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Abstract

In a model of financial networks with both debt and equity interdependencies, we

show that financial organizations have incentives to: choose excessively risky portfolios;

overly correlate their portfolios with those of their counterparties; and under-diversify

in terms of choosing too few counterparties with whom to share risk. We also provide

measures of financial centrality in terms of how a given organization’s portfolio affects

the values and defaults of other organizations. Additionally, we characterize optimal

regulation in terms of the use of reserve requirements versus bailouts and how these

relate to financial centrality, and fully characterize the minimum bailouts needed to

ensure systemic solvency.
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1 Introduction

World trade has grown from just under 20 percent of world GDP at the end of the Second

World War to over 60 percent.1 This unprecedented growth in trade has had many ben-

efits from various forms of gains from trade, economies of scope and scale, more efficient
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1Imports plus exports over GDP. Detailed data can be found for 1870-1949: Klasing and Milionis (2014),

1950-1959: Penn World Trade Tables Version 8.1, 1960-2015: World Bank World Development Indicators.
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investment, and has been accompanied by a comparable growth in the international finan-

cial network. For instance, the amount of investment around the world coming from foreign

sources went from 26 trillion dollars in 2000 to over 132 trillion dollars in 2016, which today

represents more than a third of the total level of world investments.2 In addition, the financial

sector is characterized by strong interdependencies, with capital circulating from financial

firm to financial firm. Using administrative data from the US Federal Reserve Bank, Duarte

and Jones (2017) estimate that 23% of the assets of bank holding companies come from

within the US financial system, as well as 48% of their liabilities - almost half.3,4 Along with

the enormous benefits that have accompanied the growing and increasingly inter-connected

world economy, have come stronger conduits of shocks and risks of widespread contagion.

These are not idle concerns, as we witnessed in 2008 when exposure to a problematic mort-

gage market led to key insolvencies in the US and elsewhere, and to a broad financial crisis

and prolonged recession.5

Financial markets differ from textbook efficient markets on several dimensions, and are

important to understand since they are fundamental to all businesses and sectors of the

economy. Financial markets are ripe with externalities, often subtle but with wide-ranging

consequences. At a most basic level, the risk that a counterparty defaults has consequences

in a world with some missing markets in which not all risks can be fully hedged.6,7 Defaults

involve substantial inefficiencies and costs, which result from fire sales, early termination

of contracts, government bailouts, and legal costs, among others; much of which are born

by parties others than those who are responsible for the original default. Even without

full cascades, these costs are substantial. For example, estimates of bankruptcy recovery

rates are in the 56-57 percent range.8 Defaults can then lead to potential disasters if left to

cascade. These introduce further externalities, since if one organization has poor judgment

in its investments, poorly managed business practices, or simply unusually bad luck, this

ends up affecting the values of its partners, and their partners, in discontinuous ways. Costs

2See IMF publication: Susan Lund and Phlippe Harle “Global Finance Resets” in Finance and Develop-
ment, Dec 2017, volume 54 number 4, pp 1-4.

3The large difference reflects the fact that many other types of financial organizations that are not BHCs
(e.g., Real Estate Investment Trusts, Insurance Companies, and various sorts of investment funds, etc.) have
accounts of cash, money markets, and other deposits held at BHCs.

4Also, between 1980 and 2018 there was an enormous consolidation. The number of banks has dropped
to a third of what it was, and at the same time banks are managing more than eight times as much in terms
of total assets. See Jackson and Pernoud (2019) for more background.

5For narratives of the crisis see the US Congressional Financial Crisis Inquiry Report of January 2011,
as well as Glasserman and Young (2016) and Jackson (2019).

6As a poignant example, there are even risks that the organizations offering insurance and hedges default.
For instance, a key failure in the financial crisis in 2008 was that AIG was unable to deliver the insurance
it had sold on many derivative contracts. Its inability to even meet margin calls on that insurance, and
subsequent insolvency, forced a large government intervention.

7In terms of relations to textbook general equilibrium and efficient markets, not only are markets incom-
plete, but they also involve substantial discontinuities that can even preclude existence, as we discuss in
Section A.1.

8See Branch (2002); Acharya, Bharath and Srinivasan (2007), as well as Davydenko, Strebulaev and Zhao
(2012); James (1991).
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of avoiding cascades and other externalities can be much less if addressed before they begin.

However, this involves having a detailed view of the network of financial inter-dependencies,

an understanding of the consequences of those interdependencies, as well as of the incentives

that different parties have in choosing their investments and counterparties, and thus their

position in the network. Although there is a growing literature on financial networks and

their consequences,9 the incentives of financial organizations to choose their investments are

not well-understood.

In this paper, we examine the distortions of financial organizations’ incentives to invest

due to being embedded in a network. We do this in the context of a new model of financial

networks that involves two different forms of contracts: debt and equity. This generalizes

existing models used to understand systemic risk that are either built with debt-like inter-

dependencies – Eisenberg and Noe (2001), Gai and Kapadia (2010), and Csóka and Herings

(2018) – or with equity-based interdependencies – Elliott, Golub and Jackson (2014). Our

model is more in the tradition of those that have been used in the accounting and asset valu-

ation literatures (Suzuki (2002); Fischer (2014)) to derive equity prices when firms also issue

debt. Our model generalizes those models to include multiple types of contracts, while also

allowing for bankruptcies and resulting discontinuities due to bankruptcy costs, since those

are central to the inefficiencies and externalities in financial networks. We highlight that

accounting for both debt and equity contracts is important, as they lead to very different

incentives for investment as well as different probabilities of cascades, for the same initial

conditions.10

We then examine three basic choices of banks and other sorts of financial organizations:

which investments they make, how many counterparties they transact with, and the extent

to which they choose to correlate their portfolios with those of their counterparties. We

show how externalities result in inefficiencies in all of these choices, and discuss the network

consequences. Our first result states that, under general conditions on the network structure,

banks choose to take on too much risk as compared to what is socially efficient. This comes

from the fact that banks do not account for the negative externalities their default imposes

9A partial list of references is Rochet and Tirole (1996), Kiyotaki and Moore (1997), Allen and Gale
(2000), Eisenberg and Noe (2001), Upper and Worms (2004), Cifuentes, Ferrucci and Shin (2005), Leitner
(2005), Allen and Babus (2009), Lorenz, Battiston, Schweitzer (2009), Gai and Kapadia (2010), Wagner
(2010), Billio et al. (2012), Elliott, Golub and Jackson (2014), Demange (2016), Diebold and Yilmaz (2014),
Dette, Pauls, and Rockmore (2011), Gai, Haldane, and Kapadia (2011), Greenwood, Landier, and Thesmar
(2012), Ibragimov, Jaffee and Walden (2011), Upper (2011), Allen, Babus and Carletti (2012), Cohen-
Cole, Patacchini and Zenou (2012), Gouriéroux, Héam and Monfort (2012), Alvarez and Barlevy (2015),
Glasserman and Young (2015), Acemoglu, Ozdaglar and Tahbaz-Salehi (2015b), Gofman (2017), Babus
(2016), Bardoscia (2017), Cabrales, Gottardi, and Vega-Redondo (2017), Erol and Vohra (2018), Kanik
(2018).

10Although debt and equity capture only some of the main forms of interdependencies that one observes in
practice, they provide a lens into many others, as many swaps and derivatives involve essentially either fixed
payments or payments that depend on the realization of the value of some investment of one of the parties.
Also, things like syndicated loans and other joint investments have features that are similar to equity. Debt
and equity capture the two primary situations: contracts that are fixed in payments and those in which
payments depend on value realizations.
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on the overall financial system when trading-off the benefits and costs of a risky investment.

We use this analysis to examine optimal regulation of portfolio choices in the form of reserve

requirements, bailouts, or laissez-faire. Larger potential gains from the risky investment favor

laissez-faire, and the use bailouts when network contagion becomes likely, while smaller gains

favor reserve requirements. Interestingly, more debt actually favors laissez-faire and bailouts,

while greater equity in the network favors reserve requirements, since the opportunity cost of

requiring reserves scales with the amount of debt that an organization holds. The optimality

of the type of regulation depends on different measures of financial centrality, in a way that

we characterize precisely.

In addition, we show that banks have strong incentives to correlate their investments with

those of their counterparties, which can be seen as another form of excessive risk-taking. This

happens for a slightly different reason, and we refer to it as ‘risk-stacking’, as it helps them

align their solvencies with situations in which they can enjoy better payments from their

counterparties, and being insolvent when they expect lower potential payments from their

counterparties. On the extensive margin, we show that financial organizations also choose to

have fewer counterparties with which to cross-insure that would be socially optimal, again

since their owners do not bear the full brunt of their potential bankruptcy costs.

We also discuss how the model can be used to measure systemic risk from a potential

shock or default; and we identify the minimum costs and specific interventions a government

needs to bail out an insolvent network. Our results fully characterize the conditions needed

for solvency under both the best and worst equilibria, as there can exist multiple equilibria.

We show that there are multiple equilibria if and only there exist a certain type of dependency

cycle in the network. We also show how the minimum bailout payments needed to ensure

solvency depend on cycles in the network, and point out the importance of canceling out

cycles of debts among banks.

The literature characterizing how financial organizations that are embedded in a network

choose their portfolios is scarce. A notable exception is an (independent) study by Shu

(2019). He also finds that network externalities between banks’ investment decisions, lead

them to take more risk than if they were isolated from others and to correlate their invest-

ments. His model is complementary to ours as it differs from ours in several important ways.

First, he focuses on networks of interbank unsecured debt, and hence abstracts away from

countervailing incentives stemming from the interaction between debt and equity claims.

His model also lacks bankruptcy costs, and so defaults are not an efficiency concern and our

study of the multiplicity of equilibria has no counterpart. Finally, following Acemoglu et

al. (2015a), he restricts attention to regular networks in which each bank’s total interbank

claims and liabilities are equal. In his model, the network externality arises from the fact

that debt to depositors has higher seniority than that to other banks. Depositors become

residual claimants in case of default, and thus remaining solvent and paying one’s debt to

the defaulting bank only reduces one’s payoff. Our analysis of optimal regulation depends on

features not in his model: the centrality of particular financial institutions, different effects

of debt and equity, as well as multiple equilibria.
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Finally, Elliott, Georg and Hazell (2018) also highlight an incentive of banks to choose

partners that have portfolios similar to their own. They examine which network of inter-

bank equity claims and correlation structure of investments arise endogenously in equilibrium

when banks act under limited liability. Their main result is that banks have an incentive to

partner with counterparties whose portfolios are positively correlated with their own in order

to shift losses from shareholders to creditors. Using data on the German banking system,

Elliott, Georg and Hazell (2018) also provide strong empirical evidence that banks lend more

to other banks with portfolios similar to their own. Thus, such correlations are observed.

Similar incentives arise in our model for partly different reasons, and persist even if banks

do not have limited liability. In our model, because of financial interdependencies, banks’

values depend positively on each other, which induces complementarities in their returns

to investments: a high return for a bank is weakly more valuable if its partners have high

returns as well, pushing them to correlate their portfolios.11,12

Though further away from what we study in this paper, the recent literature on the

inefficiency of network formation in financial settings is also worth noting. The equilibrium

network often has a core-periphery structure,13 and is generally socially inefficient, either

because it induces excessive systemic risk14 or too much market power of core organizations.

2 A Model of Financial Interdependencies

Here, we define a model of financial interdependencies that allows us to examine the choices

of financial organizations in the network. In the model we include both debt and equity

since there are important distinctions in the incentives and systemic risk that they generate

on the network. Insolvencies are induced by inability to pay debts, but not by equity. Thus,

11Acharya and Yorulmazer (2007) highlight a different channel that can drive banks to correlate their
investments: if it is ex-post optimal for the regulator to bail-out banks when many of them fail at once,
but to let them rescue each other when only few of them are insolvent, then banks have an incentive to
herd in order to capture the bailout subsidies. A similar intuition arises in Arya and Glover (2001) in a
principal-agent model, in which agents may want to coordinate on the bad action—e.d. low effort—if this
means a higher probability of being bailed-out by the principal. In those papers the inefficiency stems from
limited commitment of a principal or regulator, rather than from network externalities. Finally Erol (2019)
shows that the anticipation of bailouts leads banks to form a highly concentrated network, which entails
greater output volatility and systemic risk.

12Duffie and Wang (2016) study whether bilateral bargaining over the terms of contracts between banks
achieves efficiency. Assuming away general cross-network externalities—and hence the possibility of default
cascades—they propose a bargaining protocol that leads to socially efficient equilibrium contracts between
banks. They however highlight that small changes to the proposed protocol may lead to additional inefficient
equilibria.

13See Soramäki, Bech, Arnold, Glass and Beyeler (2007); Bech and Atalay (2010); Erol (2019); Blasques,
Bräuning and Van Lelyveld (2018). There are a variety of reasons to have a core-periphery structure as there
are advantages to having a concentration in intermediaries, which can then better manage their inventory
and match buyers with sellers (e.g., see Craig and Von Peter (2014); Babus and Hu (2017); Farboodi (2017);
Wang (2017)).

14For instance, see Elliott, Golub and Jackson (2014).
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the relative combination of debt and equity in a bank’s portfolio has important implications

for incentives, and so it is important to allow for that distinction in the model.

The distinction between debt and equity is not just a theoretical consideration, since both

types of securities are needed to capture the balance sheets of some of the most prominent

and important types of financial organizations. For example, banks’ balance sheets involve

substantial portions of deposits, loans, CDOs (collateralized debt obligations), and other

sorts of debt-like instruments. In contrast, venture capital firms and many other sorts of

investment funds typically hold equity and are either held privately or issue equity. Such

funds, and other forms of shadow-banking, are increasingly important as a source of fund-

ing for businesses, especially in the tech sector and other growing parts of the economy.

Furthermore, some large investment banks are hybrids that involve substantial portions of

both types of exposures. Understanding the different incentives that these different forms of

organizations have, and the externalities that are present, is thus relevant.

Many forms of contracts, including some swaps, can be approximated as some combina-

tion of debt and/or equity. Nonetheless, there are obviously more complex contracts that

can also be built into such a model. We also describe a general form of the model for such

more complex contracts in an appendix, but the main insights regarding incentives are most

crisply analyzed with debt and equity, which captures the main tradeoffs and still remains

piecewise-linear and hence tractable.

2.1 Banks, Shadow Banks, CCPs, and other Financial Organiza-

tions

Consider a setN = {0, 1, . . . , n} of organizations involved in the network. We treat {1, . . . , n}
as the financial organizations, or “banks” for simplicity in terminology. These should be

interpreted as a broad variety of financial organizations, including banks, venture capital

funds, broker-dealers, CCPs (central counterparties), insurance companies, and many other

sorts of shadow banks and institutions that have substantial financial exposures on both sides

of their balance sheets. These are organizations that can issue as well as hold debt, buy and

sell equity, and make other investments. The broad applicability of the model allows it to

be used to assess risks of the evolving roles of CCPs and the large shadow banking sector,

and not just traditional banks.

We lump all other actors into 0 as these are entities that either hold debt and equity in the

financial organizations (for instance private investors and depositors), or borrow from or raise

money from the financial organizations (for instance, most private and public companies).

Their balance sheets may be of interest as well, as the defaults on mortgages or other loans

could be important triggers of a financial crisis. The important part about 0 is that, although

these may be the initial trigger and/or the ultimate bearers of the costs of a financial crisis,

they are not organizations that are the dominoes, becoming insolvent and defaulting on

payments as a result of defaults on their assets. In aggregate, it may appear that there

is debt going both in and out of node 0, but none of the individual private investors that

6



comprise node 0 have debt coming both in and out. 15

Each organization i has a value Vi, which is the total value of the equity: the value of

all investments including those in other organizations, net of all debts owed. This value is

shared among private shareholders and institutional shareholders. We now describe these

values in greater detail.

2.2 Primitive Assets, Organizations, and Cross-Holdings

Bank portfolios are composed of both investments in primitive assets outside the network

and financial contracts within the network. For our purposes the details of investments in

primitive assets are not important: suppose they involve some initial investment of capital

and then pay off some cash flows over time, often randomly. We call these primitive invest-

ment opportunities assets – M = {1, . . .m} – and denote by pk the present value (or market

price) of asset k ∈M . The values of organizations are ultimately based on their investments

in these assets. Let qik ≥ 0 be the quantity invested in asset k by organization i, and q the

matrix whose (i, k)-th entry is equal to qik. (Analogous notation is used for all matrices.)

The total value of i’s direct investments in primitive assets is thus
∑

k qikpk, or qi · p.
The book or equity value Vi of an organization i equals the value of organization i’s

primitive assets plus the debts it is owed minus those it owes plus the value of its claims

on other organizations. For the sake of transparency and tractability in what follows, we

restrict the set of financial contracts to debt and equity. In the appendix (Section A) we

discuss how valuations work with fully general contracts across banks, and how existence

depends on a monotonicity of those contracts in underlying primitive-asset investments.

If bank i owns an equity share in bank j, it is represented by SijVj for some Sij ∈ (0, 1).

A debt contract with a current (net present) value of Dij corresponds to a payment of Dij

as long as bank j is solvent, while it will look like an equity share if j becomes insolvent. A

call option looks like a value of Dij = 0 until Vj exceeds a certain value, and then looks like

a claim Sij above that level. In a world with debt and equity, then the value of organization

i’s investments in other organizations is then
∑

j Dij + SijVj and its total debt liability is∑
j Dji. These together with the primitive investments determine the equity value, Vi, which

is then owned by private shareholders and other financial organizations through their equity

shares in i.

