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Abstract

Rights-based management is prevalent in today’s developed-world fisheries,

yet spatiotemporal models of fishing behavior do not reflect such institu-

tional settings. We develop a model of spatiotemporal fishing behavior that

incorporates the dynamic and general equilibrium elements of catch-share

fisheries. We propose an estimation strategy that is able to recover structural

behavioral parameters through a nested fixed-point maximum likelihood pro-

cedure. We illustrate our modeling approach through a Monte Carlo analysis

and demonstrate its importance for predicting out-of-sample counterfactual

policies.

Keywords: structural econometrics, rights-based fisheries, discrete choice

models

1. Introduction1

The governance of many nation states’ fisheries has been transformed2

in recent decades—from the “tragedies” of open access and input regula-3

tion to a range of governance structures based upon individual or collec-4

tive extractive rights. By one estimate, approximately 20% of global catch5

comes from fisheries managed under individual transferable quotas (Costello6
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and Ovando, 2019)—a number that only partially accounts for the full spec-7

trum of rights-based management approaches, including fishing cooperatives8

(Deacon, 2012) or TURFs (Wilen et al., 2012). Rights-based management9

(RBM) is particularly common in the Global North where it is facilitated10

by strong scientific input and adequate governance. RBM, in combination11

with scientifically-based quotas and sound enforcement, has played a promi-12

nent role in reversing overfishing and improving economic efficiency in many13

fisheries (Worm et al., 2009; Grafton et al., 2006; Hilborn et al., 2005).14

Despite these successes, RBM has not reduced the role of fisheries man-15

agers to merely conducting stock assessments and setting seasonal quotas.16

Catch shares, especially individual quotas, may leave significant in-season17

externalities unaddressed (Boyce, 1992; Costello and Deacon, 2007), forcing18

managers to deploy additional management measures to address concerns19

such as growth overfishing or in-season rent dissipation. Furthermore, many20

of the concerns of ecosystem-based management—e.g., protection of spawn-21

ing stocks or vulnerable life stages, reducing external impacts on unfished22

stocks or species of conservation concern, and habitat protection—are out-23

side the scope of most RBM systems (Holland, 2018).24

As a result of these concerns, managers use a wide range of tools, includ-25

ing input restrictions, protected areas, time-area closures, and dynamic ocean26

management (Maxwell et al., 2015), in addition to RBM systems. Economists27

have informed managers of the potential consequences of these actions by28

developing positive bioeconomic models (e.g., Smith and Wilen, 2003; Hut-29

niczak, 2015; Lee et al., 2017; Holland, 2011; Huang and Smith, 2014) that30

predict how changes to policy design may change catch, effort, profits, em-31
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ployment, or ecological impacts. For economists to offer reliable advice, their32

models must adequately capture the economic decision-making process and33

contextual variables to provide externally valid predictions across the range34

of policy/economic/ecological scenarios of interest to managers (Lucas, 1976;35

Wolpin, 2007; Keane, 2010). If the range of counterfactuals deviates markedly36

from in-sample conditions, then purely empirical, reduced-form descriptions37

of fisher behavior will likely be unsatisfactory. Instead, structural models that38

explicitly model fishers’ decision-making process in terms of objective-seeking39

(e.g., profit or utility-maximizing) behavior under economic, ecological and40

management constraints are needed (Reimer et al., 2017a,b).41

The continued adoption of RBM presents a significant challenge to fish-42

eries policy modeling in that the overwhelming majority of empirical models43

used to inform in-season management measures fail to consider the implica-44

tions of individualized (and often transferable) catch rights within a season.45

Catch share fisheries define individualized (or sometimes cooperative-based)46

quota constraints, which create a shadow value reflecting the opportunity47

cost of the quota. Within-season trading of seasonal quota harmonizes these48

shadow values through the coordinating mechanism of a shared lease market.49

Experience has demonstrated that in-season behavior is often drastically al-50

tered by catch shares. This is particularly likely in terms of the allocation of51

fishing “effort” in both space and time (Reimer et al., 2014; Abbott et al.,52

2015; Birkenbach et al., 2017; Miller and Deacon, 2017). Fishers may spread53

their effort temporally and reallocate where they fish to enhance revenues or54

reduce costs. More complex patterns may emerge in multispecies catch-share55

fisheries as vessels utilize space and time to maximize the profit associated56
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with their quota portfolios. However, the current range of economic simula-57

tion models in fisheries have been specified and calibrated under preceding58

conditions of regulated open or limited access. As such, these models do not59

capture the theoretical mechanisms by which incentives under RBM affect60

fishers’ in-season behavior, with the result that their predictions could be61

highly misleading.62

There is a rich economic literature on the modeling of the spatiotemporal63

behavior of fishers (e.g., Eales and Wilen, 1986; Holland and Sutinen, 2000;64

Smith, 2005; Haynie et al., 2009; Hicks and Schnier, 2010; Abbott and Wilen,65

2011). The dominant modeling approach in these papers is the static random66

utility maximization (RUM) model, which assumes that individual fishers67

choose from a set of discrete fishing sites in order to maximize their expected68

utility, where the expected utility of selecting a fishing site is modeled (among69

other factors) as a function of expected revenue and the distance from a70

fisher’s current location. Observed fishing location choices are then used to71

estimate the RUM model, which can then be used to predict the effects of72

regulations on the amount and spatial distribution of fishing effort, harvest,73

revenues, and welfare.74

The static RUM approach has been useful for examining the spatiotem-75

poral behavior of fishermen in fisheries with insecure rights to seasonal catch.76

However, we argue that it is generally inadequate for estimation and predic-77

tion in RBM fisheries. The reason lies in the fact that seasonal individualized78

quotas define a set of evolving, state-contingent shadow prices for quota us-79

age throughout the season. Dynamic profit maximization requires that these80

opportunity costs of quota should be subtracted from the ex-vessel price of81
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harvest. Instead, they are lacking altogether in the estimation and prediction82

of static RUM models. The omitted nature of lease prices has several impor-83

tant implications. The absence of lease prices from expected revenues in the84

RUM leads to a form of omitted variable bias (or, alternatively, non-classical85

measurement error)—shrinking the coefficient on expected revenues towards86

zero and creating indeterminate biases for the coefficients of other included87

variables. These biases could jeopardize the estimation of shadow values88

(e.g., Abbott and Wilen, 2011; Haynie et al., 2009) or welfare estimates. In89

principle, estimation bias could be eliminated by including high-frequency90

lease-price data in the model; however, thin markets combined with confi-91

dentiality concerns rarely allow this.92

To address these shortcomings, we develop an estimation approach for93

RUM models under RBM institutions that provides consistent estimates of94

structural model parameters while also satisfying the need to impute lease95

prices for out-of-sample scenarios. Our model of spatiotemporal fishing be-96

havior incorporates the dynamic and general equilibrium elements of fisheries97

with tradable short-term rights of annual catch entitlements. The key innova-98

tion of our approach is the introduction of an annual lease-market for quota,99

which we model as a pure exchange economy with a rational expectations100

equilibrium. Fishers are assumed to be forward-looking within the season and101

form expectations over future quota usage when considering contemporane-102

ous quota supply and demand decisions. Under the assumption of rational103

expectations, each fisher’s stochastic dynamic programming (SDP) problem104

reduces to a period-by-period static maximization problem given a set of105

equilibrium quota prices. The intuition for this result is straightforward—all106
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necessary information regarding quota scarcity is embedded in the equilib-107

rium quota price.108

We propose and demonstrate an estimation strategy — dubbed the rational-109

expectations RUM (RERUM) — that is able to recover structural behavioral110

parameters, even if quota-market prices are unobserved. The introduction of111

the quota-lease market drastically simplifies the process of recovering struc-112

tural parameters because we do not have to solve a SDP problem through113

recursive methods. Instead, we solve a fixed-point problem to determine the114

equilibrium lease prices in every period, which does not suffer from the curse115

of dimensionality because the dimensions of the problem increase linearly,116

as opposed to exponentially, with the number of quota-constrained species.117

Thus, we are able to solve the behavioral model exactly and recover the struc-118

tural parameters through a nested fixed-point (NFXP) maximum likelihood119

procedure (Rust, 1987). We conduct numerical simulations to demonstrate120

how our model can be used for ex ante evaluation of fishery policies, such as121

spatial closures or TAC reductions. We illustrate this point through a Monte122

Carlo analysis and investigate data-generating environments for which our123

approach matters most for out-of-sample predictions.124

Our simulation results show the utility of the RERUM model for both125

parameter estimation and out-of-sample prediction. In terms of estimation,126

we find that substitution of high-resolution lease prices as data into the static127

