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Abstract
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1 Introduction

The law of one price is a fundamental concept in economics and finance. While studies
differ in their conclusions for how risk is related to return, the vast majority of analysis
assumes the absence of arbitrage which implies the law of one price. The law states that
assets with identical payoffs must have the same price. In competitive markets with limited
frictions, traders will exploit any deviations so that financial markets behave as if no arbitrage
opportunities exist.

Given its powerful role for theory and practice, a large literature studies the limits of
arbitrage and law of one price. Challenging the traditional paradigm, well-documented
anomalies illustrate cases in which assets with closely related payoffs trade at significantly
different prices for prolonged periods of time. Understanding these anomalies improves our
knowledge of financial markets by identifying the frictions and inefficiencies that prevent
even sophisticated traders and institutions from being able to take advantage of seemingly
profitable situations (Lamont and Thaler (2003), Gromb and Vayanos (2010)).

This paper documents new evidence of systematic law of one price violations in equity
volatility markets. These violations matter because equity volatility markets are among
the largest and most actively traded derivatives markets in the world. Since the financial
crisis, rapid growth in the S&P 500 index options and VIX futures markets has led to the
development of separate venues where investors can hedge and speculate on stock market
volatility. These markets provide a testing ground for the law of one price because they offer
redundant securities upon which arbitrage pricing places tight restrictions (Merton (1973),
Ross (1976a)). In practice, however, trading desks at banks and hedge funds tend to focus
on specific products, using different models for hedging and valuing different derivatives
(Longstaff et al. 2001). This risk management approach makes it difficult to determine when
relative valuations and risk exposures are accurate, leaving open the possibility of observing
arbitrage violations.

This paper studies relative pricing in equity volatility markets by computing an upper
bound for the prices of VIX futures from S&P 500 index options. The upper bound follows
from a straightforward application of Jensen’s inequality. The payoff to a VIX futures
contract is the difference between the futures price and the value of the VIX index at maturity.
Because the VIX index is defined as the square-root of a one-month variance swap, the upper
bound for a VIX futures contract is a one-month variance swap forward rate expressed in
volatility units, not variance units (Carr and Wu 2006). The square-root adjustment in the
definition of the VIX is convenient because it expresses the VIX in implied volatility units
that are familiar to traders who use the Black-Scholes-Merton model, but the definition also
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introduces a wedge between the prices of VIX futures and variance swap forwards. The
paper applies this observation to define a no-arbitrage deviation measure. The deviation
measure is equal to the price of a VIX futures contract minus its upper bound which is the
corresponding one-month variance swap forward rate.

The paper finds that VIX futures exhibit significant deviations relative to their upper
bounds. Static arbitrage opportunities in which the prices of VIX futures violate their upper
bounds occur for 19% of contract-date observations from 2004 to 2018 for the front six
VIX futures contracts. There is at least one upper bound violation on 56% of the days in
the sample. When the upper bound violations occur, traders can sell VIX futures and pay
fixed in a specific quantity of variance swap forwards derived in the paper to lock in an
arbitrage profit. Moreover, these violations are not merely a reflection of measurement error
in estimating variance swap forward rates. Large violations of more than .50% occur less
frequently but are still present for 5% of contract-date observations. To put this magnitude
in context, a mispricing of .50% or half of one VIX-point is more than 10 times that typical
bid-ask spread of .05% in the VIX futures market.

The paper finds that the upper bound is also relatively tight. The average bias and
standard deviation of VIX futures prices around the upper bound are similar in magnitude
and both around .80%. Large deviations below the upper bound indicate that VIX futures
are cheap relative to index option prices. Combining the upper bound with a convexity
adjustment from a term-structure model, the paper estimates a lower bound and finds that
VIX futures prices are below the lower bound on 21% of contract-date observations. Taken
together, the evidence suggests that there are large and significant deviations between the
prices of VIX futures and their corresponding no-arbitrage bounds implied by the index
option market.

The paper then explores whether the deviation measure predicts the returns of VIX
futures hedged with variance swap forwards. The results indicate that the deviation measure
significantly predicts returns across contracts, sample periods, and horizons while remaining
robust to competing predictors like the variance risk premium. The predictability also holds
using a variety of different datasets to estimate variance swap forward rates, showing that
the results are not driven by using a particular variance swap dataset. A simple trading
strategy that sells (buys) VIX futures and hedges with variance swap forwards when the
deviation measure is large and positive (negative) earns an annualized Sharpe ratio of 3.0
from 2004 to 2018 with minimal stock market exposure. For comparison, the stock market
earned a Sharpe ratio of .5 over the same period of time as measured by CRSP value-weighted
returns. The large Sharpe ratio from the relative value trading strategy and significant return
predictability results are consistent with the law of one price interpretation and notion of
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trading against an arbitrage spread.
What drives the no-arbitrage violations and return predictability results, the VIX futures

or index options market? Since the analysis is relative, it is challenging to provide a sharp
answer to this question. One hypothesis is that the larger and more established index options
market would serve as a fair-value measure for VIX futures. Alternatively, given the high
liquidity in the VIX futures market and the fact that the contracts are traded directly, rather
than being estimated from option portfolios across maturities, one might hypothesize that
VIX futures would be fairly priced with index option prices driving the deviations.

The paper tests these hypotheses by running return predictability regressions in which
VIX futures and variance swap forward returns are hedged with the stock market returns. For
example, to the extent that the deviations are driven more by mispricing in the VIX futures
market, one would expect larger predictability results for the deviation measure when VIX
futures are hedged with stock market returns as opposed to variance swap forward returns.
The results indicate that the deviation measure remains most significant at predicting VIX
futures returns, particularly during the post-crisis period from 2010 to 2018. In contrast,
the deviation measure is less significant at predicting the returns of variance swap forwards.
This distinction provides some evidence that VIX futures are driving the deviations and
predictability. That said, the strongest results occur when trading VIX futures against
variance swap forwards, a relative value finding that is silent on the market driving the
results.

Having documented the existence of arbitrage opportunities and the return predictability
of the deviation measure, the paper then explores what drives the law of one price violations
over time. On one hand, the results are surprising because the index options and VIX futures
markets are large and liquid exchange-based markets with competitive traders and limited
short-sale constraints. On the other hand, the literature on anomalies shows that frictions
like limited arbitrage capital, demand shocks, and financial constraints can lead to return
predictability and law of one price deviations (Shleifer (1986), Shleifer et al. (1990), Liu
and Longstaff (2003), Adrian and Shin (2013)). In addition, asynchronous observations of
VIX futures and index option prices may impact the measurement of the law of one price
deviations and transaction costs may prevent traders from implementing the arbitrage in
practice. Which, if any, of these hypotheses can explain the observed no-arbitrage deviations?

The paper examines this question by exploring whether a range of variables can explain
the variation in the deviation measure. VAR analysis and panel regressions indicate that
risk and demand variables are most significant. When stock market returns are negative or
when realized or implied volatility increases, the deviation measure tends to decline, with
VIX futures cheapening relative to variance swap forwards. There is also evidence that the
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deviation measure is increasing in various proxies for VIX futures demand pressure. One
explanation for these results is that hedgers take profit on long positions in VIX futures
when risk increases, leading to demand shocks that are correlated with systematic risk. A
trivariate VAR with the deviation measure, VIX index, and dealer net positions in VIX
futures from the CFTC’s Commitment of Traders (CoT) Report provides some evidence in
favor of this hypothesis. To the extent that dealer positions in the CoT report are a veil
for retail demand as argued by Dong (2016), the results are consistent with retail hedgers
taking profit on hedges after risk increases, but also chasing momentum in the VIX futures
market as evidenced by increases in long positions after the deviation measure increases.

The remainder of the paper proceeds as follows. Section 2 provides a literature review.
Section 3 describes equity volatility markets. Section 4 defines the no-arbitrage deviation
measure. Section 5 presents the return predictability and trading strategy results. Section
6 relates the deviation measure to risk and demand factors. Section 7 concludes. The
Appendix includes additional results and robustness checks.

2 Literature Review

The results in this paper contribute to the literature on anomalies and the limits of arbitrage.
Examples of related studies focusing on law of one price deviations in other markets include:
closed-end funds (Lee et al. 1991), “negative stubs” or situations where the market value of a
company is less than its subsidiary (Mitchell et al. 2002), and American Depository Receipts
and cross-listed shares (Gagnon and Karolyi 2010) in equities; on-the-run versus off-the-
run U.S. Treasuries (Krishnamurthy 2002), swap spreads (Duarte et al. 2007), mortgages
(Gabaix et al. 2007), and Treasury-inflation-protected securities (Fleckenstein et al. 2014) in
fixed income; the CDS-bond basis (Garleanu and Pedersen (2011), Bai and Collin-Dufresne
(2018)) in credit; and covered interest rate parity (Fong et al. (2010), Du et al. (2018))
in foreign exchange. While these examples are only a subset from a large literature, they
serve to highlight how law of one price deviations occur across asset classes and are subject
to intense scrutiny given the model-free nature in which they challenge the conventional
wisdom. In some cases, the deviations are explained by frictions such as transaction costs,
financing costs, or convergence risks. In other cases, the deviations are found to significantly
predict returns, posing a challenge for standard asset pricing models.

Within the limits-to-arbitrage literature, this paper most closely relates to studies of
equity volatility puzzles and anomalies. These studies can be broadly grouped into option
pricing and VIX futures papers. Beginning with the option pricing papers, two stylized
facts since the crash of 1987 are that: (i) index options are expensive, with delta-hedged
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straddles earning a significant risk premium known as the variance risk premium, and (ii)
out-of-the-money put options are particularly expensive, exhibiting a smirk or higher level of
implied volatility relative to at-the-money options (Bates (2000), Coval and Shumway (2001),
Jurek and Stafford (2015)). In response to these irregularities that are not explained by
the Black-Scholes-Merton model, the literature developed more sophisticated option pricing
models that could account for some of the new patterns by allowing for stochastic volatility
and jumps in the underlying process (Heston (1993), Duffie et al. (2000), Madan et al.
(1998)). But even with these improvements, the no-arbitrage models still struggle to fit and
explain some of the empirical properties of option prices (Bates 2003). Another strand of the
literature investigates the importance of demand-pressure and equilibrium effects (Grossman
and Zhou (1996), Bollen and Whaley (2004), Garleanu et al. (2009)). When dealers absorb
demand shocks from end-users or portfolio insurers, demand pressure can impact option
prices and the implied volatility surface, resolving some of the well-known option pricing
puzzles. An important conclusion from these studies is that demand pressure for one option
impacts the prices of other options that have related, unhedgeable features.

Another puzzle from the equity volatility literature is that implied volatility shocks earn a
much smaller risk premium than realized volatility shocks (Dew-Becker et al. (2017), Andries
et al. (2015)). This result poses a challenge to consumption-based asset pricing models with
Epstein-Zin preferences where investors would be willing to pay a premium for both types
of volatility shocks. In the data, the Sharpe ratios from receiving fixed in variance swap
forwards and from selling VIX futures are much higher for shorter maturities, particularly
for one-month variance swaps that are exposed to realized variance risk. Cheng (2018)
builds on this result by studying the conditional price of implied volatility risk or the VIX
premium. The VIX premium is defined as the difference between the VIX futures price
and a statistical forecast of the VIX index at the maturity of the futures contract. This is
similar to the variance risk premium which is often defined as the VIX index, or a one-month
variance swap rate, minus a forecast of realized variance. The VIX premium and variance
risk premium reflect the risk premiums for being exposed to implied volatility and realized
volatility shocks respectively.

Cheng (2018) finds that the VIX premium declines when measures of systematic risk
increase. For example, the VIX premium declines when stock market returns are negative
or when realized or implied volatility increases. This result is surprising because the returns
from selling VIX futures are highly correlated with stock market returns. To the extent that
the equity and VIX futures markets are integrated by a common stochastic discount factor,
one would expect the VIX premium to increase along with the equity risk premium when
measures of systematic risk increase. In particular, Martin (2017) argues that the SVIX
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provides a lower bound for the equity risk premium, but the VIX premium is decreasing in
measures of systematic risk like the SVIX, not increasing.

To partially resolve this puzzle, Cheng (2018) documents that dealer hedging demand for
VIX futures declines when risk increases. One interpretation is that hedgers take profit on
long positions when risk increases, leading to the anomalous response of the VIX premium
to risk. Dong (2016) presents related work and argues that dealer positions in VIX futures
reflect hedging demand from VIX ETP issuance. Dong (2016)’s reduced form analysis and
theoretical model indicate that VIX ETP demand impacts the underlying VIX futures price.
Mixon and Onur (2019) provide a related study of demand pressure using a detailed regula-
tory dataset that includes dealer net positions by contract at a daily frequency, in contrast to
the public data used in other studies which includes weekly net position data that is aggre-
gated across contracts. Mixon and Onur (2019) also find evidence of demand pressure with
demand increasing the average level and slope of the VIX futures curve. Similar to Garleanu
et al. (2009), Mixon and Onur (2019) find that demand for one VIX futures contract spills
over to impact the prices of other contracts. However, the estimated demand effects are
quantitatively small and typically within the spread between the no-arbitrage upper bound
and lower bound for VIX futures.

This paper makes several contributions to the limits-to-arbitrage and equity volatility
literatures. First, it provides a detailed, model-free measurement of no-arbitrage deviations
across the VIX futures and S&P 500 index options markets. The no-arbitrage deviation
measure is the difference between the price of a VIX futures contract and the price of a syn-
thetic variance swap forward rate estimated from index option prices. Existing studies either
estimate a risk premium for VIX futures that relies on time-series data and a parametric
statistical forecasting model as in (Cheng 2018) or they compute a deviation measure that
relies on synthetic variance swap rates and a convexity adjustment from VIX options (Dong
(2016), Park (2019)). This paper avoids using VIX options to focus instead on the synthetic
variance swap forward rates that are estimated from the larger and more liquid S&P 500
index options market and because VIX options are only available starting in 2006.

Another advantage of the deviation measure in this paper is that it allows for a direct
and straightforward measurement of arbitrage opportunities. When the deviation measure is
positive, there is a static arbitrage opportunity because the price of a VIX futures contract
is above its variance swap forward rate, its corresponding non-parametric upper bound.
This paper provides new evidence on the frequency of no-arbitrage upper bound and lower
bound violations. The lower bound is estimated from the deviation measure and a convexity
adjustment from a term-structure model. In addition, the paper shows that the deviation
measure significantly predicts the returns of hedged VIX futures. This adds another predictor
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to the VIX futures literature to complement the VIX premium of Cheng (2018) and slope
factor of Johnson (2017) which also predict VIX futures returns. The predictability in this
paper is strongest when VIX futures are hedged with variance swap forwards, a relative
value result that is new to the literature. Compared to existing studies, the size of the
return predictability and Sharpe ratio in the trading strategy are large when VIX futures
are hedged with variance swap forwards.

Finally, this paper provides new evidence on the importance of the risk and demand
channels in driving the no-arbitrage deviations over time. In a VAR that accounts for the
interaction of risk and demand factors, the response to a risk shock is 3-4 times larger in
magnitude than the response to a demand shock over short horizons. The results indicate
that demand by itself is not sufficient to explain the negative response of the no-arbitrage
deviation measure to risk. This observation coupled with the no-arbitrage violations docu-
mented in the paper brings back into focus the puzzle as to why the prices of VIX futures
decline relative to variance swap forward rates when risk increases.

3 Equity Volatility Markets

3.1 History and Products

Index options complete markets and expand the set of contingent claims that investors can
trade by allowing for the construction of Arrow-Debreu securities on the state of the stock
market over different horizons (Ross (1976b), Breeden and Litzenberger (1978)). In practice,
however, the option portfolios that span different payoffs can be complicated to construct
and involve trading a significant number of options, resulting in large implementation costs.
While narrower in focus, the variance swap and VIX futures markets allow investors to trade
the level of realized and implied volatility directly, without requiring a need for static or
dynamic option trading strategies.

The S&P 500 index options started trading on the Chicago Board Options Exchange
(CBOE) in 1983 but it was not until the late 1990s that the variance swap market started
to gain traction, perhaps encouraged by the high levels of index-option implied volatility
that followed the Asian financial and LTCM crises (Carr and Lee 2009). The motivation for
trading variance swaps stemmed from investor demand to obtain exposure to the variance
risk premium and pure volatility risk. Although these payoffs can be approximated by a
delta-hedged straddle, they cannot be spanned with a limited number of options. Consider a
delta-hedged straddle. When the underlying moves away from the strike price, the exposure
to realized and implied volatility changes. In Black-Scholes parlance, the gamma and vega
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of a delta-hedged straddle change with the moneyness of the option. In contrast, a variance
swap exchanges a fixed payment at maturity for a floating payment equal to the realized
volatility of the underlying asset over the life of the swap, thus providing direct exposure to
realized variance risk over different horizons.

The dawn of the variance swap market coincided with a number of theoretical develop-
ments and influential papers that showed how to replicate the payoff of a variance swap with
a static portfolio of options and a dynamic trading strategy in the underlying (Demeterfi
et al. (1999), Carr and Madan (1999), Bakshi and Madan (2000), and Britten-Jones and
Neuberger (2000)). This no-arbitrage replication argument is model-free in the sense that
it only requires the ability to trade a continuum of European options with different strike
prices, no jumps in the underlying asset, constant interest rates, and continuous trading of
the underlying. Seeing the generality of this approach and the growth in the variance swap
market, in 2003, the CBOE revised its definition of the VIX index to follow the no-arbitrage
formula for pricing variance swaps with index option prices (Carr and Wu (2006), CBOE
(2019)).