15Of course, this is an approximation and there is a spectrum that involves a lot of gray area. For
instance, Harvard University invests tens of billions of dollars, including making large loans. At the same
time it borrows money and has issued debt of more than five billion dollars. It is far from being a bank,
but still has incoming and outgoing debt and other obligations. This is true of many large businesses, some
that come closer to resembling banks than others. Also, some companies’ solvency could be affected by
other bankruptcies and bring down counterparties, especially if they are key players in a supply chain. In
that case, those companies would be included in the main 1, . . . , n, while companies that are mostly just
borrowers or just lenders and not of significant concern as potential dominoes are the actors in 0. It is not
so important for us to draw an arbitrary line through this grey area to make the points that we do with our
model. Nonetheless, this is something that a regulator does have to take a stand on when trying to assess
systemic risk, and in practice may even be dictated by jurisdictional rules.
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Let D the matrix of debt claims and S the matrix of equity claims, where Dij is what

organization j owes to i and Sij is i’s equity claim on j. An organization cannot have a

debt or equity claim on itself, so that Sii = Dii = 0 for all i. Equity is a claim on some

portion of a bank’s value, and the equity shares sum to one: whatever share is not owned

by other financial institutions accrues to some outside investor: S0i = 1 −
∑

j 6=0 Sji.
16 The

one exception is that no shares are held in the outside investors so that Si0 = 0 for all i (and

shares held by banks in private enterprises are modeled via the pi’s).

Finally, in order to ensure that the economy is well-defined, we presume that there exists

a directed equity path from every financial institution to some private investor (hence to

node 0). This rules out nonsensical cycles where each organization is entirely owned by

others in the cycle - but none are owned in any part by any private investor. For instance if

A owns all of B and vice versa, then there is no sensible solution to the equity value of those

two organizations. A financial network is then a tuple (N,D,S).

Let

DA
i =

∑
j

Dij and DL
i =

∑
j

Dji

denote the total amount of debt owed to i and owed by i, respectively. The former is then

i’s debt assets, and the later its liabilities.

2.3 Values in a Network of Debt and Equity

Let V +
j denote max[Vj, 0]. Given that equity has limited liability, then the value to i of its

equity holding in j is SijV
+
j .

The book or equity value Vi of an organization i can then be written as:

Vi =
∑
k

qikpk +
∑
j

(Dij −Dji) +
∑
j

SijV
+
j

=
∑
k

qikpk +DA
i −DL

i +
∑
j

SijV
+
j (1)

Equation (1) can be written in matrix notation as

V = qp + DA −DL + SV+. (2)

To ensure a (unique) solution to (2), it is sufficient that there exists at least one private

organization (e.g., at least one private citizen who owns some share of some organizations),

and that every public organization has some indirect private ownership—i.e. there exists a

directed path in equity from every public bank to some private investor. In the case in which

16Here, we simply model any fully privately held firm as having some outside investor owning an equity
share equal to 1. This has no consequence, but allows us to trace where all values ultimately accrue.
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all organizations are solvent, so that V+ = V, solving (2)17 then yields

V = (I− S)−1
[
qp + DA −DL

]
. (3)

We handle the case with insolvencies and bankruptcies below.

The special case in which Sij = 0 for all i, j ∈ {1, . . . , n} corresponds to the model of

Eisenberg and Noe (2001); Gai and Kapadia (2010), and the special case in which D = 0

corresponds to Elliott et al. (2014).

Written this way, the book or equity value of a publicly held organization coincides with

its total market value. Indeed as argued by both Brioschi, Buzzacchi, and Colombo (1989)

and Fedenia, Hodder, and Triantis (1994), the ultimate (non-inflated) value of an organi-

zation to the economy – what we call the “market” value – is well-captured by the equity

value of that organization that is held by its outside investors – or the final shareholders

who are private entities that have not issued shares in themselves. This value captures the

flow of real assets that accrues to final investors of that organization. This is exactly what is

characterized by the above values since summing them up (again, for the case of nonnegative

values) gives ∑
i 6=0

Vi =
∑
i 6=0

∑
k

qikpk +
∑
i 6=0

DA
i −

∑
i 6=0

DL
i +

∑
i 6=0

∑
j 6=0

SijVj

=
∑
i 6=0

∑
k

qikpk +DL
0 −DA

0 +
∑
j 6=0

(1− S0j)Vj

=⇒ DA
0 −DL

0 +
∑
i

S0iVi =
∑
i

∑
k

qikpk

It is easy to see that the total equity value accruing to all private investors (so value net of

debt) equals the total value of primitive investments.18

2.4 Discontinuities in Values and Failure Costs

We now introduce bank defaults and their associated costs.

If the value of an organization i’s assets falls below the value of its liabilities, then i is

17To see that (I −S) is invertible, and to ensure that all of the V ’s are bounded, it is sufficient that when
we examine the directed network defined by positive Sij ’s, every node in the network is path connected
to some private node - so j that has no public equity. Without this condition, the V s are indeterminate.
Intuitively, without this condition, there are no real owners of some companies - there would be a cycle in
which every firm’s value is dependent on the other values in the cycle and they all are fully owned in the
cycle, and then the values are no longer tied down by the fundamentals. For a more formal argument, see
Appendix B.

18Note that when debts are zero, this value ends up being the same as that in (3) of Elliott, Golub and
Jackson (2014). The difference is that here we explicitly model the outside investors as being part of the

network, which enables us to simplify the solution, eliminating the need for tracking the Ĉ matrix that was
used there.
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Figure 1: Arrows point in the direction of the flow of claims: to whom value is owed. The banks
own shares in each other and the outside investor owns the remaining shares (1/3 in each case). The
outside investors have borrowed from Bank 2 and have deposits in Bank 1. Suppose both banks
have the same portfolio of primitive investments, of value p = 1. Using equation (1), the values of
Banks 1 and 2 solve: V1 = p + S12V2 −D01 and V2 = p + S21V1 + D20. This yields V1 = 2.4 and
V2 = 3.6. Importantly, the value accruing to outside investors is D01−D20+S01V1+S02V2 = 2 = 2p,
which is exactly the total value of primitive investments.

said to fail and incurs failure costs βi(V,p). These costs could depend on the degree to

which i and others are insolvent as well as the value of its various direct investments. In the

case of debt and equity, an organization’s liabilities are its debt obligations, and its assets

include primitive investments and equity it holds in other organizations, combined with the

value of debt it is owed by others.19

With the possibility of bankruptcy, a debt owed to i by organization j, Dij depends on

the value of Vj and thus its solution depends ultimately on the full vector V. To make these

interdependencies explicit, we let Dij(V) denote the amount of debt that bank j actually

pays back to i.

There are two regimes. If organization j remains solvent, it can repay its creditors in

full, and then for all i

Dij(V) = Dij.

If instead organization j defaults, then debt holders become the residual claimants in

case of insolvency, and

Dij(V) =
Dij∑
hDhj

max

(∑
k

qjkpk +DA
j (V) +

∑
h

SjhV
+
h − βj(V,p), 0

)
. (4)

19The model extends to allow for other sorts of contracts and thresholds for defaults, by simply having a
different rule for when default occurs, for instance in the case of more complicated liabilities.
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A simple example of bankruptcy costs corresponds to the case where

βj(V,p) = b+ a

[∑
k

qikpk +
∑
j

SijV
+
j +DA

i (V)

]

with b ≥ 0 and a ∈ [0, 1]. In that case, bankruptcy costs are some fixed legal or other costs,

as well as some share of the value of the bank’s assets – for instance, if only recovers some

fraction of its assets (e.g., due to a markdown on a firesale of its assets) or has a portion of

its legal costs that scale with the size of the enterprise. If the bank is unable to salvage any

of its assets, then Dij(V) = 0 whenever j defaults.

In any case, equity holders of organization j do not receive any payment when j is

insolvent:

SijV
+
j = 0.

The bankruptcy costs incurred by organization i are then

bi (V,p) =

{
0 if

∑
k qikpk +

∑
j SijV

+
j +DA

i (V) ≥ DL
i

βi (V,p) if
∑

k qikpk +
∑

j SijV
+
j +DA

i (V) < DL
i .

(5)

Note that we have carefully written bankruptcy costs bi (V,p) as a function of how∑
k qikpk +

∑
j SijV

+
j +DA

i (V) compares to DL
i instead of as a function of Vi directly. This

avoids having bankruptcies driven solely by anticipating bankruptcy costs, even when an

organization has more than enough assets, even cash on hand, to cover its liabilities.20 Our

formulation allows for coordination issues, bank runs, and other sorts of multiplicities in

equilibria that are of practical interest, while avoiding more trivial self-fulfilling bankruptcies

that would just be modeling curiosities.

The valuations in (3) have analogs when we include these discontinuities in value due to

failures and bankruptcy costs. The discontinuous drops impose costs directly on organiza-

tions’ balance sheets. and so the book value of organization i becomes:

Vi =
∑
k

qikpk +
∑
j

SijV
+
j +DA

j (V)−DL
i − bi(V,p),

where bi(V,p) is defined by (5). This leads to a new version of (3):

V = (I− S(V))−1
([

qp + DA(V)−DL
]
− b(V,p)

)
, (6)

20Such a self-fulfilling bankruptcy would go beyond a bank run, since it would not be due to the organization
not having enough cash on hand to pay its debts, but instead due to a fixed point issue that if we presume
all the cash is eaten up by paying bankruptcy costs, then indeed the organization can become bankrupt for
no other reason. This self-fulfilling problem posed by bankruptcy costs is of less interest to us here, as it is
not so much a network issue—it is not a bank-run problem, nor a problem of coordinating payments with
some cycle of other banks,— and seems of less practical interest.
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where S(V) reflects the fact that Sij(V) = 0 whenever j defaults, and is Sij otherwise.

It can be that some solutions for the values are negative - as the bankruptcy costs could

exceed the assets of the company. We can think of these as real costs, for instance a decaying

and polluting plant which is abandoned, or some court costs, etc., which in some cases are

absorbed by a government or imposed on the public.

3 The Multiplicity of Bank Values and Minimum Bailouts:

the Role of Cycles in the Network

Although the possibility of multiple equilibria in financial networks is well-known, the condi-

tions under which they exist, and their implications are not. In this section we characterize

when there exists a multiplicity.

We also characterize the minimum bailout payments needed to ensure solvency in both

the best and worst equilibrium. These bailouts are optimal in avoiding the social costs of

bankruptcy.

3.1 Existence and a Lattice of Equilibrium Values

Under the assumptions mentioned above, and under the assumption that the bankruptcy

costs β are nonincreasing in (p,V) (so that bankruptcy costs are weakly lower when organi-

zations have greater values), there always exists a solution to equation (6). There can exist

multiple solutions to the valuation equation (multiple vectors V satisfying (6)) in the pres-

ence of discontinuities, and in fact, the set of equilibrium values forms a complete lattice.21

We use the term “equilibrium” to refer to a fixed point satisfying equation (6) to keep with

the literature, but note that the term “equilibrium” is also used for situations in which we

endogenize the portfolio and partner choices.

As highlighted by Elliott, Golub and Jackson (2014), there are two sources of multiplicity.

The first one is due to self-fulfilling bank runs (see classic models such as Diamond and

Dybvig (1983)): there can be an equilibrium in which some bank i is solvent and another

one in which it defaults even when keeping everything else constant. The second source of

multiplicity comes from bank interdependencies: there can exist an equilibrium in which

a subset of banks is solvent and another in which they all default. This corresponds to

self-fulfilling default cascades.

Since the equilibria form a complete lattice, there exists a “best” equilibrium, as well as

a “worst” equilibrium in which the set of defaulting organizations is minimal and maximal,

respectively (Elliott, Golub and Jackson (2014)). We note that the worst equilibrium also

corresponds to a situation in which no bank makes any partial payments until it has received

21This can be seen by an application of Tarski’s fixed point theorem, since organizations’ values depend
monotonically on each other.
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all of its payments in.22 Despite the fact that bank values depend on the details of how they

make payments, as well as the rules and timing in bankruptcy proceedings, our results do

not.

In this paper, we account for the multiplicity of equilibria, and in some cases distin-

guish between results for the best and worst equilibria. In particular, studying the worst

equilibrium for values after a first failure may be relevant given how financial markets are

subjects to runs and freezes: the regulator may want to consider the worst that could happen

under such circumstances. Thus, before proceeding, we provide a result outlining the how

multiplicity depends on certain kinds of cycles of liabilities, combined with bankruptcy costs.

Eisenberg and Noe (2001) show that, in the absence of bankruptcy costs and in a network

with only debt liabilities, the values of solvent banks are uniquely determined; and, if a

bank has a strictly positive value in one equilibrium, she cannot be defaulting in another.

However, with bankruptcy costs, the multiplicity of equilibria comes from the discontinuous

drop in value of banks at default, which can create self-fulfilling combinations of defaults.

Importantly, this relies on the possibility for the bankruptcy costs to feedback through the

financial network, and hence on the presence of cycles, as we now show.

Define a dependency cycle to be a directed cycle of organizations, each having either debt

or equity on the previous one, that involves at least some debt. In particular, a dependency

cycle is a sequence i0, . . . iK , for some K ≥ 1 such that: i0 = iK , Di`+1i` > 0 or Si`+1i` > 0

for each ` < K, and Di`+1i` > 0 for at least one ` < K.

The following lemma highlights how equilibrium multiplicity depends on the presence of

dependency cycles.

Lemma 1.

(i) If there is no dependency cycle, then the worst and best equilibria coincide.

(ii) Conversely, if there is a dependency cycle, then there exist bankruptcy costs and values

of bank investment portfolios qp such that the best and worst equilibria differ.

Part (i) of Lemma 1 is intuitive: to get a multiplicity requires a feedback between defaults:

a cycle of organizations in which each defaulting helps justify the others’ defaults, while if

they are all solvent then this guarantees their solvency. Without such a feedback cycle, this

multiplicity cannot hold.

Part (ii) is more delicate. It is clear that having larger bankruptcy costs makes feedback

easier, and lower costs makes it harder. For example, consider a simple debt cycle where

bank 1 owes 2 a debt D and 2 owes 1 the same amount D. Without loss of generality, let pi
denote the value of i’s outside investments. Since each bank is always able to repay all its

liabilities if its counterparty does, the best equilibrium always has both banks being solvent,

irrespective of p. The range of primitive investment values (pis) for which there exists of a

22That situation is discussed by Bardoscia, Ferrara, Vause and Yoganayagam (2019). It can also arise as
a coordination failure as discussed by Allouch and Jalloul (2017).
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(worst) equilibrium in which both banks default depends on the size large bankruptcy costs.

For the purposes of illustration, suppose that costs are some fraction a of a bank’s assets,

and that both banks have a portfolio values p1 = p2 = p. For which values of p does there

exist an equilibrium with mutual bankruptcy? Supposing that such an equilibrium does

exist, then the amount that banks pay each other turns out to be some d < D that by (4)

solves:

d = (1− a)(p+ d),

or d = 1−a
a
p. From (5) that we need p + d < D in order to incur bankruptcy costs, which

then requires that

p+
1− a
a

p < D

or p < aD. Thus, as bankruptcy costs fall the set of asset returns p that can generate

self-fulfilling default cycles, and hence multiple equilibria, shrinks.

Interestingly, beyond this example, as we move to more heterogeneous levels of debt

and equity dependencies between different banks in a cycle, the potential for such cascades

depends on the level of debt imbalances in the network. Indeed, if a bank is a large net

creditor – that is, DA
i >> DL

i – then it acts as a buffer and makes a feedback cycle harder

to find. Informally, self-fulfilling default cycles are a concern only if bankruptcy costs are

large enough to offset debt imbalances.

3.2 Minimum Bailouts in both the Worst and Best Equilibria

The presence of a default cycle in a network can be exploited by a regulator who tries

to avoid default. Just as defaults cascade, the same operates in reverse and a well-placed

bailout can have far-reaching consequences. This problem relates to Demange (2016), who

characterizes the optimal cash injection policy in a network of financial liabilities under

proportional rationing in case of default. She defines a threat index that identifies banks

with highest marginal social value of liquidity, assuming the policy does not change the set

of defaulting banks. Here, instead, we examine how much of an injection is needed to change

and avoid defaults.

Consider a regulator who can inject liquidity into the network to ensure that some banks

remain solvent; i.e., it can bailout a subset of banks B ⊆ N by changing their portfolio values

from pi to some p′i > pi by making direct payments to the banks of p′i − pi. If bank i ∈ B
is sufficiently bailed-out, it pays back its debt to all its creditors, who then may become

solvent themselves. We now investigate the necessary costs and how the banks that need to

be bailed out depend on the cycles in the network. We also further highlight the difference

between the best and worst equilibria.

As should be obvious by now, properly assessing systemic risk involves a holistic view of

the network.23

23Attempting to assess systemic risk without detailed and comprehensive network information is what
Jackson (2019) refers to as “flying jets without instruments”: operating a complex interactive system without
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We first provide an example that illustrates the importance of seeing the structure of the

network cycles in order to determine an optimal bailout.

3.2.1 The Necessity of Network Information

An important component of systemic risk assessment is stress testing, which is usually run

in a decentralized manner. The main input into many stress tests is balance sheet data,

which describes the amount of each type of financial assets and liabilities held by each bank.

Depending on the jurisdiction, balance sheet data does not always provide complete, or even

partial, information about the identity of one’s counterparties, nor their other investments

and counterparties, and hence about the network structure. Even if a stress test accounts

for direct counterparties, it may miss information about systemic issues such as the presence

of cycles which we have shown are so critical to understanding equilibria. “Local” data can

also completely miss which banks are most likely to start a default cascade, or be caught up

in one. The point is straightforward, but worth emphasizing given its importance, which is

illustrated as follows.

For simplicity, consider a network in which banks only have debt contracts between each

other. A measure of systemic risk based on local information only depends on (DA
i , D

L
i )i∈N .

To show why this is insufficient information, we give an example of financial network in which

two banks have identical balance sheets, and yet their defaults have significantly different

consequences. Hence if the central authority were able to bailout one (and only one) of the

two organizations, it could not take the optimal decision based on such local information.

Consider the network composed of four banks depicted in Figure 2.

1

2

3

4

5D/4 D

D

D/2 D/2

D/2

3D/4

Figure 2: Arrows point in the direction that a debt is owed. Banks 1 and 4 (magenta) have
total debt liabilities of 5D/4 and debt assets of D, and are net debtors. Banks 2 and 3 (blue)
have debt liabilities of 3D/2 and debt assets of 7D/4, and are net creditors.

the necessary measurements. Even though some stress tests and measures (e.g., S-risk) that work without
network information may correlate with more precise full network measures, if those measures are only
approximately capturing the real risks, .
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Suppose the portfolios of Bank 1 and 4 yield 0, so that they are both insolvent, whereas

Banks 2 and 3 earn returns on their investment between 3D/4 and D. The recovery rate on

assets of a defaulting bank is zero. Note that Bank 1 and 4 have the same balance sheet since

DA
1 = DA

2 = D and DL
1 = DL

2 = 5D/4. However, only Bank 1 induces widespread default

contagion if it remains insolvent. Indeed, Banks 2 and 3 have enough buffer to absorb the

shock of Bank 4’s default, but not that of Bank 1. Hence, bailing out Bank 1 prevents the

whole system from insolvency, while bailing out Bank 4 does not change anything and a full

systemic failure occurs.

