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Abstract

We propose a new test for inequalities that is simple and uniformly valid.

The test compares the likelihood ratio statistic to a chi-squared critical value,

where the degrees of freedom is the rank of the active inequalities. This test

requires no tuning parameters or simulations, and therefore is computationally

fast, even with many inequalities. Further, it does not require an estimate of

the number of binding or close-to-binding inequalities. To show that this test is

uniformly valid, we establish a new bound on the probability of translations of

cones under the multivariate normal distribution that may be of independent

interest. The leading application of our test is inference in moment inequality

models. We also consider testing affine inequalities in the multivariate nor-

mal model and testing nonlinear inequalities in general asymptotically normal

models.

Keywords: Inequality Testing, Likelihood Ratio, Moment Inequalities, Partial

Identification, Uniform Inference.

∗We acknowledge helpful feedback from Donald Andrews, Xiaohong Chen, Matthew Shum, Jörg
Stoye, the participants of the 2nd Econometrics Jamboree at the UC Berkeley, and econometrics
seminars at Columbia University, the UCSD, the UCLA, and the University of Wisconsin at Madison.

†Department of Economics, National University of Singapore (ecsgfc@nus.edu.sg)
‡Department of Economics, University of Wisconsin-Madison (xshi@ssc.wisc.edu)

1

http://arxiv.org/abs/1907.06317v1
mailto:ecsgfc@nus.edu.sg
mailto:xshi@ssc.wisc.edu


1 Introduction

This paper considers testing inequalities in three settings of interest. The first setting

is testing affine inequalities on the mean of a multivariate normal random vector. The

second setting is inference on parameters defined by moment inequalities. The third

setting is testing nonlinear inequalities in general asymptotically normal models. In

all settings, a new test is proposed—the conditional chi-squared test—that is simple

and uniformly valid.

The first setting, the multivariate normal model, is both classical, going back at

least to Chernoff (1954), and current, attracting renewed interest because it is the

limiting experiment for inference on a parameter defined by moment inequalities.1 We

propose a new test that compares the likelihood ratio statistic, T , to a chi-squared

critical value with the degrees of freedom being the rank of the active inequalities,

where an active inequality is one that holds with equality at the restricted estimator

in sample. Active inequalities are the sample counterpart of binding inequalities.2

We call this test a conditional chi-squared (CC) test because the critical value is

calculated conditional on the set of active inequalities.

We show that the CC test is valid. When all the inequalities are binding, this

follows from the geometry of the problem and a characterization of the distribution of

T as a mixture of chi-squared distributions, as derived by Kudo (1963). In this case,

the distribution of T conditional on the set of active inequalities is chi-squared with

degrees of freedom equal to the rank of the active inequalities. The CC test controls

size by mimicking this characteristic of the distribution of T . When some inequalities

are slack (that is, not binding), the distribution of T is more complicated. However,

we can still control size by bounding the conditional rejection probabilities using a

new bound on the probability of translations of cones under the multivariate normal

distribution. In addition, the CC test is not conservative when at least one equality

is tested.

The classical test in this setting, as proposed by many papers including Kudo

(1963) and Wolak (1987), compares T to the 1 − α quantile of the least favorable

distribution. The least favorable distribution is the mixture of chi-squared distribu-

tions that occurs when all the inequalities bind. Relative to the classical test, the CC

1For an overview of the classical literature on testing inequalities, see Silvapulle and Sen (2004).
2In the moment inequality literature, an inequality is binding if it holds with equality at the

population value.
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test redirects power toward parameter values that violate few inequalities and away

from parameter values that violate many (or all) inequalities.3 This power redirection

allows the CC test to reduce, in the presence of very slack inequalities, to the version

of the CC test that depends only on the not-very-slack inequalities. We call this

property Irrelevance of Distant Inequalities (IDI). Consequently, the CC test is unaf-

fected by adding very slack inequalities. In contrast, adding a very slack inequality

increases the critical value and thereby reduces the power of the classical test.

The second setting, moment inequality models, represent a large class of partially

identified models that have seen many recent applications.4 In this setting, we con-

struct a confidence set for the true value of the parameter by inverting a test for the

moment inequalities evaluated at given parameter values. The test that we propose

is a version of the CC test that compares a (quasi) likelihood ratio (QLR) statistic to

a conditional chi-squared critical value. In this case, the restricted estimator is the

projection of the estimated moments onto the inequalities. The test is asymptotically

uniformly valid because the experiment converges to a multivariate normal limiting

experiment with affine inequalities—the first setting. Asymptotically, the inequalities

that are relevant are binding or close-to-binding.5 In this case, the IDI property of

the CC test is very useful: any inequality that is not close-to-binding has no effect

on the test asymptotically.