The CBOE then introduced trading in VIX futures and options in 2004 and 2006 respec-
tively. The payoff to a VIX futures contract is the difference between the futures price and
a special opening quotation of the VIX. From its definition, the VIX index upon which VIX
futures are based is equal to the square root of a one-month synthetic variance swap rate.
The swap rate is “synthetic” because it is computed using the price of a portfolio of S&P 500
index options. This relationship binds together VIX futures prices and index option prices
up to a convexity adjustment. The convexity adjustment is the definition of the VIX as the
square-root of the price of the index option portfolio, not just the price of the portfolio itself.
The square root convexity adjustment expresses the VIX index in volatility units that are
familiar to option traders. The VIX is defined in the same unit as the Black-Scholes-Merton
implied volatility parameter.

This paper relies on a detailed dataset of synthetic variance swap rates for the S&P 500
index that are derived in Van Tassel (2019) to study the no-arbitrage relationship between
the index options and VIX futures markets. The synthetic variance swap rates are computed
from the theoretical price for a variance swap following Carr and Wu (2009). The imple-
mentation is similar to the computation of the VIX index but excludes the strike truncation
and discretization that the CBOE uses. The paper then converts the synthetic variance
swap rates into variance swap forward rates for comparison to VIX futures prices. For ex-
ample, a two-month variance swap can be decomposed into a one-month variance swap plus
a one-month forward one-month variance swap. The ability to perform this decomposition
is essential for the analysis in the paper. Variance swap forwards provide a non-parametric
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upper bound for the prices of VIX futures contracts (Carr and Wu 2006). This result serves
as the basis for the main no-arbitrage deviation measure introduced in the paper.

In recent work, Martin (2017) has extended the generality of variance swap pricing. By
using simple returns instead of log returns to compute the realized variance payoff for the
floating leg of a variance swap, Martin (2017) shows that the assumption of a continuous
underlying can be relaxed. Why does this paper use synthetic variance swap rates computed
from the traditional formula rather than simple variance swaps instead? While simple vari-
ance swaps have the advantage that they require no third-order approximation for jumps,
they are not easily decomposed into forward rates and they do not serve as the basis for the
VIX index. Thus, they do not have as close of a relationship to the pricing of VIX futures as
do synthetic variance swap rates and therefore are less well-suited for studying no-arbitrage
relationships across the index options and VIX futures markets.

3.2 Market Size and Participants

To understand why no-arbitrage violations may occur across equity volatility markets, it is
helpful to provide a background on the institutional details of these markets. The relative
size of the different markets, types of participants, investor positioning, and linkages across
markets are all potential determinants of no-arbitrage violations.

The S&P 500 index options and VIX futures markets are large and liquid exchange-based
markets. Figure 1 provides a brief summary of these markets including the growth in their
open interest over time and a breakdown of investor positioning in VIX futures. The top
left plot illustrates the size of the index options market relative to the VIX futures market
over time. Both markets have exhibited significant growth over the past decade. S&P 500
index options had an average open interest of $3.4 billion in Black-Scholes vega in 2018. VIX
futures had an average open interest of 462 thousand contracts in 2018, equal to $462 million
of “vega” or gains and losses for a one-point change in VIX futures prices given the contract
multiplier of $1000. While the VIX futures market experienced a nearly 10-fold increase in
open interest over the past decade, the index options market is still 7-times larger in 2018
as measured by vega. To the extent that larger market size corresponds to greater liquidity
and more informative prices, the index option market provides a valuable signal about the
fair value of VIX futures prices. The no-arbitrage deviation measure introduced later in the
paper is motivated by this idea, using index option prices to bound VIX futures prices.

Focusing on the VIX futures market, the top right plot shows that post-crisis growth
coincides with the rise of volatility-exchange-traded products (VIX ETPs). VIX ETPs issued
by banks and broker-dealers allow retail investors to gain exposure to implied volatility
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without needing to trade in the index options or VIX futures markets directly. For example,
consider the VXX, one of the first ETPs introduced to the market in early 2009. The
VXX ETN tracks the S&P 500 VIX Short-Term Futures Index, rolling from the front-
month contract to the second-month contract to provide investors with a weighted average
futures maturity of one-month. Instead of needing to perform the roll themselves, investors
can simply purchase and hold the exchange-traded note. Over time, similar products were
introduced that track different VIX futures indices with long or short exposure, potentially
building in embedded leverage. The top right plot of figure 1 illustrates that the growth of
VIX futures has coincided with the growth of VIX ETPs.

One explanation for the simultaneous growth in the VIX futures and ETP markets is
that dealers issue VIX ETPs to satisfy retail demand and then hedge in the underlying VIX
futures market. Dong (2016) suggests this hypothesis and shows that short-term ETP net
vega is highly correlated with dealer positions from the CFTC’s Commitment of Traders
(CoT) Report.1 The bottom left plot replicates and extends this result. Dealer positions
closely match the magnitude of VIX short-term ETP net vega and the two demand variables
track each other with a correlation of around 60% from 2010 to 2018. This result suggests that
retail demand may be an important determinant for the growth in the VIX futures market.
If retail demand to buy volatility causes dealers to hedge in the VIX futures market, this
could affect VIX futures prices and drive them above the no-arbitrage bounds implied by
the index option market.

If dealer positions in the VIX futures market are just a veil for retail demand, who
absorbs the retail demand shocks? The bottom right plot attempts to address this question
by plotting net positions for different trader types including dealers, leveraged funds, asset
managers, and other reportable traders from the CFTC’s CoT Report. Focusing on the
post-crisis period, the largest net position by magnitude belong to dealers and leveraged
funds. Dealer and leveraged funds net positions exhibit a correlation of -91% from 2010 to
2018. One interpretation of this result is that leveraged funds absorb retail demand shocks
that are passed through by dealers from the volatility ETP market.

With this context in mind, the paper next describes the no-arbitrage bounds on VIX
futures prices and introduces a deviation measure which tracks arbitrage opportunities over

1The VIX ETP demand variable is equal to the leverage-weighted market capitalization of short-term
ETPs net of short interest. Following Dong (2016), the formula is DETP =

∑
i∈ST (Shrouti − ShortInti) ·

Pi ·Mi where Shrouti is shares outstanding, ShortInti is short interest, Pi is price, and Mi is the direction
and leverage multiplier. I compute DETP using Bloomberg data for the VXX, VIIX, VIXY, UVXY, TVIX,
XIV, SVXY, IVOP, XXV, and VXXB ETPs. The multipliers are equal to M = [1 1 1 2 2 -1 -1 -1 -1 1]. I
adjust the multipliers for UVXY and SVXY to 1.5 and -.5 after 2/28/18. To express this demand variable as
VIX Short-Term ETP Net Vega in $ million of vega in the plot, I divide DETP by the VIX index. Similarly,
the total vega number is

∑
i∈ST Shrouti · Pi · |Mi|/V IX.
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time and across contracts. The paper finds that there are arbitrage opportunities across the
VIX futures and index option markets. The deviation measure widens when risk increases
and predicts VIX futures returns. The paper then returns to the demand variables described
above to investigate the relationship between the no-arbitrage deviation measure, risk, and
demand pressure.

4 No-Arbitrage Deviation Measure

4.1 VIX Futures Bounds

The upper bound for the price of a VIX futures contract is the maturity-matched one-month
variance swap forward rate expressed in volatility units. The derivation of the upper bound
follows from the definition of the VIX index and an application of Jensen’s inequality (Carr
and Wu 2006). The VIX is defined as the square-root of a one-month variance swap rate. By
taking the square-root, the definition expresses the VIX in volatility units that are familiar
to traders who use the Black-Scholes-Merton model. At the same time, the square-root
introduces a wedge between the price of VIX futures and their corresponding variance swap
forward rates.

To derive the upper bound, let the price of a VIX futures contract be the risk-neutral Q
expected value of the VIX index at maturity,

Futt,T = EQ
t [V IXT ]. (1)

As noted above, the VIX is defined as the square-root of a one-month variance swap rate
V IXt ≡

√
V St,t+1.2 Let variance swaps be modeled as the risk-neutral expected value of

realized variance from the trade date until the maturity of the swap,

V St,T = EQ
t [RVt,T ] . (2)

Similarly, let variance swap forward rates be the risk-neutral expected value of realized
variance between two forward starting dates,

Fwdt,T1,T2 = EQ
t [RVT1,T2 ] . (3)

2In practice the VIX index is expressed in annualized volatility units. The paper omits the annualization
in this derivation for notional simplicity. Empirically the paper compares VIX futures prices to variance
swap forward rates in annualized units, using calendar time to perform the annualization as in the CBOE
construction of the VIX (CBOE 2019).
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It follows that the prices of VIX futures are bounded above by variance swap forward rates,

Futt,T = EQ
t [V IXT ]

= EQ
t

[√
V ST,T+1

]
≤

√
EQ

t [V ST,T+1]

=
√
EQ

t

[
EQ

T [RVT,T+1]
]

=
√
Fwdt,T,T+1.

(4)

The one-month variance swap forward rate from time T to time T + 1 expressed in volatility
units is

√
Fwdt,T,T+1.

If VIX futures violate the upper bound so that Futt,T >
√
Fwdt,T,T+1, there is a static

arbitrage opportunity . To see this, note that V ST,T+1 = f(V IXT ) = V IX2
T is a convex

function. This motivates the trade:

Arbitrage Trade for Upper Bound Violation

Time t T

Sell f ′(Futt,T ) VIX futures contracts 0 f ′(Futt,T )(Futt,T − V IXT )

Pay fixed in VS forward 0 V ST,T+1 − Fwdt,T,T+1

Total 0
V ST,T+1 − f(Futt,T )− f ′(Futt,T )(V IXT − Futt,T )

+f(Futt,T )− Fwdt,T,T+1

The first term in the payoff at time T is non-negative because f is convex. The second
term is positive because f(Futt,T ) = Fut2t,T > Fwdt,T,T+1 by assumption. The trade is an
arbitrage because it requires no investment at time t and guarantees a positive payoff at
time T .

The prices of VIX futures contracts are also bounded below by volatility swap rates. The
derivation of the lower bound proceeds along similar lines. In particular, the price of a VIX
futures contract satisfies,

Futt,T = EQ
t

[√
EQ

T [RVT,T+1]

]
≥ EQ

t

[
EQ

T

[√
RVT,T+1

]]
= EQ

t

[√
RVT,T+1

]
≡ Fvolt,T,T+1,

(5)

where the last line defines a volatility swap forward rate. In the discussion below the paper
will focus on the upper bound because the upper bound can be estimated non-parametrically
directly from observed variance swap rates. To compute the lower bound the paper will rely
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on a dynamic term-structure model to estimate the difference between the upper and lower
bounds following the approach in Van Tassel (2019).

4.2 No-Arbitrage Deviation Measure

The ability to bound VIX futures prices with variance swap forward rates motivates defining
the no-arbitrage deviation measure,

Deviationt,n ≡ Futt,n − Fwdt,n. (6)

This deviation measure is the difference between the price of the n-th futures contract Futt,n
expiring at time τn and the corresponding one-month variance swap forward rate Fwdt,n

expressed in volatility units. The deviation measure is defined in levels rather than as a
percentage because the absolute size of the no-arbitrage violations matter. Abstracting from
transaction costs, arbitrageurs should trade against a large upper bound violation, regardless
of whether the VIX is at 20 or 50. Note also the slight abuse of notation compared to the
previous section. In the deviation measure, Fwdt,n denotes the variance swap forward rate
in volatility units to be directly comparable to VIX futures prices.

The deviation measure is attractive because of its straightforward interpretation and
for its ability to be estimated non-parametrically with minimal assumptions. When the
deviation measure is positive, VIX futures prices are above their upper bound which creates
a static arbitrage opportunity or law of one price violation. When the deviation measure
is negative, VIX futures are cheap relative to variance swap forwards to the extent that
the bound is relatively tight. Large negative deviations may also violate the lower bound,
but this is harder to measure because the prices of volatility swaps are harder to observe.
Compared to variance swaps, volatility swaps are traded infrequently and are difficult to
replicate from index option prices. Therefore, the paper uses the upper bound from variance
swap forward rates to define the deviation measure.

Computing the deviation measure requires the prices of VIX futures and of variance swap
forwards. The VIX futures price is directly observable from settlement prices or intraday
trade-and-quote data. The variance swap forward price can be computed directly from
a variance swap curve. The paper computes the variance swap forward curve assuming
flat forward rates between observed variance swap maturities.3 Figures 2 and 3 provide two

3For example, let V St,T1
and V St,T2

be variance swap rates at maturities T1 and T2. The forward
rates between T1 and T2 are assumed to be constant and equal to Fwdt,T1,T2

in annualized variance units
where Fwdt,T1,T2

satisfies V St,T1
(T1 − t) + Fwdt,T1,T2

(T2 − T1) = V St,T2
(T2 − t). Let F (τ) denote the

corresponding forward curve, i.e. F (t, τ) = Fwdt,T1,T2 ∀τ ∈ (T1 − t, T2 − t) and a similar definition for other
maturities τ . The upper bound for the n-month VIX futures contract expiring at time τn is then equal to
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examples of this computation on two dates with large no-arbitrage deviations. Figure 2 plots
the variance swap curve, instantaneous forward curve, and one-month forward rates for the
VIX futures maturity dates. Figure 3 compares the VIX futures prices to their corresponding
variance swap forward rates. Table 1 provides the corresponding data, including the synthetic
variance swap curve from which forward rates are estimated and the VIX futures prices. The
example on February 27, 2012 illustrates a case when the prices of VIX futures are above
the upper bound resulting in a static arbitrage opportunity. The size of the violation is
large as the deviation measure is more than 1% for several of the contracts. The example on
August 10, 2011 illustrates the opposite case when the prices of VIX futures are well below
the upper bound, often by as much as 3% to 5%. Using an estimate from a term-structure
model for the difference between the upper and lower bounds for the different contracts on
this date, it appears that VIX futures prices are below the lower bound. This indicates an
arbitrage opportunity if arbitrageurs are able to transact at volatility swap forward rates
near the lower bound estimates.

The paper computes the deviation measure with synthetic variance swap rates from
Van Tassel (2019) and synchronized VIX futures prices. The synthetic variance swap rates
are constructed from index option prices from OptionMetrics data for maturities of τ = {1,
2, 3, 6, 9, 12, 15, 18, 24} months. To be synchronous with the option quotes, the VIX futures
prices are settlement prices from 4:15pm ET prior to March 3, 2008 and then mid-prices at
4pm ET from Thomson Reuters Tick History when available. This change in timing matches
the OptionMetrics quotes which switched to 4pm in March 2008. As a robustness check,
the Appendix computes the deviation measure in a number of alternative ways and finds
results that are broadly the same. The baseline deviation measure is 97% to 100% correlated
with alternative measures that make a convexity adjustment to reduce the bias in the upper
bound, either using a term-structure model or regression. In addition, the baseline measure
is around 90% correlated with deviation measures computed from Bloomberg and CBOE
volatility index data and 70% to 80% correlated with deviation measures computed from
OTC variance swap quotes. The baseline measure has the advantage that it is available over
the full sample period from March 2004 to December 2018, whereas the alternative datasets
are only available for part of the sample period.

Fwdt,n =
√∫ τn+1

τn
F (t, s)ds. Similar qualitative results are obtained if the flat forward rates are smoothed

with a moving average filter like a lowess smoother (unreported in the paper).
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4.3 Deviation Measure Time-Series

The deviation measure varies significantly over time. Figure 4 plots the average deviation and
average absolute deviation for the front six contracts from March 2004 to December 2018.
During the first part of the sample period the average deviation exhibits positive values
on a significant fraction of dates indicating the presence of arbitrage opportunities. Since
2012 the average deviation declines from around -.50% to -1.00% and is positive less often.
The plot also highlights how the deviation measure responds to changes in risk. Around
negative events that coincide with stock market declines like the financial crisis, equity flash
crash, and S&P downgrade of U.S. debt, the deviation measure decreases while the absolute
deviation increases in magnitude.

Table 2 presents summary statistics of the deviation measure for the front six contracts
from 2007 to 2018 when a balanced panel is available. The last column averages the statistics
across contracts. The results indicate that the deviation measure is negative on average
with a bias that increases from around -.25% for the front contract to around -1% for the
longer-dated contracts. The negative bias is statistically significant as indicated by the t-
statistics and consistent with the definition of the deviation measure which equals the VIX
futures price minus an upper bound. In terms of variability, the deviation measure has
a standard deviation of around .80% across contracts and exhibits negative skewness and
excess kurtosis, particularly for the first and second contract. The deviation measure is also
positively autocorrelated across one-day, one-week, and one-month horizons. The results are
consistent with the time-series plot, indicating that there are large and persistent law of one
price deviations across the VIX futures and index options markets.

The summary statistics also highlight differences across contracts. Panel B reports the
correlation matrix of the deviation measure. While the pairwise correlation is positive across
contracts, it tends to decline as the contract maturities get further apart and is lowest for
the front contract. The average pairwise correlation for the other contracts is around 50%.
Panel C reports how the average deviation varies across contracts over time. The results
indicate that the decline in the average deviation from the time-series plot is driven by the
longer-dated contracts rather than the front contract. Combined with the previous results,
the summary statistics indicate that the deviation measure exhibits substantial variability
both over time and within the cross-section.