This example also highlights the fact that, without network information, one cannot even

identify which banks are at risk of insolvency. For instance, if one examines the books of

Bank 3 without knowing that Bank 2 is exposed to Bank 1, even if one knows the portfolio

realizations of 3’s counterparties, but does not know the looming failure of Bank 1 (which

is not one of Bank 3’s direct counterparties), it would appear that Bank 3 was free from

danger of insolvency.

The first assessments of systemic risk that involve a nontrivial portion of the actual

network are beginning to emerge, at least in Europe. For example, the European Central

Bank has information on the counterparties involved in the largest exposures of most banks

within its jurisdiction. This permits the construction of a network of a portion of the assets

and liabilities within the European banking sector, and some pointers to banks outside of

Europe, and thus some of the first calculations of systemic risk of a nontrivial part of the

network are beginning to emerge (e.g., see Covi, Gorpe and Kok (2018)). Similarly, the Bank

of England has regulatory data on bilateral transactions between UK banks, allowing for the

analysis of the UK interbank network in different asset classes (see Ferrara et al. (2017);

Bardoscia et al. (2018)). This is an important move of the assessment of systemic risk in

the right direction, but much more is needed and especially outside of Europe and for the

growing shadow banking system which falls outside of most jurisdictions.

3.2.2 Balanced Networks

For the rest of this section, since we are treating portfolio choices as given, we save on

notation and just refer to the overall value of qi · p as pi, so without loss of generality for

this analysis this can be thought of as treating q as the identity matrix and p as being an

n+ 1 dimensional vector where the ith entry is i’s portfolio value.

For the sake of Proposition 1, we presume a recovery rate of zero upon default and that

there are no cross-equity holdings, and return to describe the equity case later. Furthermore,

all of the definitions that follow are relative to some specification of p,D, and we omit its

mention.

The worst equilibrium can then be thought of as the requirement that a bank can pay

back its debts if and only if it already has sufficient capital to cover all of its debts based on

the amount of incoming debts that have already been paid to it, together with any bailout

payments and outside assets. In particular, this rules out partial payments: even if a bank
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has some money coming in, it cannot use that money to pay some of its debt until it is fully

solvent. Such a requirement often applies if all debt claims have equal priority, but makes

bailing-out more demanding: the minimum set of banks that need to be bailed-out can be

strictly larger under this rule than when partial repayments are allowed.

To characterize optimal bailouts, it is useful to begin by examining some benchmark

cases that we refer to as balanced networks, as they play key roles in the more general

characterization.

We say that a network is weakly portfolio balanced if pi + DA
i ≥ DL

i for all i. This is a

weaker requirement than debt-balance, just requiring that each bank’s (non-equity) assets

are enough to cover its debt liabilities, presuming its incoming debt assets all are fully valued.

We say that a network is exactly portfolio balanced if pi + DA
i = DL

i for all i. Since

all debt claims and liabilities cancel out on aggregate, exact balance implies
∑

i pi = 0, and

given nonnegative portfolios then implies that pi = 0 for all i. This then also implies a

network has exactly balanced-portfolios only if it has balanced debt: DA
i = DL

i for all i.

Under this requirement, a bank is able to meet its debt obligations going out if and only if

it receives all the debt payments it has coming in.

Any of these forms of balance is sufficient for all organizations to be solvent in the best

equilibrium. This follows since if all banks but i honor their debt contracts then i can also

pay back its debt fully in a weakly balanced network. Essentially, all debts can be canceled

out, irrespective of the network structure. Things are different in the worst equilibrium, as

we know from Lemma 1.

In cases in which the worst equilibrium differs from the best equilibrium, one can interpret

the worst equilibrium as a coordination failure since all banks could have written-off their

counterparties’ debt without cost so as to avoid a general default of the system. In practice

banks are unlikely to be able to coordinate in such a way if debts involve cycles rather

than just direct canceling between two counterparties, as it would require all write-offs

to be done simultaneously to maintain solvency.24 Moreover, in practice the debts have

different maturities and other covenants and priorities that further complicate any canceling

out without an economy-wide renegotiation. This makes looking at the worst equilibrium

important, and so we discuss both equilibria in what follows.

When there exist cycles, bailing out a bank on each cycle, by Lemma 1, leads the best

and worst equilibrium to coincide. If (and only if) in addition, weak portfolio balance is

satisfied, then that ensures that all banks are solvent in all equilibria. Thus, an optimal

strategy that guarantees solvency in all equilibria is to use the minimum payments necessary

to induce balance and eliminates all cycles in the network, taking advantage of cascades of

repayments. We now provide a characterization.

Let us say that a bank i is unilaterally solvent if pi ≥ DL
i . This means that regardless

of whether any of the other banks pay the debts that they owe to i, i is still able to cover

24Some systems for such canceling are emerging, such as enterprises that offer “compression” services,
which are essentially canceling out of cycles of contracts (e.g., see D’Errico and Roukny (2019)).
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its debts.

We say that a set of banks S is iteratively strongly solvent if it consists of a nonempty

subset of banks S1 ⊂ S that are unilaterally solvent; and then iteratively sets Sk such that

the banks i ∈ Sk are solvent if they receive the debts from all banks in sets S1, . . . Sk−1, but

not if they only receive the debts from banks in S1, . . . Sk−2:

pi +
∑

j∈S1∪···Sk−1

Dij ≥ DL
i > pi +

∑
j∈S1∪···Sk−2

Dij.

Note that if N is iteratively strongly solvent, then all organizations are solvent in the

worst equilibrium. Proposition 1 provides weaker conditions that are necessary and sufficient

for this to hold. This then provides a base to understand minimum bailouts.

Proposition 1. All organizations are solvent in the best equilibrium if and only if the

network is weakly portfolio balanced.

All organizations are solvent in the worst equilibrium if and only if the network is weakly

portfolio balanced and there exists an iteratively strongly solvent set that intersects each

directed (simple) cycle.25

An implication of Proposition 1 is that in a weakly balanced network, if one has an

iteratively strongly solvent set that intersects each directed (simple) cycle, then that implies

that the whole set of banks is iteratively strongly solvent. This is the crux of the proof.

The proposition is less obvious than it appears since an insolvent bank can lie on several

cycles at once, and could need all of its incoming debts to be paid before it can pay any out.

Solvent banks on different cycles could lie at different distances from an insolvent bank, and

showing that each bank eventually gets all of its incoming debts paid before paying any of

its outgoing debts is subtle. The proof is based on how directed simple cycles must work in

a weakly balanced network and appears in the appendix.

Proposition 1 also implies that if both conditions are satisfied, then there is a unique

equilibrium. Conversely, if portfolios are weakly balanced and there is no iteratively strongly

solvent set intersecting every cycle, then there are necessarily multiple equilibria. Thus, in

a weakly portfolio-balanced network (excluding equity), there is a unique equilibrium if and

only if there exists an iteratively strongly solvent set that intersects each directed (simple)

cycle.

One way to ensure having an iteratively strongly solvent set intersecting each directed

cycle is to have at least one unilaterally solvent bank on each cycle, but this is not generally

necessary, and so the iterative solvency condition is important. A special case is when the

network is exactly portfolio-balanced, such that no bank has a capital buffer: then it becomes

necessary to have at least one unilaterally solvent bank on each cycle for the whole system

25A simple cycle is one that only contains any organization at most once. If there is a solvent bank on
each simple cycle then there is one on every cycle, since every cycle contains a simple cycle. A simple cycle
is a list of links i0i1, i1i2, . . . iKi0 such that Dikik+1

> 0 for all k = 0, . . . ,K (with K + 1 = 0), and i0 is the
only organization that appears twice.
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to clear in the worst equilibrium. That is because in the case of exact balance, each bank is

solvent if and only if it receives all the debt payments it is owed. However, note also that

with exact balance, no bank that has any debts can be unilaterally solvent since their debts

in are just enough to cover their debts out and so they have no buffer to make them solvent

without those debt payments coming in, and so in that case bailouts will be necessary to get

to solvency.

Proposition 1 highlights both the difference between the best and worst equilibria, as well

as the role of cycles in clearing interbank liabilities. It resonates with the increasingly used

technique of portfolio compression, which allows banks to eliminate offsetting obligations

with other organizations taking part in the process, exploiting cycles in the financial network

(e.g., see D’Errico and Roukny (2019)). Portfolio compression then reduces gross interbank

exposures while keeping net exposures constant, which not only reduces systemic risk but

regulatory requirements of participants as well. Portfolio compression improves the worse

equilibrium since less it lowers the debts that banks owe and thus reduces the amounts that

they need to be solvent either unilaterally, or once receiving some incoming payments.

3.2.3 Minimum Bailouts and Imbalanced Portfolios

We now investigate the minimum bailouts needed to ensure solvency of all banks in both

the best and the worst equilibrium.

The best equilibrium is relatively easy to understand. If the network is not weakly

portfolio balanced then some banks must be defaulting, and each bank that is not weakly

balanced needs bailouts to be brought back to solvency. It follows then from Proposition 1

that the minimum amount of capital that needs to be injected in the system to ensure its

solvency is exactly ∑
i

[DL
i −DA

i − pi]+.

The worst equilibrium is more complex, as weak balance is necessary, but not sufficient

for solvency. One needs the above minimum payment, but then one also needs to inject

enough additional capital into some set of banks to ensure the existence of an iteratively

strongly solvent set that intersects each directed cycle in the network.

This is summarized in the follow corollary to Proposition 1.

Corollary 1. Consider a possibly imbalanced network with no equity.

(i) The minimum necessary bailout needed to ensure solvency of the entire network in the

best equilibrium is the total net imbalance in the economy
∑

i[D
L
i −DA

i − pi]+ (which

is 0 if the network is weakly portfolio balanced).

(ii) The minimum necessary bailout needed to ensure solvency of the entire network in the

worst equilibrium is the total net imbalance in the economy and injecting the minimum

additional capital to generate an iteratively strongly solvent set that intersects each

directed cycle in the network.
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(iii) If the network is fully compressed (so that all cycles of debt in the network have been

cleared), then the best and worst equilibria coincide and the minimum necessary bailout

needed to ensure solvency of the entire network in the best equilibrium is just the total

net imbalance in the economy.

To ensure solvency of the entire network, the regulator first has to ensure weak balance

of the portfolios of all banks. That is necessary and sufficient to ensure solvency in the best

equilibrium. Then we are also back to the logic of the weakly balanced case, and to ensure

solvency in the worst equilibrium, the additional capital that is needed is the minimum that

then generates an iteratively strongly solvent set intersecting each directed cycle.

We remark that the payments made to regain weak balance,
∑

i[D
L
i − DA

i − pi]+, will

not be recovered by the government or other entity that intervenes in the bailout. However,

all the additional payments made in the case of the worst equilibrium can be recovered. For

instance, as we saw in the wheel example, the payments that are made in a cycle all cancel

out and can be recovered once the capital has cycled through the entire network. This logic

holds more generally, even in more complex networks. Indeed, once necessary payments to

regain weak balance has been made, each bank’s balance sheet satisfies pi + DA
i ≥ DL

i . To

ensure solvency in the worst equilibrium, an appropriate set of banks then needs to bailed-

out, that is an additional DL
i − pi needs to be injected in a subset of banks. However, since

this guarantees solvency of the whole network, we know that in the end these banks will get

their debt payments DA
i ≥ DL

i − pi in full. Hence the regulator will be able to recover the

additional capital it had to inject to generate the iteratively strongly solvent set.

Figure 3 illustrates some of these ideas. In the imbalanced case on the right, the net

payment that is needed to reach weak balance is to give d to Bank 3, which is never recovered,

and that is enough to ensure full solvency in the best equilibrium. Then paying an additional

d to Bank 3 is the minimum additional bailout needed to ensure solvency in the worst

equilibrium, as that is enough to get Bank 3 to make its payments, which then makes Bank

2 solvent, which then makes Bank 1 solvent.26 Bank 2 being solvent means it is then able to

repay its debt of d to Bank 3, which can be recovered by the entity that intervened. Hence

net bailout costs here equal d, which is the payment needed to make the network weakly

balanced.

This problem of generating an iteratively strongly solvent set that intersects each directed

cycle in the network is well-defined, but finding a minimum-cost set can be computationally

hard. This is true both in terms of requiring a lot of information on the network structure,

as well as the computational complexity of finding the minimum combination of banks to

bailout to have at least one on each cycle. For instance, many banks will sit on multiple

cycles, and even simply identifying all of the cycles in a network is challenging. This problem

is in fact NP-hard.27

26Paying d/2 to 1 would not be enough to get 2 to be solvent since it still gets no payments from 3 in the
worst equilibrium. One would need to pay 3d/2 to 2 in order to ensure that it would be unilaterally solvent.
So, 3 is the cheapest option.

27Indeed, when looking for all simple cycles in a graph, one also solves the Hamiltonian cycle problem,
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Figure 3: Suppose all banks have pi = 0. Ensuring solvency of the full network in the worst
equilibrium in the balanced case (left panel), requires bailing out at least one bank per cycle, which
can be done by either bailing out banks 1 and 3, or just bank 2. In the imbalanced case (right
panel) the whole system clears if bank 3 is bailed out, and hence bailing out one bank per cycle is
not necessary, and {3, 2, 1} (in that order) form an iteratively strongly solvent set (once 3 gets an
bailout injection of 2d).

In practice, the problem is simplified for two reasons. First, many organizations will

already be solvent, and it may only be a subset that are problematic—attention can then be

concentrated on a subnetwork and some key organizations. Second, a core-periphery network

(which many financial networks resemble) has a large amount of structure to it that makes

its cycles easier to identify: it consists of a core clique together with a bunch of extra links

to banks that have few connections to the core.

It can be significantly costlier to ensure solvency of an imbalanced than a balanced

financial network, since the regulator necessarily has to inject the amount of net imbalance

of all net borrowers. In reality, this imbalance can be large as many organizations have

some debt contracts with partners who are private individuals and who are not otherwise

involved in the network: for instance they have loans out as mortgages, or deposits that can

be treated like debt for our purposes (e.g., demand deposits, certificates of deposit, overnight

loans, money market accounts, etc.). These debts do not recycle into the network and so

cannot be canceled out. Even though debts fully balance in aggregate—for each lender

there is a borrower—some organizations or individuals are net lenders and others are net

borrowers. Any organization belonging to the later category can be a first failure, and start

a default cascade. They can also propagate failures, and are hence the critical organizations.

On the contrary net lenders can never be the first to fail, but can be brought to bankruptcy

as well if enough of their counterparties default.

Proposition 1 and Corollary 1 do not address the case in which banks hold equity in each

other. That further complicates the calculations, since instead of just [DL
i −DA

i − pi]+, the

imbalance of a bank now also depends on the value of its equity holdings in other banks,

which then depends on who is solvent.

The general program to ensure solvency at minimum cost can be written as

min
p′≥p:V(p′)≥0

||p′ − p||,

which is known to be NP-complete. For an early algorithm to find all cycles, see Johnson (1975).
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where the V is chosen to be either the best or worst equilibrium, depending on which is of

interest. Again, this requires that the imbalance is at most 0 for all organizations, but now

this includes equity values and so has to be solved as a fixed point.

The algorithm for finding the amount needed to remove the net imbalance in the case of

the best equilibrium is straightforward to describe. It is as follows.

Let

pni = pi +DA
i −DL

i .

Now, calculate the best equilibrium values associated with asset returns pn, equity holdings

S (noting that equity values in negative-valued enterprises are 0), and no debt D = 0. The

opposite of the total sum of the valuations of the organizations with negative values (ignoring

bankruptcy costs) is the minimum bailout that is needed. Effectively, we know that all debts

will be repaid in a bailout that ensures full solvency, and then the resulting bank values will

be the basis on which equity values accrue. Organizations that are still negative, including

all of their equity positions are the ones that will require bailout payments.

In the case of the worst equilibrium, the same logic applies, but then the base values are

associated with the worst equilibrium. Then once those payments are made, one recalculates

the worst equilibrium values given those payments, but with the original D. By doing this,

one identifies banks that are then unilaterally solvent (after the initial bailout payments),

as well as any resulting iteratively strongly solvent set by consequence of those unilateral

solvencies. If these are not enough to intersect each directed cycle, then additional bailouts

will be needed, and an algorithm needs to be run to find the cheapest set. Note that those

bailouts might not even be used to generate unilateral solvencies, but might just be enough

to generate secondary solvencies given the unilateral solvencies, which eventually generate

more solvencies. This is the analog of the problem without equity, but just augmented

by additional value calculations that include equity of the resulting solvent organizations

for each possible configuration of bailouts that is considered and the corresponding worst

equilibria. Here, part (iii) of the Corollary becomes particularly important, since it means

that if one can compress the network, then the issues with the worst equilibrium are avoided

and one only has to deal with the initial bailouts needed to restore weak balance, which are

necessary in any case.

Since many of the results apply to both the best and worst equilibria (as well as interme-

diate selections), as long as one is consistent in using the same equilibrium throughout the

analysis,28 we are only explicit about which equilibrium applies when it becomes necessary.

28We rule out that a bank believes that the selection of equilibrium changes as a function of its decisions –
for instance that the best equilibrium applies for some decisions and the worst for others, which could alter
the incentives arbitrarily. For more discussion of the coordination game underlying defaults, see Allouch and
Jalloul (2017).
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4 Distorted Incentives and Optimal Regulation

The previous section focused on characterizing values of banks, taking as given their portfolio

and the structure of the financial network. We now model banks’ investment decisions, and

the potential inefficiencies that arise from network externalities.

