans-
action price when the innovation is ¢, = 1 in each possible scenarios with respect to

the type of traders arriving. First, when both traders have high precision signals, both
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request quotes from both of their assigned MMs, but they trade only at one of those

quotes. The average transaction price is

E e = 1, AH,AH):
1 1 1 1—«o
Vit <2 *AH) (2 *AH) <<2 +Ang +a>)
1 1 1 1—«o
+<2_AH> (2_AH> ((g‘AHHO))
1 1 1
*2(2+AH) (‘AH) (5)
1 11—«

If both clients have low precision signals, each request quotes only from R‘ and N°* trades

<P1t+P2t

with liquidity traders at price V;_1 + % That is, the average transaction price is

5 (Plt(R1)+P2t(R2)+P1t(N1>+P2t(N2)‘gt _ AL,AL> —

7 =

i (1) (20 2
+(5-a) (5-20) (5 (G- n0-) 4 35)
+2<;1+ AL) (—AL> (;)

:‘/16—1+§+A%(1—05).

When the first client has low precision, while the second one has high precision, the

average price is

E <P1t(R1)+P;t(N1)+PH lee = 1,Ap, AH) =

s () (o) (G403
m) () ()

+<;+AH)<;—AL)<; ;<AH(HZ) ALl—a>>
(5 (o) (55 (a5 - ava ) )

1+«
1 2 A2
=V, 1 +-+=(1— H 4 A2 ).
g Tyl O‘)<1+<fr L)

1—a

H
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With similar calculations we get the expected average price for the case when at least
one of the clients are not present (which we deonte by @), hence replaced by two noise

traders:

5 (Pu(Rl)+Pu(N1)+P2t(R2)+P2t(N2) ey = 17®7®> Vs 1

4 2
1 1 2 2 1 1
E (P“(R JePe (NP (R )P (V7)o AL> Vit 5+ 5AL (1 —a)
Pio(RY)+Puy(NY)+Poy | 1 1,,1-«
E( 3 €t—1,®,AH %1+2+§AH1_‘_7&

It is easy to check that

4

B <P1t(R1)+P1t(N1)+P2t |€t _ 1’ @,AH> ,E (P1t(R1)+P2t(R2>+P1t(N1)+P2t<N2> |5t = 17 AL,AL)

5 (PM(RI)+Pu(N1)+P2t(R )+ Per(N )\ e =10, AL)

3 4

and

3 4

o (Plt(Rl)+P1t(Nl)+P2t & =10, AH> B (Pu(R1)+P2t(R2)+P1t(N1)+P2t(N2) e, = 1,A,, AL) -

1 1

Recall that aggregate connections >.;&;p is increasing in the fraction of high precision
clients in the market. Therefore, with the caveat that the comparison of

1 1 2 1 2
I Pu(R )+P;(N )+P2t| _ 1.0, AH> and B <P1t( V)+P (R )ZPU(N )+Por (N )|€t _, AL,AL)

depends on the parameters, we form the following hypothesis.

Hypothesis 4 Periods with higher aggregate connections should be associated with larger

absolute innovations in prices.

65



B Additional Tables and Figures

B.1 Sensitivity Analysis of the Baseline Regression

Table 19: Client Connections and Trading Performance: Excluding Client Fixed Effects