RUM is able to mimic the performance of the RERUM. However, imputing128

annual average prices—which are much more commonly available— offers129

only a partial mitigation of the bias, since it fails to capture dynamic adjust-130

ments of behavior within the season. Furthermore, even if high-resolution131
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lease price are available to consistently estimate the RUM model, prediction132

for out-of-sample scenarios requires the imputation of counterfactual lease133

prices that are consistent with the stochastic production environment and134

the alterations to market, ecological, or policy conditions embodied in the135

scenario. The market simulator at the core of the RERUM model provides136

this link in a way that is both consistent with the structure of fishers’ dynamic137

decision problem and computationally feasible.138

The course of the paper is as follows. Sections 2 and 3 present the struc-139

tural behavioral model and the estimation strategy of the RERUM estimator.140

Section 4 simulates the structural model with known parameter values, but141

under different biological scenarios, to show the utility of the RERUM model142

for out-of-sample prediction under realistic policy changes, such as quota143

reductions and spatial closures. Section 5 provides Monte Carlo simulation144

evidence of the estimation performance of the RERUM model in compari-145

son to reduced-form alternatives. It also shows the predictive utility of the146

RERUM model in comparison to these alternatives. Section 6 concludes the147

paper.148

2. Conceptual Approach149

Our objective is to build a model of within-season fishing behavior that150

generates externally valid ex ante predictions of fishery policies in a mul-151

tispecies catch-share fishery. This prospective model must be structural or152

mechanistic, in the sense that it identifies policy-invariant parameters that153

can be safely transported into “out-of-sample” environments, facilitating the154

job of ex ante prediction (Heckman and Vytlacil, 2007; Heckman, 2010).155
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Structural models achieve this flexibility through explicitly modeling the hy-156

pothesized decision process of agents in response to their decision context,157

usually through a constrained optimization approach. This differs from esti-158

mating a reduced-form decision rule in that the latter runs the risk of fragility159

since underlying ecological, economic, or policy state variables may be sub-160

sumed into the estimated reduced form parameters (Fenichel et al., 2013).161

Our model must satisfy several criteria. First, it must capture the pri-162

mary within-season mechanisms fishermen use to shape economic returns and163

catch compositions. While some aspects of input usage (e.g., bait or crew164

staffing) may be somewhat variable within a season, the primary short-run165

mechanisms influencing vessel output are where and when to fish (Abbott166

et al., 2015; Reimer et al., 2017b; Scheld and Walden, 2018). Therefore, the167

spatial and temporal scale must be sufficiently disaggregated to capture im-168

portant variation that fishermen use to meet their economic objectives and169

to inform managers of relevant impacts (e.g., catch of target and non-target170

species or impacts to sensitive habitat). Second, the model must be both dy-171

namic and stochastic. Dynamic models consider that fishermen allocate their172

portfolio to maximize seasonal returns so that current fishing decisions de-173

pend on expectations of fishery conditions later in the season. Stochasticity174

implies that planning will not be perfect—catch, and hence quota balances,175

will not exactly match expectations. Third, the model must easily accom-176

modate realistic changes to management policies—such as catch limits and177

time/area closures. Finally, estimation and simulation of the model must178

be achievable from available data with reasonable technology and computing179

time.180
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Our modeling approach is not the first to include dynamic and stochastic181

elements of spatiotemporal fishing behavior. Indeed, fishing location choice182

models have been extended previously to include elements of dynamic plan-183

ning within the trip (Curtis and Hicks, 2000; Curtis and McConnell, 2004;184

Hicks and Schnier, 2006, 2008). These studies expand the myopic utility185

maximization assumption to consider the logistical problem of the optimal186

trajectory of fishing locations given that the current location choice affects187

the cost of access to other locations later in the trip. Optimal intra-trip loca-188

tion selection is therefore cast as a dynamic programming problem, with esti-189

mation of model parameters coinciding with the solution (Hicks and Schnier,190

2006, 2008) or approximation (Curtis and Hicks, 2000; Curtis and McConnell,191

2004) of the dynamic programming problem. Such models, however, do not192

capture the overriding dynamic concern that we would expect to emerge un-193

der catch shares—the management of a portfolio of quotas over the course194

of an entire season, where the state variables that provide the information195

set for fishermens decisions (i.e., expected catch, quota balances) evolve in196

a partially stochastic manner. A handful of papers have tackled seasonal197

fishing supply decisions dynamically (Provencher and Bishop, 1997; Smith198

and Provencher, 2003; Huang and Smith, 2014). However, the stochastic199

evolution of the state variables coupled with the need to solve a fisher’s sea-200

sonal optimization repeatedly in the estimation process through stochastic201

dynamic programming (SDP) has resulted in the imposition of very strong202

assumptions on the models to maintain computational tractability. This has203

usually taken the form of severely limiting the number of spatial locations204

available to fishermen and curtailing the horizon of decision making in order205
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to reduce the “curse of dimensionality.” Indeed, while notable advances have206

been made in reducing these computational burdens, the dimensionality of207

most applied dynamic discrete choice models remains quite small (Aguirre-208

gabiria and Mira, 2010). As we explain below, the coordinating mechanism209

of the quota lease market allows us to specify production decisions over a210

realistic spatial and temporal scale and number of state variables (species),211

thereby satisfying the aforementioned criteria for a useful predictive model.212

2.1. A model of a catch-share multispecies fishery213

Structural models face a trade-off between realism and computational214

tractability, requiring that modeling decisions preserve realism where it is215

fundamental to the nature of agents’ decision problem and predicted out-216

comes while sacrificing it elsewhere. In our case, the most fundamental217

decision concerns the modeling of the seasonal quota lease-market, which218

we assume to be competitive and to clear at the end of the season. That219

is, fishers are assumed to form expectations over quota lease-prices and treat220

them as given, even though prices are endogenously determined by the aggre-221

gate behavior of all fishers. Given the incentives embodied in these expected222

prices, fishers carry out individually optimal “on-the-water” plans by allo-223

cating their effort over a discrete number of fishing sites and time periods.224

We close the model under the assumption of rational expectations so that225

equilibrium quota prices are consistent with fishers’ beliefs.226

2.1.1. A fisher’s dynamic programming problem227

Consider agent (i.e., the fisher) i, who has preferences defined over a se-228

quence of states of the world zi,t from period t = 1 until period t = T + 1. In229
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periods t ≤ T , agents choose a fishing location a ∈ A = {0, 1, ..., J}, where230

a = 0 represents the option of not fishing. In the final period t = T + 1, the231

agent buys or sells quota in the leasing market according to their accumulated232

quota usage. Within-season decisions are driven by agents’ expectations of233

the end-of-season quota lease-market. In any given time period, fishers must234

account for the opportunity cost of using quota—whether it is best to use235

quota today for the profits it generates or preserve it for sale in the compet-236

itive quota market. The problem is stochastic because fishers do not know237

exactly what they (or others) will catch at each location and time period, and238

thus, they form expectations over fleet-wide catch realizations and the result-239

ing end-of-season quota lease prices. We assume that the number of fishers is240

large enough that any single fisher perceives their effect on aggregate harvest241

and the quota lease price as negligible. Therefore, fishers’ expectations of242

quota prices are formed exogenously to their own decisions.243

We make a number of simplifying assumptions for the sake of tractabil-244

ity. First, the state of the world at period t for agent i is assumed to con-245

sist of two components: zi,t = (xt, εi,t). The subvector εi,t is private in-246

formation known only by agent i at the time of decision. The subvector247

xt = (x1,t, ..., xN,t) contains state variables that are common knowledge to248

all N agents at the time of decision. For our application, xi,t represents an249

agent’s S-dimensional vector of cumulative catch prior to making a decision in250

period t: xi,t = fx(xi,t−1) =
∑t−1

k=1 yi,k = xi,t−1+yi,t−1, where yi,t = Y (ai,t, ξi,t)251

represents fisher i’s S-dimensional vector of catch in period t.1 The term ξi,t252