4.4 The Frequency of Law of One Price Violations

Table 3 reports the frequency of law of one price violations. Panel A.I reports the fraction
of days when the deviation measure exceeds a positive threshold Deviationt,n ≥ τ where τ ∈

15



{0, .25, .50} over the full 2004 to 2018 sample period. Positive values of the deviation measure
indicate the presence of arbitrage opportunities in which the prices of VIX futures are above
their upper bound from variance swap forward rates. The table indicates that almost 20%
of contract-date observations correspond to upper bound violations. The violations are most
frequent for the front and second contracts which exhibit positive values for Deviationt,n on
35% and 24% of days respectively. The results for the lower bound violations in Panel B.I
is similar. Nearly 20% of contract-date observations correspond to a lower-bound violation
with these violations occurring more frequently for longer-dated contracts. Taken together,
the results indicate that VIX futures exhibit frequent law of one price violations relative to
their no-arbitrage bounds.

Are these results driven by the early years in the sample, small upper bound violations,
or longer-dated less liquid contracts? The answer is no. Panels A.I and B.I show that
upper bound and lower bound violations occur for all contracts. Panels A.II and B.II report
the number of upper bound and lower bound violations from 2010 to 2018. For the front
contract, the number of upper bound violations remains around 35% in the post-crisis period.
The average number of upper bound violations declines from 19% to 12% of contract-date
observations, but this remains a substantial fraction of violations. Moreover, the number of
lower bound violations increases from 22% to 30%, with large increases for the longer-dated
contracts. This rules out the hypothesis that the arbitrage violations are solely driven by the
early years in the sample; these violations do not go away after liquidity improved or after
traders learned of the no-arbitrage relationships. To illustrate this point graphically, Figure
5 reports the deviation measure for the front contract and the VIX futures price and variance
swap forward rate. The top plot shows that the deviation measure indicates consistent law
of one price violations across the entire sample period. The bottom plot shows that the VIX
futures price and variance swap forward rate track each other closely throughout the entire
sample period. Thus, it does not appear that the violations are driven by the early years in
the sample. Instead, they are pervasive.

The no-arbitrage violations are also large in magnitude. The table indicates that around
10% (5%) of contract-date observations have upper bound violations greater than .25%
(.50%) over the full sample period. For the lower bound there are around 14% (8%) of
contract-date observations with violations lower than -.25% (-.50%). The change in the
2010-2018 period for the large violations is similar to the change for the baseline violations
around τ = 0. These results also address concern about measurement noise. In particular,
estimation of variance swap forward rates introduces some noise in the deviation measure
which is a potential concern for measuring the frequency of arbitrage opportunities. The fact
that a significant fraction of law of one price violations are of large magnitude assuages this
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concern. In addition, the time-series plots show a clear relationship between the estimated
deviation measure and risk events. If measurement noise dominated the results, these plots
would appear much noisier and the deviation measure would not predict the returns of VIX
futures. The next section investigates return predictability and finds that the deviation
measure is highly significant at predicting returns, consistent with the idea that it identifies
no-arbitrage violations between the prices of VIX futures and variance swap rates.

5 VIX Futures Return Predictability

5.1 VIX Futures and Variance Swap Forward Returns

To study return predictability, the paper defines the excess return from selling the n-th VIX
futures contract over horizon h as,

RV IX
t+h,n = Futt,n − Futt+h,n. (7)

Similarly, the paper defines the excess return from receiving fixed in a one-month variance
swap forward with a maturity matched to the n-th futures contract as,

RV SF
t+h,n = Fwdt,n − Fwdt+h,n, (8)

where the forward price Ft,n is expressed in variance units. The Appendix shows that similar
qualitative results hold for log- and percentage-returns.4 While percentage-returns may
be preferred in other settings, such as for stocks where prices are not stationary and the
percentage-return is the return on investment from buying one share, this is not the case
for VIX futures. The return defined above RV IX

t+h,n is the return an investor would receive
from selling one contract, abstracting from the multiplier and margin for simplicity. In
contrast, generating percentage-returns for VIX futures requires a more complicated trading
strategy that adjusts the position size each day to account for the level of the futures price,
a difference that would entail additional transaction costs in practice. The trading strategy
discussed below will define returns that are similar to RV IX

t+h,n taking the multiplier, margin,
and transaction costs into account.

Table 4 reports summary statistics for VIX futures and variance swap forwards prices
and returns. The table includes the front six contracts from 2007 to 2018 when a balanced
panel is available and reports the average statistic across contracts in the last column. For

4The log- and percentage-returns are defined as Futt+h,n/Futt,n − 1 and log(Futt+h,n/Futt,n).
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prices, the table indicates that the unconditional term-structure is upward sloping. The
standard deviation is decreasing in the contract number reflecting the mean-reversion of
implied volatility. The prices are positively skewed and exhibit excess kurtosis. For returns,
the average return tends to be positive but is not statistically significant. The exception is
the fifth and sixth contract for variance swap forwards where the average return is actually
negative. These results are consistent with Dew-Becker et al. (2017) and Andries et al. (2015)
who find a large risk premium from being exposed to realized volatility, but a smaller risk
premium for being exposed to implied volatility. The returns also exhibit negative skewness
and excess kurtosis which is common for volatility selling strategies.

5.2 Return Predictability

Table 5 reports the main return predictability regressions. The regression is a two-step
procedure. First, VIX futures are regressed onto variance swap forward returns to obtain a
hedge ratio for each contract βn. The variance swap forward returns are highly significant
for VIX futures returns, exhibiting an average explanatory power of around 70% to 80% as
reported in the Appendix. The hedged returns are then regressed onto the deviation measure
to see whether the no-arbitrage deviation predicts VIX futures returns that are hedged with
variance swap forward returns. The idea is that, when the deviation measure is high, VIX
futures are expensive relative to variance swap forwards, so the returns from selling VIX
futures and paying fixed in variance swap forward rates should be high. Similarly, when
deviation is low, VIX futures are inexpensive relative to variance swap forward rates so the
returns from selling VIX futures should also be low. The table confirms this hypothesis
with the highly significant and positive point estimates on the deviation measure across
specifications.

Panel A reports results for the full sample from 2004 to 2018 at a weekly horizon h = 5.
For ease of interpretation, the dependent and independent variables are standardized. For
example, in Panel A.I, a one-standard deviation increase in the deviation measure for the
second contract predicts a .23 standard deviation higher return with an R2 = 5.1%. A one-
standard deviation increase in the deviation measure for the sixth contract predicts a .38
standard deviation higher return with an R2 = 14.5%. The average R2 and t-statistic across
contracts are 8.3% and 5.7 respectively. Panel A.II shows that these results are robust to
including the VIX, realized variance over the past 21 days (RV ), the CRSP value-weighted
stock market return over the past week (RMRF ), and volume for the n-th contract normal-
ized by open interest (V LM). If anything, including these additional variables increases the
strength of the deviation measure as a predictor and also increases the in-sample explanatory
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power.
Are these results specific to the sample period, investment horizon, or deviation measure

specification? The answer is no. The deviation measure robustly predicts the returns of
VIX futures hedged with variance swap forward rates across the specifications explored in
the paper and Appendix. For example, Panel B runs the regressions for a post-crisis sample
period from 2010 to 2018 and finds similar results. If anything, the predictability in the
post-crisis period increases for the second contract but remains stable for the other contracts.
The average R2 and t-statistic for the deviation measure in Panel B.II are 12% and 7.52.
The Appendix reports additional results showing that the predictability holds over daily
and monthly horizons, for lagged and bias-adjusted versions of the deviation measure, and
when the deviation measure is computed with synthetic variance swap rates from alternative
datasets like Bloomberg data or the CBOE volatility indices.

The evidence suggests that the deviation measure significantly predicts the returns of
VIX futures hedged with variance swap forwards. As noted before, these results provide
reassurance that the deviation measure is picking up a no-arbitrage deviation and does not
merely reflect measurement noise from estimating variance swap forward rates. But if the
deviation measure is picking up mispricing, is the VIX futures or index option market driving
the predictability? Since the analysis is relative, it is challenging to provide a sharp answer to
this question. One hypothesis is that the larger and more established index options market
would serve as a fair-value measure for VIX futures. Alternatively, given the high liquidity
of VIX futures in the latter part of the sample and the fact that VIX futures contracts
are traded directly, rather than being derived from option portfolios across maturities, one
might hypothesize that VIX futures would be fairly priced with variance swap forward rates
driving the predictability. One way to test these hypotheses is through the predictability
of the deviation measure when the returns of VIX futures and variance swap forwards are
hedged with stock market returns. If the deviation measure is picking up mispricing for
either VIX futures or variance swap forwards, then it should remain significant at predicting
the returns in these markets after hedging with returns from another market, namely the
stock market.

Table 6 reports the return predictability results for VIX futures hedged with CRSP value-
weighted returns. As before, VIX futures returns are first regressed onto stock market returns
and then the hedged returns are regressed onto the deviation measure. The explanatory
power of the stock market is somewhat weaker for VIX futures returns than using variance
swap forward returns for hedging as in the previous table (see the Appendix). Despite this,
the results indicate that the deviation measure is still significant at predicting VIX futures
returns hedged with the stock market. While the predictive power is somewhat lower, in
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Panel A, the point estimates are all positive and significant, except for the third contract
which is only positive. Similar to the previous results, Panel A.II shows that the results are
relatively stable after including additional predictors like the VIX and realized variance to
proxy for the variance risk premium. During the post-crisis period, Panel B indicates that
the point estimates remain significant or become more significant in the case of the third
contract. Interpreting these results, while hedging VIX futures with variance swap forwards
from the previous table may be closer to a textbook arbitrage, the results from Table 6
indicate that the deviation measure still exhibits some predictability for VIX futures even
when they are hedged with the stock market.

Table 7 then performs the analogous regressions for variance swap forwards hedged with
CRSP value-weighted returns. In this case, the expected sign on the deviation measure
is negative to the extent that the deviation measure picks up mispricing in variance swap
forwards relative to VIX futures. In Panel A, there is some evidence of predictability for
variance swap forwards matched to contracts three to six, but no evidence for contracts one
and two which have the wrong sign. In Panel B.II, deviation predicts hedged variance swap
forward returns with maturities matched to the fifth and sixth contract, but not for contracts
one through four. The average R2 and t-statistic in Panel B.II across contracts are 2.2%
and -1.68 which contrasts 4% and 3.4 in Table 6 when VIX futures are hedged with the
stock market. While there is some evidence of predictability for variance swap forward rates,
compared to the previous table, the results suggest that the deviation measure is picking up
larger amounts of predictability for VIX futures than for variance swap forward rates.

5.3 Relative Value Trading Strategy

The results from the previous section indicate that the no-arbitrage deviation measure sig-
nificantly predicts the returns of VIX futures hedged with variance swap forwards across
various in-sample specifications. How robust is this predictability over time and how can its
magnitude be interpreted? Does accounting for financing or transaction costs eliminate the
positive CAPM alpha?

One way to investigate these questions is with a trading strategy. To that end, the paper
computes the returns from a basic strategy that sells (buys) VIX futures contracts when the
deviation measure exceeds a high (low) threshold value and hedges with either variance swap
forwards or stock market returns. To normalize the deviation measure within contract and
over time, the strategy converts the deviation measure into a rolling z-score that is computed
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using one-year of lagged data,

Zt,n ≡
Deviationt,n − µt,n

σt,n
. (9)

Similarly, the hedge ratio for each contract βt,n is computed from rolling regressions with one-
year of lagged data. The regressions are analogous to the first step in the return predictability
regression from the previous section, except that they use rolling instead of full sample data.
This approach accounts for any time-variation in the hedge ratios and ensures that the hedge
ratios are in the investor’s information set.

Returns for the baseline trading strategy for a short position in the n-th VIX futures
contract are defined as,

Rt+h,n ≡
1000 · (Futt,n − Futt+h,n − βhedge

t,n ·Rhedge
t+h,n)−Margint,n ·Rft · h

365

Margint,n

. (10)

This definition uses maximal leverage to margin following Garleanu and Pedersen (2011).
The payoff is the change in the VIX futures price minus the hedging return times the contract
multiplier. The margin is the initial margin for the n-th VIX futures contract. The financing
cost is the margin multiplied by the risk-free rate times the actual number of days h over
365 days in a year. The proxy for the risk-free rate is the three-month U.S. Treasury bill
rate. The return for a long position is defined analogously.

One aspect of the return definition is that it abstracts from the financing cost for the
hedging return. On one hand, this assumption may be conservative. If an exchange or
bilateral counterparty offered portfolio margin, the capital requirement for the hedged trade
would be lower than the margin for a naked position in VIX futures because of the reduced
risk due to the hedge. On the other hand, if an investor was subject to a leverage constraint
or if margin was required for both the VIX futures trade and hedge, more capital might be
required. The paper focuses on the margin for VIX futures contracts because that data is
available historically. It is less clear, for example, what the margin would be on a bilateral,
over-the-counter variance swap forward trade in the pre-crisis or post-crisis era. While some
of the results are sensitive to this margin assumption, most are not. For example, the CAPM
α-to-margin is determined in part by the maximum leverage, which is directly related to the
margin assumption. In contrast, doubling or tripling the margin would have no impact on
the Sharpe ratio of the strategy.

The return predictability regressions indicate that the deviation measure significantly
predicts the returns of VIX futures hedged with variance swap forwards across the front six
contracts. Motivated by this, the paper focuses on a baseline trading strategy that hedges
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with variance swap forwards, has a one-week horizon h = 5, and uses a threshold value of
τ = .50 z-scores to trade the front six contracts. If there are multiple contracts to trade on
the same day, the strategy forms an equal-weighted portfolio. As a robustness check, the
paper also explores alternative strategies that vary the threshold value, number of contracts
traded, and hedging instrument.

Figure 6 plots the performance of the relative value strategy in comparison to the stock
market. The returns are normalized to 10% annualized volatility for comparison. From 2004
to 2018 the VIX futures trading strategy earns a Sharpe Ratio (SR) of 3.0 versus .5 for
CRSP value-weighted returns. The plot reports the cumulative sum of overlapping weekly
returns for both series. The VIX futures strategy performs well across market environments
with minimal drawdowns compared to the stock market. Even during the financial crisis,
the VIX futures strategy continues to earn positive returns.

Table 8 builds on these results by reporting summary statistics for the trading strategy
returns compared to stock market and volatility factor returns. Panel A reports summary
statistics for the relative value trading strategy across specifications and time periods. Panel
B reports summary statistics for stock market and volatility factor returns. The first column
in Panel A corresponds to the performance of the baseline strategy from Figure 6 that trades
the front six contracts with a threshold of τ = .50 and hedges with variance swap forwards
(VSF). The strategy returns are adjusted to have 1.39% weekly volatility for

√
52× 1.39%

= 10% annualized volatility as in the time-series plot. The weekly SR of .42 annualizes to
√

52× .42 = 3.0 matching Figure 6. Beyond this metric, the strategy delivers positively
skewed, fat-tailed returns that are only negative 27% of the time. The maximum drawdown
of 6.7% contrasts a maximum drawdown of around 50% for the stock market over the same
period of time (Panel B, column 1). To obtain 10% annualized volatility, the returns are
de-levered and multiplied by 11.6%. The unlevered mean return is 4.99%. This is close to
the alpha-to-margin of 4.90% per week, indicating that the maximally leveraged strategy
delivers large returns that are largely unexplained by the market factor.

The subsequent columns in Table 8 vary aspects of the trading strategy or sample period
to examine the robustness of the results. The second column (2) in Panel A uses stock
market returns (RMRF ) as a hedge instead of variance swap forward returns. Similar to
the return predictability regressions, the performance declines somewhat but the strategy
still obtains an annualized SR of 1.43 and CAPM alpha-to-margin of 3.6%. The returns
remain positively skewed and continue to exhibit a small maximum drawdown of 10%.

The third column (3) in Panel A adds transaction costs to the strategy from column
(2) that hedges with the stock market. The returns with transaction costs incorporate the
bid-ask spread from closing quote data for VIX futures. For example, when selling VIX
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futures, the strategy sells at the bid and buys the contract back at the ask a week later. The
strategy does not trade if the bid-ask spread exceeds .25 volatility units, which is five times
the typical bid-ask spread in recent years. This constraint is included to avoid trading during
illiquid periods of time when it may be costly or difficult to execute the strategy. As will
be shown below, the strategy with transaction costs performs better when trading the front
two contracts instead of the front six contracts. The front two contracts are more liquid and
have lower transaction costs on average. Using the same threshold of τ = .50 as before, the
strategy with transaction costs and a stock market hedge earns an annualized SR of .73 with
a CAPM alpha-to-margin of 2.6% per week. The returns continue to be positively skewed
and are only negative 32% of the time. The next columns (4) to (6) show that similar results
hold in a post-crisis sample from 2010 to 2018. The SRs and CAPM alpha-to-margin are
slightly lower, but still large. The maximum drawdown and percentage of negative returns
are similar to the full sample estimates.

Panel B presents summary statistics for stock market and volatility returns for compar-
ison. Column (1) reports results for CRSP value-weighted returns (RMRF). Columns (2)
and (3) report results for receiving fixed in one-month variance swaps and selling the front-
month VIX futures contracts. The horizon is one-week and the returns are computed over
the same period of time as for the trading strategy returns in Panel A. The annualized SRs
for the stock market, variance swap, and VIX futures returns are .51, 1.08, and .65. While
the relative value strategy earns a higher SR than the stock market and the strategy of
unconditionally selling front month VIX futures, the SR from receiving fixed in one-month
variance swaps is similar to the relative value strategy when hedging with stock market re-
turns. Unlike the relative value strategy, the stock market and volatility selling returns are
negatively skewed. The stock market returns and returns from unconditionally selling the
front-month VIX futures contracts also exhibit large drawdowns during the financial crisis.