(1) 2) 3) (4) (5)
1-day 2-day 3-day 4-day 5-day
Client 0.0016*%**  0.0024***  0.0021** 0.0022** 0.0021**
Connections (2.70) (2.97) (2.49) (2.40) (2.15)
0.0027** 0.0026** 0.0023* 0.0026** 0.0028*
Volume
(2.53) (2.07) (1.73) (2.00) (1.90)
. -0.0030 -0.0047* -0.0038 -0.0059** -0.0050
Transactions
(-1.62) (-1.95) (-1.42) (-2.01) (-1.48)
N 20840 20840 20840 20840 20840
R? 0.006 0.006 0.006 0.007 0.007
Time FE Yes Yes Yes Yes Yes
Client FE No No No No No
(a) Turnover-weighted Trading Performance
(1) (2) (3) (4) (5)
1-day 2-day 3-day 4-day 5-day
Client 0.0027*%**  0.0033***  0.0033***  0.0035***  0.0038***
Connections (4.50) (4.61) (3.88) (4.08) (4.04)
0.0043*%**  0.0045***  0.0040***  0.0041*** 0.0039**
Volume
(4.14) (3.64) (2.85) (2.95) (2.46)
. -0.0079%**  -0.0101***  -0.0094***  -0.0112*¥** -0.0108***
Transactions
(-4.11) (-4.46) (-3.72) (-4.03) (-3.46)
N 20840 20840 20840 20840 20840
R? 0.010 0.010 0.008 0.009 0.008
Time FE Yes Yes Yes Yes Yes
Client FE No No No No No

(b) Unweighted Trading Performance

Notes: this table regresses the value-weighted (panel A) and unweighted (panel B) trading performance at different time
horizons on our connectivity measures (4.2). The transaction-level data is collapsed at the client-month level. The
performance measures are in basis points. We include as a control the natural logarithm of the pound trade volume
of each client and the natural logarithm of the number of monthly transactions. To reduce noise, we winsorise the sample
at the 1%-level and use month-client observations that are based on at least 2 transactions in the month. T-statistics in
parentheses are based on robust standard errors, using two-way clustering at the month and the client level. Asterisks
denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table 20: Client Connections and Trading Performance: Including Public Clients

1) @) 3) (4) (5)
1-day 2-day 3-day 4-day 5-day
Client 0.0015 0.0029**  0.0033**  0.0040**  0.0039**
Connections (1.62) (2.55) (2.49) (2.44) (2.38)
-0.0007 -0.0001 -0.0001 -0.0017 -0.0022
Volume
(-0.38) (-0.06) (-0.03) (-0.57) (-0.62)
. 0.0042 0.0018 -0.0007 -0.0027 -0.0017
Transactions
(1.58) (0.46) (-0.17) (-0.55) (-0.28)
N 22843 22843 22843 22843 22843
R? 0.038 0.039 0.036 0.034 0.035
Time FE Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes
(a) Turnover-weighted Trading Performance
(1) 2) 3) (4) (5)
1-day 2-day 3-day 4-day 5-day
Client 0.0016*  0.0029*%**  0.0029**  0.0039**  0.0041**
Connections (1.83) (2.76) (2.14) (2.55) (2.58)
-0.0013 0.0009 0.0025 0.0014 0.0001
Volume
(-0.75) (0.43) (0.98) (0.52) (0.04)
. 0.0019 -0.0023 -0.0043 -0.0051 -0.0029
Transactions
(0.62) (-0.60) (-1.03) (-1.11) (-0.56)
N 22843 22843 22843 22843 22843
R? 0.051 0.047 0.044 0.039 0.038
Time FE Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes

(b) Unweighted Trading Performance

Notes: this table regresses the value-weighted (panel A) and unweighted (panel B) trading performance at different time
horizons on our connectivity measures (4.2). The transaction-level data is collapsed at the client-month level. The
performance measures are in basis points. We include as a control the natural logarithm of the pound trade volume
of each client and the natural logarithm of the number of monthly transactions. To reduce noise, we winsorise the sample
at the 1%-level and use month-client observations that are based on at least 2 transactions in the month. T-statistics in
parentheses are based on robust standard errors, using two-way clustering at the month and the client level. Asterisks
denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table 21: Client Connections and Trading Performance: Using Eigenvalue-Centrality