1In practice, the time index t and time-invariant individual characteristics can also be

components of the state vector xi,t, but we omit them here for the sake of simplicity.
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represents the stochastic component of catch, which we assume to be serially253

uncorrelated and unknown to any fisher at the time a decision is made in254

period t.255

Second, we assume that an agent’s contemporaneous utility function for256

location ai,t is additively separable in the observable and unobservable com-257

ponents:258

U (ai,t, zi,t) =

 u (ai,t, p
′yi,t) + εi,t (ai,t) if t ∈ {1, ..., T}

u (0, w′ (ωi − xi,T+1)) if t = T + 1,
(1)

where ωi denotes a vector of quota endowments possessed by fisher i at259

the beginning of the season, w denotes a vector of quota-lease prices, and p260

denotes a vector of ex-vessel prices. An agent’s utility in the final period T+1261

is evaluated at port (a = 0) with revenue equal to the value of their remaining262

endowment of quota.2 For simplicity, we further assume that fishers are risk-263

neutral so that revenue enters utility linearly and is additively separable from264

the rest of utility.265

Third, we assume that the unobserved state variables εi,t are indepen-266

dently and identically distributed (iid) across agents, time, and locations,267

and have an extreme-value type 1 distribution that is common knowledge268

across fishers.269

Fourth, we assume that catch y is independent of the unobserved state270

variables ε and the observed endogenous state variables x, conditional on271

2It can be shown that the indirect utility function in period T +1 follows from an agent

choosing consumption and an amount of quota to maximize utility, subject to a budget

constraint (see section Appendix B for details).
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the location choice a. This assumption implies that the stochastic compo-272

nent of catch ξ is conditionally independent of past, present, and future273

values of ε and x, so that: E(yi,t | ai,t, xi,t, εi,t) = E(yi,t | ai,t). Practically274

speaking, this assumption has several implications. First, a fisher’s private275

information about a location choice does not affect catch (or expectations of276

catch) once the fisher’s choice has been made—i.e., private information only277

influences catch by influencing a fisher’s choice. Second, cumulative catch,278

as reflected in xt, does not influence the distribution of contemporaneous279

catch—i.e., within-season spatiotemporal stock dynamics are exogenous to280

fishing behavior. Finally, this assumption also implies that the next-period281

cumulative catch xj,t+1 of any fisher j is independent of fisher i’s current pe-282

riod unobserved state variable εi,t, conditional on the values of the decision283

ai,t and state variable xi,t. Together, these assumptions define what is often284

referred to as the dynamic programming (DP) conditional logit model (Rust,285

1987).286

In periods t ≤ T , an agent observes the vector of state variables zi,t and287

chooses an action ai,t ∈ A to maximize expected utility288

E

(
T+1−t∑
j=0

U (ai,t+j, zi,t+j)
∣∣∣ ai,t, zi,t) . (2)

The decision at period t affects the evolution of future values of the state289

variables xi,t, but the agent faces uncertainty about these future values due290

to the unknown nature of future catch. The agent forms beliefs about future291

states, which are objective beliefs in the sense that they are the true transition292

probabilities of the state variables. By Bellman’s principle of optimality, the293

value function during the fishing periods t ≤ T can be obtained using the294
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recursive expression:295

V (zi,t) = max
a∈A

{
U (a, zi,t) + Ez

(
V (zi,t+1)

∣∣ a, zi,t)} , (3)

where Ez denotes the expectations operator with respect to the state vector296

z.3297

Unfortunately, there is typically no analytical form for the expected value298

function, and computationally expensive numerical and recursive methods299

are often needed to solve the Bellman equation instead. The restrictions these300

methods place on the dimensionality of the state space have often limited301

the empirical relevance of dynamic programming models of fisher behavior.302

Thankfully, the assumptions underlying the DP conditional logit model imply303

that fisher i’s optimal decision rule in each period is dramatically simplified304

if fishers possess a vector of “shadow prices” reflecting the expected marginal305

value of additional quota for each species in the fishery given current quota306

usage, wt. Given transferability of quota across fishers in a fluid within-season307

market, these shadow prices are harmonized across fishers and equivalent to308

the expected end-of-season lease prices. Conditional on these lease prices,309

the solution of Eq. (3) takes on a simple, static form:4310

α(zi,t | wt) = argmax
a∈A

{
u
(
a, (p− wt)

′E
(
yi,t
∣∣ a))+ εi,t (a)

}
. (4)

The policy function has a simple analytical form that does not depend on311

the endogenous state variable xi,t. Rather, it depends only on the fisher’s312

3Note that we do not include a discount factor.
4See Appendix C for a formal derivation.
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current private information εi,t and the expected quota-lease price wt, both313

of which are exogenous. Intuitively, the quota-lease price embeds all rele-314

vant information regarding expected future quota scarcity needed to inform315

the present-day decision.5 Functionally, this means that, given a perceived316

quota-lease price, the location-choice problem in equation (2) reduces to a317

tractable period-by-period static maximization problem that does not require318

recursively solving the Bellman equation.319

2.1.2. Rational Expectations Equilibrium Quota Prices320

Eq. (4) presents a fisher’s optimal decision rule for a given quota-lease321

price at a point in time wt. Fishers determine their optimal location choices322

over the course of the season given perceived quota prices wt as specified by323

the policy function α(zi,t | wt) in equation (4). In this sense, quota prices324

determine fisher behavior. At the same time, given fishers’ decision rules325

α(zi,t |wt), the end-of-season quota market determines expected quota prices326

in each period so that aggregate fisher behavior determines the equilibrium327

quota prices. Rational expectations states that the market-clearing quota328

prices implied by fisher behavior are the same as the quota prices on which329

fishers’ decisions are based. That is, the market-clearing equilibrium quota330

prices are consistent with fishers’ quota-price expectations.331

The expected quota-price vector wt is determined by a competitive market332

equilibrium in the final period T + 1. Let Xt =
∑
∀i xi,t denote the vector of333

fleet-wide cumulative catch at the beginning of period t for all species and let334

5The policy function in equation (4) takes on a similar form to the utility function used

by Miller and Deacon (2017).
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Ω =
∑
∀i ωi denote the vector of fleet-wide quota endowments for all species.335

Then the end-of-season excess demand for quota for species s can be written336

as es = Xs,T+1 −Ωs. In any given period t ≤ T , a fisher does not know with337

certainty what the demand for quota will be at the end of the season; thus,338

fishers form expectations over end-of-season excess demand given a perceived339

wt and the state of the world in period t:340

E (es | w, xt) = E (Xs,T+1 | wt, xt)− Ωs

=

[
T∑

k=t

∑
∀i

∑
∀a∈A

f (a | wt)E (yi,s,k | a)

]
+Xs,t − Ωs,

(5)

where f(·) denotes the probability mass function for the discrete location-341

choice variable a and the bracketed term represents the expected catch for342

all fishers in the remaining periods.6 Given the assumption that fishers know343

the distribution of private information for all agents, f(·) can be derived by344

integrating the policy function (4) over the unobserved state variable:345

f (a | w) =

∫
I[α (z | w) = a]g(ε)dε,

where I[·] is an indicator function and g(·) is the probability density function346

of ε. The expected equilibrium quota-lease prices in period t can then be347

6For simplicity, we have implicitly assumed that a fisher forms their expectation of

excess demand before they observe their private information ε. For a large number of

fishers, as we’ve assumed here, this has a negligible influence on our results; it is, however,

trivial to relax this assumption at the cost of model presentation.
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defined as those that satisfy the following market-clearing conditions:348

E (es | wt, xt) = 0 for ws,t > 0

E (es | wt, xt) ≤ 0 for ws,t = 0.
(6)

That is, in equilibrium, prices will adjust so that positive prices achieve zero349

expected excess quota demand for scarce species, while prices fall to zero for350

species in excess supply (i.e., “free goods”). The equilibrium quota prices351

that solve the market-clearing conditions in the system of equations (6) are352

thus a function of the observed (and common knowledge) state of the world353

in period t. We denote the equilibrium quota-lease price vector as w̃(xt).354

Under the assumption of rational expectations, fishers’ beliefs are consis-355

tent with the market-clearing conditions in (6). Thus, to close the rational356

expectations model, we substitute the equilibrium quota prices w̃(xt) into a357

fisher’s optimal decision rule:358

α(zi,t) = argmax
a∈A

{
u
(
a, (p− w̃(xt))

′E
(
yi,t
∣∣ a))+ εi,t (a)

}
, (7)

Eq. (7) serves as the basis for our rational-expectations RUM (or RERUM)359

model.360

3. Estimation361

We wish to estimate a vector of structural parameters in the utility func-362

tion θ utilizing panel data for N individuals who behave according to the363

decision model described in Section 2. For every observation (i, t) in this364

panel dataset, we observe the individual’s action ai,t, the payoff variable yi,t,365

and the subvector xt of the state vector zi,t = (xt, εi,t). Because the subvector366
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εi,t is observed by the agent but not by the researcher, εi,t is a source of vari-367

ation in the decisions of agents conditional on the variables observed by the368

researcher. It is the model’s econometric error, which is given a structural369

interpretation as an unobserved state variable.370

Assuming that the data are a random sample over individuals, the log-371

likelihood function is
∑N

i li(θ), where li(θ) is the contribution to the log-372

likelihood function of i’s individual history:7373

li(θ) = log Pr
{
ai,t : t = 1, ..., T

∣∣ yi,t, xt, θ}
= log Pr

{
ai,t = α(xi,t, εi,t, θ) : t = 1, ..., T

∣∣ yi,t, xt, θ} (8)

=
T∑
t=1

log f (ai,t | xt, θ) .