The summary statistics indicate that the trading strategy earns excess returns relative to
the CAPM as measured by the large alpha-to-margin estimates. How significant is this the
outperformance and is it robust to other factor models? Table 9 answers this question by
reporting alpha-to-margin estimates for different specifications including the CAPM, a four-
factor model with the Fama-French three factors and Carhart momentum factor (FFC4), and
a six-factor model (FFCV6) that adds realized and implied volatility factor returns from
one-month variance swap forwards (VS1) and front-month VIX futures contracts (VX1).
Columns 1-3 report results for the full sample period and columns 4-6 report results for a
post-crisis sample from 2010 to 2018.

The baseline strategy that hedges with variance swap forwards earns an alpha-to-margin
of 4% to 5% across specifications and sample periods. The insignificant point estimates on
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the factors and low R2s indicate that the variance swap forward hedge has removed almost all
of the systematic risk in the trading strategy returns. The large alpha and low explanatory
power of the factor models is consistent with the idea of trading against an arbitrage spread.
Panels B and C find similar qualitative results for the other trading strategy specifications.
The alpha estimates remain significant and the explanatory power of the factor models
remains low across specifications. While the volatility factors are more significant in Panels
B and C than in Panel A, the highest R2s are only 10% to 15% and the negative loadings
on the volatility factors generally increase the alpha estimates. Overall the alpha estimates
appear robust to different factor model specifications and time periods.

The top plot in Figure 7 reports the performance of the three main specifications that
hedge with variance swap forward rates, the stock market, and the stock market with trans-
action costs. The relative value strategy hedged with variance swap forwards or stock market
returns outperforms the stock market over nearly the entire sample period. The strategy
with transaction costs underperforms until the financial crisis and then starts to outperform
the stock market. The higher values for the relative value strategies at the end of the sample
relative to the stock market are consistent with their higher SRs from the summary statistics
table. Note also that the stock market is a difficult benchmark to outperform during this
sample period. Alternative equity risk factors such as value (HML), small-minus-big (SMB),
and momentum (MOM) generally underperformed the stock market, earning annualized SRs
of .01, .08, and .12, that also underperform the relative value strategy.

Is the outperformance of the relative value strategies driven by the trading threshold or
number of contracts traded? The bottom plot in Figure 7 investigates this question. There
are two takeaways for the baseline strategy that hedges with variance swap forward rates.
First, as the number of contracts traded increases, the SR increases. This result is consistent
with the return predictability regressions. Since the deviation measure predicts returns
across all contracts, trading more contracts provides the strategy with more relative value
opportunities to exploit, improving performance. For example, the SRs with a threshold of
τ = .50 when trading up to the front 1, 2, 4, and 6 contracts are .92, 1.58, 2.63, and 3.00.

The second observation is that the SRs tend to peak at an intermediate trading threshold
τ and then decline. For large thresholds the strategy trades less frequently and only against
large deviations, passing up valuable trading opportunities. This pattern is slightly different,
however, when including transaction costs. In this case, it is still desirable to trade against
large opportunities, but there is also a benefit to trading less frequently to lower transaction
costs. This interpretation echoes findings from the literature on optimal portfolio choice
with transaction costs (Davis and Norman 1990; Gârleanu and Pedersen 2013). When in-
corporating transaction costs, the SRs do not decline as rapidly with the trading threshold
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and in some cases it is better to use a larger threshold. The SRs are also higher when only
trading the front 1 or 1-2 contracts, reflecting the lower transaction costs of these contracts
relative to the longer-dated contracts. The Appendix shows that similar results hold in the
2010 to 2018 post-crisis period.

In summary, the results indicate that trading against the no-arbitrage deviation measure
earns significant returns with minimal exposure to traditional risk factors. The alpha-to-
margin estimates and high SRs are robust across a range of specifications and sample periods.
The strongest results correspond to the strategy that hedges with variance swap forwards.
This strategy is most similar to the textbook arbitrage trades between VIX futures and
variance swap forwards or volatility swap forwards described earlier in the paper.

6 Discussion

6.1 No-Arbitrage Deviation versus Risk and Demand Factors

What drives the no-arbitrage violations and deviation measure over time? Two channels
identified by the limits-to-arbitrage literature are risk and demand. If arbitrageurs are risk
averse or have limited capital, demand shocks can push prices away from fundamental values.
The resulting effect of limits-to-arbitrage and demand shocks can be anomalies such as return
predictability and no-arbitrage violations.

The paper estimates a vector autoregression (VAR) to study how the no-arbitrage devia-
tion measure relates to risk and demand factors, yt = [DEVt V IXtDNPt]. The variables in
the VAR are the average deviation measure across the front six contracts (DEV), the CBOE
Volatility index (VIX), and the dealer net position (DNP) in VIX futures from the CFTC’s
Commitment of Traders Report (CoT). The DEV variable focuses on the average deviation
to keep the size of the VAR small. The VIX and DNP variables serve as proxies for risk
and demand. Figure 1 motivates using DNP as a demand variable by illustrating the high
correlation between DNP and VIX ETP demand, a proxy for retail demand. The advantage
of DEV relative to VIX ETP demand is that it only depends on quantities, not on prices.
The DNP variable in the VAR is the dealer net position as a fraction of open interest. This
normalization bounds DNP between 0 and 1, removing the time trend in net position size
that reflects the growing VIX futures market over the sample period. The Appendix shows
that similar qualitative results hold using other proxies for risk and demand such as stock
market returns and realized variance for risk and VIX ETP demand and the delta of VIX
options traded by retail customers for demand.

The sample period is 2010 to 2018 using weekly observations on CoT release dates when
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the DNP variable is reported. The sample period is motivated by several observations. First,
the start date matches prior studies investigating the relationship between the pricing of VIX
futures and demand (Cheng 2018). During this period there are no breaks in the reporting
of the DNP variable.5 In addition, the sample corresponds to a post-crisis period when
the VIX ETP market is growing. Dong (2016) argues that the introduction of VIX ETP
trading represents a structural break in the VIX futures market, with ETPs introducing
new channels for demand to impact futures prices. Finally, the sample period is beneficial
because a balanced panel is available to compute the average deviation measure across the
front six futures contracts.

Figure 8 presents the time-series relationship between the average deviation and the
risk and demand variables that are used in the VAR. The top plot shows that the deviation
measure decreases when the VIX increases. Since the deviation measure tracks the difference
in prices for nearly identical claims across two markets, it is surprising that the no-arbitrage
deviation responds to risk, as risk should play a similar role in both markets. One hypothesis
for what drives the result is that increases in risk may prevent traders from being able to
engage in arbitrage trades that would drive prices back to fundamental values, perhaps as a
result of binding margin or value-at-risk constraints. Alternatively, hedgers may take profit
on long positions when risk increases, leading to demand shocks that are correlated with
increases in risk and traders temporary inability to exploit arbitrage opportunities due to
financing constraints. In addition to the correlation with risk, the bottom plot shows that the
deviation measure is also highly correlated with the DNP demand variable. This correlation
may be driven by systematic demand shocks as discussed above or by idiosyncratic shocks
such as mechanical roll effects from VIX ETPs. To more precisely identify how the no-
arbitrage deviation measure relates to risk and demand and to better understand the lead-
lag relationships, the paper estimates a VAR and studies its associated impulse response
functions.

6.2 VAR Impulse Response Functions

The paper estimates a trivariate VAR for the variables yt = [DEVt V IXt DNPt] at a weekly
frequency from 2010 to 2018. Figure 9 reports impulse response functions (IRFs) from the
VAR. The IRFs are from a Cholesky decomposition with the variables ordered as: VIX,
DNP, DEV. The optimal lag length is selected by the SBIC criterion. The Appendix reports
the IRFs with different orderings as a robustness check and finds qualitatively similar results.

5There is a gap in CoT report for VIX futures from December 2008 to June 2009 when open interest was
low and the position breakdown by trader type was not reported.
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The top row in Figure 9 reports the IRFs for DEV in response to VIX and DNP shocks.
The top left plot shows that a one-standard deviation increase in VIX corresponds to a .25
standard deviation decrease in DEV that mean reverts after four to six weeks. The top
right plot shows that a one standard deviation increase in DNP corresponds to a .05 to
.10 standard deviation increase in DEV that mean reverts over a longer horizon. These
responses are large in the sense that they represent several bid-ask spreads in VIX futures
and are the same order of magnitude as the coefficients on the deviation measure in the
return predictability regressions. The impact of the VIX shock is about 3-4 times larger
in magnitude than the impact of a demand shock over short horizons. Despite the tight
relationship between the deviation measure and demand in the time-series plot, the VAR
indicates that the risk shock is more significant over shorter horizons. For longer horizons
the demand shock remains more significant and has a slightly larger magnitude than the
VIX shock. Taken together, the results indicate that both the risk and demand channels
have an impact on the no-arbitrage deviation measure over different horizons.

The middle row in Figure 9 reveals how the DNP variable reacts to VIX and DEV shocks.
The middle left plot shows that a one standard deviation increase in the VIX corresponds
to a .10 decrease in DNP that persists for one to three months. The middle right plot shows
that a one standard deviation increase in DEV corresponds to an increase in DNP by .10
standard deviations that peaks after one to two months and then persists over a longer period
of time. These results have a mixed interpretation. On one hand, DNP decreases when risk
increases. This result is consistent with dealers acting as hedgers that take profit on long
positions when risk increases. On the other hand, DNP increases when the deviation measure
increases. This result suggests that dealers also act as momentum traders, increasing their
long position in VIX futures when the prices of VIX futures increase relative to variance swap
forward rates. To the extent that the DNP variable is a veil for retail demand, the results
suggest that retail traders use VIX ETPs to hedge volatility risk and chase momentum.

The bottom row Figure 9 reports how the VIX responds to DNP and DEV shocks. The
responses are largely insignificant. This result provides a reassuring placebo test. One would
not expect changes in DNP or DEV to impact the VIX unless changes in these variables
led to arbitrage trading that moved index option prices and thus the VIX. For example,
if DEV increases, arbitrage traders might sell VIX futures and pay fixed in variance swap
forwards. Implementing the variance swap forward trade synthetically could put downward
pressure on the VIX if traders pay fixed in long-dated synthetic variance swaps by buying
long-dated options and receive fixed in short-dated synthetic variance swap rates by selling
short-dated options. The IRF in the bottom right plot provides some evidence that there
is a short-term negative effect of DEV shocks on the VIX over short horizons. Over longer
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horizons, however, the response becomes insignificant and the point estimate is close to zero.
Given the large size of the index options market relative to the VIX futures market, the
insignificant responses that are consistent with the null hypothesis of no effect on the VIX
seem most plausible.

6.3 Panel Regressions

Another way to study the deviation measure and its relationship with risk and demand is by
exploiting a panel-regression approach. While the VAR accounts for the persistence of the
different variables and their joint interactions, it can be difficult to interpret large-scale VARs.
This observation motivates estimating the VAR with only three variables, one of which is the
average deviation measure across the front six contracts. In a panel-regression, the deviation
measure for different contracts can be studied directly along with fixed effects to study within
contract variation and control variables to account for the economic environment.

Table 10 reports panel regressions that find similar relationships between the deviation
measure and the risk and demand variables despite the different identification approach from
the VAR. The regression specification is,

Deviationt+h,n = β∆xt+h + ρDeviationt,n+δControlst + FEs+εt+h,n. (11)

The horizon is one-week h = 5 to be similar to the VAR analysis. The regressions include
overlapping observations from daily data using the front six contracts. The explanatory
variable ∆xt+h and control variables are standardized but the deviation measure is not. The
summary statistics for the deviation measure in Table 2 show that the deviation measure has
an average standard deviation of about .80%. This makes the results roughly comparable to
the IRFs from the VAR where the variables are standardized. The first three specifications 1-
3 in Table 10 show how the deviation measure responds to changes in the explanatory variable
controlling for the persistence of the deviation measure. The next three specifications 4-6
repeat this analysis adding control variables and fixed effects. The control variables include
the time-to-maturity, initial margin, and open interest for the n-th contract on date t as well
as the lagged VIX index. Fixed effects are included for the contract, calendar year, and for
the contract being the first, second, etc. contract to maturity.

Panels A reports the results for the risk variables from 2007 to 2018. Panel B finds similar
results from 2010 to 2018, showing that the results are not driven by the financial crisis. As
in the VAR analysis, the results indicate that the deviation measure is decreasing in risk.
When stock market returns are negative or volatility increases, the deviation measure tends
to decline. The magnitude of the point estimates is similar to the IRFs. For example, in the
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panel regressions, a one-standard deviation increase in the VIX is associated with a decline
in the deviation measure of around -.15 in Panel A or -.18 in Panel B. In the VAR, the IRF
of the deviation measure to a VIX shock has a point estimate of around -.10 to -.25 in the
first few weeks after a shock. Despite the different approaches, the VAR and panel regression
reveal a similar relationship between the deviation measure and VIX index. Moreover, the
panel regressions highlight how the relationship between the deviation measure and risk is
not specific to the VIX index, but also holds for stock market returns and for the realized
variance of the S&P 500 index.

Panel C reports the results for the demand variables from 2010 to 2018. The post-crisis
sample period is motivated by data availability. As in the VAR analysis, the deviation
measure is increasing in demand pressure. A one-standard deviation increase in the dealer
net position corresponds to a .05 standard-deviation increase in the deviation measure. This
response is similar to the IRF in which the deviation measure increases by around .05 to .10
in response to a DNP shock in the weeks following the shock. Beyond the DNP variable, the
regressions show that the deviation measure is also increasing in VIX ETP net demand and
in the delta of VIX options traded by retail customers. Similar to the DNP variable, the
ETP and option demand variables are normalized by open interest and then standardized.
Compared to the risk variables in Panel B, the point estimates and explanatory power of
the demand variables is slightly lower in Panel C. Over short horizons, changes in risk are
associated with larger changes in the deviation measure than changes in demand, similar to
the VAR analysis.

6.4 Other Channels

Beyond demand pressure, the limits-to-arbitrage literature highlights a number of additional
channels that can lead to no-arbitrage violations and return predictability. For example,
changes in margin requirements may lead to binding financial constraints, resulting in margin
spirals if arbitrageurs are forced to unwind positions (Brunnermeier and Pedersen 2008).
End-of-month and end-of-quarter dates can result in funding pressure that is associated
with heightened arbitrage deviations in the foreign exchange market (Du et al. 2018). Salient
events like FOMC announcements may result in return predictability (Lucca and Moench
2015). How does the no-arbitrage deviation measure studied in this paper relate to these
events?

Figure 10 investigates this question by reporting event study plots to illustrate how the
deviation measure and VIX index respond to various events. The top row reports results
for margin changes. There are 41 increases and 33 decreases in the initial margin for the
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front month VIX futures contract from 2004 to 2018. In the two weeks leading up to
a margin increase, the VIX index tends to increase by around four points. During this
time, the deviation measure decreases by around .20 units. Given the small number of
events, this decline is not statistically significant. After the margin increase, the VIX tends
to decrease and the deviation measure tends to increase which is a decline in magnitude.
From the plot, there does not appear to be a very strong response of the deviation measure
to margin increases or decreases, aside from the typical reaction to changes in the VIX.
The subsequent plots highlight similar null results for FOMC announcements, non-farm
payroll announcements, month-end dates, and quarter-end dates. There may be a small
decrease in the deviation measure on the day following FOMC announcements, but otherwise
the deviation measure seems largely unrelated to these events. The Appendix provides
related analysis for the risk and demand variables by highlighting how the deviation measure
responds to the largest changes in risk and demand over the sample period. While the
magnitudes are different, the qualitative results are similar with changes in risk and demand
being associated with the largest changes in the deviation measure.

7 Conclusion

This paper documents systematic law of one price deviations across the VIX futures and
S&P 500 index options markets. The prices of VIX futures violate estimates of their no-
arbitrage upper and lower bounds, indicating the presence of arbitrage opportunities. A
no-arbitrage deviation measure equal to the difference between the price of a VIX futures
contract and its corresponding synthetic variance swap forward rate is found to significantly
predicts returns. A relative value trading strategy that exploits the deviation measure earns
a significant Sharpe ratio with minimal exposure to traditional risk factors.

These results are surprising because the no-arbitrage relationships investigated in the
paper are well understood in the academic literature and should be known by option traders.
Even if it is difficult to trade VIX futures against synthetic variance swap forwards in practice,
there is still significant predictability when using the deviation measure to predict VIX
futures returns hedged with the stock market, and a sizeable Sharpe ratio and alpha-to-
margin estimate persist even after taking VIX futures transaction costs into account. Thus,
the results cannot be explained by a mere appeal to implementation challenges or transaction
costs.

Instead, the paper finds evidence that the no-arbitrage deviations are related to system-
atic risk and demand pressure. Other channels like margin changes, economic announce-
ments, and month-end effects are less significant in explaining the variation in the deviations
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over time. To the extent that dealer positions reflect retail demand, the results are consistent
with retail traders using VIX ETPs to hedge volatility risk and chase momentum, driving
the prices of VIX futures away from fundamental values implied by the index option market.