1) @) 3) (1) (5)
1-day 2-day 3-day 4-day 5-day
Client 0.3546*  0.7021%**  (0.8340***  (.9727***  1.0242%**
Centrality (1.74) (2.77) (2.87) (2.80) (2.79)
-0.0005 0.0003 0.0002 -0.0014 -0.0019
Volume
(-0.24) (0.14) (0.08) (-0.45) (-0.52)
. 0.0033 0.0003 -0.0025 -0.0049 -0.0040
Transactions
(1.18) (0.08) (-0.58) (-0.96) (-0.64)
N 20839 20839 20839 20839 20839
R? 0.037 0.039 0.036 0.034 0.036
Time FE Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes
(a) Turnover-weighted Trading Performance
(1) (2) (3) (4) (5)
1-day 2-day 3-day 4-day 5-day
Client 0.3845*%*  0.6661*** 0.6706**  0.8549**  (.9978***
Centrality (2.05) (2.79) (2.19) (2.54) (2.85)
-0.0011 0.0014 0.0028 0.0019 0.0006
Volume
(-0.66) (0.61) (1.04) (0.69) (0.19)
. 0.0011 -0.0038 -0.0059 -0.0070 -0.0052
Transactions
(0.37) (-0.96) (-1.34) (-1.45) (-0.98)
N 20839 20839 20839 20839 20839
R? 0.051 0.048 0.044 0.039 0.039
Time FE Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes

(b) Unweighted Trading Performance

Notes: this table regresses the value-weighted (panel A) and unweighted (panel B) trading performance at different time
horizons on our connectivity measures (4.2). The transaction-level data is collapsed at the client-month level. The
performance measures are in basis points. We include as a control the natural logarithm of the pound trade volume
of each client and the natural logarithm of the number of monthly transactions. To reduce noise, we winsorise the sample
at the 1%-level and use month-client observations that are based on at least 2 transactions in the month. T-statistics in
parentheses are based on robust standard errors, using two-way clustering at the month and the client level. Asterisks
denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table 22: Client Connections at Daily Frequency

Mean Median St.dev Within St.dev N
Connections 3.19 3 2.33 1.46 103,199

Note: the table presents summary statistics on client connections, defined as the number of dealers a client trades with on
a given trading day. “Within St.dev” is the standard deviation of the estimated residual €; ¢+ from the regression
Connections; ; = o; + it + €45+ The sample is based on trading days on which a client has more than two transactions.
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B.2 Daily Data

B.2.1 Performance Regressions

Table 23: Client Connections and Trading Performance Using Daily Data

(1) 2) 3) (4) (5)
1-day 2-day 3-day 4-day 5-day
Client 0.0005 0.0009 0.0028** 0.0043%** 0.0028%*
Connections  (0.65) (1.01) (2.54) (3.23) (1.92)
0.0012 0.0015 0.0018 0.0015 0.0023
Volume
(1.03)  (1.13) (1.19) (0.89) (1.22)
-0.0006  -0.0025  -0.0086*** -0.0081**  -0.0093**
Tran.
(-0.27) (-0.90) (-2.62) (-2.10) (-2.29)
N 103565 103565 103565 103565 103565
R? 0.035 0.035 0.034 0.033 0.033
Time FE Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes
(a) Turnover-weighted Trading Performance
(1) @) 3) (4) (5)
1-day 2-day 3-day 4-day 5-day
Client 0.0012 0.0015 0.0027*%*  0.0042***  (0.0030*
Connections  (1.47) (1.57) (2.13) (2.63) (1.90)
-0.0004 0.0004 0.0010 0.0014 0.0014
Volume
(-0.44) (0.32) (0.73) (0.89) (0.78)
0.0007  -0.0011 -0.0060 -0.0079* -0.0077
Tran.
(0.32) (-0.36) (-1.56) (-1.74) (-1.58)
N 103565 103565 103565 103565 103565
R? 0.039 0.037 0.036 0.036 0.036
Time FE Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes

(b) Unweighted Trading Performance

Notes: this table regresses the value-weighted (panel A) and unweighted (panel B) trading performance at different time
horizons on our connectivity measures (4.2). The transaction-level data is collapsed at the client-day level. The performance
measures are in %-points. We include as a control the natural logarithm of the pound trade volume of each client (“Volume”)
and the natural logarithm of the number of daily transactions (“Tran.”). To reduce noise, we winsorise the sample at the
1%-level and use day-client observations that are based on at least 2 transactions in the day. T-statistics in parentheses
are based on robust standard errors, using two-way clustering at the day and the client level. Asterisks denote significance
levels (* p<0.1, ** p<0.05, *** p<0.01).
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Figure 7: Daily Performance Regressions over 0-20 day Horizons

Connection Effects During and Outside Announcement Days

.005
1
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’ —=e— OQutside Announcement Days =---@--: During Announcement Days

Notes: Panel a plots the estimated 8 coefficients from our baseline regression 4.2 up to 20-day horizon (7' = 20), using
the value weighted performance variable as the regressand, measured in basis points. We include as a control the natural
logarithm of the pound trade volume of each client (“Volume”) and the natural logarithm of the number of daily transactions
(“Transactions”). Panel b plots the results after including a dummy (interacted with connectedness) indicating the trading
days that coincided with MPC announcements and release of inflation data. To reduce noise, we winsorise the sample at
the 1%-level and use month-client observations that are based on at least three daily transactions. The shaded area denotes
the 90% confidence band, It is based on robust standard errors, using two-way clustering at the day and the client level.
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B.2.2 Connectivity and Predicting the Order Flow

Table 24: Weighted Trading Performance on Trading Days with High Covariance with
the Total Market Order Flow

(1) @) 3) (4) 5)
1-day 2-day 3-day 4-day 5-day
QIft* =1 0.0181%F*  (.0255%%*  0.0284*%*  (.0257*F%*  0.0231***
(4.75) (5.24) (4.73) (3.72) (3.00)
0.0018 0.0021 0.0025* 0.0023 0.0032*
Volume
(1.50) (1.58) (1.71) (1.41) (1.68)
-0.0008 -0.0024 -0.0063** -0.0039 -0.0067*
Tran.
(-0.39) (-0.92) (-2.16) (-1.14) (-1.95)
N 105190 105190 105190 105190 105190
R? 0.037 0.036 0.036 0.034 0.033
Time FE Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes
(a) Covariance with 1-day Ahead
(1) (2) (3) (4) (5)
1-day 2-day 3-day 4-day 5-day
Zg’“ﬂ =1 -0.0013 0.0098**  0.0214*** (0.0229***  (0.0268***
(-0.37) (2.09) (3.64) (3.34) (3.55)
0.0019 0.0021 0.0025* 0.0023 0.0031
Volume
(1.53) (1.58) (1.66) (1.37) (1.63)
-0.0006 -0.0022 -0.0062** -0.0038 -0.0066*
Tran.
(-0.29) (-0.84) (-2.10) (-1.11) (-1.91)
N 105041 105041 105041 105041 105041
R? 0.035 0.035 0.035 0.033 0.033
Time FE Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes

(b) Covariance with 3-day Ahead

Notes: this table regresses the value-weighted (panel A) and unweighted (panel B) trading performance at different time
horizons on a dummy Qg:ft“l that takes value 1 if on day ¢ the order flow of client 7 has a covariance (see measure 4.2)
with the future order flow of the market that is higher than the median (based on all trading days of the given client)..
The transaction-level data is collapsed at the client-day level. The performance measures are in %-points. We include as a
control the natural logarithm of the pound trade volume of each client (“Volume”) and the natural logarithm of the number
of daily transactions (“Tran.”). To reduce noise, we winsorise the sample at the 1%-level and use day-client observations
that are based on at least 2 transactions in the day. T-statistics in parentheses are based on robust standard errors, using
two-way clustering at the day and the client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table 25: Weighted Trading Performance on Trading Days with High Covariance with
the Market Order Flow Intermediated by Own Dealers