Closed-form expressions for f(·) follow from the iid extreme value type 1374

distribution we’ve assumed for εi,t, which produces the conventional logit375

probabilities:376

f (a | xt, θ) =
eu(a,(p−w(xt))

′E(y | a))∑
∀k e

u(k,(p−w(xt))
′E(y | k))

. (9)

This expression is predicated on knowledge of the quota price rules w(xt).377

Therefore, we need to either observe the state-contingent quota prices or378

7Note that we are estimating the structural parameters θ taking the harvest variable

yi,t and state variable xt as given. Thus, we are taking a partial MLE approach here. In

theory, it is possible to jointly estimate the structural parameters of both the harvesting

and utility functions in a full MLE approach; however, for the sake of simplicity, we leave

that for future research.
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come up with a strategy for determining the implied quota prices within the379

estimation process. In the former case, observed quota prices can simply be380

inserted into the choice probabilities in equation (9) and maximum likelihood381

estimation can proceed as usual. However, in many cases, these lease prices382

are not observed due to limitations on data disclosure or because only average383

prices are reported, as opposed to state-contingent prices. Given this missing384

data problem, we propose solving for the rational expectations equilibrium385

prices for each trial value of θ.386

The nested fixed-point algorithm (NFXP) pioneered by Rust (1987) is a387

search method for obtaining maximum likelihood estimates of the structural388

parameters, which combines an “outer” algorithm that searches for the root389

of the likelihood equations with an “inner” algorithm that solves for the390

fixed-point of the rational expectations equilibrium for each trial value of391

the structural parameters. Specifically, consider an arbitrary value of θ, say392

θ̂0. Conditional on θ̂0, the inner algorithm solves for the wt that solves the393

fixed-point problem in equation (6) given optimal fisher behavior described394

in equation (5). This produces an equilibrium vector of quota prices w̃(xt)395

for each observation in our data, which can be substituted into equation (9)396

to form the choice probabilities f
(
ai,t | xt, θ̂0

)
. Next, the outer algorithm397

uses the gradient of the log-likelihood function with the choice probabilities398

in equation (9) to start a new iteration with a new structural parameter θ̂1.399

This process continues until either θ̂ or the log-likelihood converges based on400

a pre-specified convergence tolerance.8401

8For more details on the the NFXP algorithm, see Appendix D.
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4. Numerical Policy Simulations402

We utilize simulated data to demonstrate how our modeling approach403

can be used for evaluating fishery policies, such as spatial closures and quota404

reductions, within a multispecies catch-share fishery. We consider a fishery405

in which fishers receive individual quotas for two species that are jointly406

harvested, but only one of these species (Species 1) has an ex-vessel value407

to a fisher—i.e., Species 2 can be considered a bycatch species. We simulate408

two forms of hypothetical policies designed to reduce bycatch: (1) reductions409

to the quota for the bycatch species, and (2) bycatch hot-spot area closures.410

4.1. The data-generating process411

The data generating process (dgp) loosely follows that of Reimer et al.412

(2017a) and is purposefully simple to facilitate our understanding of the413

model predictions. We assume fishers begin each period in port and choose414

from a n×n grid of fishing locations. The observable component of a fisher’s415

contemporaneous expected utility function is:416

E (ui,t) = θRevp
′E(yi,t | ai,t) + θDistDist(ai,t), (10)

where Dist(a) represents the distance from port to location a. We model417

fisher i’s catch of species s ∈ {1, 2} in period t as ys,i,t = Y (ai,t, ξs,i,t) =418

qs,i exp {ξs,i,t(ai,t)}, where qs,i ∈ (0, 1) denotes fisher i’s catchability coefficient419

and ξs,i,t(a) is a normally distributed random variable with location-specific420

mean parameters µs(a) and a common variance σ2. Catch is thus a log-421

normal distributed random variable with mean E(ys,i,t | a) = qs,i exp{µs(a) +422

20



σ2/2}.9 For simplicity, µs(a) and σ2 (and thus expected catch) are assumed423

to remain constant over all individuals and time periods; however, realized424

catch varies across all individuals and time periods due to the individual- and425

time-specific nature of the idiosyncratic shock ξs,i,t(a).10 A fisher’s optimal426

location choice is determined by equation (7) and the rational-expectations427

quota prices are determined by equation (6). In general, quota prices are sen-428

sitive to the data-generating parameters, as depicted in Figure A.1, and have429

comparative statics that are consistent with theory: quota prices increase430

with ex-vessel prices, quota scarcity, and the marginal utility of revenue.11431

We consider two different biological scenarios with different spatial dis-432

tributions for each species, producing the global production sets depicted433

in Figure 1. In the first scenario, the two species have minimal spatial434

overlap, and thus, fishers are able to substitute between species relatively435

easily. In contrast, fishers are more constrained by the bycatch species in436

the second scenario as there is greater spatial overlap between species and437

9The mean parameters µs(a) vary over the grid according to distinct two-dimensional

normal density functions for both species.
10This example does not incorporate stock depletion or other spatial/temporal vari-

ability in expected catch over the course of the season. We do so to focus attention on

the dynamics generated by the opportunity cost of quota. It is a relatively straightfor-

ward extension of our approach to include these extensions, so long as fishers consider

stock depletion and other non-stationarities to be an exogenous process in their planning

behavior.
11Note that the latter is only true for the target species. Quota prices decrease with the

marginal utility of revenue if a species’ net price (ex-vessel price minus quota lease price)

is negative. In this case, fishers will try to avoid catching this species, decreasing demand

for it’s quota.
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fishers must travel further away from port to avoid bycatch. The remaining438

data-generating parameter values for the policy simulations are presented in439

column 2 of Table 1.440

We reduce the bycatch quota and the area open to fishing, respectively,441

by increments of 5% to a minimum of 25% of their baseline levels. For the442

area closures, we emulate a hot-spot closure policy by closing areas to fishing443

that experience the highest amount of bycatch in the baseline simulations.12444

Harvest and utility shocks (ξ and ε) are drawn from their respective prob-445

ability distributions, and state variables are endogenously updated in each446

time period.447

Results from the policy simulations are presented in Figure 2, where we’ve448

simulated 200 counterfactual seasons under each policy. Under the baseline449

policies, the quota for the bycatch species (s = 2) is binding in both biological450

scenarios, resulting in a positive quota-lease price in all simulated seasons. In451

scenario 1, the lease price for the target species (s = 1) is consistently positive452

as well, pointing toward the dominance of interior solutions in the quota453

market. In contrast, the target species almost always has a non-positive454

lease price in scenario 2, where the bycatch species consistently acts as a455

choke species, preventing the full harvest of the target species quota. This456

difference largely stems from the higher spatial overlap between the target457

and bycatch species in scenario 2, making bycatch avoidance so costly that458

it is not possible to fully utilize the target species quota.459

The effect of the bycatch reduction policies differs across both biological460

12For example, if 75% of a 100-location grid is closed to fishing, we close the 75 cells that

have the highest amount of bycatch from a baseline simulation with no spatial closures.
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scenarios and policy types. Not surprisingly, the quota reductions are effec-461

tive at achieving desired bycatch reductions: bycatch falls at a 1:1 ratio with462

the bycatch quota as the quota remains binding over all reductions. The lost463

utility from achieving a given level of bycatch reduction is considerably higher464

in scenario 2 because of the higher cost of bycatch avoidance. In scenario 2,465

the primary cost of bycatch reduction is foregone catch of the target species,466