4.1 Overly Risky Investment: The Intensive Margin

Because of interdependencies between organizations in the financial network, a bank’s

investment decision not only affects its value but also those of others. This relates to the

standard agency problem between the manager of a firm and its shareholders highlighted

in Jensen and Meckling (1976), in which there are differing objectives of the manager and

shareholders.29

In this section, we study how financial contracts between organizations distort investment

incentives, because of associated externalities in insolvencies and bankruptcy costs. The

distortions in incentives are easy to understand, but are important to document because of

their extremity and also because this analysis provides the base for an analysis of regulation

and bailouts, as well as how incentives depend on whether interdependencies are based on

debt or equity.

Let us begin by examining the incentive problems of a single bank that takes as given

investments made by other financial organizations. Without loss of generality, the bank has

a unit of capital to invest either in a risk-free asset with net return r or in some portfolio

that pays a random pi. One can think of this as a standard two-fund separation setting,

with the main decision of the investor being how much risk to take.

We take the bank owners to be risk neutral and choose the portfolio that maximizes their

expected returns from their investments. This allows us to abstract away from results linked

to risk tolerance and to analyze solely systemic and structural externalities. We comment

below on how the results extend to the case of risk-aversion. We also presume that the

decision-makers in an organization are maximizing its profits and not the profits of other

financial organizations.

The main incentive issues that we examine are between the shareholders (owners) of a

firm and the other agents who are impacted by the firm’s solvency. The decisions that we

examine are the choices of portfolios and partnerships, which are observable and contractible,

and so we abstract away from agency problems between the shareholders and managers of

the firms. Those can also be an issue in some circumstances, but are well-studied elsewhere,

and so we focus on the less-studied inefficiencies that arise beyond standard moral hazard

problems.

29For more on this point, see Admati and Hellwig (2013). For some analysis in different network settings
see Brusco and Castiglionesi (2007); Galeotti and Ghiglino (2019), and for a more general discussion about
agency problems of excessive risk taking in the presence of externalities see Hirshleifer and Teoh (2009).

23



Suppose the bank’s outstanding debt DL
i is low enough, such that it could be paid back

entirely were the bank to only invest in the safe asset: DL
i ≤ (1 + r). Insolvency happens if

the value of the portfolio falls below the bank’s liability DL
i , in which case a cost of b ≤ DL

i is

incurred. Under limited liability, the shareholders get a payoff of zero in case of insolvency,

and the bankruptcy cost b is born by whomever is holding debt, or a government or other

enterprise that steps in.

The bank solves

max
qi∈[0,1]

(1− s)E

[(
qipi + (1− qi)(1 + r) +

∑
j 6=i

SijVj(p, qi, q−i)
+ +DA

i (p, qi, q−i)−DL
i

)+]
.

Here we do not allow for short sales (of either asset), which limits qi ∈ [0, 1]. As will be clear

below, the analysis extends to short sales: the bank would choose to short the risk-free asset

and leverage its investment in the risky asset.

We allow Vj(p, qi, q−i) and DA
i (p, qi, q−i) to depend on the vector of portfolio values p,

as well as full vector of investment decisions (qi, q−i). We give sufficient conditions on the

network such that it is a strictly dominant strategy for i to fully invest in the risky asset.

Intuitively, this is the case as soon as such i’s risky investments cannot feedback to i in

discontinuous ways because of insolvencies of others that it triggers even without being

insolvent itself.

We say that i is “at risk of discontinuous feedback,” if i is part of a dependency cycle

that involves both debt and equity, and that begins with a bank having an equity claim on

i that is large enough to cause it to default on its debts.30

Proposition 2. Suppose that a bank i has an opportunity to invest in a risky portfolio with

an expected value that exceeds the risk-free rate of return, E[pi] > 1 + r. If bank i is not at

risk of discontinuous feedback then it invests fully in that risky portfolio.

What the discontinuous feedback condition precludes are cases in which, by making a

safer investment, bank i can prevent another bank’s default, which triggers debt repayments

that benefit i. Thus, this requires that i’s outcome can lead another bank to default while

i is still solvent, and such that the other bank owes i a sizeable sum. So, incentives to take

(excessively) risky positions can be mitigated by interdependencies in some settings. How-

ever, this requires a somewhat extreme feedback effect in which there must be a nontrivial

chance of driving a counterparty in whom i has a large stake into bankruptcy without having

i become bankrupt. We now present an example in which Proposition 2 does not hold, and

discuss how this example corresponds to the case in which a bank has the least incentives to

take risks.

30∃i0, . . . iK for some K such that: i0 = iK = i, Si1i0 > 0, and Dilil−1
> 0 or Silil−1

> 0 for each l ≥ 1
with at least one l such that Dilil−1

> 0.
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4.1.1 An Example with Countervailing Incentives

There are situations with discontinuous feedback in which debt can offer a countervailing

incentive that leads to less risky investments, if there is a special sort of feedback. As

suggested by Proposition 2, such feedback effect only arise of the bank is part of a cycle

that involves both equity claims and debt claims. We illustrate this effect in the following

example. Essentially, it has to be that a low portfolio return would not directly cause the

bank to become insolvent, but would instead lead one of its equity-holding counterparties to

become insolvent, which would then lead to a loss of a payment back to the bank itself.

1 2

D12 = d

S21 = s

Figure 4: A network in which Proposition 2 does not apply. Bank 2 owes d to bank 1, and owns an
equity share s on bank 1. Each bank can either invest in the safe asset, on in her own risky asset
that pays a positive return R with probability θ. Suppose sR > d such that bank 1 can prevent
bank 2’s default if it has a high portfolio realization. We want to show that for some parameter
values, both bank fully investing in the risky asset—q1 = q2 = 1—is not an equilibrium. Suppose
q2 = 1. Choosing q1 = 1 yields an expected payoff to bank 1 of

E[V1(q1 = 1, q2 = 1)] = θ2R+ θ(1− θ)(R+ d) + θ(1− θ)d = θ[R+ (2− θ)d].

However, by choosing a safer portfolio, bank 1 could prevent 2’s default whenever none of the risky
assets pays off. This requires choosing q1 = q∗1 such that s(1 − q∗1)(1 + r) = d. Bank 1’s expected
payoff is then

E[V1(q1 = q∗1, q2 = 1)] = (1− q∗1)(1 + r) + d+ θq∗1R = θR+ d− d

s(1 + r)
[R− (1 + r)].

Such safer portfolio is better than fully investing in the risky asset for bank 1 as soon as

E[V1(q1 = q∗1, q2 = 1)] > E[V1(q1 = 1, q2 = 1)] ⇐⇒ 1 + s(1− θ)2 >
θR

1 + r
.

If the risk premium is not too high, it is optimal for bank 1 to choose a safer portfolio so as to
prevent it’s debtor’s default, and get its payment of d back with certainty. This is however only
possible when bank 2 has some equity claim on 1.

This example illustrates some of the nuances of financial interdependencies. Which mix

of debt and equity is best for incentives depends on multiple features. Both debt and equity

generally incentivize banks to fully invest in the risky portfolio. For them to choose safer

investments, it is necessary to have a mix of debt and equity that allows for discontinuous
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indirect effects of one’s return on its own value through the network.

Interestingly, the network depicted in Figure 4 has the largest potential for such feedback

effects. Indeed, this sort of feedback starts with some bank j – here bank 2 – having some

(direct or indirect) equity claim on another i – here bank 1. If this claim is large, then

the latter bank need not invest a lot in the safe asset to prevent the former bank’s default.

Hence the larger this claim, the lower the cost of preventing someone’s default. Note that an

indirect equity claim can always be replicated by a direct claim that is at least as big; hence

a single bank having large direct equity claim on another, as it is the case in the example, is

most likely to generate countervailing incentives. This is, however, the case only if the losses

induced by the bank’s default can feedback to i. This is true for instance if j owes some

debt to i, or if i has a claim on one of j’s creditors. Again, the largest feedback can always

be induced by i having a direct, high enough, debt claim on j.

Figure 4 then represents the network in which a bank has the least incentives to invest in

the risky asset. Thus, it provides, a sufficient condition for banks to fully invest in the risk

asset even when at risk of discontinuous feedback. If no single bank has a total (direct or

indirect) equity claim of more than θR−(1+r)
(1−θ)2(1+r)

on another, then investing fully in the risky

asset is the only equilibrium outcome.

4.1.2 Inefficiency, Risk Aversion, and Costs of Capital

Fully investing in the risky portfolio is often socially inefficient, since a bank’s deci-

sion also affects the rest of the financial network. First, a bank does not account for de-

fault/bankruptcy costs when deciding its investment: the above maximization decision is

independent of b. Indeed, under limited liability, the bank shareholders only consider returns

earned when solvent and completely disregard what happens under insolvency. Second, a

bank’s investment decision impacts others through financial contracts and cross-holdings. In

particular, if i defaults it will not honor its debt liabilities and its creditors may be driven

to insolvency, causing bankruptcy costs to add up. Because of these, a planner would often

prefer less risky investments.

The intuition behind this is straightforward. The the bank has incentives to maximize

E[Vi|Vi > 0] Pr[Vi > 0],

while the full impact on society is

E[Vi|Vi > 0] Pr[Vi > 0] + E[Vi|Vi < 0] Pr[Vi < 0]− [Contagion Cost|Vi < 0] Pr[Vi < 0].

The second and third terms in the latter expression are negative and generally become more

negative in the amount of risk taken in the investment, qi. Thus, Proposition 2 implies that

inefficiently risky investments are made.

This expression also makes it clear that, although the results may be attenuated, they
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will extend to the case of risk averse investors – there are still negative externalities on others

that are not taken into account by those choosing the investment.

4.1.3 Investment Incentives Under Debt vs. Equity

Banks have lower default thresholds when their liabilities are in the form of equity rather

than debt. In the above analysis, including Proposition 2, if none of the liabilities were in

the form of debt, then there would never be any bankruptcy costs or inefficiencies. Keeping

incentives constant, equity is then more efficient since it reduces the probability of default,

and hence the expected bankruptcy costs that the system could have to pay. The contrast

between debt and equity also implies that the systemic risk roles of organizations like banks

whose balance sheets have large amounts of debt on both sides, differ from that of venture

capital and other funds whose balance sheets are more equity-like.

Obviously, however, there reasons for using debt: to pay workers who may have their

own fixed bills to pay, to account for the risk aversion of investors, and to handle short term

loans and demand deposits, etc. For instance a risk-averse investor would prefer to have a

fixed payment than a random one, for the same expected value.31

4.2 Measuring and Regulating Risk-Taking

Network externalities lead banks to take on too much risk, as they generally do not

internalize how their investment decisions affect other organizations in the system. This sort

of incentive problem is reminiscent of other settings with externalities, but we now explore

more deeply what its network aspect implies for optimal regulation.

4.2.1 Financial Centrality

We provide a network-based measure of financial impact of a given organization. Concep-

tually, given our approach, there is a unique and clear way to assess financial impact. What

limits its implementation is a lack of regulation requiring all counterparties to be revealed

to a central bank or other oversight agency. The actual computation of the measures below

can be demanding in practice, but it is feasible to accurately approximate, especially once a

monitoring system is in place and constantly updated.

The obvious way to define a bank’s impact on the rest of the economy following a change

in its portfolio is to calculate its net impact on the overall value in the economy, as follows.

31Once bankruptcy costs are involved, this would no longer be the case, since a fixed payment would also
be variable and have a lower expected value, although also a lower variance. The optimal contract in the
face of a risk-averse investor and bankruptcy costs, could turn out to be a hybrid of debt and equity, or all
one or the other, depending on the bankruptcy costs and variability of the investment portfolio and level of
risk-aversion.
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Let the financial centrality of i, given a network (D,S) and vector of investments q, from a

change from investment choices qi to q′i for i be32

FCi(q,q
′
i; D,S) = Ep [V0(q,q′i,p; D,S)− V0(q,q′i,p; D,S)] .

This is the total impact on the economy – captured via the value to final shareholders in

node 0 – that comes from a change in i’s investment strategy. Changes in the values of

public companies eventually all indirectly accrue to private equity and debt holders, and

so including any of the public values would amount to double counting. Note that this is

equivalent to

FCi(q,q
′
i; D,S) = Ep

[
q′i · p− qi · p−

∑
j

(bj(V(q−i,q
′
i),p)− bj(V(q),p))

]
,

which counts the total change in the portfolio and the total incidence of all changes in

bankruptcy costs.

We define the net financial centrality of i as

NFCi(q,q
′
i; D,S) = FCi(q,q

′
i; D,S)− Ep [q′i · p− qi · p]

This is the impact beyond the direct change in i’s portfolio value. Hence this captures all

of the bankruptcy costs that i causes in the economy from a change in its investments. If

there are no changes in bankruptcy costs, then the net financial centrality of i is 0.

Another important concept is the impact of guaranteeing to bailout a particular bank.

Define a bank’s bailout centrality to be

BCi(q; D,S) = −Ep

[∑
j

bj
(
V−i, V

+
i ,p

)
− bj (V,p)

]
,

where V−i in the first set of bankruptcy costs are calculated presuming that i does not default

on any payments and has value V +
i . This is the total difference in overall bankruptcy costs if

a firm is insured by the government and bailed out whenever it becomes insolvent compared

to a world in which it is left to fail.

In a network with only debt between banks, these measures capture chains of cascading

defaults. Some banks can stop such cascades if they have enough value and/or small enough

debt liabilities compared to debt assets, DA
i ≥ DL

i . Note also that these “chains” could

hit some banks multiple times and so intersect. With equity, cascades do not follow direct

32Implicit in defining financial centrality, one has to take a stand on which equilibrium set of values is
being used since those define the values V (p) and thus the bankruptcy costs b(V(p),p). Typically we are
interested in either the best or worst equilibrium, but one could make other choices, or change from best to
worst if one anticipates a freezing of payments in response to the failure of some organization(s). For some
discussion about the importance of uncertainty about which equilibrium applies, see Roukny et al. (2018),
and for strategic choices of defaults see Allouch and Jalloul (2017).
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default chains but can skip a bank – that is, bank k could own j who owns i. Even if j does

not default, its value could go down if i defaults, which could indirectly cause k to default.

Hence with equity we can have indirect failures, whereas with debt there must only be chains

of direct failures.

Regardless of the presence of equity, debts are still a key ingredient since they drive de-

faults. For example, in an exactly balanced network, in which debt assets exactly compensate

debt liabilities on every bank’s balance sheet, no bank has any net financial centrality when

considering the best equilibrium. Indeed, a bank is always able to repay its debt assuming

all its counterparties are solvent and portfolios are non-negative. However such a network

could still be very fragile. For instance, consider a balanced network with no contracts other

than debt. One can change banks on paths away from i to have DL
j slightly higher than

DA
j . If debts are large relative to the p’s, then the resulting default centralities can be very

large. More generally, this implies that (net) financial centralities are discontinuous and can

be very sensitive, especially to the debt structure in the network.

4.2.2 Optimal Regulation: Bailouts versus Deposit Requirements

We consider two ways the regulator can intervene to reduce the inefficiency of banks’ in-

vestments: she can use reserve requirements to limit the amount invested in the risky asset,

and can bail-out insolvent banks at some cost. We first study when reserve requirements are

improving on laissez-faire, and then consider bailouts.

We consider a regulator who is deciding whether to regulate the best way to regulate

bank i’s investments, taking as given the financial network g = (D,S) and other banks’

equilibrium (possibly regulated) investments q−i. We consider the setting of Section 4.1 and

a bank i that does not face a large discontinuous feedback so that without regulation it

would fully invest in the risky portfolio.

A reserve requirement is then simply an upper bound q̄i on the share of its portfolio that

i can invest in the risky asset. Proposition 2 implies that the reserve requirement for bank

i will be binding. The optimal reserve requirement for i balances the gain from the risk

premium with the overall societal expected bankruptcy costs, which is a solution to

max
qi

qiE[pi] + (1− qi)(1 + r)− Ep

[∑
j

bj(V(qi,q−i),p)

]
.

The first part of the objective function captures the expected return of the portfolio, which

is linearly increasing in qi because of the excess return to the risky portfolio. The second

term, capturing expected bankruptcy costs, jumps down discontinuously at some values of qi
where marginally changing i’s investment changes the set of defaulting banks in some states

of the world. Because of these discontinuities, there are several levels of investment that can

be optimal and need to be compared to each other. A natural one is to not regulate bank

i, and to let it choose q∗i = 1. Another one is the critical level of investment in the risky
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asset q̄i under which bank i remains solvent irrespective of the realization of the risky asset’s

return. This threshold solves

(1− q̄i)(1 + r) = DL
i or q̄i = 1− DL

i

1 + r
.

It then follows that imposing a reserve requirement of q̄i = 1 − DL
i

1+r
on bank i improves

on laissez-faire if and only if[
E[pi]− (1 + r)

1 + r

]
DL
i < NFCi((q−i, q

∗
i ), q̄i; D,S).

Thus, preventing i’s default by imposing reserves is beneficial if the opportunity cost of

doing so – the loss in risk premium needed to ensure i’s solvency – is less than the expected

reduction in bankruptcy costs. A social welfare maximizing regulator will impose a reserve

requirement when the risk premium is below threshold and when a bank’s net financial

centrality is above a threshold. Interestingly, the opportunity cost of reserves (the left hand

side of the inequality above) is increasing in the bank’s outstanding debt. The intuition

behind this is that as debt increases, a greater investment in the safe asset is required

to avoid default, which is increasingly costly in terms of expected returns to investment.

However, the net financial centrality of i can also be increasing in DL
i , and so whether

reserve requirements are more or less likely as debt is increased is ambiguous and depends

on details of the network structure and bankruptcy costs.

Next, suppose that the regulator also has the possibility of bailing out bank i when it

gets the low return and is insolvent, but this involves some expected cost ci > 0 (above any

capital injection, which is just a transfer). Then bailing out bank i whenever it is insolvent

is preferred to imposing a reserve requirement of q̄i whenever[
E[pi]− (1 + r)

1 + r

]
DL
i > Ep

[∑
j

bj(Vi(q−i, q
∗
i )

+, V−i(q−i, q
∗
i ),p)

]
−Ep

[∑
j

bj(V(q−i, q̄i),p)

]
+ci

which is equivalent to[
E[pi]− (1 + r)

1 + r

]
DL
i > ci − [BCi(q−i, q

∗
i )−NFCi((q−i, q∗i ), q̄i)],

where we omit the D,S from the centrality notation since they are fixed.