1) @) 3) () 5)
1-day 2-day 3-day 4-day 5-day
gg"" =1 0.0067*%* 0.0081**  0.0094**  0.0100**  0.0118***
(2.89) (2.49) (2.38) (2.31) (2.61)
0.0013 0.0016 0.0021 0.0020 0.0027
Volume
(1.11) (1.23) (1.43) (1.21) (1.42)
-0.0002 -0.0017 -0.0057* -0.0035 -0.0064*
Tran.
(-0.08) (-0.64) (-1.93) (-1.00) (-1.83)
N 103103 103103 103103 103103 103103
R? 0.035 0.035 0.034 0.033 0.033
Time FE Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes
(a) Covariance with 1-day Ahead
(1) (2) (3) (4) (5)
1-day 2-day 3-day 4-day 5-day
%"” =1 -0.0017 0.0021 0.0066* 0.0104**  0.0105**
(-0.80) (0.68) (1.76) (2.50) (2.36)
0.0013 0.0016 0.0021 0.0020 0.0027
Volume
(1.09) (1.21) (1.40) (1.19) (1.40)
-0.0000  -0.0015 -0.0056* -0.0034 -0.0063*
Tran.
(-0.00) (-0.58) (-1.88) (-0.98) (-1.78)
N 102958 102958 102958 102958 102958
R? 0.035 0.035 0.034 0.033 0.033
Time FE Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes

(b) Covariance with 3-day Ahead

Notes: this table regresses the value-weighted (panel A) and unweighted (panel B) trading performance at different time
horizons on a dummy Q%‘”” that takes value 1 if on day ¢ the order flow of client ¢ has a covariance (see measure 4.2) with
the future order flow of its own dealers that is higher than the median (based on all trading days of the given client). Own
dealers (g = Own) are the ones that the client traded with on the day of the trade (for which the trading performance is
calculated) as well as during the past 10 trading days. The transaction-level data is collapsed at the client-day level. The
performance measure is in %-points. We include as a control the natural logarithm of the pound trade volume of each
client (“Volume”) and the natural logarithm of the number of daily transactions (“Tran.”). To reduce noise, we winsorise
the sample at the 1%-level and use day-client observations that are based on at least 2 transactions in the day. T-statistics
in parentheses are based on robust standard errors, using two-way clustering at the day and the client level. Asterisks
denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table 26: Client Connectivity and Covariance with the Aggregate Order Flow

1-Day 3-Day 5-Day
Client 0.0050** 0.0006 0.0011
Connections (2.40) (0.36) (0.48)
0.0040** 0.0025 0.0026
Volume
(2.29) (1.53) (1.58)
0.0134**  0.0138**  0.0108*
Tran.
(2.36) (2.52) (1.78)
N 103094 102949 102816
R? 0.023 0.024 0.023

Time/Client FE =~ Yes/Yes  Yes/Yes  Yes/Yes
(a) Total Client Order Flow

Traded with Dealers on Trading Day Traded with Dealers only

as well as During Past 10 Days on Trading Day
1-Day 3-Day 5-Day 1-Day 3-Day 5-Day
Client 0.0068***  0.0052%** 0.0030* -0.0007  -0.0008 -0.0007
Connections (2.87) (3.67) (1.87) (-0.79) (-0.77) (-0.69)
0.0038** 0.0014 0.0030** -0.0006  -0.0002 -0.0003
Volume
(2.55) (1.16) (2.34) (-0.77) (-0.16) (-0.36)
0.0092%* 0.0038 0.0020 0.0030* 0.0031 -0.0002
Tran.
(1.81) (0.94) (0.46) (1.76) (1.51) (-0.11)
N 103103 102958 102825 103103 102958 102825
R? 0.023 0.021 0.022 0.021 0.021 0.022
Time FE Yes Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes Yes