as the bycatch quota continues to bind before the target-species quota is467

harvested. By contrast, the primary cost in scenario 1 is traveling greater468

distances to avoid bycatch: there is minimal foregone target species catch in469

scenario 1 and the target species quota price declines very slowly on average470

while the price of bycatch quota rises steadily with increased scarcity.471

Hot-spot closures, on the other hand, have virtually no impact on bycatch472

in either scenario over the examined range of closures. In fact, hot-spot473

closures have the effect of pushing fishers into areas with higher bycatch-474

to-target species ratios. Since fishers are already avoiding bycatch under475

the baseline policy, bycatch is being generated in areas with relatively low476

bycatch-to-target species ratios; hot-spot closures therefore push fishers out477

of relatively cleaner areas, thereby increasing bycatch per unit of target478

species catch.479

The key difference between the two bycatch-reduction policies is reflected480

in the quota-lease prices: quota reductions signal scarcity to fishers through481

increased quota-lease prices, and fishers have the incentive to reduce bycatch482

in the most cost-effective manner given their information about catch rates.483

Hot-spot closures, on the other hand, do not signal bycatch scarcity over a484

wide spectrum of policy severity when bycatch quota is already sufficiently485
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scarce under the baseline scenario to command a positive price. Instead, for486

fisheries where bycatch species does not consistently act as a choke species487

(scenario 1), the closures decrease the value of the target species quota price488

by pushing fishers into increasingly sub-optimal fishing locations. In fact,489

quota prices for the bycatch species are only responsive to the closures in490

scenario 1 once the target-species quota can no longer be harvested before491

the bycatch quota binds.492

Altogether, these policy simulations demonstrate the utility of modeling493

the spatiotemporal production decisions of harvesters under the dynami-494

cally evolving constraints imposed by the seasonal quota market. We have495

demonstrated how this structural approach can yield out-of-sample predic-496

tions of fisher welfare, catch rates, and lease price behavior for changes in both497

rights-based management parameters (i.e., quota allocations) and “ecosystem498

based” policies targeting the spatiotemporal footprint of fishing effort. Our499

simulation results also highlight the role that lease prices play in relaying500

signals of quota scarcity, and how policies that fail to influence the relative501

scarcity of quota in the desired direction as reflected in these relative prices502

are likely to fall short of their intended objectives.503

5. Monte Carlo Analysis504

We now evaluate the ability of the RERUM estimator to recover struc-505

tural behavioral parameters through a Monte Carlo analysis. It is important506

to note that the RERUM estimator is an unbiased estimator of the true507

parameters by construction, so long as the NFXP maximum likelihood al-508

gorithm converges to it’s global maximum. Thus, the Monte Carlo results509
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for the RERUM estimator are useful for ensuring that the NFXP algorithm510

works appropriately and for investigating the properties of the estimator511

(e.g., precision and identification) under realistic data settings.512

We also evaluate the in- and out-of-sample performance of common static513

RUM models with the true model to investigate the biological and regulatory514

conditions under which these reduced-form models may provide adequate515

in- and out-of-sample predictions of fishing behavior within a catch-share516

program. We consider the following reduced-form utility specifications, which517

differ in their treatment of the shadow cost of quota:518

Static RUM (SRUM):

E (ui,t) = θRevp
′E(yi,t | ai,t) + θDistDist(ai,t);

Quota-Price Static RUM (QP-SRUM):

E (ui,t) = θRev (p− wt)
′E(yi,t | ai,t) + θDistDist(ai,t),

where ws,t = observed quota-lease prices;

Approximate Rational Expectations RUM (ARUM):

E (ui,t) = θRev (p− ŵt)
′E(yi,t | ai,t) + θDistDist(ai,t),

where ŵs,t = γ0,s + γ′1,szt + z′tγ2,szt, z′t = [X1,t, X2,t, t] , s = 1, 2,

and Xs,t denotes the proportion of remaining fleet-wide quota for species s519

in period t. The parameters θ = [θRev, θDist] are the structural preference520

parameters of interest and are estimated alongside the vector [γ0,s, γ1,s] and521

symmetric matrix γ2,s.522

The first specification (SRUM) is the static RUM approach that estimates523

contemporaneous utility without deducting the shadow cost of quota from524
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expected revenues. So long as the TAC has a non-zero probability of binding525

for at least one species, the SRUM model will underestimate the expected526

revenue coefficient θRev. Moreover, to the extent that a location’s distance527

from port is correlated with the expected catch of a species with binding528

quota, the estimate of the distance coefficient θDist will also be biased (up-529

wards or downwards, depending on the direction of the correlation).530

The second specification (QP-SRUM) represents the approach one would531

take to address the bias of the SRUM model if quota-lease prices were532

observed—that is, include the observed prices wt directly into the contem-533

poraneous utility function. We consider two versions of this approach, one534

which uses the period-specific quota-lease prices wt (QP-SRUM1, the best-535

case scenario) and another which uses the seasonal average quota price w̄536

(QP-SRUM2, a more likely scenario).537

The third specification (ARUM) attempts to address the bias of the538

SRUM model without the luxury of having quota-lease prices. Specifically,539

the ARUM model introduces a reduced-form quadratic approximation of540

quota-lease prices by interacting expected catch with observed state variables541

meant to reflect the scarcity of quota, including the proportion of remaining542

quota Xs,t and time period t.13 Similar approaches have been followed previ-543

ously, for example, to estimate the implicit cost of fleet-wide bycatch quotas544

(Abbott and Wilen, 2011) and to estimate the extent of cooperation in a545

common-pool fishery (Haynie et al., 2009). The ARUM model approximates546

13We also considered fleet-wide cumulative catch as a state variable, but the proportion

of remaining quota was selected for the ARUM model due to it’s superior predictive

performance.
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the shadow value of quota using both species’ cumulative catch information.547

Note that without temporal variation in the ex-vessel price p, it is not pos-548

sible to identify the constant γ0,s in the ARUM model. In practice, it is549

rare to observe within-season variation in prices; thus, we omit γ0,s from550

the ARUM specification, and note that only the differences in quota prices551

w across the state space are identified, as opposed to the absolute level of552

quota prices. As we discuss below, this has implications for identifying the553

structural parameter θRev, but has no implications for prediction.554

5.1. Estimation and in-sample performance555

We generate 200 independent draws from the same dgp used for the nu-556

merical policy simulations in Section 4. To investigate each estimator’s per-557

formance across different data-generating and sampling environments, we si-558

multaneously draw randomly from the data-generating parameter space (e.g.,559

θ, µ, σ) and the sampling parameter space (e.g., T,N, S). For each Monte560

Carlo draw, we estimate the parameters of the RERUM and the alterna-561

tive models, and calculate parameter bias and the root-mean-squared-error562

(RMSE) of predicted location-choice probabilities.14 Column 1 of Table 1563

provides the range of parameter values we consider.564

As expected, both the RERUM and QP-SRUM1 estimators are able to565

recover the structural parameters θ due to explicitly accounting for the evolv-566

ing shadow-cost of quota (either imputed or observed, respectively) in the567

14Monte Carlo simulations were conducted using Matlab (Version 2019a) with parallel

computing (18 workers) running on an Amazon EC2 instance (c4.8xlarge) with an Intel

Xeon E5-2666 v3 processor (2.9 GHz) and 60 GiB of memory.
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estimation process (Figure 3). The QP-SRUM2 estimator, which accounts568

for only the seasonal average quota price, also provides a relatively unbiased569

estimator θRev. In contrast, the SRUM specification underestimates θRev, as570

predicted for situations in which the shadow cost of quota is strictly posi-571

tive. The ARUM specification does not improve the estimation performance572

of θRev over the SRUM because it is unable to identify the absolute level of573

the quota prices (γ0) due to the time-invariant nature of prices p. Instead,574

γ0 is subsumed into the estimate of θRev, resulting in a underestimation of575

θRev. Moreover, including an approximation of the shadow cost of quota576

creates challenges for precision, as reflected in the wide distributions of θ̂Rev577

for the ARUM specification. All five models have relatively good estima-578

tion performance for θDist, which is expected when the distance from port579

to areas with high expected catch is symmetric across species.15 Altogether,580

despite having trouble using variation in observed state variables to identify581