Imposing high enough reserves or providing bailouts each imply that a bank never de-

faults. Hence both bailout and reserve centrality capture how preventing i from ever de-

faulting affects the overall expected bankruptcy costs. This effect can be quite large if, for

instance, the bank’s solvency triggers a repayment cascade. In a network with only debt,

these two measures follow chains of potential default cascades and thus always coincide.

As soon, however, as some bank has a sizeable equity claim on i, they can differ substan-
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tially from each other. Indeed, reserve centrality captures the effect of making i’s portfolio

safer, whereas bailout centrality the effect of truncating bad realizations of its risky portfolio.

Hence, in the latter, bank i still enjoys high realizations of its risky portfolio, which may

prevent others from defaulting through equity claims. If however equity claims are small

relative to debt claims, then the two centrality measures should be fairly close as well.

These notions of centrality allow us to characterize the optimal way to regulate a bank.

Proposition 3.

• If ci ≥ BCi(q
∗), then bailouts are never optimal. In this case, reserve requirements

improve on laissez-faire if and only if[
E[pi]− (1 + r)

1 + r

]
DL
i ≤ NFCi((q−i, q

∗
i ), q̄i).

• If ci < BCi(q
∗), then laissez-faire is never optimal. In this case, reserve requirements

improve on bailouts if and only if[
E[pi]− (1 + r)

1 + r

]
DL
i ≤ ci − [BCi(q−i, q

∗
i )−NFCi((q−i, q∗i ), q̄i)].

Proposition 3 is layered, so it helps to illustrate it in a figure. In Figure 5.33 we see that

bailouts are optimal when both the expected excess returns from the risky investment and

bank i’s centrality are high. The attractiveness of the expected returns means that one wants

to take advantage of those returns, but then the high centrality also means that bailouts are

preferred to laissez fair. If returns are lower, but centrality is still high, then reserves are

preferable to laissez faire. In contrast, if centrality is low enough, but returns are high, then

laissez faire becomes optimal. In short:

• laissez-faire is best when centrality is low and excess returns are relatively high;

• reserve requirements become optimal when excess returns are low and centrality is

relatively high; and

• bailouts are optimal when excess returns are high and so is centrality.

33Since there are three variables in question, we also offer a different depiction in Figure 10 in the appendix.
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(a) Optimal Regulation (b) An Increase in Bailout Costs

Figure 5: The optimal regulation of a bank as a function of the expected excess return
of the bank’s available risky investments and the centrality of the bank. The second panel
examines an increase in the regulator’s bailout costs.

The above result characterizes the optimal way to regulate bank i taking as given other

banks’ investments. More generally, the full optimal regulation would also tackle the problem

of regulating all banks jointly. For instance, optimal reserve requirements for each bank (q̄i)i
then solve

max
(q̄i)i

∑
i

q̄iE[pi] + (1− q̄i)(1 + r)− Ep

[∑
i

bj(V (q̄),p)

]
.

More generally a regulator might want to impose some reserve requirements and also do some

ex post bailouts. This is a significantly harder problem to solve as now a bank’s centrality

depends on how other banks in the network are regulated. It is then necessary to consider

all different subsets of banks to regulate, and compare the overall societal value in each

case. Still, note that Proposition 3 must hold at an optimal regulation, for each i - but the

joint problem solution determines what the q−i and values are in the characterization from

Proposition 3.

For the sake of tractability, we characterize the optimal regulation for a symmetric, core-

periphery network. This is enough to highlight how centrality determines which banks should

have their investments regulated, and which banks should be allowed to invest freely and be

bailed-out ex post when necessary.

A Core-Periphery Example Consider the core-periphery network of debt claims de-

picted in Figure 6. Banks can either invest in the safe asset, or in their own proprietary

asset. Banks’ assets are identically and independently distributed, yielding return R with

probability θ and zero otherwise, with θR > 1+r. Suppose 1+r ≥ R+ d̄ such that investing

fully in the safe asset ensures solvency of any bank. Finally, defaulting induces a bankruptcy

cost of b > 0. Importantly, this cost is incurred by someone even if the bank has limited
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liability, so it will be whomever those costs are owed to or has to step in (e.g., government,

courts, other creditors, etc.). In what follows, we focus on the best-case equilibrium for bank

values.

D

D

D

d̄

d̄

d̄

d

d

d

depositors

depositors

depositors

Figure 6: Arrows point in the direction that debts are owed. There are three core banks (pink)
linked together via debt claims of D on one another. There are three periphery banks (blue), each
having a debt claim d̄ on a single core bank. Periphery banks act as intermediaries between outside
investors (depositors) and core banks. They each have a liability of d < d̄ towards depositors.

Proposition 2 applies in this example, and if left unregulated, all banks invest fully in the

risky asset. Core banks are then solvent if and only if their risky asset pays off. A periphery

bank can however remain solvent even when its portfolio yields zero as long as its debt claim

on the core bank is repaid. Hence the overall social value of the unregulated network is

6θR− b[3(1− θ) + 3(1− θ)2].

A higher social value may however be achieved by imposing reserve requirements on some

banks. Several observations simplify the problem of finding the optimal way to regulate

this network. First note that imposing reserves on a bank can only beneficial insofar as it

prevents it from defaulting when pi = 0. More importantly, there are gains from regulating

all core banks together as opposed to just one, or two, of them. Indeed, if they are all

regulated and hence never default, then they always get their debt D repaid by their core

counter-party, and a reserve requirement of 1− d̄
1+r

is enough to ensure solvency of all three.

If not all three are regulated, then a higher reserve requirement of 1 − d̄+D
1+r

is necessary to

prevent bankruptcy. By symmetry, the gains from preventing a core bank’s default is the

same across core banks. Hence it is either optimal to regulate all three and set a reserve of

1 − d̄
1+r

on all of them, or to regulate none of them. If core banks are regulated, periphery

banks never defaults and hence need not be regulated. If core banks are not regulated, then

it might be optimal to impose a reserve requirement of 1− d
1+r

on the latter’s investments.

By symmetry and because periphery banks are not linked (directly or indirectly) to each

other, if such a restriction is optimal for one periphery bank then it is optimal for all of

them.

All in all, there are three possible optimal regulations: (i) not to regulate anyone, (ii) to

impose a reserve requirement of 1− d̄
1+r

on core banks and leave periphery banks unregulated,

and (iii) to impose a reserve requirement of 1− d
1+r

on periphery banks and leave core banks
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unregulated. Regulating core banks yields an overall social value of

3θR + 3[1− d̄

1 + r
]θR + 3d̄ = 6θR− 3d̄

[
θR− (1 + r)

1 + r

]
and ensures that no one ever defaults. Regulating periphery banks yields an overall social

value of

3θR + 3[1− d

1 + r
]θR + 3d− 3b(1− θ) = 6θR− 3d

[
θR− (1 + r)

1 + r

]
− 3b(1− θ),

and tolerates default of core banks. Regulating the core of the network is then optimal if

(d̄− d)

[
θR− (1 + r)

1 + r

]
< b(1− θ) and d̄

[
θR− (1 + r)

1 + r

]
< b(1− θ)(2− θ),

which holds as soon as bankruptcy costs are high enough. However, if core banks are much

more indebted than periphery ones, such that d̄ >> d, then it may be too costly to prevent

their default via reserve requirements. It can then be optimal to only impose reserves on the

periphery, and let core banks invest freely.

Finally, if bailouts are possible at a cost c < b, then they are always optimal ex post. In

this example, this means that imposing reserves on the periphery is never optimal: core banks

will be bailed-out if insolvent, ensuring the solvency of periphery banks as well irrespective

of their investments. Hence the optimal regulation is then either to impose reserves on the

core of the network—if the opportunity cost of doing so is below c—or to opt for laissez-faire

and bail out the core when necessary.

4.3 Correlated Investments: Popcorn and Dominoes

The metaphor of “popcorn or dominoes” was made by Eddie Lazear, the chairman of the

council of economic advisors under Bush during the financial crisis. The question was

whether there really was any issue of potential contagion and “dominoes”, or whether much

of the crisis was instead simply due to all banks “boiling in the same hot oil” - i.e. all

having extensive exposure to an under-performing mortgage market. The answer is that

both were true. Banks had very correlated portfolios and all had dangerously low values

in their investments at the same time, and hence most were either barely solvent, or even

insolvent. Nonetheless, they also had large exposures to each others’ debts, as well as to

derivatives from AIG, who could not even manage margin payments, as well as securities

issued by Fannie Mae and Freddie Mac, which were both insolvent. This made it clear that

a large cascade would occur without intervention.34

This highlights the fact that correlation of investments across banks matters for financial

34For discussion of this see Jackson (2019), as well as the extensive analysis and data in the Financial
Crisis Inquiry Report, commissioned by an act of the US congress.
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contagion: the fact that many organizations held directly or indirectly similar subprime

mortgages made the whole system substantially more fragile. This can also happen through

things like syndicated loans and other partnerships, swaps, and general incentives to hold

the same assets. Correlation of investments affects systemic risk in two ways: it makes

the network more prone to contagion conditional on a first failure, but can also change the

probability of a first failure. Indeed, under correlated investments, as discussed above, if a

bank gets a low or negative return on its investment then it is likely that its counterparties

are in a similar situation. Equity claim and/or debt claims then may also pay weakly less,

which increases the probability that the bank defaults. If it does default, its counterparties

are also more likely to become insolvent since they also face insufficiently high enough asset

returns to absorb the shock.

The point that banks can prefer to be partnered with other organizations that have

similar portfolios was first made by Elliott, Georg and Hazell (2018), in which banks choose

to lend to organizations with similar exposures so as to correlate their defaults. This also

appears in a particularly robust and simple form in our model, and so we illustrate it now.

We discuss how this result relates to theirs below.

We model a bank’s choice of portfolio as a choice of states in which to get high returns,

and allow banks to arbitrarily correlate their returns by choosing how much the sets of states

in which they get high returns overlap - the flip side of choosing to whom to lend.

The idea behind our result is simple, which is why it turns out to be so robust: financial

organizations prefer to be solvent when their counterparties earn highest returns in order to

enjoy part of those returns, and prefer to be insolvent when their counterparties are insolvent

since then there are then lower returns coming in indirectly.

The importance of these results is that, regardless of whether one believes there is any

serious contagion across banks, their incentives to correlate investments lead to coordinated

failures and large losses for the economy at the same time.

4.3.1 An Example with Two Banks

Consider two banks – each have debt d to some outside investors and a (net) share of s in

each other. Suppose there exists two independently distributed risky assets yielding a return

of R1 and R2, respectively, with same probability θ, where Ri > d for each i. Each bank can

choose in which portfolio of these two assets it wants to invest.

To understand the equilibrium, we analyze two cases. The first is such that a bank that

gets 0 becomes insolvent, but that a bank that earns a positive return stays solvent. The

second is such that both banks are solvent if either gets a positive return, and then both are

insolvent only when they both get 0 returns. There is a third case in which if either gets a

0 then both become insolvent, and it is straightforward that they prefer to correlate their

portfolios then, so we do not do the incentive calculations for that case.

We start with the first case in which a bank that gets 0 becomes insolvent, but that

a bank that earns a positive return stays solvent. Suppose, for now, that bank 1 is fully
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invested in asset 1. Then bank 2 wants to choose the same portfolio if

θ
(1 + s) [R1 − d]

(1− s2)
> θ2 [R2 + sR1 − (1 + s)d]

(1− s2)
+ θ(1− θ) [R2 − d] .

This simplifies to

R1[1 + s(1− θ)] > R2[1− s2(1− θ)] + s(1 + s)(1− θ)d.

This is always true when R1 ≥ R2,35 and holds even if R1 < R2, if d is sufficiently small.

Next, consider the second case in which both banks are solvent if either gets a positive

return, and then both are insolvent only when they both get 0 returns. Suppose, for now,

that bank 1 is fully invested in asset 1. Then bank 2 wants to choose the same portfolio if

θ
(1 + s) [R1 − d]

1− s2
> θ2 [R2 + sR1 − (1 + s)d]

1− s2
+ θ(1− θ) [R2 − (1 + s)d]

1− s2

+ (1− θ)θ
[

s

1− s2
(R1 − (1 + s)d)− d

]
.

This simplifies to

R1 > R2 − (1 + s)(1− θ)d.

Again, this is always true when R1 ≥ R2, and holds even if R1 < R2, this time for large

enough (1 + s)(1− θ)d.

Thus, there exist equilibria in a variety of settings in which both banks fully invest in a

risky asset that is first order stochastically dominated by another because of the incentive

to correlate their investment. There also always exist equilibria in which they both invest in

the asset that pays the highest payoff, even if that fully correlates their portfolios.

More generally, the above analysis implies that if they can invest in different portfolios

that have the marginal payoff distributions, and can choose whether to correlate them or

not, then they will strictly prefer to correlate them. In such cases, correlation is the unique

equilibrium.

If we look at the social value of investments, no costs of bankruptcy are born if the banks

are both solvent, and so having the banks choose independent portfolios rather than highly

correlated ones is generally preferable. Indeed, in the second case of the above example, the

social optimum whenever R2 and R1 are close to each other is to have one bank invest in one

asset and the other bank invest in the other (or to have banks hold both R1 and R2). Instead

the banks prefer to hold all of the same investment. Note that this misalignment between

bank incentives to correlate and what is socially optimal depends on how correlation affects

the expected number of defaults in the network. In the second case, a single asset paying

off is enough to ensure solvency of all banks, which in this setting is equivalent to assuming

35Note that R1 ≥ R2 > d, so the right hand side is less than R2[1− s2(1− θ) + s(1 + s)(1− θ)] which is
R2[1 + s(1− θ)], directly comparable to the left hand side.
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independent portfolios strictly decrease systemic risk. If on the contrary we look at the first

case that assumes s(Ri−d) < d for i = 1, 2—i.e., a bank defaults as soon as its own portfolio

pays zero irrespective of the realization of its counterparty’s—then correlated portfolios are

no longer inefficient since they actually reduce systemic risk.

4.3.2 A General Result on Correlation and ‘Risk Stacking’

To see how the above example generalizes, we now consider a set N = {1, . . . , n} of banks,

whose financial interdependencies are summarized in the matrix of equity holdings S and

debt holdings D. Each bank has a proprietary investment opportunity that yields a return

Ri > 0 with probability θ and 0 otherwise. We examine how they would choose to correlate

their returns.

To examine the correlation in full generality, we model the world as having a large number

of equally likely states of nature, and each bank can choose in which of those states they get

pi = Ri and in which they get pi = 0, subject to having a total probability of θ of getting

pi = Ri. We model this by introducing a set of K equally likely primitive payoff-irrelevant

states, and a set of K Arrow-Debreu securities, each paying off in exactly one state. Each

bank can then choose which states it gets 0 in and which ones it gets Ri in, as long as it

maintains an expected return equal to θRi; i.e., each bank chooses a fraction θ of the K

states that it wants to get Ri in.36 An equilibrium is a state-contingent portfolio return for

each bank that is feasible and optimal given equilibrium strategies of others in the financial

network.37

Thus, if banks want perfectly correlated portfolios, they will all choose to get 0 in the

same states, while to have independent portfolios they will all choose to get their respective

0’s in a pattern that corresponds to a binomial distribution. They could also choose to get

their 0’s only when all others get R−i, and thus negatively correlate their portfolios, and so

forth.

Note that in this world, we can write the Vis as a function of the vector of 0s and Rs

that are realized. Let p−i = R−i denote that all banks other than i have received Rjs, and

p−i = 0 denote that all other banks have gotten 0s.

Proposition 4. Suppose that the value of a high portfolio realization is higher when all

other banks also have a high portfolio realization than when they all have zero returns—i.e.

V +
i (pi = Ri,p−i = R−i)−V +

i (pi = 0,p−i = R−i) ≥ V +
i (pi = Ri,p−i = 0)−V +

i (pi = 0,p−i = 0)

36Here we cap how much that can invest in any state. Without that requirement, there are even more
extreme equilibria in which banks fully correlate and invest even more in the risky asset - in fact they earn
the highest return by putting all of their investments in just one state, which then minimizes the probability
of having to pay any debt.

37We take θ to be a rational number, and K to be large enough so that Kθn is an integer. Banks must
choose θK different states to get Ri in, so they cannot, for instance, choose to get 2Ri in some states. As
will become clear in the proof, the ideas generalize.
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for all banks, with a strict inequality for at least some i. Then there is no equilibrium of

the investment game in which portfolios are independent across banks, but there exists an

equilibrium in which they are perfectly correlated.

Proposition 4 shows that fairly weak conditions are sufficient to ensure that full correla-

tion is always an equilibrium and that independent portfolios are not part of any equilibrium.

Intuitively the latter result comes from the fact that independence puts positive probability

on states in which all banks but one get a zero portfolio realization. If high returns are

complement, then a bank will prefer to move its high portfolio realization from that state to

a more favorable one.

Note that V +
i (pi = 0,p−i = 0) = 0, since a bank cannot get positive market value when

none of the assets pays off. Hence there is an incentive to correlate as soon as the benefits

from a high return when other banks get high returns as well is larger than the value a bank

gets when it is the only one with a non-zero portfolio in the network. A sufficient condition

for this to hold is if banks depend sufficiently on each other so that, in the extreme case

where all other banks in the whole economy get no return, the only bank with a positive

return cannot survive. Then the bank would want to move its high portfolio realization to

a state in which it would not be dragged down to insolvency by others.