(b) Total Client Order Flow via Own Dealers

Notes: this table regresses different versions of the covariance measure 5.3 on our connectivity measure and controls (5.5).
The transaction-level data is collapsed at the client-day level. The performance measures are in basis points. We include
as a control the natural logarithm of the pound trade volume of each client (“Volume”) and the natural logarithm of
the number of day transactions (“Tran.”). To reduce noise, we winsorise the sample at the 1%-level and use day-client
observations that are based on at least 2 transactions on the day. T-statistics in parentheses are based on robust standard
errors, using two-way clustering at the day and the client level. Asterisks denote significance levels (* p<0.1, ** p<0.05,
**¥ p<0.01).
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B.3 Announcements Including News About US FOMC and UK
Real Variables

Table 27: Turnover-weighted Performance: Trading Days With and Without Inflation

& Monetary Policy News; Including News About UK Real Variables and US Monetary
Policy

1-day 2-day 3-day 4-day 5-day
Connections 0.0022**  0.0027** 0.0027* 0.0037**  0.0032

(2.17) (2.05) (1.81) (2.12) (1.61)
Connectionsx AN N’ 0.0007 0.0014**  0.0026*** 0.0019**  0.0020

(1.20) (2.18) (3.16) (2.05) (1.63)

0.0005 0.0027 0.0046* 0.0036 0.0022
Volume

(0.30) (1.22) (1.76) (1.26) (0.72)
Tran. 0.0005 -0.0016 -0.0065 -0.0072 -0.0035

(0.19) (-0.42) (-1.58) (-1.65) (-0.66)
N 37733 37733 37733 37733 37733
R? 0.024 0.024 0.022 0.021 0.022
Client FE Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes

Notes: this table regresses the value-weighted trading performance at different time horizons on client connections and
connections interacted with a dummy that takes value 1 when the trading days coincide macroeconomic announcements.
The transaction-level data is collapsed at the client-month-dummy level, i.e. for each month and each client we compute
two sets of performance measures and controls, one set based on announcements days the other set based on trading days
without announcements. The performance measures are in basis points. We include as a control the natural logarithm
of the pound trade volume of each client (“Volume”) and the natural logarithm of the number of monthly transactions
(“Tran.”). To reduce noise, we winsorise the sample at the 1%-level and use month-client observations that are based on at
least 2 transactions in the month. T-statistics in parentheses are based on robust standard errors, using two-way clustering
at the month and the client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).

75



Table 28: Turnover-weighted Performance: Trading Days With and Without Inflation

& Monetary Policy News; Including News About UK Real Variables and US Monetary
Policy

1-day 2-day 3-day 4-day 5-day
BANN' 0.0007  0.0015**  0.0021**  0.0016*  0.0019

(1.14)  (2.35) (2.52) (1.82)  (1.66)
N 33674 33674 33674 33674 33674
R? 0.506 0.512 0.520 0.527 0.525
Client-Month FE Yes Yes Yes Yes Yes

Notes: this table regresses the value-weighted trading performance at different time horizons on client connections and
connections interacted with a dummy that takes value 1 when the trading days coincide macroeconomic announcements.
The transaction-level data is collapsed at the client-month-dummy level, i.e. for each month and each client we compute
two sets of performance measures, one set based on announcements days the other set based on trading days without
announcements. The performance measures are in basis points. We include as a control the natural logarithm of the
pound trade volume of each client (“Volume”) and the natural logarithm of the number of monthly transactions (“Tran.”).
To reduce noise, we winsorise the sample at the 1%-level and use month-client observations that are based on at least 2
transactions in the month. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the
month and the client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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B.4 Aggregate Connections and the Yield Curve

Table 29: Daily Changes in Yields and Aggregate Connections

|AYield; Y |
(1) (2) 3) 4)
. 0.0308%** 0.0297*%F*%  0.0326***
Alog (Connections;)
(6.70) (4.33) (2.73)
0.0102***  0.0006 0.0006
Alog (Volumey)
(5.43) (0.23) (0.21)
-0.0038
Alog (NumO fClients;) (:032)
N 1449 1449 1449 1449
R? 0.041 0.028 0.041 0.041
|AYield?Y |
(1) (2) 3) 4)
0.0253*** 0.0191***  0.0223**
Alog (Connections;)
(6.10) (3.16) (2.15)
0.0097***  0.0036 0.0035
Alog (Volumey)
(5.82) (1.49) (1.45)
-0.0042
Alog (NumO fClients;) (:0.41)
N 1449 1449 1449 1449
R? 0.048 0.042 0.049 0.049