Alternative tests in the moment inequality literature achieve the IDI property via

a data-dependent first step that determines which inequalities are close-to-binding.

Andrews and Soares (2010), hereafter AS, propose a first step that selects a subset

of the moments by comparing each standardized moment to a tuning parameter.

AS impose assumptions on the rate of divergence of the tuning parameter in order

to select the close-to-binding inequalities. Andrews and Barwick (2012), hereafter

AB, propose a recommendation for a fixed value of the tuning parameter in AS and

determine size-correction. Romano et al. (2014), hereafter RSW, propose a first-step

confidence set for the slackness of each inequality. The CC test achieves the IDI

property without a data-dependent first step, and is therefore a more practical method

3Perlman and Wu (2006) argue for the appropriateness of redirecting power in this way. The
tests they propose are not based on a conditional chi-squared critical value. The Perlman and Wu
(2006) tests are not simpler than the classical test, and it is not clear whether they are valid.

4For an overview of the literature on partially identified models, see Canay and Shaikh (2017).
5An inequality is close-to-binding if the slackness drifts to zero with the sample size at the n−1/2

rate or faster.
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for testing moment inequalities. Simulations show that the CC test has comparable

size and weighted average power to the tests in AB and RSW.

Our test in the second setting is related to Rosen (2008) in the same way that our

test in the first setting is to Wolak (1987). Namely, we use the same test statistic

as Rosen (2008) but propose a critical value that depends on the active inequali-

ties, which then leads to a test with the IDI property. For other aspects of the

literature on moment inequality models, we refer the reader to the survey paper by

Canay and Shaikh (2017).

The third setting, testing nonlinear inequalities in general asymptotically normal

models, is widely applicable. We propose a version of the CC test that counts the

number of binding inequalities. We show uniform asymptotic validity by appealing

to the multivariate normal model as the limiting experiment. This problem has been

considered by Kodde and Palm (1986), and they propose a version of the classical

Kudo (1963) test. The CC test is the first in this setting to have the IDI property.

The remainder of this paper proceeds as follows. Section 2 covers the multivariate

normal model with affine inequalities. Section 3 covers moment inequality models.

Section 4 covers general asymptotically normal models with nonlinear inequalities.

Section 5 reports the simulation results. Section 6 concludes. An appendix contains

the proofs.

2 The Multivariate Normal Model

In this section, we consider testing affine inequalities on the mean of a multivariate

normal random vector. This setting is classical and has been considered, for example

by Kudo (1963) and Wolak (1987), among others.

Without loss of generality, let there be a single observation from the multivariate

normal distribution: X ∼ N (µ, I), where I is the identity matrix.6 Consider testing

the null hypothesis, H0 : µ ∈ C, where C is a convex set defined by affine inequalities.

Specifically, let C = {µ ∈ RdX |Aµ ≤ b}, where A is a dA × dX matrix, b ∈ RdA , and

the inequality is interpreted element by element. Denote the rows of A by a′j , for

j = 1, ..., dA. Note that we impose no assumptions on A or dA, so that the number

of inequalities, dA, can be arbitrarily large, and A can be low rank or sparse.

6Assuming V ar(X) = I is no stronger than assuming a known nonsingular V ar(X) because we
can then premultiply X by a full-rank square matrix to orthonormalize it.
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Let PCX denote the projection of X onto C, which is also the restricted estimator

of µ. We test H0 using the likelihood ratio statistic, which is T = ‖X−PCX‖2 in the

multivariate normal model. When Aµ = b, Kudo (1963) shows that the distribution

of T is a mixture of χ2 distributions with varying degrees of freedom. The weights in

the mixture depend on the shape of C, that is, the angles at which the inequalities

meet. When Aµ 6= b, the distribution of T is more complicated.

We propose a new test for H0 in this setting. Let J denote a subset of {1, ..., dA}.
Write J(X) to denote the set of indices for the inequalities that are active. That is,

indices for which a′jPCX = bj . Let AJ denote the matrix formed by the rows of A

corresponding to indices in J . Let r(AJ) denote the rank of AJ . We propose testing

H0 by comparing T = ‖X − PCX‖2 to the 1− α quantile of the χ2 distribution with

r(AJ(X)) degrees of freedom, denoted by χ2
r(AJ(X)),1−α. Notice that the number of

degrees of freedom, r(AJ(X)), is random because we condition on which inequalities

are active. For this reason, we refer to this test as a conditional chi-squared (CC)

test. Note that this test does not depend on a priori knowledge of the shape of C,

and yet still mimics the mixture distribution.

The following simple example illustrates the CC test.

Example 1. Consider the null hypothesis, H0 : µ1 ≤ 0 and µ2 ≤ 0. In this case, C

is simply the third quadrant of the plane. Suppose we observe (X1, X2) ∼ N(µ, I2).