An implication of these results is that investors and policymakers should be cautious when
interpreting signals from equity volatility markets. Large no-arbitrage deviations indicate
that the VIX futures and index option markets are sending different messages about future
risks.
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Table 1: Computing the Deviation Measure on Example Dates

This table illustrates two examples of how the paper computes the no-arbitrage deviation measure
each day. First, the paper obtains the variance swap curve in annualized variance units. Second, the
paper computes the variance swap forward curve assuming flat forward rates between the observed
maturities Fwdt,T1,T2 = (V St,T2 ·T2−V St,T1 ·T1)/(T2−T1). Third, the paper computes the difference
between the VIX futures price and the one-month variance swap forward rate for the corresponding
maturity. The deviation measure Deviationt,n for the n-th contract is the difference between the
VIX futures price Futt,n and the one-month variance swap forward rate Fwdt,n.

Example: Computation of Deviation Measure on 27Feb12
Step 1: Variance swap rates (variance units)
Maturity 1 2 3 6 9 12 15 18 24
V St,T 3.39 3.90 4.55 5.83 6.44 6.88 7.18 7.52 8.16

Step 2: Variance swap forward rates (variance units)
Maturity 0-1 1-2 2-3 3-6 6-9 9-12 12-15 15-18 18-24
Fwdt,T1,T2

3.39 4.40 5.87 7.11 7.66 8.21 8.37 9.24 10.07

Step 3: Deviation measure Deviationt,n = Futt,n − Fwdt,n (volatility units)
Maturity 21Mar 18Apr 16May 20Jun 18Jul 22Aug 19Sep 17Oct 21Nov
Contract 1 2 3 4 5 6 7 8 9
Futt,n 21.40 24.38 25.87 27.02 28.17 28.78 29.65 29.75 29.75
Fwdt,n 20.35 23.23 25.67 26.67 26.67 27.48 27.67 27.67 28.47
Deviationt,n 1.05 1.14 0.20 0.36 1.51 1.30 1.98 2.08 1.28

Example: Computation of Deviation Measure on 10Aug11
Step 1: Variancee swap rates (variance units)
Maturity 1 2 3 6 9 12 15 18 24
V St,T 21.00 15.89 14.14 11.94 11.11 10.72 10.49 10.28 10.03

Step 2: Variance swap forward rates (variance units)
Maturity 0-1 1-2 2-3 3-6 6-9 9-12 12-15 15-18 18-24
Fwdt,T1,T2

21.00 10.77 10.65 9.73 9.45 9.56 9.58 9.24 9.28

Step 3: Deviation measure Deviationt,n = Futt,n − Fwdt,n (volatility units)
Maturity 17Aug 21Sep 19Oct 16Nov 21Dec 18Jan 15Feb 21Mar
Contract 1 2 3 4 5 6 7 8
Futt,n 36.25 28.98 28.00 27.25 26.10 27.33 27.80 27.80
Fwdt,n 43.23 32.75 32.23 31.20 31.20 31.07 30.74 30.74
Deviationt,n -6.98 -3.78 -4.23 -3.95 -5.10 -3.74 -2.94 -2.94
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Table 2: Summary Statistics for Deviation Measure

This table reports summary statistics for the law of one price deviations between VIX futures and
variance swap forwards. The deviation measure is defined as Deviationt,n = Futt,n − Fwdt,n in
annualized volatility units. Panel A reports summary statistics for the deviation variable. Panel
B reports the correlation of the deviations across contracts. Panel C reports the average deviation
by year for each contract. The sample period is 2007 to 2018 to obtain a balanced panel across
contracts.

Deviationt,n Summary Statistics
Contract (n) (1) (2) (3) (4) (5) (6) Avg.

Panel A: Summary Statistics
Mean -0.25 -0.47 -1.02 -1.26 -0.97 -1.08 -0.84
Standard Deviation 0.82 0.74 0.77 0.78 0.88 0.93 0.82
t-statistic -5.06 -7.34 -13.37 -15.38 -10.17 -11.07 -10.40
Skewness -3.68 -1.72 0.32 -0.01 -0.83 -0.78 -1.12
Kurtosis 31.49 14.07 5.50 3.13 5.11 5.80 10.85
Minimum -8.87 -7.70 -4.89 -4.27 -5.86 -7.15 -6.46
25th-Percentile -0.46 -0.78 -1.50 -1.75 -1.40 -1.60 -1.25
Median -0.15 -0.41 -1.04 -1.26 -0.89 -1.03 -0.80
75th-Percentile 0.13 -0.08 -0.52 -0.75 -0.40 -0.48 -0.35
Maximum 4.26 4.42 4.22 2.16 1.58 1.44 3.01
Autocorrelation 1-day 0.56 0.81 0.87 0.90 0.92 0.90 0.83
Autocorrelation 5-day 0.33 0.65 0.73 0.80 0.84 0.78 0.69
Autocorrelation 21-day 0.17 0.36 0.52 0.61 0.65 0.64 0.49

Panel B: Correlation Matrix
Deviationt,1 1.00 0.38 0.06 0.06 0.20 0.19 0.18
Deviationt,2 0.38 1.00 0.57 0.53 0.62 0.61 0.54
Deviationt,3 0.06 0.57 1.00 0.72 0.53 0.55 0.49
Deviationt,4 0.06 0.53 0.72 1.00 0.74 0.54 0.52
Deviationt,5 0.20 0.62 0.53 0.74 1.00 0.83 0.58
Deviationt,6 0.19 0.61 0.55 0.54 0.83 1.00 0.54

Panel C: Average Deviation by Year
2007 -0.33 -0.26 -0.33 -0.39 -0.31 -0.31 -0.32
2008 -0.69 -0.57 -0.32 -0.66 -1.22 -1.41 -0.81
2009 -0.10 0.11 -0.47 -0.84 -1.12 -1.26 -0.61
2010 -0.44 -0.09 -0.48 -0.62 -0.25 -0.45 -0.39
2011 -0.38 -0.74 -1.38 -1.77 -1.33 -1.35 -1.16
2012 -0.15 -0.29 -1.04 -1.26 -0.23 -0.12 -0.52
2013 -0.09 -0.25 -0.82 -0.95 -0.39 -0.64 -0.53
2014 -0.12 -0.50 -1.26 -1.56 -1.12 -1.31 -0.98
2015 -0.27 -0.90 -1.66 -1.94 -1.64 -1.76 -1.36
2016 -0.14 -0.66 -1.36 -1.58 -1.18 -1.36 -1.05
2017 -0.02 -0.69 -1.55 -1.84 -1.22 -1.32 -1.11
2018 -0.21 -0.85 -1.55 -1.73 -1.57 -1.62 -1.25
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Table 3: The Frequency of the Law of One Price Violations

This table reports the frequency of law of one price violations for VIX futures contracts from their
no-arbitrage bounds. Panel A reports the frequency of upper bound violations over the full sample
from 2004 to 2018 (A.I) and during a post-crisis sample 2010 to 2018 (A.II). An upper bound
violation occurs when the deviation measure is greater than zero, Deviationt,n > 0. The table also
reports the frequency of violations that are greater than thresholds of .25% and .50%. Panel B
reports the analogous frequency of lower bound violations. The lower bound is estimated for each
contract-day as the upper bound minus the difference between the upper bound and lower bound
from a term-structure model for that contract-day pair. The results indicate that around 20% of
contract-date observations exhibit an upper bound or lower bound violations on average.

Frequency of Law of One Price Violations
Contract (n) (1) (2) (3) (4) (5) (6) Avg.

Panel A.I: VIX Futures - Upper Bound > Threshold 2004-2018
Threshold = 0 0.35 0.24 0.13 0.14 0.14 0.14 0.19
Threshold = .25 0.17 0.13 0.07 0.08 0.09 0.09 0.11
Threshold = .50 0.07 0.06 0.03 0.05 0.06 0.06 0.05

Panel A.II: VIX Futures - Upper Bound > Threshold 2010-2018
Threshold = 0 0.36 0.15 0.03 0.02 0.09 0.09 0.12
Threshold = .25 0.15 0.07 0.02 0.01 0.05 0.06 0.06
Threshold = .50 0.06 0.03 0.00 0.00 0.03 0.04 0.03

Panel B.I: VIX Futures - Lower Bound < Threshold 2004-2018
Threshold = 0 0.11 0.12 0.31 0.35 0.19 0.21 0.22
Threshold = -.25 0.06 0.06 0.21 0.25 0.12 0.13 0.14
Threshold = -.50 0.03 0.03 0.12 0.15 0.08 0.08 0.08

Panel B.II: VIX Futures - Lower Bound < Threshold 2010-2018
Threshold = 0 0.08 0.16 0.49 0.55 0.25 0.28 0.30
Threshold = -.25 0.04 0.08 0.33 0.40 0.15 0.17 0.20
Threshold = -.50 0.03 0.04 0.19 0.25 0.10 0.10 0.12
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Table 4: Summary Statistics for VIX Futures and Variance Swap Forwards

Panel A reports summary statistics for VIX futures prices for the front six contracts and for variance
swap one-month forward rates for the corresponding maturities. Panel B reports summary statistics
for VIX futures and variance swap forward one-week excess returns (h = 5). The sample period is
2007 to 2018 for a balanced panel.

VIX Futures and VS Forwards Summary Statistics
Contract (n) (1) (2) (3) (4) (5) (6) Average
Panel A.I: VIX Futures Prices Futt,n
Mean 20.07 20.81 21.30 21.65 21.94 22.20 21.33
Standard Deviation 8.57 7.66 7.06 6.60 6.28 6.02 7.03
Skewness 2.17 1.82 1.59 1.38 1.21 1.10 1.54
Kurtosis 9.04 7.21 6.20 5.10 4.33 3.90 5.96
Median 17.54 18.58 19.27 19.67 20.08 20.27 19.23

Panel A.II: VS Forward Rates Fwdt,n (annualized volatility units)
Mean 20.32 21.28 22.32 22.91 22.91 23.28 22.17
Standard Deviation 8.80 7.74 6.91 6.48 6.47 6.21 7.10
Skewness 2.21 1.90 1.62 1.41 1.41 1.32 1.65
Kurtosis 9.50 7.66 6.28 5.21 5.18 4.86 6.45
Median 17.82 19.28 20.64 21.27 21.30 21.62 20.32

Panel B.I: VIX Futures Returns (percent) RV IXt+h,n = Futt,n − Futt+h,n
Mean 0.17 0.15 0.09 0.06 0.06 0.05 0.10
Standard Deviation 2.42 1.99 1.57 1.34 1.19 1.10 1.60
Sharpe Ratio 0.07 0.08 0.06 0.05 0.05 0.05 0.06
t-statistic 1.81 1.89 1.48 1.19 1.24 1.23 1.47
Skewness -1.56 -1.20 -1.03 -0.86 -0.80 -0.74 -1.03
Kurtosis 12.77 10.53 9.42 8.21 8.29 7.35 9.43
Median 0.27 0.30 0.20 0.15 0.10 0.10 0.19

Panel B.I: VS Forward Returns (basis points) RV SFt+h,n = Fwdt,n − Fwdt+h,n
Mean 0.05 0.50 1.01 0.80 -0.38 -0.09 0.31
Standard Deviation 18.98 12.37 9.54 8.21 6.75 6.10 10.33
Sharpe Ratio 0.00 0.04 0.11 0.10 -0.06 -0.02 0.03
t-statistic 0.07 0.99 2.44 2.23 -1.54 -0.45 0.62
Skewness -3.84 -2.82 -2.84 -2.81 -0.30 -0.09 -2.12
Kurtosis 67.11 45.54 30.56 28.92 15.93 12.59 33.44
Median 1.17 1.07 1.63 1.18 -0.32 0.11 0.81
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Table 5: Deviation Measure Predicts the Returns of VIX Futures
Hedged with Variance Swap Forwards

This table reports return predictability regressions for hedged VIX futures returns over a weekly
horizon (h=5). The columns report results for each of the front six contracts. The first step regresses
VIX futures returns onto variance swap forward returns to estimate the hedge ratio β̂n. The second
step regresses the hedged return onto the deviation measure. The deviation measure significantly
predicts hedged returns across contracts and sample periods, and is robust to the presence of other
predictors like the VIX and realized variance (RV) which proxy for the variance risk premium. The
variables in the second step regression are z-scored for ease of interpretation. Panel A (B) reports
results for the full (post-crisis) sample.

Return Predictability Regression: RV IXt+h,n − β̂nRV SFt+h,n = γ′nxt,n + εt+h,n

Panel A.I: Full sample from 2004 to 2018
Contract (n) (1) (2) (3) (4) (5) (6)
Deviation 0.19∗∗∗ 0.23∗∗∗ 0.27∗∗∗ 0.25∗∗∗ 0.36∗∗∗ 0.38∗∗∗

(0.03) (0.05) (0.05) (0.03) (0.07) (0.08)
Observations 3356 3698 3698 3644 3207 3200
Adjusted R2 0.038 0.051 0.075 0.063 0.129 0.145

Panel A.II: Full sample from 2004 to 2018 with controls
Contract (n) (1) (2) (3) (4) (5) (6)
Deviation 0.27∗∗∗ 0.31∗∗∗ 0.33∗∗∗ 0.32∗∗∗ 0.37∗∗∗ 0.39∗∗∗

(0.04) (0.04) (0.05) (0.04) (0.05) (0.07)
VIX 0.29∗∗∗ -0.00 0.01 -0.03 0.07 0.23∗∗

(0.11) (0.15) (0.12) (0.13) (0.11) (0.11)
RV -0.13 0.09 0.14 0.20 -0.16 -0.23∗∗

(0.11) (0.19) (0.16) (0.16) (0.12) (0.09)
RMRF -0.01 -0.09∗∗ -0.02 -0.11∗∗∗ -0.02 0.03

(0.04) (0.04) (0.05) (0.04) (0.05) (0.05)
VLM -0.01 0.13∗∗∗ 0.16∗∗∗ 0.11∗∗∗ 0.17∗∗∗ 0.16∗∗∗

(0.03) (0.03) (0.03) (0.04) (0.04) (0.03)
Observations 3356 3698 3698 3644 3207 3200
Adjusted R2 0.065 0.076 0.117 0.111 0.175 0.175

Panel B.I: Post-crisis sample from 2010 to 2018
Contract (n) (1) (2) (3) (4) (5) (6)
Deviation 0.23∗∗∗ 0.34∗∗∗ 0.28∗∗∗ 0.26∗∗∗ 0.40∗∗∗ 0.38∗∗∗

(0.04) (0.03) (0.04) (0.04) (0.05) (0.05)
Observations 2030 2246 2246 2246 2246 2246
Adjusted R2 0.052 0.112 0.078 0.068 0.158 0.143

Panel B.II: Post-crisis sample from 2010 to 2018 with controls
Contract (n) (1) (2) (3) (4) (5) (6)
Deviation 0.29∗∗∗ 0.39∗∗∗ 0.32∗∗∗ 0.30∗∗∗ 0.40∗∗∗ 0.37∗∗∗

(0.04) (0.05) (0.04) (0.05) (0.05) (0.05)
VIX 0.26∗∗∗ 0.11 -0.00 -0.12 -0.00 0.07

(0.09) (0.10) (0.11) (0.10) (0.10) (0.10)
RV -0.09 -0.04 0.06 0.10 -0.03 -0.04

(0.08) (0.08) (0.09) (0.08) (0.09) (0.09)
RMRF 0.04 0.00 -0.02 -0.03 0.02 0.07

(0.05) (0.04) (0.05) (0.05) (0.05) (0.05)
VLM -0.02 0.15∗∗ 0.20∗∗∗ 0.09∗∗ 0.05 0.08∗∗

(0.04) (0.06) (0.04) (0.04) (0.04) (0.04)
Observations 2030 2246 2246 2246 2246 2246
Adjusted R2 0.079 0.136 0.118 0.077 0.160 0.150

Newey-West SEs with 15 lags in parentheses, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Table 6: Deviation Measure Predicts the Returns of VIX Futures
Hedged with Stock Market Returns

This table reports return predictability regressions for VIX futures returns that are hedged with
stock market returns over a weekly horizon (h=5). The regressions are analogous to Table 5. When
hedging with stock market returns, the deviation measure remains significant at predicting VIX
futures returns, particularly during the post-crisis period. These results provide evidence that the
deviation measure is identifying mispricing of VIX futures relative to variance swap forwards.