Notes: this table regresses the absolute value of daily changes in the 10-year yield (Top Panel) and in the 25-year yield
(Bottom Panel) on daily changes in the logarithm of the total number of aggregate connections, the total number of clients
and the total number of transactions. The transaction-level data is collapsed at the day level yielding 1450 trading days
spanning the period 4 Oct 2011 to 30 June 2017. Data on yields are from the Bank of England Financial Database.
T-statistics, based on robust standard errors, are in parentheses. The coefficients for the deterministic variables (constant,
linear and quadratic time trends) are not shown. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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B.5 The Centrality of Dealers
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Table 31: Client Connections and Dealer Centrality

0-day 1-day 2-day 3-day 4-day 5-day
Eig. Centrality 0.1068**  0.0903  0.1232  0.2117**  0.2161*  0.1275
(2.47) (1.23) (1.51) (2.05) (1.78) (0.86)

N 105564 105564 105564 105564 105564 105564
R? 0.011 0.009 0.009 0.008 0.008 0.008
Time FE Yes Yes Yes Yes Yes Yes
Dealer FE Yes Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes Yes

(a) Clients’ Trading Performance and the Centrality of Dealers

0-day 1-day 2-day 3-day 4-day 5-day
Client 0.0008**  0.0016**  0.0020**  0.0014 0.0012 0.0016
Connections  (2.14) (2.59) (2.33) (1.25)  (0.89)  (1.18)
N 105564 105564 105564 105564 105564 105564
R? 0.011 0.009 0.009 0.008 0.007 0.008
Time FE Yes Yes Yes Yes Yes Yes
Dealer FE Yes Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes Yes

(b) Clients’ Trading Performance and Client Connections

0-day 1-day 2-day 3-day 4-day 5-day
Eig. Centrality 0.1093** 0.0955 0.1297 0.2163**  0.2200*  0.1327

(2.53) (1.30) (1.59) (2.09) (1.81) (0.89)
Client 0.0008**  0.0016**  0.0020** 0.0014 0.0012 0.0016
Connections (2.20) (2.62) (2.36) (1.28) (0.93) (1.20)
N 105564 105564 105564 105564 105564 105564
R? 0.011 0.009 0.009 0.008 0.008 0.008
Time FE Yes Yes Yes Yes Yes Yes
Dealer FE Yes Yes Yes Yes Yes Yes
Client FE Yes Yes Yes Yes Yes Yes

(c) Clients’ Trading Performance: Including both the Centrality of Dealers and Client
Connections

Notes: this table regresses the value-weighted trading performance at different time horizons on dealer centrality (Panel
A), client connections (Panel B) and on both variables at the same time (Panel C). The transaction-level data is collapsed
at the client-dealer-month level. The performance measures are in %-points. To reduce noise, we winsorise the sample
at the 1%-level and use month-client observations that are based on at least 2 transactions in the month. T-statistics in
parentheses are based on robust standard errors, using two-way clustering at the month and the client level. Asterisks
denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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B.6 Illustrating Our Order Flow Covariance Measure

Figure 8: Tllustrating Our Order Flow Covariance Measure

Client Order Flow on day d [Widk] Aggregate Order Flow on day d+T [Wd+tk]
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Notes: this figure illustrates how we measure the ability of a client to predict the order flow (equation 5.3). The top left
panel shows for a hypothetical client i, on trading day d the net position in each k duration segments. The top right panel
shows the accumulated net position of the market T" days later in each k duration segments. The scatter plot in the bottom
panel illustrates the cross-sectional nature of our measure.
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