θRev, the ARUM models do offer an improvement over the SRUM model for582

in-sample predictions according to the RMSE of choice probabilities. By con-583

trast, the QP-SRUM2 estimator does not provide much improvement over584

the SRUM estimator for in-sample predictions because, despite incorporating585

quota price information into the estimation process, it does not account for586

the within-season evolution of the quota shadow costs.587

In Figure 4, we investigate whether there are any particular areas of the588

data-generating and sampling parameter space in which the RERUM esti-589

15This symmetry is exhibited, on average, in our Monte Carlo sample since we allow

for the spatial overlap of species to be randomly determined when drawing from the data-

generating parameter space.
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mator performance is worse at recovering estimates of θRev. The median590

bias of θRev for the RERUM estimator is unsurprisingly zero across the pa-591

rameters space; however, heterogeneity in the spread between the 10th and592

90th percentiles indicates that there are some areas of the parameter space593

in which the sampling distribution of the RERUM estimator is more diffuse.594

Most notably, the RERUM estimator tends to perform better when there595

are a larger number of species S and a larger level of harvest variance σ2.596

With more species, there is potential for greater spatiotemporal variation597

in “net revenue”—i.e., (p− w̃t)
′E(yi,t)—that can be used to identify θRev,598

especially if quota prices vary asynchronously over time across species.16 A599

similar argument can be made regarding σ2: with low σ2, quota prices tend600

to be relatively stable over time, providing less spatiotemporal variation for601

identifying θRev. In general, Monte Carlo draws that have small S and/or602

small σ2 tend to have a flatter log-likelihood function, resulting in less precise603

estimates.604

We also consider practical issues regarding estimation of the RERUM605

model. To investigate the potential for convergence issues of the NFXP al-606

gorithm, we estimate the RERUM parameter vector multiple times for each607

Monte Carlo draw starting from different initial values.17 While the algo-608

16As an example, in the extreme case with S = 1, the relative fishing payoffs over space

do not change over time because the quota price affects all locations the same, regardless

of how much the quota price changes over time. With more species, the relative payoffs do

change over time, so long as the quota prices for each species do not vary synchronously

over time.
17Specifically, for each Monte Carlo draw, we estimate the RERUM model starting

from nine different initial guesses arranged in a grid centered on the true data-generating
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rithm displays occasional convergence issues, the RERUM estimator behaves609

reasonably well, with approximately 90% of the Monte Carlo draws appear-610

ing to converge to a global maximum.18 Convergence issues generally occur611

under the same conditions that produce a flat log-likelihood function—i.e.,612

when the number of species (S) or the variance of the stochastic harvesting613

component (σ2) are small. Measures of estimation time demonstrate that614

while the computational burden of the RERUM estimator increases with the615

number of observations per year (N × T ) and the number of species (S),616

it does so at a rate that is more-or-less linear in S and slightly convex in617

N × T (Figure A.3).19 Altogether, the computational costs of the RERUM618

estimator do not appear to be prohibitively burdensome within the range of619

sample sizes and numbers of quotas/species encountered by practitioners on620

a regular basis.621

5.2. Out-of-sample Performance622

To evaluate out-of-sample prediction performance, we simulate the same623

counterfactual bycatch-reduction policies as in Section 4 and narrow our624

parameter values. The parameter vector(s) associated with the largest log-likelihood value

is the RERUM estimate.
18The proportion of estimates that converged to the same maximum log-likelihood value

is presented in Figure A.2
19In theory, the computational burden of the RERUM estimator (above that for a static

RUM) is a function of the number of rational-expectations equilibrium quota prices that

need to be computed. Let time(T,N, J) represent the time it takes to solve for a single

quota price, which is increasing linearly in the number of individuals (N), time periods

(T ), and locations (J) (see equation 5). Then the computation time devoted to solving

for quota prices is equal to time(T,N, J)× T × S × Y rs.
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focus on the two biological scenarios depicted in Figure 1. For each bi-625

ological scenario, we generate 200 independent draws from the dgp under626

the baseline policy, and for each draw, we estimate the parameters of the627

RERUM and the alternative models. For both forms of policy counterfac-628

tuals, we simulate an entire fishing season with stochastic harvest and state629

variables that are endogenously updated in each time period. Fishers make630

location choices according to their utility-function specification (i.e., SRUM,631

QP-SRUM, ARUM, or RERUM) and their corresponding parameter esti-632

mates. For both the ARUM and RERUM models, the quota-lease price633

is updated in each period using each model’s respective quota-price rule.634

For example, the ARUM model inserts the observed state variables into the635

quadratic quota-price approximation function, while the RERUM model up-636

dates the quota-lease price using the observed state variables and solving637

for the rational-expectations equilibrium quota prices in equation (6). In638

contrast, the SRUM and QP-SRUM models are static, and do not update639

each period to reflect the evolving shadow cost of quota. The SRUM model640

uses no quota prices while the QP-SRUM models use the observed quota641

prices from the estimation sample, essentially considering them exogenous642

to the counterfactual policies under consideration. For each simulation, har-643

vest and utility shocks (ξ and ε) are drawn from their respective probability644

distributions, while utility parameter estimates θ̂ and quota-price parame-645

ter estimates γ̂ (where applicable) are drawn from their simulated sampling646

distributions; thus, the distribution of simulation results reflect both process647

error and sampling error.648

In general, the reduced-form models perform well in predicting changes in649
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expected utility for small changes from the baseline policy, but get progres-650

sively worse as counterfactual policies move farther away from the baseline651

(Figure 5).20 In both scenarios, the reduced-form models tend to overes-652

timate the cost of reducing the bycatch TAC. The SRUM and QP-SRUM653

models have no method of accounting for increased shadow prices from TAC654

reductions; thus, fishers are predicted to fish business-as-usual until the sea-655

son ends from a binding TAC. As a result, predicted changes in expected656

utility under the SRUM and QP-SRUM models are proportional to bycatch657

TAC reductions. The ARUM model does account for changes in bycatch658

quota scarcity through the approximated quota-lease prices, and in turn,659

fishers are predicted to fish in different locations with less expected bycatch.660

As a result, early-season endings from hitting the bycatch TAC are avoided661

and predicted changes in expected utility are relatively close to the truth, at662

least for small reductions in the TAC.663

The reduced-form models tend to do better predicting changes in expected664

utility from the hot-spot closures. The performance of the SRUM and QP-665

SRUM models tend to be inferior to the ARUM model, although they are still666

capable of producing reasonable predictions for a small number of closures.667

Predictions from the ARUM model are quite good for the hot-spot closures,668

particularly for scenario 2; ARUM predictions are close to the true model,669

on average, even for large changes from the baseline. However, sampling670

error in the lease-price parameters leads to considerably more variation in671

the ARUM model’s prediction error, demonstrating a potential drawback of672

20Given the similarity in the out-of-sample predictions for the QP-SRUM1 and QP-

SRUM2 models, we only present the results for QP-SRUM1.
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using the reduced-form approach to approximate the quota-lease prices.673

The out-of-sample predictions we consider here produce two important674

insights. First, despite being able to recover structural parameters reason-675

ably well, static RUM models that incorporate observed quota-lease prices676

in the estimation process do not produce good out-of-sample predictions if677

quota-prices are not allowed to adjust to the market, ecological, or regula-678

tory conditions of the counterfactual policy. This is true even for policies679

such as the bycatch hot-spot-closure policy for scenario 2, which does not680

induce large changes in quota prices, on average (Figure 2). The reason lies681

in the stochastic realizations of production, which are embodied in the ob-682

served quota prices but are not expected to be the same as those observed in683

the estimation sample. Thus, quota prices that do not update to reflect the684

prevailing state-of-the-world under counterfactual policies will not accurately685

predict behavior.686

Second, RUM models that incorporate a state-contingent, reduced-form687

approximation of the quota-price, such as the ARUM, are capable of im-688

proving out-of-sample predictions over static RUM models. However, this689

improvement is limited to only certain situations. The reason largely lies in690

the quota-price responses to the policy change (Figure 2): as quota prices691

move further away from those observed in the estimation sample, predictions692

from the reduced-form models tend to move further away from the truth. For693

example, hot-spot closures in scenario 2 have almost no effect on quota prices.694