Return Predictability Regression: RV IXt+h,n − βnRMRFt+h,n = γ′nxt,n + εt+h,n

Panel A.I: Full sample from 2004 to 2018
Contract (n) (1) (2) (3) (4) (5) (6)
Deviation 0.24∗∗∗ 0.28∗∗∗ 0.04 0.07∗∗ 0.17∗∗∗ 0.16∗∗∗

(0.07) (0.07) (0.04) (0.03) (0.06) (0.06)
Observations 3356 3698 3698 3644 3207 3200
Adjusted R2 0.055 0.079 0.001 0.005 0.029 0.026

Panel A.II: Full sample from 2004 to 2018 with controls
Contract (n) (1) (2) (3) (4) (5) (6)
Deviation 0.28∗∗∗ 0.28∗∗∗ 0.05 0.06∗ 0.13∗∗∗ 0.12∗∗∗

(0.06) (0.06) (0.04) (0.04) (0.04) (0.04)
VIX 0.43∗∗∗ 0.23 0.18 0.13 0.06 0.07

(0.12) (0.17) (0.17) (0.16) (0.16) (0.16)
RV -0.36∗∗∗ -0.30 -0.36∗ -0.30 -0.17 -0.18

(0.12) (0.19) (0.20) (0.19) (0.17) (0.16)
RMRF 0.03 -0.01 -0.00 0.01 -0.00 -0.02

(0.07) (0.07) (0.07) (0.07) (0.08) (0.07)
VLM -0.02 0.09∗∗∗ 0.02 0.01 0.04 0.06∗

(0.04) (0.03) (0.03) (0.04) (0.04) (0.03)
Observations 3356 3698 3698 3644 3207 3200
Adjusted R2 0.075 0.104 0.041 0.037 0.043 0.044

Panel B.I: Post-crisis sample from 2010 to 2018
Contract (n) (1) (2) (3) (4) (5) (6)
Deviation 0.14∗∗ 0.23∗∗∗ 0.16∗∗∗ 0.16∗∗∗ 0.18∗∗∗ 0.15∗∗∗

(0.06) (0.06) (0.05) (0.05) (0.06) (0.06)
Observations 2030 2246 2246 2246 2246 2246
Adjusted R2 0.019 0.053 0.025 0.025 0.031 0.022

Panel B.II: Post-crisis sample from 2010 to 2018 with controls
Contract (n) (1) (2) (3) (4) (5) (6)
Deviation 0.22∗∗∗ 0.27∗∗∗ 0.14∗∗∗ 0.13∗∗∗ 0.15∗∗∗ 0.12∗∗

(0.05) (0.06) (0.04) (0.05) (0.05) (0.05)
VIX 0.30∗∗∗ 0.15 0.06 0.02 -0.01 -0.01

(0.10) (0.12) (0.12) (0.12) (0.11) (0.11)
RV -0.12 -0.08 -0.11 -0.09 -0.05 -0.06

(0.10) (0.11) (0.12) (0.12) (0.11) (0.11)
RMRF 0.01 -0.02 0.00 0.01 0.01 0.03

(0.06) (0.05) (0.05) (0.05) (0.05) (0.06)
VLM -0.03 0.05 -0.05 -0.05 -0.03 0.01

(0.05) (0.05) (0.04) (0.05) (0.05) (0.04)
Observations 2030 2246 2246 2246 2246 2246
Adjusted R2 0.054 0.063 0.029 0.032 0.033 0.027

Newey-West SEs with 15 lags in parentheses, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Table 7: Deviation is Less Significant for Variance Swap Forward Returns
Hedged with the Stock Market, Especially in Post-Crisis Period

This table reports return predictability regressions for variance swap forwards that are hedged with
stock market returns over a weekly horizon (h=5). The regressions are analogous to Table 5. In
comparison to VIX futures, the deviation measure is less significant at predicting hedged variance
swap forward returns, particularly during the post-crisis period where there is lack of significance
for some contracts. These results provide less evidence that the deviation measure is identifying
mispricing of variance swap forwards relative to VIX futures. That said, the deviation measure does
predict hedged variance swap forward returns for most contracts and it tends to have the expected,
negative sign, indicating that the evidence is somewhat mixed.

Return Predictability Regression: RV SFt+h,n − βnRMRFt+h,n = γ′nxt,n + εt+h,n

Panel A.I: Full sample from 2004 to 2018
Contract (n) (1) (2) (3) (4) (5) (6)
Deviation 0.05 0.13 -0.15∗∗∗ -0.11∗∗∗ -0.11∗∗ -0.16∗∗∗

(0.09) (0.09) (0.05) (0.03) (0.06) (0.05)
Observations 3356 3698 3698 3644 3207 3200
Adjusted R2 0.002 0.016 0.022 0.012 0.012 0.025

Panel A.II: Full sample from 2004 to 2018 with controls
Contract (n) (1) (2) (3) (4) (5) (6)
Deviation 0.03 0.07 -0.17∗∗∗ -0.16∗∗∗ -0.15∗∗∗ -0.21∗∗∗

(0.08) (0.06) (0.05) (0.04) (0.05) (0.06)
VIX 0.34∗∗ 0.33 0.29 0.26 0.11 -0.01

(0.15) (0.23) (0.20) (0.20) (0.17) (0.15)
RV -0.45∗∗ -0.46 -0.57∗∗ -0.55∗∗ -0.15 -0.10

(0.23) (0.30) (0.28) (0.27) (0.23) (0.17)
RMRF 0.04 0.04 0.00 0.09 0.01 -0.06

(0.06) (0.08) (0.06) (0.08) (0.10) (0.08)
VLM 0.02 0.02 -0.08∗∗∗ -0.05∗∗ -0.09∗∗∗ -0.06∗

(0.03) (0.03) (0.03) (0.02) (0.03) (0.03)
Observations 3356 3698 3698 3644 3207 3200
Adjusted R2 0.032 0.048 0.123 0.115 0.019 0.038

Panel B.I: Post-crisis sample from 2010 to 2018
Contract (n) (1) (2) (3) (4) (5) (6)
Deviation -0.12∗∗∗ 0.00 -0.04 -0.02 -0.12∗∗ -0.16∗∗∗

(0.04) (0.06) (0.05) (0.06) (0.05) (0.05)
Observations 2030 2246 2246 2246 2246 2246
Adjusted R2 0.014 -0.000 0.001 0.000 0.015 0.026

Panel B.II: Post-crisis sample from 2010 to 2018 with controls
Contract (n) (1) (2) (3) (4) (5) (6)
Deviation -0.05 0.01 -0.08∗ -0.07 -0.14∗∗∗ -0.18∗∗∗

(0.05) (0.06) (0.04) (0.06) (0.05) (0.05)
VIX 0.16∗ 0.11 0.11 0.14 0.03 -0.03

(0.10) (0.12) (0.13) (0.13) (0.12) (0.11)
RV -0.09 -0.08 -0.18 -0.20∗ -0.05 -0.07

(0.10) (0.11) (0.12) (0.12) (0.10) (0.10)
RMRF -0.06 -0.03 0.01 0.03 -0.02 -0.04

(0.05) (0.06) (0.06) (0.06) (0.06) (0.06)
VLM -0.00 -0.04 -0.18∗∗∗ -0.11∗∗ -0.06 -0.04

(0.04) (0.05) (0.04) (0.05) (0.04) (0.04)
Observations 2030 2246 2246 2246 2246 2246
Adjusted R2 0.025 0.005 0.037 0.016 0.017 0.036

Newey-West SEs with 15 lags in parentheses, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Table 8: Summary Statistics for Relative Value Trading Strategies

This table reports summary statistics for weekly returns from the relative value trading strategies
based on the deviation measure in comparison to stock market and volatility factor returns. Panel
A reports statistics for the relative value strategy using VIX futures returns hedged with variance
swap forward returns (1), stock market returns (2), and stock market returns including transaction
costs (3). Columns (4-6) report results for a post-crisis sample from 2010 to 2018. Panel B reports
analogous statistics for stock market returns (RMRF), receiving fixed in one-month variance swap
forwards (VS1), and selling the front month VIX futures contract (VX1).

Weekly Return Summary Statistics

Panel A: VIX futures trading strategy levered for 10% annualized volatility
Specification (1) (2) (3) (4) (5) (6)
Hedge VSF RMRF RMRF VSF RMRF RMRF
Transaction Costs No No Yes No No Yes
Post-Crisis No No No Yes Yes Yes
Mean 0.58 0.27 0.14 0.54 0.21 0.16
Standard Deviation 1.39 1.39 1.39 1.39 1.39 1.39
Sharpe Ratio 0.42 0.20 0.10 0.39 0.15 0.12
t-statistic 14.54 6.29 3.26 10.69 3.81 2.98
Skewness 0.71 1.41 2.09 1.25 1.61 2.03
Kurtosis 18.44 13.07 20.62 26.12 17.32 23.82
Minimum -11.58 -7.04 -8.50 -9.64 -7.27 -9.67
25th-Percentile -0.06 -0.39 -0.27 -0.08 -0.40 -0.23
Median 0.51 0.16 0.00 0.51 0.13 0.00
75th-Percentile 1.15 0.84 0.50 1.12 0.75 0.54
Maximum 16.48 13.91 15.17 18.02 14.36 17.27
Negative Percent 26.66 39.99 32.64 27.29 41.94 31.30
Sortino Ratio 0.87 0.42 0.20 0.79 0.30 0.23
Maximum Drawdown 6.72 9.67 16.68 6.30 9.96 8.17
Leverage (percentage) 11.62 7.87 5.78 12.71 8.12 6.57
CAPM α-to-margin 4.90 3.61 2.64 4.12 2.74 2.75
Observations 3698 3698 3698 2246 2246 2246

Panel B: Stock market, variance swap, and VIX futures factor returns
Specification (1) (2) (3) (4) (5) (6)
Return RMRF VS1 VX1 RMRF VS1 VX1
Post-Crisis No No No Yes Yes Yes
Mean 0.17 0.03 0.19 0.24 0.03 0.23
Standard Deviation 2.37 0.21 2.20 2.08 0.14 2.14
Sharpe Ratio 0.07 0.15 0.09 0.11 0.20 0.11
t-statistic 2.21 4.19 2.54 2.90 5.40 2.68
Skewness -0.92 -0.97 -1.71 -0.80 -1.98 -1.29
Kurtosis 11.74 68.08 15.17 6.57 30.99 12.50
Minimum -19.81 -3.03 -21.04 -14.47 -1.43 -19.70
25th-Percentile -0.86 -0.00 -0.40 -0.71 -0.00 -0.45
Median 0.32 0.03 0.21 0.38 0.03 0.25
75th-Percentile 1.44 0.07 1.15 1.45 0.06 1.25
Maximum 18.26 2.84 13.02 9.00 0.98 10.35
Negative Percent 41.24 26.04 33.59 39.31 26.40 33.53
Sortino Ratio 0.11 0.21 0.12 0.18 0.29 0.16
Maximum Drawdown 50.76 5.74 45.03 16.38 1.18 16.69
Observations 3698 3698 3698 2246 2246 2246
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Table 9: Alpha-to-Margin Estimates for the Relative Value Trading Strategies

This table reports weekly factor return regressions for the relative value trading strategies using the
maximum leverage to required initial margin for VIX futures. The alpha-to-margin estimates are
large and significant across hedging portfolios, factor model specifications, and sample periods.

Factor Model CAPM FFC4 FFCV6 CAPM FFC4 FFCV6
Specification (1) (2) (3) (4) (5) (6)
Panel A: Variance Swap Hedge
Alpha 4.90∗∗∗ 4.92∗∗∗ 4.83∗∗∗ 4.12∗∗∗ 4.16∗∗∗ 4.02∗∗∗

(0.35) (0.35) (0.39) (0.43) (0.44) (0.59)
RMRF 0.37 0.28 0.01 0.44 0.32 -0.09

(0.32) (0.38) (0.35) (0.42) (0.47) (0.43)
HML -0.06 -0.04 0.02 -0.04

(0.26) (0.25) (0.39) (0.38)
SMB 0.32 0.36 0.55 0.60

(0.36) (0.35) (0.47) (0.47)
MOM -0.14 -0.11 -0.16 -0.22

(0.19) (0.19) (0.30) (0.29)
VS1 4.06 9.42

(4.52) (16.40)
VX1 0.04 -0.07

(0.44) (0.82)
Adjusted R2 0.005 0.006 0.008 0.006 0.009 0.013
Panel B: Stock Market Hedge
Alpha 3.61∗∗∗ 3.65∗∗∗ 4.00∗∗∗ 2.74∗∗∗ 2.85∗∗∗ 3.23∗∗∗

(0.54) (0.55) (0.55) (0.72) (0.72) (0.72)
RMRF -0.74∗∗ -0.92∗∗ 1.21∗∗ -0.78 -0.89 2.12∗∗∗

(0.31) (0.39) (0.50) (0.56) (0.62) (0.61)
HML -0.45 -0.50 -1.60∗∗ -1.28∗∗∗

(0.46) (0.40) (0.63) (0.49)
SMB 0.60 0.31 0.91 0.64

(0.56) (0.51) (0.78) (0.66)
MOM -0.55∗ -0.54∗ -1.59∗∗∗ -1.38∗∗∗

(0.33) (0.30) (0.54) (0.46)
VS1 -7.93∗ -14.90

(4.58) (9.92)
VX1 -2.38∗∗∗ -2.96∗∗∗

(0.71) (0.93)
Adjusted R2 0.010 0.014 0.069 0.009 0.034 0.119
Panel C: Stock Market Hedge with Transaction Costs
Alpha 2.64∗∗∗ 2.72∗∗∗ 3.24∗∗∗ 2.75∗∗∗ 2.93∗∗∗ 3.55∗∗∗

(0.74) (0.75) (0.73) (0.87) (0.87) (0.81)
RMRF -0.98∗∗ -1.40∗∗∗ 1.98∗∗∗ -1.20∗ -1.38∗ 2.97∗∗∗

(0.39) (0.52) (0.73) (0.68) (0.76) (0.81)
HML -0.28 -0.35 -1.93∗∗ -1.45∗∗

(0.70) (0.59) (0.79) (0.60)
SMB 1.48∗∗ 1.02 1.35 0.96

(0.74) (0.64) (0.96) (0.80)
MOM -0.79∗ -0.76∗∗ -2.24∗∗∗ -1.92∗∗∗

(0.42) (0.37) (0.62) (0.50)
VS1 -10.48 -27.37∗∗

(7.88) (11.13)
VX1 -3.95∗∗∗ -3.91∗∗∗

(1.13) (1.40)
Adjusted R2 0.009 0.016 0.093 0.013 0.045 0.155
Post-Crisis No No No Yes Yes Yes
Observations 3698 3698 3698 2246 2246 2246
Newey-West SEs with 15 lags in parentheses, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Table 10: The No-Arbitrage Deviation Measure is Decreasing in Risk
and Increasing in Demand Pressure for VIX Futures

This table reports a panel regression of the deviation measure onto changes in different risk and
demand variables over a one-week horizon h = 5. Specifications 1-3 control for the lagged deviation.
Specifications 4-6 add controls variables and fixed effects. The control variables include the contract-
specific time-to-maturity, open interest, and initial margin and the lagged VIX index to proxy for
the economic environment. The fixed effects include the contract, contract number, and calendar
year. The explanatory variables are z-scored for ease of interpretation. Across the different variables
proxying for risk and demand and regression specifications, the results indicate that the deviation
measure is decreasing in risk and increasing in demand.

Deviationt+h,n = β∆xt+h + ρDeviationt,n + δControlst + FEs + εt+h,n

Panel A: Risk Factors from 2007 to 2018
Specification (1) (2) (3) (4) (5) (6)
Explanatory Variable RMRF RV VIX RMRF RV VIX
∆xt+h 0.10∗∗∗ -0.05∗∗∗ -0.14∗∗∗ 0.11∗∗∗ -0.25∗∗∗ -0.15∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.05) (0.02)
Deviationt,n 0.79∗∗∗ 0.79∗∗∗ 0.81∗∗∗ 0.60∗∗∗ 0.61∗∗∗ 0.60∗∗∗

(0.02) (0.02) (0.02) (0.03) (0.03) (0.03)
Observations 17689 17689 17689 17689 17689 17689
Adjusted R2 0.655 0.646 0.667 0.694 0.695 0.707
Controls and FEs No No No Yes Yes Yes

Panel B: Risk Factors from 2010 to 2018
Specification (1) (2) (3) (4) (5) (6)
Explanatory Variable RMRF RV VIX RMRF RV VIX
∆xt+h 0.17∗∗∗ -0.06∗∗ -0.17∗∗∗ 0.17∗∗∗ -0.33∗∗∗ -0.18∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.05) (0.02)
Deviationt,n 0.85∗∗∗ 0.84∗∗∗ 0.86∗∗∗ 0.66∗∗∗ 0.64∗∗∗ 0.65∗∗∗

(0.02) (0.02) (0.01) (0.03) (0.03) (0.03)
Observations 13260 13260 13260 13260 13260 13260
Adjusted R2 0.749 0.724 0.756 0.789 0.782 0.794
Controls and FEs No No No Yes Yes Yes

Panel C: Demand Factors from 2010 to 2018
Specification (1) (2) (3) (4) (5) (6)
Explanatory Variable Dealer ETP Option Dealer ETP Option
∆xt+h 0.04∗∗∗ 0.02 0.05∗∗∗ 0.05∗∗∗ 0.03∗∗ 0.07∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Deviationt,n 0.85∗∗∗ 0.85∗∗∗ 0.85∗∗∗ 0.67∗∗∗ 0.67∗∗∗ 0.67∗∗∗

(0.02) (0.02) (0.02) (0.03) (0.03) (0.03)
Observations 13260 13260 13260 13260 13260 13260
Adjusted R2 0.724 0.723 0.725 0.765 0.764 0.767
Controls and FEs No No No Yes Yes Yes

SEs double-clustered by date and contract, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Figure 1: Equity Volatility Market Size and Dealer Position
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Levered Fund: Corr(D,L) =-91%

Asset Manager: Corr(D,A) =-4%

Other Reportable: Corr(D,O) =-53%

This figure provides an overview of equity volatility market size and investor positioning. The
S&P 500 index options and VIX futures markets have experienced substantial growth over the last
decade. The index options market has been much larger than the VIX futures market throughout
the sample (top left). The growth in the VIX futures market has coincided with growth in the
VIX ETP market starting in 2009 (top right). Focusing on the behavior of certain traders, dealer
positions in VIX futures are highly related to demand for VIX ETPs (bottom left). Within the VIX
futures market, dealers and leveraged funds generally take large and opposing positions (bottom
right). The break in the time-series of CoT positions corresponds to a period in early 2009 when
VIX futures open interest was low and the breakdown was not reported. One interpretation of the
position data is that retail demand for ETPs is hedged by dealers against leveraged funds.
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Figure 2: Variance Swap Forward Rate Estimation
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This figure illustrates the computation of one-month variance swap forward rates for the deviation
measure. The variance swap curve in blue is decomposed into an instantaneous forward curve in
green assuming flat forward rates between the observed maturities. The one-month forward rates at
VIX futures maturity dates are an average of the green variance swap forward curve over the next
month. Variance swap rates and forward rates in these plots are expressed in annualized variance
units.