We refer to this incentive to correlate as ‘risk stacking’ rather than risk shifting. Risk

shifting is a different phenomenon in which an investor has an incentive to arrange a portfolio

so that the risk falls on other investors, while here the phenomenon is to explicitly ‘stack’ all

of the risk of all organizations into the same states. The result in Elliott, Georg and Hazell

(2018) is an example of shifting, as banks want to correlate their assets to shift losses from

states in which the bank is solvent—in which case the loss is incurred by shareholders—

to states in which the bank defaults—in which case it is incurred by debtholders. The

intuition behind our result is more general, as our result holds even if we relax limited

liability. The incentive to correlate here comes from the fact that high portfolio realizations

are complements: a bank generally gains more by remaining solvent and getting pi = Ri

when others also have high portfolio realizations since its own value depends positively on

others’ through financial interdependencies. In particular, as long as there exists an equity

cycle in the financial network, then a bank’s positive return gets magnified when others on

the cycle remain solvent, which incentivizes correlation of portfolios even if banks do not

act under limited liability. This intuition holds generally regardless of how bankruptcies are

resolved or how large those costs are, and in particular without assuming that a bank would

bear the costs of its counterparty’s bankruptcy.

For a bank not to want to correlate its portfolio, it has to be that by getting a positive

return it can prevent the default of some of its debtors when p−i = 0. This requires the

bank to be part of a cycle involving both debt and equity,38 and hence to be at risk of

38To prevent the default of some of its debtors when p−i = 0, the latter must have a high enough equity
claim on bank i and on its portfolio realization so as to remain solvent despite all other assets paying
zero. This can be beneficial for i if it means getting a net debt coming in in such states. Then perfectly
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discontinuous feedback. Financial networks in which banks want to correlate their portfolios

are also those in which they want to take on as much risk as possible (Proposition 2), and

vice versa.

Risk Aversion Although we have worked with risk-neutral banks to keep the analysis

uncluttered and to emphasize the impact of financial interdependencies, it should again

be apparent that, just as in the risky investment case of Section 4.1, the above results

extend to the case in which investors are risk averse. If others have correlated investments

and when they become insolvent so will a given bank, then it is in that bank’s interest to

correlate its investments with those of the others regardless of its risk aversion. Thus, perfect

correlation remains an equilibrium regardless of risk tolerances. In addition, the result that

full independence is not an equilibrium holds for exactly the same reasons, regardless of risk

tolerance.

4.3.3 The Inefficiency of Full Correlation

In terms of efficiency, maximizing the total value of all private investors in the economy is

equivalent to minimizing the expected number of defaults. Indeed, the correlation structure

of investments across banks does not change the expected aggregate portfolio value
∑

i pi =

θ
∑

iRi, but it does impact the set of defaulting banks and hence the amount of bankruptcy

costs incurred. Correlated investments across banks are then socially efficient if and only if

they induce a lower expected number of defaults than some other configuration. This holds

if any bank that gets pi = 0 always becomes insolvent irrespective of what else happens to

other portfolios: independent investments do not attenuate systemic risk since high portfolio

realizations from some banks can never prevent another from defaulting. In that extreme

case, correlated investments are socially efficient, and banks’ incentives are aligned with that

of the social planner. However, as soon as correlation worsens contagion risk, the equilibrium

is generally not socially optimal. This will be true in many cases of interest, such as when

θ is high and so full independence would make it rare for banks to get low returns together

and bankruptcies would be much rarer under independence than under full correlation. In

general, full correlation is the worst possible case for bankruptcy costs since all banks are

insolvent whenever their return is 0, and so every time someone gets a 0 outcome, they incur

bankruptcy costs. If instead, one changes the correlation structure so that there are states

in which some banks get 0 returns and do not become insolvent (and also so that the only

insolvent banks are ones with 0 returns), then one decreases the bankruptcy costs. As long

as the total frequency of overall insolvencies is less without perfect correlation, so that there

are fewer bankruptcies than 0’s on average (and presuming symmetry in bankruptcy costs),

correlated portfolios would not be an equilibrium, but independent portfolios need not be either. Indeed, for
independence to be an equilibrium, such incentives must hold for all banks. This is impossible since banks
that are net borrowers cannot benefit from such feedback effect, and will always prefer defaulting as well
when p−i = 0.
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then bankruptcy costs drop when one moves away from perfect correlation. Thus, in most

cases the decentralized equilibrium is socially inefficient, since Proposition 4 highlights that

there does not exist an equilibrium in which banks choose independent portfolios, but there

exists one in which they choose perfect correlation, irrespective of how correlation affects

systemic risk.

4.3.4 Uniqueness of the Full Correlation Equilibrium

Proposition 4 provides insight into two of the most natural types of correlation, but does

not address all possible correlation structures. Generally, banks have incentives to line up

their positive returns, so as not to be dragged down by other banks. Nonetheless, one

does need stronger conditions to ensure that all banks want to perfectly align their returns

in all equilibria - such a strong form of uniqueness requires ruling out equilibria in which

the network is partitioned into subsets of banks that correlate their portfolios within each

subset, but choose (partially) uncorrelated portfolios across subsets. As we show next, under

stronger conditions perfect correlation of portfolios is the unique equilibrium.

Proposition 5. If the value from a high portfolio realization when others receive p−i is

increasing in the number of high portfolio realizations among other banks—i.e.

Vi(pi = Ri, p−i)− Vi(pi = 0, p−i) > Vi(pi = Ri, p
′
−i)− Vi(pi = 0, p′−i)

for each i, p−i, p
′
−i such that |{j 6= i : pj = Rj}| > |{j 6= i : p′j = Rj}|, then there is a unique

equilibrium out of all possible portfolio configurations and it involves perfect correlation.

The sufficient condition that we give for perfect correlation to be the unique equilibrium

is that the marginal gain in market value from a high realization of one’s own portfolio is

strictly increasing in the number of other banks that also have a high portfolio realization.

This holds under a symmetry assumption on the underlying financial network, such that

no bank would prefer to correlate with a particular counterparty as opposed to some other

larger set of banks.

Without such a condition, there can exist other equilibria in which there is partial corre-

lation of portfolios. Figure 7 gives an example of a financial network in which this condition

does not hold, and describes an equilibrium in which banks correlate their portfolios within

subgroups.

Note that even when there exist other equilibria with partial correlation, the banks each

get their highest possible payoff in the full correlation equilibrium.

4.3.5 Oversight and Combating Incentives for Correlation

Given the result that at least some form of correlation in portfolios is to be expected in all

equilibria of the financial system, then running stress tests for each bank separately overlooks

a significant source of systemic risk. Indeed, without detailed information on the overall
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d d d

s d s

Figure 7: A network in which Proposition 5 does not apply. Bank 2 and 3 owe debt d to each other;
bank 1 (4) owes d to 2 (3) and owns an equity share s of bank 2 (3) as well. Let R < d < (1 + s)R
such that bank 1 (4) remains solvent if and only if both bank 1 (4) and 2 (3) have high portfolio
realizations. Perfect correlation of portfolios is an equilibrium, but it is not the only one. There also
exists an equilibrium in which banks in pink perfectly correlate their portfolio with each other, but
do not correlate with the blue banks—that is, in the θK states in which p1 = p2 = R, p3 = p4 = 0
and reciprocally.

network, a bank-specific stress test does not capture the fact that a decrease in a bank’s

direct asset holdings is also likely to depress other banks’ values, and hence also depress

the value of its inter-bank assets. Going back to the example of the last financial crisis, a

single bank stress-testing its own portfolio would underestimate the imminent collapse, as

it would depress parts of the portfolio but not fully account for the fact that many other

assets would be dropping in value at the same time due to the interlinkages, firesales, and

multitude of network feedbacks. Better oversight and network-based stress testing could

identify correlation patterns before they become catastrophic, given the many pressures for

inter-linked financial organizations to invest in the same assets.

4.4 Too Few Partners: The Extensive Margin

In the previous sections, we looked at the intensive margin of investment choices, and high-

lighted the incentives to take excessively risky investments and to choose correlated invest-

ments. We now turn to the extensive margin and study how many counterparties a bank

chooses. We find an under-diversification of bank portfolios in terms of number of partners.

The above results presume that banks have access to similar investments. There are

various reasons, including regional presence, international boundaries, as well as proprietary

advantages, that some banks might have access to investments that others do not. These,

together with dynamic variations in banks’ portfolios, can induce them to contract with each

other–as evidenced by the large inter-financial interdependencies mentioned in the introduc-

tion.

As also mentioned in the introduction, one of the many things that make financial net-

works special is that financial contagion depends non-monotonically on the average degree

(Elliott, Golub and Jackson (2014)). A higher average number of counterparties facilitates

contagion conditional on a first failure as more organizations can be reached from the first

failure. However, it also leads bank interdependencies to become more diversified through

lower exposure to any single counterparty (holding fixed the total amount of overall expo-
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sure), reducing the risk of a first-failure and its probability of leading others into bankruptcy.

Beyond a certain level of financial integration, this diversification effect dominates. There

is thus a critical number of counterparties at which systemic risk is maximal, what Elliott,

Golub and Jackson (2014) call the sweetspot. We now examine how banks choose the number

of their counterparties.

4.4.1 Syndicated Investments

Let’s consider a bank’s choice between two different regimes: one in which it makes joint

investments with m + 1 other banks and another where it makes joint investments with

m other banks. Each bank has debt liability DL
i = d to outside investors and no other

contracts—all banks are hence symmetric. Without loss of generality, we write the problem

from bank 1’s perspective and consider partnering with the first m banks. It costs c to

contract with each other bank.

A bank prefers to invest (equally) with m other banks if and only if

E

[
m+1∑
i=1

pi
m+ 1

− d

∣∣∣∣∣
m+1∑
i=1

pi
m+ 1

≥ d

]
Pr

[
m+1∑
i=1

pi
m+ 1

≥ d

]

−E

[
m∑
i=1

pi
m
− d

∣∣∣∣∣
m∑
i=1

pi
m
≥ d

]
Pr

[
m∑
i=1

pi
m
≥ d

]
≥ c.

If the pi’s are perfectly correlated, then the left-hand-side expression is 0, and so there is

no potential benefit to syndication. So, consider the case in which the pi’s are less than

perfectly correlated.

The distribution
∑m

i=1
pi
m

is a mean-preserving spread of
∑m+1

i=1
pi
m+1

, and so the expecta-

tion of a nondecreasing and convex function of these variables will be higher under m than

m+1 (e.g., see Hadar and Russel (1971)). Since
[∑m

i=1
pi
m
− d
]+

is nondecreasing and convex,

it follows that

E

[
m∑
i=1

pi
m
− d

∣∣∣∣∣
m∑
i=1

pi
m
≥ d

]
Pr

[
m∑
i=1

pi
m
≥ d

]
is decreasing in m, and so the banks prefer not to be involved in syndicates, and choose

m = 0.

A planner who values the total value of all returns and costs in a society is not concerned

with debt repayments which are simply transfers, nor the expected returns which are realized

regardless of the solvencies. The planner is concerned with the contracting and bankruptcy

costs. Noting that all of the banks would go bankrupt at the same time in this case, the

planner’s problem would then prefer swaps of size m+ 1 to m if and only if:

b

(
Pr

[
m+1∑
i=1

pi
m+ 1

≥ d

]
− Pr

[
m∑
i=1

pi
m
≥ d

])
≥ c.

42



The sign of

Pr

[
m+1∑
i=1

pi
m+ 1

≥ d

]
− Pr

[
m∑
i=1

pi
m
≥ d

]
depends on the size of d relative to the distribution of the pi’s. If sensible-enough investments

from debt-holders are to be expected, returns should on expectation be enough to cover

liabilities E[pi] ≥ d. Then taking an average over m compared to m + 1 observations is a

mean preserving spread and lowers the probability that the average is above d. Thus, in

most cases of interest we would expect Pr
[∑m

i=1
pi
m
≥ d
]

to be increasing and concave in m,

and correspondingly the difference to be positive and decreasing in m.39

If the size of bankruptcy costs relative to partnering costs b/c is nontrivial, then the

planner will prefer to have some partnering, while the banks will prefer to remain isolated—

and so they underconnect relative to what is socially optimal.

The effect of asset correlation on the optimal number of partners is to reduce the benefits

of partnering.

The above analysis focuses on the incentives for complete sharing. However, in that

situation there are no possibilities of contagion. Next we turn to a setting with possibilities

of defaults on payments, or drops in equity values of one bank, and its potential effect on

others, which introduces additional externalities.

4.4.2 Equity Shares

Consider the problem of symmetric banks that can acquire a total equity share s in other

banks, and must decide between how many banks to split this investment. Each bank has

debt liability DL
i = d to outside investors, and no other financial contracts. For the sake of

tractability we examine cliques, where a clique is a set of m + 1 banks in which each bank

owns a share s/m in every other member for some m ≥ 1. For instance, banks could choose

to form cliques of 3 banks, in which each acquires a share s/2 in the two others. Focusing on

cliques is with loss of generality, but greatly simplifies the analysis and can be interpreted as

a stylized representation of clustered networks.40 Finally suppose that direct asset holdings

are i.i.d. across banks, with E[pi] > d, so that there is a possibility of solvency. If a bank

defaults, suppose that a bankruptcy cost of b is incurred.

Partnering with more banks decreases the variance in a bank’s portfolio, which can

39This depends on the distribution. For instance, for the normal distribution and many other continuous
unimodal distributions, this is true. But it can fail for some m for multimodal distributions. For instance,
take a binomial distribution with equal likelihoods of 1 and 0’s, and then set d = 2/5. the probability that
the average of 1 draw is below d is 1/2, for 2 draws it is 1/4, but for 3 draws it is 1/2 again, then for 4 draws
it is 5/16. It converges to 0, but has some nonmonotonicities in its convergence.

40Clique-based networks can arise endogenously when banks are concerned with second-order counterparty
risk—see Erol (2019) for a model of financial network formation in which equilibrium networks in the absence
of regulation are composed of disjoint cliques.
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improve its probability of solvency. When choosing the size of a clique, bank i solves

max
m

E[Vi(m)|Vi(m) ≥ 0] Pr[Vi(m) ≥ 0]− cm.

Here

Vi(m) = max[0, pi − d+
s

m

∑
j 6=i

Vj(m)]

So, again, since averaging over a smaller number of Vj’s will often be a mean preserving

spread, and the max function is convex, this leads banks to prefer m = 0 and have lower

expected values as m increases in this setting as well. Here, however, things are slightly more

complicated given that the Vj’s now have distributions that are correlated, and it is possible

for the distribution not to be ordered by second order stochastic dominance as m changes

- so there can be some nonmonotonicities. Thus, we provide some illustrative calculations

for specific distributions below, and still find them to be decreasing in m and for banks to

prefer m = 0.

Regarding the socially optimal level of m, given that the total value of all investments

– the pi’s – are all realized regardless of any contracting and which banks are solvent, and

all of the equity and debt are only transfers, the only part of the total value in a society

that changes with m are bankruptcy and connection costs. Given the symmetry, the social

optimum is the m that maximizes

−bPr[Vi(m) < 0]− cm.

This is equivalent to maximizing

b− bPr[Vi(m) < 0]− cm

or

bPr[Vi(m) ≥ 0]− cm

We thus again find that the banks tend to prefer to have no partners, while for nontrivial

values of b/c, the social optimum is some positive m.

We provide some calculations that illustrate the differences for various distributions and

parameter values. Figure 8 depicts the objective of an individual bank and of the planner

for different debt levels, assuming that bank portfolios are uniformly distributed. As argued

above, it is always optimal for banks to choose not to hold any shares in each other. Indeed,

although more counterparties do increase the probability that a bank remains solvent, that

is not not enough to compensate the decrease in its expected value conditional on being

solvent. The planner however prefers some diversification and incentives are misaligned.

Figure 9 shows how the objective functions vary with the distribution of the pi’s, which

affects the variance and tails of the distributions, and hence the probabilities of bankruptcies

and those associated costs.
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Figure 8: The bank and planner’s objectives as functions of the number of partners of a given
bank. The parameters for these calculations are pi ∼ U(0, 0.8), s = 0.5, b = 0.4, c = 0.005, and
three different levels of d are presented.

4.4.3 Discussion of Banks’ Under-Investment in Partnerships

The intuition behind the inefficiently low number of partners chosen by banks can be seen

as follows. In the above analyses, banks do not bear any of their own bankruptcy costs, nor

do they bear each other’s bankruptcy costs. In that context, consider adding some contract

– either syndication or some other claims on each other – that would make a bank solvent

when otherwise it would be insolvent. The injection of capital from other banks is costly

to them, and all it does is then save an enterprise that ends up paying debts to outside

investors that exceed the value of its own investments. So, the other banks essentially are

paying something to add a net negative value to the overall value of all the banks. On average

this has to be a net negative for the total value of all the banks. Thus, the results above

are not special to a symmetric case: in any setting in which banks begin by only having

debt liabilities to outsiders, additional partnering between banks that sometimes prevents

the default of some must end up decreasing the total expected value of all banks involved.

Even with asymmetries, some of the banks prefer not to have such partnering, and thus it

would be blocked. Essentially, the banks do not bear the brunt of their bankruptcy costs,

and so from an ex ante perspective, they prefer to fail when they are insolvent: spreading

payoffs around to keep each other solvent only decreases their total expected value.

Sufficient risk aversion would change the incentives of the banks to partner with each
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Figure 9: The bank and planner’s objectives as functions of the number of partners of a given bank,
for debt level d = 0.2, equity share s = 0.5, bankruptcy cost b = 0.4, and partnering cost c = 0.005.
The results are presented for several different distributions of pi, which are parametrized so as to
keep the expected value of the asset constant to E[pi] = 0.4 (for the mirror-image log normal and
beta distributions, this requires shifting the distribution appropriately).

other. With high enough levels of risk aversion, bank owners would be willing to shift some of

their payoffs from situations in which they are wealthy to some of the situations in which they

are insolvent. Then partnering with other banks would allow them to cross-insure, smoothing

their expected payoffs across different portfolio realizations, and increasing their expected

utility for high levels of risk aversion. Although sufficiently high levels of risk aversion would

enhance bank owners’ incentives for partnering, it would still not lead to full efficiency.

These risk aversion effects would then also enter a social planner’s calculations - who would

evaluate the value of these cross payments in a similar manner since the planner values the

expected utilities of the banks’ owners. However, there would remain a key difference: the

social optimum would still account for bankruptcy costs and lost debt payments to outside

investors, while the banks’ owners would not. Thus, they would still have lower incentives

to avoid insolvencies than what would be socially optimal.