Accordingly, the ARUM model does very well at predicting out-of-sample in695

this case since the lease-price parameters of the ARUM are calibrated to696

replicate the in-sample behavior under economically equivalent scenarios. In697
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contrast, TAC reductions in scenario 1 have the largest influence on quota698

prices, and in turn, predictions from the ARUM model are only acceptable699

for small changes in the TAC.700

6. Conclusion701

We develop a model of spatiotemporal fishing behavior that incorpo-702

rates the dynamic and general equilibrium elements of catch-share fisheries.703

Our approach extends the traditional RUM framework for estimating fish-704

ing location choices by incorporating a within-season market for quota ex-705

changes, which determines equilibrium quota-lease prices (or, equivalently,706

quota shadow costs) endogenously. Our proposed estimation strategy is able707

to recover structural behavioral parameters under reasonable sample sizes708

and specifications of the data generating process, even when quota-lease709

prices are unobserved. We demonstrate the use of our model for predict-710

ing behavioral responses to fishery policies, such as spatial closures and TAC711

reductions, within a catch-share fishery and illustrate the importance of al-712

lowing quota-prices to be endogenous for conducting out-of-sample policy713

evaluations.714

Our study provides several insights. First, the inclusion of quota-prices,715

either observed or imputed, in the specification of RUM models is necessary716

to identify structural parameters. However, identifying the structural param-717

eters of the RUM model is not sufficient for making accurate out-of-sample718

predictions of counterfactual policy changes. Rather, sufficiency lies in deter-719

mining what quota prices would be under the counterfactual policy change.720

Thus, even if practitioners observe quota prices and use them to recover the721
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structural behavioral parameters, a model of endogenous quota prices is nec-722

essary for counterfactual policy evaluations. In other words, quota prices723

themselves are not policy invariant.724

Second, in the absence of a structural model for quota-lease prices, a725

reduced-form approximation of state-contingent quota-lease prices can per-726

form well in evaluating out-of-sample policy changes, provided there is ad-727

equate quota-price variation in the sample, relative to the range of price728

variation induced by the counterfactual policy. Changes in quota prices re-729

flect the realized magnitude of the effect of the policy on economic incen-730

tives, and therefore function as sufficient statistics for whether a particular731

policy/economic/biological regime is sufficiently “in sample” to be evaluated732

using a reduced-form model. The challenge is knowing ahead of time whether733

a policy change of interest will result in quota-prices that lie out-of-sample.734

As we demonstrate in Section 4, even seemingly “marginal” policy changes735

can result in large quota-price changes, and vice versa. Without knowing how736

quota prices will respond to a policy change, it is hard to determine ex ante737

whether a reduced-form approach will produce adequate policy evaluations.738

In short, the layering of spatial closures and a host other policies on739

top of RBM systems creates unavoidable feedbacks to seasonal quota mar-740

kets. These prices, or internal shadow prices for systems that disallow leas-741

ing, are the endogenous mechanisms by which RBM alters the responses of742

fishers to these scenarios. Our model has shown the crucial importance of743

drawing upon structural models of the quota-price determination process for744

prediction—whether or not these models are used to estimate fishers’ under-745

lying behavioral parameters. Failure to do so will fundamentally limit the746
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ability of economists to answer crucial “what if” questions posed by fishery747

managers.748
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Tables

Parameter Values

Parameter In-Samplea Out-of-Sampleb Description

θRev [0.5,1.5] 1 True preference parameter for expected revenue

θDist [-0.5,-0.1] -0.4 True preference parameter for distance

J [36,144] 100 Number of locations

N [10,40] 20 Number of individual fishers

T [25,60] 50 Number of time periods in a year

S [1,4] 2 Number of species

Y rs [1,5] 1 Number of years

p [500,1500] (1000,0) Ex-vessel price vector

q [0.15,5.8]×10−3 10−3 Catchability coefficient, q = (J/100)× (1/TN)

σ2 [0.1,5] 3 Variance of random harvest component (ξ)

TAC [0.8,1.5]×10−3 (13,7)×10−3 Total allowable catch (proportion of abundance)

a Denotes the range of parameter values for the data generating process considered in the evaluation

of in-sample performance.

b Denotes the parameter values (species-specific, where applicable) for the data generating process

considered in the numerical policy simulations and the evaluation of out-of-sample performance.

Table 1: Parameter values and descriptions for the data generating process.
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Figures

Figure 1: Spatial distribution of expected catch for species 1 (left) and 2 (center) with port

located in the upper left-hand corner in cell [1,1]; expected global production set (right)

with the total allowable catch (black dot and dashed lines).
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Figure 2: Numerical simulation outcomes—bycatch hot-spot closures (left column) and

bycatch TAC reductions (right column) for two biological scenarios (blue and red). The

median (solid line) and 25th-75th percentile range (shaded area) are presented using 200

draws from the data-generating process.
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Figure 3: Parameter estimation and in-sample predictive performance—distance between

estimated and population preference parameters (left and center columns); root-mean-

square error (RMSE) between estimated and population choice probabilities (right col-

umn). Markers denote median values and error bars denote the 25th and 75th percentiles.

Distributions generated from 200 draws from the data-generating process with random

draws from the parameter space.
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Figure 4: RERUM parameter bias for θRev across four parameter spaces: number of

observations per year (far left), number of years (mid left), number of species (mid right),

and the variance of the stochastic harvest component (far right). The lines denote quantile

regression predictions for the 10th, 50th, and 90th quantiles. Distributions generated from

200 draws from the data-generating process with random draws from the data-generating

and sampling parameter space.
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Figure 5: Out-of-sample prediction errors: percentage change in expected utility. Top:

bycatch hot-spot closures. Bottom: bycatch TAC reductions. Markers denote median

values and error bars denote the 25th and 75th percentiles. QP-SRUM model uses period-

specific quota-prices from estimation sample. Distributions generated from 200 draws from

the data generating process and sampling distributions of utility parameter estimates.
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Appendix A. Supplementary Figures

Figure A.1: Quota prices in period t = 1 as a function of ex-vessel prices (p1 and p2, row

1), total allowable catches (TAC1 and TAC2, row 2), and preference parameters (βRev

and β :Dist, row 3). Dashed lines indicate the data-generating parameter values.
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Figure A.2: Global convergence of the RERUM estimator—the proportion of maximum-

likelihood searches that converged to the same maximum. Distribution generated by 200

independent draws from the data-generating process and 9 initial values for each draw.
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Figure A.3: RERUM estimation time across four parameter spaces: number of observa-

tions per year (far left), number of years (mid left), number of species (mid right), and

the variance of the stochastic harvest component (far right). The lines denote quantile

regression predictions for the 10th, 50th, and 90th quantiles. Distributions generated from

200 draws from the data-generating process with random draws from the data-generating

and sampling parameter space.

Appendix B. Deriving the Last-Period Utility Function873

The indirect utility function in period T+1 in equation (1) can be derived874

as follows. Each agent is endowed with an S×1 vector of quota ωi, which can875

be used to fund harvests over the season or be leased in the competitive quota876

market. The agent buys a vector of quota qi after observing their cumulative877

harvest xi,T+1. The agents objective in period T + 1 is to maximize utility878

with respect to consumption c, subject to a budget constraint:879

max
c,q

u (0, c) subject to c ≤ w′ (ωi − q) ; q ≥ xi,T+1,
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where the consumption good is the numeraire good whose price is normalized880

to one, w denotes a vector of quota lease prices, and u(·) is equivalent to881

the utility function in equation (1) evaluated at a = 0 (i.e., port). The882

constraints act to restrict the agent from consuming more than the net income883

they receive from the purchase and sale of quota, while also ensuring that884

the owner has enough quota to cover their annual harvests. Assuming that885

u′(c) > 0 for c > 0, then the budget constraint will be binding, and the agent886

will choose quota such that q∗i (w) = xi,T+1. Thus, the agent’s indirect utility887

function can be expressed as888

V (zi,T+1) = u (0, w′ (ωi − xi,T+1)) ,

which gives us the indirect utility function for period T + 1 in equation (1).