46



Figure 3: Examples of Law of One Price Violations
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The deviation measure is the difference between the VIX futures price in blue and one-month
variance swap forward rate in red both expressed in annualized volatility units. The top plot
illustrates examples of static arbitrage opportunities in which the prices of VIX futures are above
the upper bound. An arbitrageur could lock in a riskless profit with no capital outlay by selling the
expensive VIX futures contracts with the hedge ratio from the paper, paying fixed in the variance
swap forwards, and holding the position until maturity. The bottom plot illustrates an example
when the prices of VIX futures are significantly below the upper bound and an estimate of the
lower bound. In this case, an arbitrageur could lock in a profit by buying VIX futures and receiving
fixed in volatility swap forwards. The lower bound is the upper bound in red minus the difference
between an estimate of the upper bound and lower bound from a term-structure model.
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Figure 4: Deviation of VIX Futures from the Law of One Price

This figure plots the average deviation and average absolute deviation for the front six contracts
from March 2004 to December 2018. The deviation measure for the n-th contract is the difference
between the VIX futures price and its no-arbitrage upper bound, Deviationt,n = Futt,n − Fwdt,n.
Positive values are law of one price violations. Gray shading indicates NBER recessions.
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Figure 5: Deviation of the Front Contract from the Law of One Price

This figure plots the deviation measure for the front contract alongside the VIX futures and variance
swap forward prices that are used to compute the deviation measure. While the futures price and
forward price tend to track each other closely, there are periods with prolonged and significant law
of one price deviations during the sample period.
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Figure 6: Performance of Relative Value Strategy Based on Deviation Measure

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19

Date

 0

 5

10

15

20

25

C
u
m

u
la

ti
v
e
 S

u
m

 o
f 
W

e
e
k
ly

 R
e
tu

rn
s

NBER Recession

Relative Value Returns: Sharpe Ratio = 3.00

Stock Market Returns: Sharpe Ratio = 0.51

This figure plots the performance of the relative value trading strategy in VIX futures and variance
swap forwards against stock market returns. The relative value strategy goes long (short) VIX
futures when the deviation measure exceeds a low (high) threshold of τ = .50 z-scores for the front
six contracts and hedges with variance swap forwards. Each trade is held for a one-week horizon,
with the strategy forming an equally-weighted portfolio when multiple contracts are traded on the
same day. The plot reports the cumulative sum of weekly returns for the strategy and stock market
which are normalized to 10% annualized volatility for comparison. The relative value strategy earns
a large Sharpe ratio and exhibits low drawdowns compared to the stock market.
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Figure 7: Robustness of Relative Value Trading Strategy
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This figure illustrates the robustness of the relative value trading strategy to hedging with stock
market returns, including transaction costs, trading different numbers of contracts, and varying the
deviation-based trading threshold. The top plot reports the time-series of cumulative returns for the
baseline strategies discussed in the paper in comparison to the stock market. The plot normalizes
the annualized volatility of each series to 10% for comparison. The bottom plot reports the Sharpe
ratios for the baseline strategies varying the number of contracts traded and threshold for trading.
Across specifications, the relative value trading strategy earns a large Sharpe ratio and produces
returns that are largely uncorrelated with traditional risk factors.
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Figure 8: Time-Series of Deviation, VIX, and Dealer Net Position for VAR
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This figure plots the average deviation measure against the VIX index and dealer net position at a
weekly frequency from 2010 to 2018 (T = 469). The VAR is estimated using these three variables,
yt =[Deviationt VIXt Dealer Net Positiont], which are standardized for comparison and ease of
interpretation. The deviation measure is negatively correlated with the VIX index which serves as a
proxy for risk (top plot). The deviation measure is positively correlated with the dealer net position
which serves as a proxy for demand to buy VIX futures (bottom plot).
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Figure 9: Impulse Response Functions of the No-Arbitrage Deviation Measure and
Dealer Net Position to Shocks in the VIX index and Dealer Net Position
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This figure reports the impulse response functions (IRFs) from the VAR. The IRFs are identified from
a Cholesky decomposition with the ordering: VIX, DNP, DEV. The VAR is estimated using weekly
data from 2010 to 2018 (T = 469). The IRFs in the first row show that DEV is decreasing (increasing)
in VIX (DNP) shocks. The IRFs in the second row show that the DNP is decreasing (increasing) in
VIX (DEV) shocks. The IRFs in the third row show that the VIX exhibits little response to DEV
or DNP shocks, except for a short term-response to DEV shocks that becomes insignificant after a
few weeks. The 95% pointwise confidence intervals in gray are block bootstrapped.
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Figure 10: Event Study of Deviation Measure Around VIX Futures Margin Changes,
FOMC days, Nonfarm Payrolls, Month-End, and Quarter-End Dates
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This figure plots the event time reaction of the average deviation measure and VIX index to changes
in the initial margin for the front month VIX futures contract, FOMC announcements, non-farm
payrolls announcements, end-of-month dates, and end-of-quarter dates. The figure reports the
change in the VIX index in red and the change in the average deviation measure across the front
six contracts in blue with a 95% pointwise confidence interval in gray for the ten days before and
after the event.
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Table A.1: Correlation of Alternative Deviation Measures

This table presents the correlation of the baseline deviation measure with alternative specifications.
Panel A considers different ways of removing the bias from the upper bound, using a regression-
based model (A.I) or term-structure model (A.II). Panel B considers alternative data sources. B.I
uses VIX settlement prices that are not synchronized with SPX option quotes during the later years
in the sample. B.II through B.V use alternative data sources for computing variance swap forward
rates. The columns report the correlation for different contracts and for the average deviation across
contracts. Overall, the alternative measures are highly correlated with the baseline measure.

Correlation of Baseline Deviation Measure with Alternative Measures
Contract (n) (1) (2) (3) (4) (5) (6) Avg.

Panel A: Convexity Adjustments

Panel A.I: Regression-based convexity adjustment (Mar04-Dec18)
Correlation in levels 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Correlation in monthly changes 1.00 1.00 1.00 1.00 1.00 0.99 1.00
Correlation in weekly changes 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel A.II: Term-structure model convexity adjustment (Mar04-Dec18)
Correlation in levels 0.99 0.97 0.97 0.97 0.97 0.97 0.96
Correlation in monthly changes 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Correlation in weekly changes 0.99 0.99 0.99 0.99 0.99 1.00 0.98

Panel B: Alternative Data Sources

Panel B.I: VIX settlement prices, not synchronized (Mar04-Dec18)
Correlation in levels 0.96 0.96 0.98 0.99 0.99 0.99 0.98
Correlation in monthly changes 0.95 0.94 0.96 0.97 0.97 0.98 0.95
Correlation in weekly changes 0.94 0.90 0.93 0.94 0.95 0.97 0.89

Panel B.II: Bloomberg data for VS forward (Nov08-Dec18)
Correlation in levels 0.66 0.69 0.71 0.77 0.85 0.89 0.87
Correlation in monthly changes 0.72 0.63 0.64 0.72 0.70 0.78 0.81
Correlation in weekly changes 0.69 0.48 0.66 0.66 0.67 0.73 0.72

Panel B.III: CBOE VIX, VIX3M, VIX6M for VS forward (Nov08-Dec18)
Correlation in levels 0.68 0.61 0.85 0.85 0.88 0.86 0.93
Correlation in monthly changes 0.74 0.43 0.80 0.80 0.81 0.74 0.89
Correlation in weekly changes 0.71 0.15 0.80 0.69 0.70 0.58 0.80

Panel B.IV: Hedge Fund OTC quotes for VS forward (Mar04-Nov13)
Correlation in levels 0.41 0.53 0.68 0.82 0.83 0.77 0.71
Correlation in monthly changes 0.46 0.41 0.51 0.66 0.65 0.66 0.53
Correlation in weekly changes 0.26 0.27 0.40 0.51 0.51 0.62 0.27

Panel B.V: Markit OTC quotes for VS forward (monthly Sep06-Dec15)
Correlation in Levels 0.64 0.74 0.80 0.85 0.75 0.79 0.87
Correlation in monthly changes 0.67 0.72 0.74 0.82 0.81 0.82 0.88
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Table A.2: Hedge Ratios for Return Predictability Regressions

This table reports the hedge ratios and explanatory power from the first stage in the return pre-
dictability regressions for Tables 5, 6, and 7. The hedge ratios are significant across contracts and
sample periods. Compared to the stock market, variance swap forwards provide more explanatory
power for VIX futures returns, particularly for the longer-dated contracts.

Hedge Ratios for Weekly Return Predictability Regressions

Contract (n) (1) (2) (3) (4) (5) (6)

Panel A: VIX Futures onto Variance Swap Forwards (Table 5)

Panel A.I: Sample from 2004 to 2018
βn 10.36∗∗∗ 14.23∗∗∗ 14.48∗∗∗ 14.31∗∗∗ 14.98∗∗∗ 14.67∗∗∗

(1.50) (1.16) (1.14) (1.14) (0.78) (0.87)
Observations 3356 3698 3698 3644 3207 3200
Adjusted R2 0.574 0.770 0.757 0.757 0.715 0.664

Panel A.II: Sample from 2010 to 2018
βn 15.28∗∗∗ 21.04∗∗∗ 19.65∗∗∗ 18.53∗∗∗ 18.09∗∗∗ 16.64∗∗∗

(1.69) (0.83) (0.59) (0.54) (0.62) (0.51)
Observations 2030 2246 2246 2246 2246 2246
Adjusted R2 0.627 0.845 0.830 0.824 0.793 0.760

Panel B: VIX Futures onto Stock Market (Table 6)

Panel B.I: Sample from 2004 to 2018
βn 0.73∗∗∗ 0.58∗∗∗ 0.45∗∗∗ 0.38∗∗∗ 0.34∗∗∗ 0.30∗∗∗

(0.04) (0.03) (0.03) (0.02) (0.02) (0.02)
Observations 3356 3698 3698 3644 3207 3200
Adjusted R2 0.574 0.566 0.551 0.535 0.519 0.496

Panel B.II: Sample from 2010 to 2018
βn 0.84∗∗∗ 0.70∗∗∗ 0.56∗∗∗ 0.47∗∗∗ 0.41∗∗∗ 0.37∗∗∗

(0.05) (0.03) (0.02) (0.02) (0.02) (0.02)
Observations 2030 2246 2246 2246 2246 2246
Adjusted R2 0.592 0.676 0.669 0.651 0.620 0.606

Panel C: Variance Swap Forwards onto Stock Market (Table 7)

Panel C.I: Sample from 2004 to 2018
βn 0.05∗∗∗ 0.03∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗

(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)
Observations 3356 3698 3698 3644 3207 3200
Adjusted R2 0.546 0.451 0.388 0.411 0.444 0.403

Panel C.II: Sample from 2010 to 2018
βn 0.05∗∗∗ 0.03∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Observations 2030 2246 2246 2246 2246 2246
Adjusted R2 0.642 0.650 0.609 0.600 0.600 0.568

Newey-West SEs with 3 · h lags in parentheses, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Table A.3: Predicting VIX Futures Hedged Returns with LOOP Deviations:
Robustness to Sample Period and Forecast Horizon

This table reports the predictability of the deviation measure for VIX futures returns hedged with
variance swap forward returns over one-day, one-week, and one-month horizons across sample peri-
ods.

Return Predictability Regressions: RV IXt+h,n − βnRV St+h,n = γ′nxt,n + εt+h,n
Contract (n) (1) (2) (3) (4) (5) (6)

Panel A.I: Sample period 2004-2018, daily returns h = 1
Deviation 0.21∗∗∗ 0.17∗∗∗ 0.21∗∗∗ 0.18∗∗∗ 0.27∗∗∗ 0.27∗∗∗

(0.04) (0.03) (0.04) (0.02) (0.04) (0.05)
Observations 3356 3698 3698 3644 3207 3200
Adjusted R2 0.044 0.030 0.042 0.031 0.073 0.072

Panel A.II: Sample period 2004-2018, weekly returns h = 5
Deviation 0.19∗∗∗ 0.23∗∗∗ 0.27∗∗∗ 0.25∗∗∗ 0.36∗∗∗ 0.38∗∗∗

(0.03) (0.05) (0.05) (0.03) (0.07) (0.08)
Observations 3356 3698 3698 3644 3207 3200
Adjusted R2 0.038 0.051 0.075 0.063 0.129 0.145

Panel A.III: Sample period 2004-2018, monthly returns h = 21
Deviation 0.26∗∗∗ 0.24∗∗∗ 0.29∗∗∗ 0.29∗∗∗ 0.41∗∗∗ 0.45∗∗∗

(0.09) (0.06) (0.05) (0.05) (0.08) (0.07)
Observations 3344 3685 3685 3631 3194 3187
Adjusted R2 0.068 0.059 0.084 0.084 0.167 0.198

Panel B.I: Sample period 2010-2018, daily returns h = 1
Deviation 0.22∗∗∗ 0.19∗∗∗ 0.17∗∗∗ 0.17∗∗∗ 0.30∗∗∗ 0.26∗∗∗

(0.06) (0.04) (0.03) (0.03) (0.03) (0.03)
Observations 2030 2246 2246 2246 2246 2246
Adjusted R2 0.046 0.037 0.030 0.027 0.092 0.068

Panel B.II: Sample period 2010-2018, weekly returns h = 5
Deviation 0.23∗∗∗ 0.34∗∗∗ 0.28∗∗∗ 0.26∗∗∗ 0.40∗∗∗ 0.38∗∗∗

(0.04) (0.03) (0.04) (0.04) (0.05) (0.05)
Observations 2030 2246 2246 2246 2246 2246
Adjusted R2 0.052 0.112 0.078 0.068 0.158 0.143

Panel B.III: Sample period 2010-2018, monthly returns h = 21
Deviation 0.14∗∗∗ 0.42∗∗∗ 0.44∗∗∗ 0.36∗∗∗ 0.51∗∗∗ 0.51∗∗∗

(0.05) (0.04) (0.07) (0.07) (0.06) (0.06)
Observations 2019 2233 2233 2233 2233 2233
Adjusted R2 0.019 0.174 0.196 0.133 0.255 0.256
Newey-West SEs with 3 · h lags in parentheses, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Table A.4: Predicting VIX Futures Hedged Returns with LOOP Deviations:
Robustness to Deviation Measure

This table reports the predictability of the deviation measure for VIX futures returns hedged with
variance swap forward returns over a weekly horizon (h=5) using different deviation measures. The
sample period varies depending on when the different data sources are available.

Return Predictability Regressions: RV IXt+h,n − βnRV St+h,n = γ′nxt,n + εt+h,n
Contract (n) (1) (2) (3) (4) (5) (6)
Panel A: Deviation from paper (h = 5, Mar04-Dec18, daily overlapping)
Deviation 0.19∗∗∗ 0.23∗∗∗ 0.27∗∗∗ 0.25∗∗∗ 0.36∗∗∗ 0.38∗∗∗

(0.03) (0.05) (0.05) (0.03) (0.07) (0.08)
Observations 3356 3698 3698 3644 3207 3200
Adjusted R2 0.038 0.051 0.075 0.063 0.129 0.145
Panel B: Deviation 1-day lag (h = 5, Mar04-Dec18, daily overlapping)
Deviation 1d Lag 0.16∗∗∗ 0.13∗∗∗ 0.16∗∗∗ 0.12∗∗∗ 0.20∗∗∗ 0.20∗∗∗

(0.06) (0.04) (0.03) (0.02) (0.04) (0.05)
Observations 3355 3682 3695 3636 3205 3037
Adjusted R2 0.011 0.022 0.049 0.041 0.105 0.108
Panel C: Deviation 5-day moving average (h = 5, Mar04-Dec18, daily overlapping)
Deviation 5d MA 0.17∗∗ 0.14∗∗∗ 0.16∗∗∗ 0.11∗∗∗ 0.20∗∗∗ 0.19∗∗∗

(0.07) (0.05) (0.03) (0.02) (0.04) (0.05)
Observations 3356 3698 3698 3644 3207 3200
Adjusted R2 0.012 0.025 0.050 0.035 0.106 0.097
Panel D: Regression-based convexity adjustment (h = 5, Mar04-Dec18, daily overlapping)
Deviation - Regression Adj. 0.29∗∗∗ 0.20∗∗∗ 0.19∗∗∗ 0.15∗∗∗ 0.22∗∗∗ 0.23∗∗∗

(0.05) (0.04) (0.03) (0.02) (0.04) (0.05)
Observations 3356 3698 3698 3644 3207 3200
Adjusted R2 0.037 0.051 0.073 0.061 0.122 0.135
Panel E: Term-structure model convexity adjustment (h = 5, Mar04-Dec18, daily overlapping)
Deviation - Term-Structure Adj. 0.29∗∗∗ 0.19∗∗∗ 0.17∗∗∗ 0.13∗∗∗ 0.23∗∗∗ 0.23∗∗∗

(0.05) (0.04) (0.03) (0.02) (0.05) (0.05)
Observations 3356 3698 3698 3644 3207 3200
Adjusted R2 0.036 0.046 0.061 0.047 0.134 0.134
Panel F: Bloomberg data (h = 5, Nov08-Dec18, daily overlapping)
Deviation Bloomberg Data 0.34∗∗∗ 0.18∗∗∗ 0.12∗∗∗ 0.08∗∗∗ 0.26∗∗∗ 0.20∗∗∗

(0.08) (0.05) (0.03) (0.03) (0.05) (0.05)
Observations 2267 2511 2511 2511 2511 2511
Adjusted R2 0.047 0.037 0.027 0.017 0.170 0.107
Panel G: VIX, VIX3M, VIX6M Indices (h = 5, Nov08-Dec18, daily overlapping)
Deviation VIX Indices 0.25∗∗∗ 0.14∗∗∗ 0.13∗∗∗ 0.12∗∗∗ 0.24∗∗∗ 0.17∗∗∗

(0.07) (0.05) (0.04) (0.03) (0.03) (0.04)
Observations 2266 2510 2510 2510 2510 2510
Adjusted R2 0.024 0.023 0.034 0.033 0.147 0.083
Panel H: Hedge Fund data (h = 5, Mar04-Nov13, daily overlapping)
Deviation Hedge Fund Data 0.12 0.08 0.02 0.07∗∗∗ 0.14∗∗∗ 0.15∗∗∗

(0.08) (0.05) (0.06) (0.03) (0.04) (0.05)
Observations 2209 2429 2429 2375 1938 1931
Adjusted R2 0.007 0.008 0.001 0.013 0.041 0.045
Panel I: Markit data (h = 21, Sep06-Dec15, end-of-month data, non-overlapping)
Deviation Markit Data 0.51∗∗ 0.11 0.06 0.11 0.28∗∗ 0.32∗∗

(0.23) (0.27) (0.11) (0.09) (0.14) (0.14)
Observations 108 108 108 108 108 108
Adjusted R2 0.019 -0.004 -0.006 0.009 0.076 0.117
Newey-West SEs with 3 · h lags in parentheses, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Table A.5: Predicting VIX Futures Hedged Returns with LOOP Deviations:
Robustness to Return Definition - Percentage Returns

This table reports the predictability of the deviation measure for VIX futures returns hedged with
variance swap forward returns over a weekly horizon (h=5) where returns are defined as the per-
centage return rather than the change in the futures price or change in the forward price. The
deviation measure remains significant in these regressions. As noted in the paper, capturing per-
centage returns for VIX futures and variance swap forwards requires a dynamic trading strategy
that may entail additional transaction costs in practice.