If banks have some cross debt holdings – so for some other reason they end up having
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debt in each other (e.g., for meeting short-term reserve requirements, etc.), then they do bear

some of each other’s bankruptcy costs and have more incentives to cross insure. Nonetheless,

as long as some of their debts are to outsiders, they are not facing the full costs of their

insolvencies. So, as long as they take deposits and have debts to outside investors, their

calculations of the values of their portfolios omit key bankruptcy costs that impact other

investors, and so they have incentives to take on too much risk, whether it be via excessively

risky portfolios, under-insuring via partnering with each other, and over-correlating their

investments whenever they do have partnerships.

5 Concluding Remarks

We have highlighted two main points.

One is that to properly assess systemic risk one needs detailed network data. This

one is “easy” to fix, as once one has counterparty information, although data-intensive,

the way in which one should assess systemic risk is straightforward. We put “easy” in

quotes since, although what is needed is simple and obvious, it may be politically difficult

to get. Financial organizations, for a variety of reasons, would prefer to keep their detailed

investment information private. It also opens questions of how public one makes the outcomes

of such stress tests and how one acts upon the information. Nonetheless, it is clear that

operating without such information is just asking for another financial crisis to happen,

or else requires having excessively onerous regulation to ensure solvency regardless of the

network conditions.

The second point is that the externalities in financial networks lead to several incentive

problems:41 organizations have incentives to take overly risky positions, to involve too few

counterparties, and to overly correlate their portfolios with those of their counterparties.

These are harder to fix. Excessive risk can be partly, but imperfectly, addressed by reserve

requirements and/or bailouts as we have shown. The imperfection relates to the fact that

such reserves are generally only imposed based on a portion of the liabilities and only for

a subset of financial organizations (e.g., missing much of the shadow banking system). In-

centives to take on too few counterparties and to overly correlate portfolios are also issues

that have been ignored by policymakers, and not ones for which there are easy policies.

Requiring that some markets have Central Counterparty Clearing Houses – CCPs – can be

thought of as part of a solution to these issues. These pass all transactions through a central

intermediary, or a few, which can monitor positions and impose margin requirements. One

then has to worry about providing the CCPs with appropriate incentives and worry about

their size.42 Large government-sponsored enterprises that process huge amounts of securi-

ties have an uneven history of success, especially if one examines Fannie Mae and Freddie

41There are other endogeneity issues that we have not discussed, for instance, whether two organizations
wish to merge, or how large they become. In Appendix C we briefly discuss how banks’ size interacts with
systemic risk and investment incentives; but we leave further analysis to future research.

42See for instance, Duffie and Zhu (2011).
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Mac’s failures in the 2008 crisis. Moreover, although it can mitigate some of the systemic

ramifications of the inefficiencies, it still does not eliminate the excessively correlated and

risky portfolios that are induced, and hence the individual bankruptcy costs that are still

not incorporated.

Regardless of the precise policy that one undertakes, developing and maintaining a more

complete picture of the network, and the portfolios of banks together with those of their

counterparties, is a necessary first step both to improving crisis management and to better

understanding and monitoring incentive distortions.
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Appendix A General Contracts Between Financial Or-

ganizations

We here discuss bank values when contracts are not restricted to debt and equity. In full

generality a contract between organizations i and j is denoted by fij(V,p) and can not only

depend on the value of organization j, but also on the value of other organizations. This

represents some stream of payments that j owes to i in exchange for some good, payment,

or investment that has been given from i to j.

A.1 Values with more General Contracting

In the case in which contracts are not restricted to equity and debt holdings, the value Vi of

an organization i is then

Vi =
∑
k

qikpk +
∑
j

fij(V,p)−

[∑
j

fji(V,p)− Sji(V)V +
i

]
− bi(V,p), (7)

where fji(V,p)− Sji(V)V +
i accounts for the fact that debt and contracts other than equity

are included as liabilities in a book value calculation.43

If bi(V,p)s are nonincreasing in V and bounded (supposing that the costs cannot exceed

some total level), then if each fij(V,p) is a nondecreasing function of V,
∑

j fji(V,p) −
Sji(V)Vi is nonincreasing in V , and either f is bounded or possible values of V are bounded,

(using the usual Euclidean partial order) then again there exists a fixed point by Tarski’s

fixed point theorem for each p. They again comprise a complete lattice. Discontinuities,

which come from bankruptcy costs and potentially the financial contracts themselves, can

lead to multiple solutions for organizations’ values.

When financial contracts are not increasing functions of the values of organizations, V,

there may not exist an solution for the values of the Vis. For instance, as soon as some banks

insure themselves against the default of a counterparty or bet on the failure of another,

simple accounting rules may not yield consistent values for all organizations in the financial

network. We illustrate this in the following example.

Example of Non-Existence of a Solution for V: Credit Default Swaps. Consider a

financial network composed of n = 3 organizations, each of which owns a proprietary asset q

is the identity matrix. For simplicity all assets k ∈ {1, 2, 3} have the same value pk = 2. The

43This more general model also embeds that of Barucca, Bardoscia, Caccioli, D’Errico, Visentin, Battiston
and Caldarelli (2016) in which banks hold debt on each other, but these debt claims are not valued under full
information: they allow for uncertainty regarding banks’ external assets and ability to honor their interbank
liabilities, whose face value may then be discounted depending on available information. Financial contracts
as defined here can capture this kind of uncertainty if fij equals the expected payment from j to i given
some information—e.g. a subset of known bank values or primitive asset values.
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Vj

fij

call option

equity

debt

(a) Non-Decreasing Financial Contracts

Vj

fij

CDS

put option

(b) Non-Increasing Financial Contracts

values of organizations are linked to each other through the following financial contracts:

organization 2 holds debt from 1 with face value D21 = 1; 2 is fully insured against 1’s

default through a CDS with organization 3 in exchange of payment r = 0.4; finally 1 holds

a contract with 3 that is linearly decreasing in 3’s value. Suppose an organization defaults

if and only if its book value falls below its interbank liabilities, in which case it incurs a cost

β = 0.1. Formally, the contracts are

f21(V) = D211V1≥0

f23(V) = D211V1<0

f32(V) = r1V1≥0

f13(V) = −0.5V3.

Note that organization 2 and 3 never default: the former’s value is always at least 2− r > 0

and the latter ’s is at least 2 − D21 > 0. We then check that there is no solution in which

organization 1 is solvent. In such a case, V3 = 2 + r and V1 = 2− 0.5V3 −D21 = −0.2 < 0:

but then bank 1 defaults, which is a contradiction. Finally suppose that 1 defaults. Then

V3 = 2−D21 and V1 = 2− 0.5V3 − β = 1.4 > 0, another contradiction.

Appendix B Proofs

Proof of Lemma 1: (i) Let V̄ and V be the best and worst equilibrium values of bank

respectively. Since there is no dependency cycle, there are three (non necessarily exclusive)

types of banks:

1. those that are part of an equity cycle—let C be the set of such banks;

2. those that have no value coming from a cycle—that is there is no directed path from

a bank in C to them;
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3. and those that have no value going to a cycle—that is no directed path from them to

a bank in C.

Note that a bank could belong to both category 2. and 3., if it is part of a component that

has no link to C—e.g. a string.

Step 1 —we show that V̄i = V i for all bank in category 2. Since banks in 2 have no value

coming from a cycle, it has to be that a subset of them X0 only derive value from their

outside investments: for all i ∈ X0, DA
i = 0 and Sij = 0 for all j. The value of these banks is

then pinned down solely by their investments, and importantly is independent of the value

of other banks:

Vi =
∑
k

pkqik −DL
i −

[
b+ a

∑
k

pkqik

]
1{
∑
k

pkqik < DL
i } ∀i ∈ X0.

Hence V̄i = V i for all such banks. Now let X1 be the set of banks in category 2 that have

value coming from—i.e. debt claim, or equity claim on—banks in X0 only. Their value is

independent of that of banks outside X1 by construction. Hence

Vi =
∑
k

pkqik +
∑
j∈X0

Dij + SijV
+
j −DL

i

−

[
b+ a

(∑
k

pkqik +
∑
j∈X0

Dij + SijV
+
j

)]
1{
∑
k

pkqik +
∑
j∈X0

Dij + SijV
+
j < DL

i } ∀i ∈ X1.

Since V̄i = V i for all i ∈ X0, best and worst equilibrium values of banks in X1 are also the

same: V̄i = V i for all i ∈ X1. We can more generally construct Xk as the set of banks in

category 2 that have value coming from banks in Xk−1 only. If best and worst equilibrium

values for banks in Xk−1 coincide, then the same holds for banks in Xk. For some finite K,

we have that ∪Kk=0Xk covers all banks in category 2. Hence by iterating this process, we get

that V̄i = V i for all bank in category 2.

Step 2 —we show that V̄i = V i for all bank in category 1. By construction, the value of

banks in category 1 is independent of that of banks in category 3, but can depend on the

value of banks in category 2. For each i ∈ C, let zi be the value that is directly accruing to

i from banks in category 2—because i has some claim on at least one bank in category 2.

Importantly, since the values of the latter is the same in the best and worst equilibria, zi is

also the same in all equilibria. Then the values of banks in C solve

Vi =
∑
k

pkqik + zi +
∑
j∈C

SijV
+
j −DL

i

−

[
b+ a

(∑
k

pkqik + zi +
∑
j∈C

SijV
+
j

)]
1{
∑
k

pkqik + zi +
∑
j∈C

SijV
+
j < DL

i } ∀i ∈ C.
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Abusing notation, and letting S be the |C| × |C| matrix of equity claims between banks in

C, this is equivalent to

V = qp + z−DL + SV − ID [b+ a(qp + z + SV)] ,

where ID is an |C|×|C| matrix indicating whether each bank is defaulting.44 Because (I−S)

is invertible, (I− (I− aID)S) is invertible as well, and this system of equations has a unique

solution: V̄i = V i for all bank in category 1.

Step 3 —we show that V̄i = V i for all bank in category 3. There are two possible cases:

either all banks in category 3 are also in category 2, in which case the proposition is proven;

or not. If not, similarly as in step 1, let Y0 be the set of banks in category 3 that only have

value coming from banks in C. Since whatever value they get from banks in C is the same

in the best and worst equilibria, V̄i = V i for all i ∈ Y0. We can then iteratively construct Yk
as the set of banks in category 3 that have value coming from banks in Yk−1 only. If best

and worst equilibrium values for banks in Yk−1 coincide, then the same holds for banks in Yk.

For some finite K, we have that ∪Kk=0Yk covers all banks in category 3. Hence by iterating

this process, we get that V̄i = V i for all bank in category 3.

(ii) We now prove that if there is a dependency cycle in the network, then there exists qp

and bankruptcy costs such that V̄ 6= V . In particular, we show that under full bankruptcy

costs—that is when a = 1—and proprietary assets—q = I—then there exists returns p such

that this is true.

Let C be the set of all banks that belong to a dependency cycle. All other banks can

either (i) have value (directly or indirectly) flowing in a dependency cycle; (ii) get value

from a dependency cycle; or (iii) none of the above. Equilibrium values of banks in C is

independent from that of banks in categories (ii) and (iii), because there is no directed path

from such banks to C. The values of banks in (i) do impact those of banks in C, but we can

set the return of their assets to zero such that banks in C actually get no value from them.

Then equilibrium values of banks in C depend only on asset returns and values of banks in

C, and at least one of them has some debt liability to another.

Redefine DA
i ≡

∑
j∈C Dij for all i ∈ C. We want to set portfolio values (pi)i∈C as low

as possible, while ensuring all banks in C remain solvent in the best equilibrium. Abusing

notation, let S be the |C| × |C| matrix of equity claims between banks in C, and define

A ≡ (I− S)−1. When all banks in C are solvent, their equilibrium values write

Vi = Aii[pi +DA
i −DL

i ] +
∑
j∈C

Aij[pj +DA
j −DL

i ].

Hence a smallest (pi)i∈C that ensures they all remain solvent in the best equilibrium must

satisfy (i) pi = 0 if DA
i ≥ DL

i , and (ii) pi =
(
Aii[D

L
i −DA

i ] +
∑

j∈C Aij[D
L
j −DA

i − pj]
)+

if

44All off-diagonal entries are, and the i’s diagonal entry is equal to 1 if i is defaulting and to 0 otherwise.
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DA
i < DL

i . By construction, all banks in C are solvent in the best equilibrium, such that

V̄i ≥ 0 for all i ∈ C.

Now consider what happens in the worst equilibrium, under full bankruptcy costs—that

is when the recovery rate on a defaulting bank’s assets is zero. Suppose all banks in C with

some debt liability to another in C—i.e. with
∑

j∈C Dji > 0—default. This not only mean

that banks in C do not get their debt payments from other banks in C, but also that they

get no value from their equity claims. Indeed, equity claims are either on banks that have

DL
j > 0 and are defaulting by assumption, or on banks with no outstanding debt DL

j = 0

but with zero asset return pj = 0. In either case, V +
j = 0. Then

Vi = pi +
∑
j∈C+

SijV
+
j −DL

i = pi −DL
i ∀i ∈ C.

Since all banks that have zero outstanding debt must be net creditors, pi = 0 for them,

and Vi = 0 as well. Banks that have some outstanding debt either have pi = 0 (if their

claims on net creditors are large enough to compensate for their debt imbalance) or pi =

Aii[D
L
i −DA

i ] +
∑

j∈C Aij[D
L
j −DA

i − pj]. In the first case, their value equals Vi = −DL
i < 0

and they default. In the second case, their value in the best equilibrium was precisely zero.

Since they are part of a dependency cycle, they must have a (potentially indirect) claim on

a debt payment within the cycle—that is, there exists j such that Aij > 0 and DA
j > 0. As

we are starting from the assumption that none of the debt is repaid in the cycle, the value

of bank i must be strictly lower than in the best equilibrium: V i < V̄i = 0. Hence a bank in

this second case defaults as well. Assuming all banks with some debt due to someone in C

is then self-fulfilling: it indeed leads all banks in C with DL
i > 0 to default. The best and

worst equilibria differ.

Proof of Proposition 2: Let µ be the measure on p, the vector of all portfolio values, and

let

A(qi) = {p | qipi + (1− qi)(1 + r) +
∑
j 6=i

SijVj(p, qi)
+ +DA

i (p, qi) ≥ DL
i }.

Note that µ(A(1)) > 0 by Chebychev’s inequality since p is bounded and E[pi] > DL
i and all

other variables are nonnegative. This implies that µ(A(qi)) > 0 for any possible optimizing

level of qi.

Consider any qi < 1 for which µ(A(qi)) > 0 (which are the only possible optimizers), and

let us examine the gain in utility that results from increasing qi to qi + ε. We show that for

any such qi there is an ε > 0 for which there is a gain in the expected value, and this then

implies that the optimizer is 1.
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Note that∫
A(qi+ε)

Vi(p, qi + ε)dµ(p)−
∫
A(qi)

Vi(p, qi)dµ(p) ≥
∫
A(qi+ε)∩A(qi)

[Vi(p, qi + ε)− Vi(p, qi)] dµ(p)

−
∫
A(qi)\A(qi+ε)

Vi(p, qi)dµ(p).

Next, since i is not at risk of discontinuous feedback, DA
i (p, qi + ε) = DA

i (p, qi) for all

p ∈ A(qi + ε) ∩ A(qi). Similarly∑
j 6=i

Sij
(
Vj(p, qi + ε)+ − Vj(p, qi)+

)
= c (qipi + (1− qi)(1 + r))

for some c ≥ 0 (which follows since the Vj’s depend on qi only via linear functions of Vi)

whenever p ∈ A(qi + ε) ∩ A(qi). That is because bank i cannot trigger discontinuous losses

that will feedback to itself while remaining solvent.

Also, for p ∈ A(qi) \A(qi + ε), it must be that Vi(p, qi + ε′) = 0 for some ε′ < ε and that

Vi(p, qi + ε′′) > 0, for all ε′′ ∈ [0, ε′). Thus, for all p ∈ A(qi) \ A(qi + ε)

Vi(p, qi) ≤ (1 + c)ε′(1 + r) ≤ (1 + c)ε(1 + r).

Then∫
A(qi+ε)

Vi(p, qi + ε)dµ(p)−
∫
A(qi)

Vi(p, qi)dµ(p)

≥
∫
A(qi+ε)∩A(qi)

(1 + c)ε (pi − (1 + r)) dµ(p)− (1 + c)ε(1 + r)

∫
A(qi)\A(qi+ε)

dµ(p).

Claim 1. If µ(A(qi)) > 0, then as ε −→ 0 µ(A(qi) \A(qi + ε)) −→ 0 while µ(A(qi)∩A(qi +

ε)) −→ µ(A(qi)).

Proof of Claim 1. Since no bank is at risk of discontinuous feedback, a marginal change

in qi cannot trigger the default of a bank from whom there is a directed path to i, that

is from whom value is accruing to i either directly or indirectly. This implies that for all

p ∈ A(qi) \ A(qi + ε) bank i gets the same debt payments DA
i (p), and gets a fraction cij

of other banks’ portfolio value and net debt through equity claims. This fraction cij is

independent of ε for ε small enough since the set of defaulting banks from whom i gets some

value is unchanged. Thus we can write

A(qi) \ A(qi + ε) = {p : DL
i − qipi − (1− qi)(1 + r)−DA

i (p)−
∑
j

cij[D
A
j (p)−DL

j ] ≤
∑
j

cijpj

and
∑
j

cijpj < DL
i − (qi + ε)pi − (1− qi − ε)(1 + r)−DA

i (p)−
∑
j

cij[D
A
j (p)−DL

j ]}

59



where the RHS of the second inequality converges to the LHS of the first inequality as

ε −→ 0. Hence A(qi) \ A(qi + ε) converges to the set of p such that qipi +
∑

j cijpj is equal

to a constant, which has measure zero since the price vector p has an atomless distribution:

µ(A(qi) \ A(qi + ε)) −→ 0.

We now show that µ(A(qi) ∩ A(qi + ε)) −→ µ(A(qi)) as ε −→ 0. Since bank i is still

solvent for p ∈ A(qi + ε) and is at least as dependent upon its own portfolio as others,

this marginal increase in its risky investment cannot induce another’s default. Hence it gets

the same debt payments and linear claims on others’ value. Since these linear claims are

bounded, Vi(p, qi + ε) −→ Vi(p, qi) as ε −→ 0 and µ(A(qi) ∩ A(qi + ε)) −→ µ(A(qi)).