For supplemental derivations, it is useful to simplify this expression further

as

V (zi,T+1) = u (0) + v (w′ (ωi − xi,T+1))

= v (w′ (ωi − xi,T+1)) , (B.1)

where the first equality follows from the assumption that revenue is additively889

separable from the rest of utility and the second equality follows from using890

location a = 0 as the baseline alternative.891

Appendix C. Derivation of the Policy Function892

Consider the Bellman equation in (3) given the state of the world zi,t =

(xi,t, εi,t), which we reproduce here for convenience:

V (zi,t) = max
a∈A

{
u
(
a, p′E

(
yi,T

∣∣ a))+ εi,t(a) + Ez

(
V (zi,t+1)

∣∣ a, zi,t)} .
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To see that the policy function takes the form presented in equation (4), note893

that the next-period expected value function in the last fishing period T can894

be written in the following way:895

Ez

(
V (zi,T+1)

∣∣ ai,T , zi,T ) = v
(
w′
(
ωi − Ex

(
xi,T+1

∣∣ ai,T , xi,T )))
= v (w′ (ωi − xi,T ))− v

(
w′Ey

(
yi,T

∣∣ ai,T )) .
The first equality follows from substituting the indirect utility function in896

period T+1 (equation B.1) into the expectation of the last-period value func-897

tion, while the second equality follows from the transition equation, xi,T+1 =898

xi,T + yi,T , and the linear nature of v(·). Notice that v
(
w′Ey

(
yi,T

∣∣ ai,T ))—899

i.e., the marginal effect of location choice on the value of remaining quota in900

the last period—is the only term that affects the optimal location choice in901

period T . In contrast, the term v (w′ (ωi − xi,T ))—i.e., the value of already902

used quota—is sunk and does not influence the contemporaneous location903

choice. Substituting the derivation of the next-period expect value function904

into the Bellman equation, we have:905
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906

V (zi,T ) = max
ai,T∈A

{
u
(
ai,T , p

′Ey

(
yi,T

∣∣ ai,T ))+ εi,T (ai,T )

−v
(
w′Ey

(
yi,T

∣∣ ai,T ))+ v (w′ (ωi − xi,T ))
}

= max
ai,T∈A

{
u (ai,T ) + v

(
p′Ey

(
yi,T

∣∣ ai,T ))+ εi,T (ai,T )

−v
(
w′Ey

(
yi,T

∣∣ ai,T ))}+ v (w′ (ωi − xi,T ))

= max
ai,T∈A

{
u (ai,T ) + v

(
(p− w)′Ey

(
yi,T

∣∣ ai,T ))
+εi,T (ai,T )}+ v (w′ (ωi − xi,T ))

= max
ai,T∈A

{
u
(
ai,T , (p− w)′Ey

(
yi,T

∣∣ ai,T ))+ εi,T (ai,T )
}

+v (w′ (ωi − xi,T )) ,

(C.1)

where we’ve used the fact that utility is linear in revenue. The optimal907

location choice in period T is therefore defined as:908

α(εi,T | w) = argmax
ai,T∈A

{
u
(
ai,T , (p− w)′Ey

(
yi,T

∣∣ ai,T ))+ εi,T (ai,T )
}
.

Moving to the second-last fishing period T − 1, we can write the next-909

period expected value function in the Bellman equation as:910

Ez (V (zi,T
∣∣ ai,T−1, zi,T−1)) = Ex,ε

(
max
ai,T∈A

{
u
(
ai,T , (p− w)′Ey

(
yi,T

∣∣ ai,T ))
+εi,T (ai,T )}+ v (w′ (ωi − xi,T ))

∣∣∣ ai,T−1, xi,T−1, εi,T−1) .
Let Λi,T = max

ai,T∈A

{
u
(
ai,T , (p− w)′Ey

(
yi,T

∣∣ ai,T ))+ εi,T (ai,T )
}

for notational911

simplicity. Because w is considered exogenous by fishers and y is conditionally912

independent of x, Λi,T is not influenced by the location choice ai,T−1. Thus,913
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we can write Ex,ε (Λi,T | ai,T−1, xi,T−1, εi,T−1) = Eε (Λi,T ) and simplify the914

next-period expected value function in the Bellman equation as:915

Ez (V
(
zi,T

∣∣ ai,T−1, zi,T−1))
= Ex,ε

(
Λi,T + v (w′ (ωi − xi,T ))

∣∣∣ ai,T−1, xi,T−1, εi,T−1)
= Ex,ε

(
Λi,T + v (w′ (ωi − xi,T−1 − yi,T−1))

∣∣∣ ai,T−1, xi,T−1, εi,T−1)
= −v

(
w′Ey

(
yi,T−1

∣∣ ai,T−1))+ v (w′ (ωi − xi,T−1)) + Eε (Λi,T ) .

As in period T , the only component of next-period’s value function that916

varies with a is its effect on the value of remaining quota in the final period:917

v
(
w′Ey

(
yi,T−1

∣∣ ai,T−1)). Thus, the optimal decision rule in period T − 1 is918

fully characterized by919

α(εi,T−1 | w)

= argmax
ai,T−1∈A

{
u
(
ai,T−1, (p− w)′Ey

(
yi,T−1

∣∣ ai,T−1))+ εi,T−1 (ai,T−1)
}
.

Repeated substitution into earlier periods generalizes this result to any deci-920

sion period t, giving us the optimal decision rule in equation (4). Ultimately,921

it is the conditional independence assumption for y and the assumption that922

fishers consider their effect on the quota price w to be negligible that allow923

us to reduce a fishers optimal decision rule to something tractable and easily924

solvable (conditional on w).925
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Appendix D. The Nested Fixed-Point (NFXP) algorithm926

Appendix D.1. Inner algorithm: the fixed-point problem927

A rational expectations equilibrium for the inner algorithm is a vector-928

valued function of quota prices w(xt |θ) that solves the market clearing condi-929

tions in (6) subject to fishers making their optimal fishery choices according930

to equation (4) for a given vector of structural parameters θ. Our goal is to931

find w(θ) such that:21932

F (w(θ)) = max {E (es | w(θ), xt) ,−w(θ)} = 0 ∀s ∈ {1, ..., S}, (D.1)

where es is the end-of-season excess demand function for species s quota.933

Since we are solving for S quota lease prices that satisfy S equilibrium equa-934

tions, the system of equations in (D.1) is just identified.935

Appendix D.1.1. Algorithm936

Consider an arbitrary initial vector of quota prices w0. Then the rational937

equilibrium quota prices w(xt | θ), conditional on a given vector of structural938

parameters θ, can be determined by the following algorithm:939

1. For each time period t in the data, use the observed state variable xt940

to calculate the cumulative fleet-wide catch for each species, Xs,t.941

2. Calculate the choice probabilities fa(ai,t | xt, w0).942

21This is actually a complementarity problem, as opposed to a fixed-point problem. See

page 44 in Miranda and Fackler (2002) for more details.
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3. Calculate the expected end-of-season excess demand E(es | w0, xt) for943

each species s ∈ {1, ..., S} using Xs,t from step 1 and fa(ai,t | xt, w0)944

from step 2.945

4. Given the expected excess-demand functions from step 3, compute the946

system of equations F (w0) in (D.1).947

5. In general, F (w0) will not equal 0, as required by the equilibrium con-948

ditions in (D.1). Generate a new value of w, say w1, using a Newton949

step (or some other method).950

6. Repeat steps 2 to 5 until F (wk) = 0.951

7. Repeat steps 2 to 6 for all time periods t in the data.952

8. Use the resulting equilibrium quota-price vector w(xt|θ) to calculate the953

rational expectations choice probabilities (equation 9) and pass them954

to the outer algorithm.955

Appendix D.2. Outer algorithm: maximum likelihood estimation956

The goal of the outer algorithm is to find a value for the vector of param-957

eters θ̂ that maximizes the log-likelihood function
∑
∀i li(θ) while allowing958

the REE quota price w(xt | θ) to be endogenous to the structural parameter959

vector θ. Consider an arbitrary value of θ, say θ̂0. Then NFXP maximum960

likelihood parameter θ̂ is determined as follows:961

1. Pass θ̂0 to the inner algorithm, which will return the choice probabilities962 {
fa

(
ai,t | xt, θ̂0

)}
∀i,t

.963

2. Use the choice probabilites in step 1 to evaluate the log-likelihood964

l(θ̂0) =
∑
∀i li(θ̂0) and it’s gradient, where li(·) is given in equation965

57



(8).22966

3. Use the gradient from step 2 to obtain a new structural parameter967

vector, say θ̂1.968

4. Repeat steps 1 through 3 until either θ̂k or l(θ̂k) converges based on a969

pre-specified convergence tolerance.970

22While the gradient of the log-likelihood function, conditional on w, has a closed-form

expression under the DP conditional logit assumptions, the gradient of w(xt | θ) does

not; thus, the gradient of the log-likelihood function must be computed using numerical

methods. This means that each time θ is ‘perturbed’ to obtain the numerical gradient, a

new solution for the rational-expectations quota prices is required.
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