Predictability Regression: RV IXt+h,n − βnRV St+h,n = γ′nxt,n + εt+h,n

Return Definitions: RV IXt+h,n ≡
Futt,n−Futt+h,n

Futt,n
, RV SFt+h,n ≡

Ft,n−Ft+h,n

Ft,n

Contract (n) (1) (2) (3) (4) (5) (6)

Panel A.I: Full sample from 2004 to 2018
Deviation 0.19∗∗∗ 0.34∗∗∗ 0.37∗∗∗ 0.33∗∗∗ 0.32∗∗∗ 0.35∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.05) (0.05)
Observations 3356 3698 3698 3644 3207 3200
Adjusted R2 0.036 0.114 0.140 0.112 0.101 0.122

Panel A.II: Full sample from 2004 to 2018 with controls
Deviation 0.23∗∗∗ 0.42∗∗∗ 0.43∗∗∗ 0.38∗∗∗ 0.30∗∗∗ 0.37∗∗∗

(0.04) (0.04) (0.03) (0.04) (0.05) (0.05)
VIX 0.22∗∗ 0.14∗ 0.17∗ 0.10 0.01 0.20∗∗

(0.09) (0.08) (0.09) (0.08) (0.10) (0.10)
RV -0.17∗∗ -0.05 0.00 0.06 -0.13 -0.19∗

(0.08) (0.07) (0.09) (0.08) (0.11) (0.10)
RMRF -0.02 -0.09∗∗∗ -0.03 -0.09∗∗∗ -0.02 0.01

(0.02) (0.03) (0.04) (0.03) (0.04) (0.04)
VLM -0.04 0.14∗∗∗ 0.16∗∗∗ 0.06∗ 0.13∗∗∗ 0.17∗∗∗

(0.03) (0.04) (0.03) (0.03) (0.03) (0.04)
Observations 3356 3698 3698 3644 3207 3200
Adjusted R2 0.045 0.150 0.187 0.150 0.139 0.154

Panel B.I: Post-crisis sample from 2010 to 2018
Deviation 0.14∗∗∗ 0.29∗∗∗ 0.30∗∗∗ 0.31∗∗∗ 0.37∗∗∗ 0.37∗∗∗

(0.04) (0.03) (0.04) (0.04) (0.05) (0.05)
Observations 2030 2246 2246 2246 2246 2246
Adjusted R2 0.019 0.081 0.090 0.096 0.135 0.133

Panel B.II: Post-crisis sample from 2010 to 2018 with controls
Deviation 0.21∗∗∗ 0.37∗∗∗ 0.35∗∗∗ 0.33∗∗∗ 0.33∗∗∗ 0.37∗∗∗

(0.03) (0.05) (0.04) (0.05) (0.05) (0.05)
VIX 0.21∗∗∗ 0.21∗∗∗ 0.20∗∗ 0.04 -0.10 0.02

(0.08) (0.07) (0.09) (0.09) (0.10) (0.10)
RV -0.08 -0.07 0.04 0.10 -0.06 -0.02

(0.07) (0.06) (0.08) (0.08) (0.09) (0.09)
RMRF -0.03 -0.07∗∗ -0.03 -0.07 -0.03 0.01

(0.03) (0.04) (0.04) (0.04) (0.05) (0.05)
VLM -0.03 0.11∗∗ 0.17∗∗∗ -0.00 -0.01 0.09∗∗

(0.04) (0.05) (0.03) (0.05) (0.04) (0.04)
Observations 2030 2246 2246 2246 2246 2246
Adjusted R2 0.038 0.127 0.173 0.120 0.154 0.140
Newey-West SEs with 15 lags in parentheses, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Table A.6: Predicting VIX Futures Hedged Returns with LOOP Deviations:
Robustness to Return Definition - Log Returns

This table reports the predictability of the deviation measure for VIX futures returns hedged with
variance swap forward returns over a weekly horizon (h=5) where returns are defined as log-returns
rather than the change in the futures price or change in the forward price. The deviation measure
remains significant in these regressions. As noted in the paper, capturing log-returns for VIX
futures and variance swap forwards requires a dynamic trading strategy that may entail additional
transaction costs in practice.

Predictability Regression: RV IXt+h,n − βnRV St+h,n = γ′nxt,n + εt+h,n

Return Definition: RV IXt+h,n = ln(Futt,n/Futt+h,n), RV SFt+h,n ≡ ln(Ft,n/Ft+h,n)

Contract (n) (1) (2) (3) (4) (5) (6)

Panel A.I: Full sample from 2004 to 2018
Deviation 0.27∗∗∗ 0.42∗∗∗ 0.41∗∗∗ 0.35∗∗∗ 0.33∗∗∗ 0.35∗∗∗

(0.03) (0.04) (0.03) (0.03) (0.05) (0.05)
Observations 3356 3698 3698 3644 3207 3200
Adjusted R2 0.074 0.174 0.169 0.125 0.108 0.124

Panel A.II: Full sample from 2004 to 2018 with controls
Deviation 0.28∗∗∗ 0.49∗∗∗ 0.46∗∗∗ 0.39∗∗∗ 0.30∗∗∗ 0.38∗∗∗

(0.03) (0.04) (0.03) (0.04) (0.05) (0.05)
VIX 0.16∗ 0.13 0.16 0.11 -0.02 0.19∗

(0.09) (0.09) (0.10) (0.09) (0.10) (0.11)
RV -0.11 -0.02 -0.01 0.03 -0.13 -0.17∗

(0.08) (0.09) (0.10) (0.08) (0.10) (0.10)
RMRF 0.00 -0.07∗∗ -0.03 -0.07∗∗ -0.01 0.02

(0.03) (0.03) (0.04) (0.03) (0.04) (0.04)
VLM -0.11∗∗∗ 0.11∗∗ 0.16∗∗∗ 0.05 0.13∗∗∗ 0.17∗∗∗

(0.03) (0.04) (0.03) (0.03) (0.03) (0.04)
Observations 3356 3698 3698 3644 3207 3200
Adjusted R2 0.090 0.201 0.213 0.156 0.149 0.155

Panel B.I: Post-crisis sample from 2010 to 2018
Deviation 0.23∗∗∗ 0.40∗∗∗ 0.35∗∗∗ 0.33∗∗∗ 0.38∗∗∗ 0.37∗∗∗

(0.04) (0.03) (0.04) (0.04) (0.05) (0.05)
Observations 2030 2246 2246 2246 2246 2246
Adjusted R2 0.055 0.160 0.119 0.112 0.145 0.137

Panel B.II: Post-crisis sample from 2010 to 2018 with controls
Deviation 0.26∗∗∗ 0.48∗∗∗ 0.40∗∗∗ 0.36∗∗∗ 0.34∗∗∗ 0.37∗∗∗

(0.03) (0.05) (0.04) (0.05) (0.05) (0.06)
VIX 0.15∗ 0.22∗∗ 0.19∗ 0.02 -0.13 0.01

(0.08) (0.11) (0.10) (0.09) (0.10) (0.10)
RV -0.05 -0.06 0.07 0.12 -0.05 -0.01

(0.08) (0.08) (0.09) (0.09) (0.10) (0.09)
RMRF -0.00 -0.05 -0.02 -0.07 -0.02 0.01

(0.04) (0.04) (0.04) (0.04) (0.04) (0.05)
VLM -0.08∗∗ 0.07 0.19∗∗∗ -0.00 -0.01 0.09∗∗

(0.04) (0.07) (0.04) (0.05) (0.04) (0.04)
Observations 2030 2246 2246 2246 2246 2246
Adjusted R2 0.072 0.197 0.210 0.133 0.169 0.144
Newey-West SEs with 15 lags in parentheses, ∗ p<.10, ∗∗ p<.05, ∗∗∗ p<.01
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Figure A.1: Examples of VIX Futures Law of One Price Deviations
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This figure compares VIX futures prices at 4pm and at 4:15pm (settlement) to variance swap forward
rates estimated from a variety of alternative data sources on two different days. The results illustrate
the robustness of Figure 3. Regardless of which of the four data sources are used to compute variance
swap forward rates or which of the two VIX futures prices are used, the top plot features examples
of static arbitrage opportunities in which the prices of VIX futures are above their non-parametric,
no-arbitrage upper bounds. The bottom plot illustrates the opposite case where the prices of VIX
futures are well below their upper bounds and are even below an estimate of the lower bounds.
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Figure A.2: Deviation Measure Computed from Alternative Datasets

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

Date

-5

-4

-3

-2

-1

 0

 1

 2

A
v
e
ra

g
e
 D

e
v
ia

ti
o
n
 (

5
d
 M

A
)

Deviation from Synthetic VS Rates (Paper)

Deviation from Bloomberg Data  = 0.89

Deviation from CBOE VIX Indices  = 0.95

Deviation from Hedge Fund OTC  = 0.82

This figure plots the main deviation measure from the paper against alternative deviation measures
that are computed by estimating variance swap forward rates from different datasets. For each
deviation measure, the figure reports the average deviation across the front six contracts as a five-
day moving average. The deviation measure from the paper is highly correlated with the alternative
deviation measures. The correlation is reported in the legend over the sample period when both the
main deviation measure and alternative measure are available. As before, positive values are law of
one price violations. Gray shading indicates NBER recessions.
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Figure A.3: Deviation Measure By VIX Futures Contract
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Contract 6

This figure plots the VIX futures price and variance swap forward rate (upper bound) on the left
and deviation measure, or difference between the futures price and forward price, on the right for
each contract. The prices and deviation measure for the longer-dated contracts become available
later in the sample, motivating the 2007-2018 and 2010-2018 sample periods that are used in some
of the regression and summary statistics analysis to provide a balanced panel across contracts.
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Figure A.4: Distribution of VIX Futures Prices Relative to
the No-Arbitrage Upper Bound from 2007 to 2018

This figure plots histograms and kernel density estimates of the law of one price deviation measure
by VIX futures contract from 2007 to 2018. The distribution is negatively skewed for the front
contract and second contract. The histograms indicate the presence of law of one price violations
from the probability mass for the deviation measure being greater than zero which corresponds
to VIX futures prices being greater than the upper bound. The histograms also reveal how the
deviation measures exhibit large negative values that may also represent law of one price violations
to the extent that VIX futures prices go below volatility swap forward rates. The lower bound
violations cannot be measured directly from these histograms, but are reported in the next figure.
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Figure A.5: Distribution of VIX Futures Prices Relative to
the No-Arbitrage Lower Bound from 2007 to 2018

This figure plots histograms and kernel density estimates of VIX futures prices relative to their law of
one price lower bound from 2007 to 2018. The lower bound is computed as Fwdt,n−(UBt,n−LBt,n)

where UBt,n is the variance swap forward rate and LBt,n is the volatility swap forward rate estimated
from a no-arbitrage term-structure model on day t for the n-th contract following the approach in
Van Tassel (2019). In this case, the histograms indicate the presence of law of one price violations
from the probability mass below zero which corresponds to cases in which the VIX futures price is
below the lower bound. Lower bound violations are more pronounced for the longer-dated contracts
consistent with Table 3.
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Figure A.6: Impulse Response Functions of Deviation and Dealer Position to
VIX and Dealer Position Shocks Across Trivariate VAR Specifications
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This figure plots the impulse response function of of the no-arbitrage deviation and dealer position
to VIX and dealer position shocks across different trivariate VAR specifications. The first three rows
report different orderings of the variables for a Cholesky decomposition. The fourth row reports the
IRFs for a spectral decomposition. The variables in the vector autoregression are yt = [Deviationt
V IXt Dealer Positiont]. The VAR is estimated using weekly data from 2010 to 2018 (T = 469).
Across specifications, the IRFs take on similar shapes. The deviation measure declines in response
to a risk shock and increases in response to a demand shock. The impact of the risk shock dies out
after a few weeks whereas the demand shocks are more persistent.
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Figure A.7: Deviation Measure versus Risk and Demand Variables
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This figure plots the deviation measure against different risk and demand variables. The risk
variables include stock market returns, realized variance, and the VIX Index. Increases in risk as
measured by negative stock market returns or increases in volatility are negatively correlated with
the deviation measure. The demand variables are Dealer Position from the CoT Report, VIX ETP
demand, and VIX options customer delta. The demand variables are positively correlated with the
deviation measure. The sample period is 2010 to 2018 using weekly data (T = 469).
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Figure A.8: Impulse Response Functions of Deviation Measure
to Risk and Demand Shocks in Bivariate VARs
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This figure plots impulse response functions from bivariate vector autoregressions to illustrate how
the deviation measure reacts to risk and demand shocks. The left column reports the IRFs from
bivariate VARs with risk variables. The right column reports the IRFs from bivariate VARs with
demand variables. The IRFs are from a Cholesky decomposition with the deviation measure ordered
second. The 95% confidence intervals in gray are block bootstrapped. The lag length is selected
using the SBIC criterion. Similar to the trivariate VAR discussed in the paper and the time-series
plots, the deviation measure decreases when risk increases and increases when demand increases.
The magnitude of the response is larger for the risk shocks, but more persistent for the dealer
position and VIX ETP demand shocks.
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Figure A.9: Impulse Response Function of Deviation Measure Across Contracts
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This figure reports the IRFs from a weekly VAR with yt = [Devt,1 Devt,2 Devt,3 Devt,4] from 2010
to 2018. The goal of these IRFs is to highlight how shocks to different contracts propagate to other
contracts. The results indicate that shocks to the front contract correspond to increases in the
second and third contract that die out after a few months. Shocks to the fourth contract result
in delayed increases in the second and third contract. The IRFs are computed using a Cholesky
decomposition with the variables ordered as the deviation for the front, second, third, and fourth
contract respectively. The results are reported using weekly data for comparison to the other IRFs
reported in the paper and Appendix and focus on the front four contracts for parsimony. Similar
qualitative results hold for daily data and for the front six contracts.
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Figure A.10: Event Study of VIX Futures Deviation Around
Large Risk and Demand Shocks
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This figure plots the event time reaction of the deviation measure and VIX index to the largest
increases and decreases in stock market returns, the VIX index, dealer position, and VIX options
customer delta throughout the sample. The figure reports the change in the VIX index and average
deviation measure across the front six contracts in the ten days before and after the event.
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Figure A.11: VIX Futures Trading Strategy: Position and Post-Crisis Sharpe Ratios

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

Date

-4

-3

-2

-1

 0

 1

 2

D
e
v
ia

ti
o
n
 (

5
d
 M

A
)

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

P
o
s
it
io

n
 (

5
d
 M

A
)

VIX Futures Law of One Price Deviations vs. Trading Strategy Position: Correlation = -0.61
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The top figure plots the number of net positions in the relative value trading strategy against the
deviation measure over time. A long position corresponds to buying VIX futures that are hedged
with variance swap forwards. Since the strategy trades the front six contracts, the number of net
positions is bounded between -6 and 6. The plot illustrates the negative correlation between the
deviation measure and the number of net positions. When the deviation measure is low (high),
the strategy tends to buy (sell) VIX futures that are hedged with variance swap forwards. The
bottom plot reports the SRs for the different strategies varying the number of contracts traded and
threshold. This is analogous to Figure 7 but for the 2010 to 2018 post-crisis period.
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