Therefore, for any δ > 0, for all small enough ε the gain in utility is at least

ε [[µ(A(qi))− δ]E [pi − (1 + r) |A(qi) ]− [µ(A(qi) \ A(q + ε))](1 + r)] ,

which is at least

ε[µ(A(qi))− δ]E [pi − (1 + r)]− ε(1 + r)µ(A(qi) \ A(qi + ε)),

which is strictly positive for small enough δ and ε, establishing the result.

Proof of Proposition 4: We first show by contradiction that there cannot be an equilibrium

in which banks choose independent portfolios. Suppose such equilibrium exists and consider

the problem faced by bank i. Independent portfolios require the existence of at least one

state of the world in which pi = Ri but pj = 0 for all j 6= i, and similarly of at least one

state in which pi = 0 but pj = Rj for all j 6= i. We however show that bank i would be

strictly better off if it were to switch its portfolio realization between two such states. Since

these states are equally likely, such deviation is profitable for i as soon as

Vi(pi = Ri, p−i = R−i)
+ + Vi(pi = 0, p−i = 0)+ > Vi(pi = 0, p−i = R−i)

+ + Vi(pi = Ri, p−i = 0)+.

First note that

Vi(pi = 0, p−i = 0)+ = Vi(pi = Ri, p−i = 0)+ = 0

by the assumption that any bank is insolvent if all other organizations are. Thus the previous

inequality becomes

Vi(pi = Ri, p−i = R−i)
+ > Vi(pi = 0, p−i = R−i)

+,

which is satisfied by assumption that at least one bank sees some positive value from its

portfolio returns.

We now show that there exists an equilibrium with correlated assets. Given that all other

banks chose correlated portfolios—i.e chose the exact same θK states in which to receive
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the nonzero return—we look at the problem faced by i. Note that, similarly as before, if i

decides not to perfectly correlate its portfolio then there must be at least one state in which

its portfolio pays off but none of the others does, and at least one state in which its portfolio

does not pay off but all the others do. Hence correlation is an equilibrium as soon as the

above same inequality holds weakly for all banks. By assumption, no bank can remain solvent

if it is the only one with a positive portfolio realization, hence Vi(pi = Ri, p−i = 0) = 0 for

all i. Again, the incentive condition boils down to

Vi(pi = Ri, p−i = R−i)
+ ≥ Vi(pi = 0, p−i = R−i)

+,

which is true since V is weakly increasing in p. Hence all banks choosing perfectly correlated

portfolios is an equilibrium.

Proof of Proposition 5: We first show that, unless portfolios are perfectly correlated

across banks, there always exists a bank i that gets pi = Ri when others get p−i, and pi = 0

when others get p′−i such that |{j 6= i : p′j = Rj}| > |{j 6= i : pj = Rj}|. In words, we first

show that there always exists a bank i that could move one of her high portfolio realizations

to a state in which there are more other banks with high portfolio realizations. Then the

sufficient condition in the proposition implies directly that doing so is a profitable deviation.

Let Ω = {ωk}Kk=1 be the set of K states, and pki the portfolio realization of bank i in

state k. Let k∗ ∈ arg maxk
∑

i 1{pki = Ri} be one of the states with highest number of high

portfolio realizations. There are two cases:

(i) k∗ < n, then there is a bank i that gets zero in state k∗: pk
∗
i = 0. Such bank

could move one of her high portfolio realizations from any other state k in which∑
j 6=i 1{pkj = Rj} < k∗ (by definition of k∗) to state k∗. Given the condition in the

proposition, this is a profitable deviation.

(ii) k∗ = n, then ignore all states that have k∗ high portfolio realizations. Since portfolios

are not perfectly correlated, this leaves at least 2 states k with 0 <
∑

i 1{pki = Ri} < n,

for which the reasoning in case (i) applies.

Proof of Proposition 1:

The characterization of solvency in the best equilibrium derives directly from the defini-

tion of the best equilibrium, and the algorithm used to compute it. Recall that the first step

of this algorithm is to compute each bank’s value assuming all the others remain solvent and

pay back their debt. Since we are focusing on networks without equity cross-holdings, these

are Vi = pi −DL
i + DA

i ≥ 0 for all i if and only if the network is weakly portfolio-balanced.

If a bank does not have a weakly balanced portfolio, then it must be defaulting in the best

equilibrium.

The characterization of solvency in the worst equilibrium requires more work. First,

since it cannot be that some banks default in the best equilibrium but not in the worst,
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weak balancedness of the network is also a necessary condition to have full solvency in

the worst equilibrium. It is however no longer sufficient, except in the special case of a

network that involves no cycles. Indeed in such a case the network is solely composed of

disjoint strings, and weak balancedness is both necessary and sufficient for full solvency:

it guarantees that the first bank of each string—that only has debt liabilities but no debt

assets,—is unilaterally solvent which triggers a repayment cascade down the string. Hence

for the following, we suppose there is at least one cycle in the network. Finally, since it is

without loss of generality to prove the claim for a connected component, we suppose the

network is connected.

We first show that having an iteratively strongly solvent set that intersects each directed

cycle in addition to weak portfolio-balancedness implies all organizations are solvent. Let G

be the set of directed edges in the financial network such that ij ∈ G if and only if Dji > 0.

An edge from i to j means that bank i owes some debt to bank j.

First note that N can be partitioned into three sets of banks: banks that are part of

at least one cycle, banks that are part of no cycle but belong to a string that eventually

points to some bank in a cycle (in-going strings)45, and banks that are part of no cycle but

belong to a string that is pointed to by an organization on a cycle (out-going strings)46.

Following the same argument as above, weak-balancedness is enough to guarantee solvency

of banks on in-going strings. Furthermore, note that banks on out-going strings do not have

liabilities towards banks on cycles. Hence debt payments that still (after accounting for

in-going strings) have to be made to banks on cycles can only come from banks that also

lie on a cycle. Now suppose there is an iteratively strongly solvent set that intersects each

directed cycle, and call it B. By definition, all banks in B must be solvent in the worst case

equilibrium, which means that there is at least one solvent bank on each cycle. We prove by

induction on the number of banks n that this implies all banks in the network are solvent.

It clearly holds for n = 2, since the assumption of at least on cycle implies a single

possible network configuration. One bank being solvent means that the other gets all of its

incoming debts and, by weak-balancedness, can pay the full amount out.

Now suppose the claim holds for a network of size up to n−1, we show it holds for n ≥ 3.

Pick any bank i0 that is solvent and lies on a cycle in the network with n nodes.

Let X in
1 be the set of nodes that only point at i0 and Xout

1 the set of nodes that are

only pointed at by i0 (which could be empty.) Iteratively, define X in
t to be the set of nodes

that only point at members of X in
t−1, and similarly for Xout

t . Since the network is finite this

process must terminate. Importantly note that all nodes in X in ≡ ∪tX in
t only point at nodes

in X in ∪ i0, and all nodes in Xout ≡ ∪tXout
t are only pointed at by nodes in Xout ∪ i0. Either

45Formally an in-going string is a set of nodes X ⊆ N that can be partitioned into K elements X =
X1 ∪X2 ∪ · · · ∪XK such that nodes in X1 are not pointed to by anyone (DA

i = 0 for i ∈ X1) and nodes in
Xk are only pointed at by nodes in X1 ∪X2 ∪ · · · ∪Xk−1.

46Formally an in-going string is a set of nodes X ⊆ N that can be partitioned into K elements X =
X1 ∪X2 ∪ · · · ∪XK such that nodes in XK point at anyone (DL

i = 0 for i ∈ XK) and nodes in Xk only point
at by nodes in Xk+1 ∪X2 ∪ · · · ∪XK .
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or both of these sets could be empty.

There are two possible cases:

1. The subgraph found by removing Xout ∪X in ∪ {i0} contains no cycle. In that case i0
being solvent clears the entire system: if i0 is solvent then all banks in Xout

1 are solvent as

well. If Xout
t is solvent then all banks in Xout

t+1 are solvent as well, and more generally all banks

in Xout are solvent. Recall that in-going strings are always solvent by above argument. Since

all banks in Xout are solvent, they repay their debts in full, and the first organizations in any

remaining out-going string must receive their debt payments in full. By weak-balancedness,

they are then solvent as well, and this cascades down the string: the system clears, and the

claim holds.

2. The subgraph found by removing Xout ∪X in ∪ {i0} contains at least one cycle. Any

isolated string that is generated by removing Xout ∪ X in ∪ {i0} must be solvent by weak-

balancedness, and argument in 1. Any other component contains at least one cycle. We claim

that having i0 as well as one bank per cycle in the remaining subnetwork is enough to ensure

solvency of the original network. First, recall that i0 solvent means that all banks in Xout

are solvent, and hence that all debt payments from banks in the removed Xout ∪X in ∪ {i0}
to banks in the remaining subnetwork are made in full. This ensures that the remaining

subnetwork is still weakly balanced. Now by assumption, having one bank per simple cycle

in this subnetwork is enough to ensure its full solvency: all debt is paid back within the

subnetwork. The last banks added to X in have debt coming from outside of X in only, and

thus they are solvent. This spreads through X in and eventually reaches i0. Hence the system

clears, and the claim holds: weak-balancedness as well as having one solvent bank per cycle

guarantees systemic solvency.

Finally, we prove that if there does not exist an iteratively strongly solvent set that

intersects every cycle, then some banks default in the worst equilibrium. First note that

the union of iteratively strongly solvent sets is also an iteratively strongly solvent set: hence

there exists a maximal one which, by assumption, does not intersect every cycle and hence

does not include all banks. We claim that the maximal iteratively strongly solvent set is

then actually the set of solvent banks in the worst equilibrium, and that this comes directly

from the definition of the algorithm used to derive the worst equilibrium. Indeed, assuming

no bankruptcy costs, the algorithm to compute the worst equilibrium first assumes no debt

is repaid. This entails only unilaterally solvent banks remain solvent. Iterating on this, only

banks in the maximal iteratively strongly solvent set remain solvent in the worst equilibrium.

If such set is not equal to N , then some banks must be defaulting.

Proof of Corollary 1: Proposition 1 gives necessary condition to have systemic solvency

if the best and worst equilibrium. Hence the minimum necessary bailout needed to ensure

solvency in each case are such that the resulting network satisfies these necessary conditions.

For the best equilibrium, this only requires making the network weakly portfolio balanced,

which means rebalancing each bank’s portfolio by injecting [DL
i −DA

i − pi]+ in each bank i.
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For the worst equilibrium, it also requires enough capital to generate an iteratively strongly

solvent set that intersect each directed cycle.

To prove (iii), first note that once the network has been cleared of all cycles, it is only

composed of strings. Suppose the claim is not true, such that the best and worst equilibria

differ. For them to differ, it has to be that at least some bank i defaults in the worst

equilibrium, but not in the best. For this to be true, it has to be that pi + DA
i ≥ DL

i > pi,

and that it remains solvent in the best equilibrium because once of its debtor j is solvent in

the best equilibrium and repays its debt to i, but defaults in the worst equilibrium. Iterating

the same reasoning one step up the string, bank j is solvent in the best equilibrium but

defaults in the worst one only if one of its own predecessor does as well. Iterating up until

one reaches the beginning of the string, this implies that one of the banks at the origin of the

string defaults in the worst equilibrium, but remains solvent in the best one. This is however

impossible since such bank has no liability, and is either unilaterally solvent, or defaults in

every equilibrium.

The Existence of Values Satisfying Equation (3): (I− S) is invertible if (and only if)

the matrix power series
∑∞

k=0 Sk converges, which is equivalent to the largest eigenvalue of

S, in magnitude, being strictly below one. Let us treat the case in which S 6= 0, as otherwise

the result is obvious. Denote by λ the largest eigenvalue in magnitude, and w the associated

eigenvector. From the Perron Frobenius theorem, we know that λ ≥ 0 and w is nonnegative

and nonzero.

By contradiction, suppose that λ ≥ 1. Then
∑

j 6=0 Sijwj = λvi for each i47 implies

that
∑

j 6=0wj
∑

i 6=0 Sij ≥
∑

i 6=0wi. Since
∑

i 6=0 Sij ≤ 1 for all j, this is equivalent to∑
j 6=0 wj

∑
i 6=0 Sij =

∑
i 6=0wi. We rewrite the indices on the left side

∑
i 6=0wi

∑
j 6=0 Sji =∑

i 6=0wi.

This requires that if wi > 0, then
∑

j 6=0 Sji = 1. Since the eigenvector is not all zeros, we

know there exists at least one bank i with wi > 0. If i is such that S0i = 1−
∑

j 6=0 Sji > 0,

then we get a contradiction directly. If instead i’s equity value is entirely owned by other

financial institutions, there must exist another bank j with Sji > 0. This implies wj > 0.

Same argument applies: either j is partly owned by outside investors, in which case we

directly get a contradiction, or we can move back the equity path to, yet another, bank.

Since there must exist an equity path from outside investors to any bank, this process must

terminate to some bank j′ that is, at least partly owned by outside investors, such that it

has
∑

j 6=0 Sjj′ < 1 and yet wj′ > 0. This is a contradiction of the inequality we started from,

and hence λ < 1.

47Recall that Si0 = 0 for all i.
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Appendix C Additional Discussions

C.1 Inefficient Bank Size

Mergers can affect the interdependencies in the financial network in complex ways. Here we

examine banks’ incentives to merge at an ex ante stage, before a cascade. This complements

an analysis by Kanik (2018) who discusses banks’ incentives to merge to save themselves

from failure in a cascade.

The analysis in Section 4.4.1 can be seen as a sort of merger analysis - as all banks in

those syndicates have identical outcomes.

More generally, we can look at the effect of a merger between bank i and j into a larger

organization k such that Dk` = Di` +Dj` and D`k = D`i +D`j for all ` 6= i, j, and similarly

for equity shares.

How bank size interacts with the fact that banks choose overly risky investments is

ambiguous. Indeed a merger can affect a bank’s choice of risky investment in either direction:

it can lead the merged organization to invest a larger or smaller share of its portfolio in the

risky asset. It has generally no effect since most organizations invest fully in the risky asset

irrespective of the network structure (Proposition 2). It is however possible to find examples

in which size, i.e. a merger, matters. For instance consider another version of the example in

Section 3.2 with n = 3 banks. Bank 3 can only invest in the safe asset; it has equity share s

in bank 1 and debt claim d in bank 2. It owes d > d to bank 2 as well. Suppose 1+ r+d < d

such that bank 3 defaults if its equity claim on bank 1 does not yield anything. In the only

decentralized equilibrium, both bank 1 and 2 invest fully in the risky asset.

Now suppose bank 1 and 2 merge, and call this new organization bank 4. Bank 4 can

always prevent the default of bank 1 by investing a minimum amount in the safe asset. If

this required safe investment is small enough—i.e. if ε := d−d−1−r is small enough—doing

so can be optimal: bank 4 may optimally set q∗4 < 1, and the merger may reduce investment

in the risky asset. Finally suppose bank 3 and 4 merge. Then there only remains a single

bank, whose optimal portfolio must have all its capital invested in the risky asset. So in

general a merger can change incentives in either direction.

Mergers can however mitigate some of the inefficiencies coming from over-correlation of

bank portfolios (highlighted in section 4.3). Indeed the incentive to correlate investments

straight-forwardly disappears if the two banks merge: the larger organization then only

invests in the asset with highest expected return.

Finally size of banks matters when analyzing contagion: larger banks can serve as buffers

and stop default cascades, or on the contrary be brought to insolvency by one of their smaller

branches. If the two merging banks have debt claims on each other then the merger also

decreases their insolvency threshold, which reduces the likelihood of default all else equal. A

merger between bank i and j increases the set of defaulting banks if and only if one of the

two banks—say bank i—would have remained solvent had the merger not happened whereas

they both default once merged. This requires Xi−Dji ≥ 0 but Xj +Dji−Dij < 0, where Xi
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is the net value of i’s asset excluding its debt contracts with j, and similarly for Xj. Bank

j brings i to insolvency during the merger if

Xi +Xj < 0 =⇒ Xj < −Dji

that is, if the net debt that j owes to other banks is at least as large as what it used to owe

to bank j. Hence in general, a merger can either mitigate or worsen a default cascade.
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(a) Optimal Regulation (b) An Increase in Bailout Costs

Figure 10: The optimal regulation of a bank as a function of the regulator’s bailout cost
and the centrality of the bank. ER is the bank’s expected excess return of it’s available risky
investments. The second panel examines an increase in that excess return.

67


	Introduction
	A Model of Financial Interdependencies
	Banks, Shadow Banks, CCPs, and other Financial Organizations
	Primitive Assets, Organizations, and Cross-Holdings
	Values in a Network of Debt and Equity
	Discontinuities in Values and Failure Costs

	The Multiplicity of Bank Values and Minimum Bailouts: the Role of Cycles in the Network
	Existence and a Lattice of Equilibrium Values
	Minimum Bailouts in both the Worst and Best Equilibria
	The Necessity of Network Information
	Balanced Networks
	Minimum Bailouts and Imbalanced Portfolios


	Distorted Incentives and Optimal Regulation
	Overly Risky Investment: The Intensive Margin
	An Example with Countervailing Incentives
	Inefficiency, Risk Aversion, and Costs of Capital
	Investment Incentives Under Debt vs. Equity

	Measuring and Regulating Risk-Taking
	Financial Centrality
	Optimal Regulation: Bailouts versus Deposit Requirements

	Correlated Investments: Popcorn and Dominoes
	An Example with Two Banks
	A General Result on Correlation and `Risk Stacking'
	The Inefficiency of Full Correlation
	Uniqueness of the Full Correlation Equilibrium
	Oversight and Combating Incentives for Correlation

	Too Few Partners: The Extensive Margin
	Syndicated Investments
	Equity Shares
	Discussion of Banks' Under-Investment in Partnerships


	Concluding Remarks
	General Contracts Between Financial Organizations
	Values with more General Contracting

	Proofs
	Additional Discussions
	Inefficient Bank Size