We can write the projection of X = (X1, X2) onto C in closed form as

PCX = (X11{X1 ≤ 0}, X21{X2 ≤ 0})′.

This projection sets to zero any value of X1 or X2 that is positive. The squared

magnitude of this projection is the likelihood ratio statistic,

T = ‖X − PCX‖2= X2
11{X1 > 0}+X2

21{X2 > 0}.

The indices for the active inequalities are determined by the value of X:

J(X) =





{1} if X1 ≥ 0, X2 < 0

{2} if X1 < 0, X2 ≥ 0

{1, 2} if X1 ≥ 0, X2 ≥ 0

∅ if X1 < 0, X2 < 0

.
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Figure 1: Geometric representation of the CC test (shaded) and the classical Kudo
(1963) test (dashed line) in Example 1.

The rejection region for the CC test is illustrated by the shaded region in Figure

1. In quadrant I, both values of Xj are positive, so the CC test rejects if T is larger

than χ2
2,1−α. In quadrants II and IV, only one value of Xj is positive, so the CC test

rejects if T is larger than χ2
1,1−α. In quadrant III, the CC test never rejects. The

dashed line in Figure 1 is discussed below.

Returning to the general setup, we note that the CC test possesses the IDI prop-

erty (Irrelevance of Distant Inequalities). When an inequality is very slack, the prob-

ability that it affects the CC test, either through the likelihood ratio statistic or

through the active inequalities, is equal to the probability that it is active, which

goes to zero as the degree of slackness diverges. This makes precise the sense in

which the CC test possesses the IDI property.

Several papers, including Kudo (1963) and Wolak (1987), propose a classical test

for H0 in this model based on the 1 − α quantile of the least favorable distribution

of T , which is a mixture of chi-squared distributions. Figure 1 illustrates this test in

Example 1 with a dashed line. Relative to the classical test, the CC test redirects

power toward parameters that violate few inequalities, and away from parameters

that violate many (or all) inequalities. This power redirection enables the CC test to
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have the IDI property.

The following theorem states that the CC test controls size. It also gives conditions

under which the test is not conservative.

Theorem 1. (a) For every µ ∈ C,

Pr µ(‖X − PCX‖2> χ2
r(AJ(X)),1−α) ≤ α(1− Pr µ(r(AJ(X)) = 0)) ≤ α.

(b) If Aµ = b, then

Pr µ(‖X − PCX‖2> χ2
r(AJ(X)),1−α) = α(1− Pr µ(r(AJ(X)) = 0)).

Remarks:

1. Part (a) shows that the CC test controls size. Part (b) can be used to show,

under some conditions, that there exists a µ ∈ C such that the rejection prob-

ability is equal to α. This would show that the CC test is not conservative.

2. In order to determine how conservative the CC test is, we evaluate Pr µ(r(AJ(X))

= 0), which indicates the probability that none of the inequalities are active, at

the least favorable µ ∈ C. A simple case with Pr µ(r(AJ(X)) = 0) = 0 is when

at least one equality is being tested. That is, if there exist j 6= j′ such that

aj = −aj′ 6= 0 and bj = −bj′ . Otherwise, without an equality, Pr µ(r(AJ(X)) =

0) usually diminishes exponentially in the number of inequalities.

3. In simple cases with one or two inequalities, including Example 1, it is easy to

think of adjustments to the CC test that eliminate the conservativeness.7 More

challenging is to find adjustments that scale well as the number of inequalities

increases. Here, we note the availability of an adjustment to the CC test that

seems to scale well. Consider a version of the CC test that adjusts α using

knowledge of Pr µ(r(AJ(X)) = 0). That is, the test uses the 1−β quantile of the

chi-squared distribution, where β = infµ∈C α× [1−Pr µ(r(AJ(X)) = 0)]−1. This

can be calculated by simulation. For simplicity, we focus on the basic version

of the CC test in this paper, while noting that this adjustment is available.

7Indeed, the case of one inequality in one dimension already has a well-known solution: the one-
sided t-test is uniformly most powerful. In this case, the adjusted CC test (described in the rest of
Remark 3) reduces to the one-sided t-test.
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The proof of Theorem 1 relies on (1) a partition of RdX that characterizes which

inequalities are active, and (2) a property of probabilities of cones under a translation.

These are explained in the following two lemmas.

We define some notation for the partition. For any J ⊆ {1, ..., dA}, let Jc =

{1, ..., dA}\J , and let CJ = {x ∈ C : ∀j ∈ J, a′jx = bj , and ∀j ∈ Jc, a′jx < bj}.
Then CJ forms a partition of C. Also let VJ = {∑j∈J vjaj : vj ∈ R, vj ≥ 0}, and
let KJ = CJ + VJ .

8 The following lemma shows that KJ forms a partition that

characterizes which inequalities are active.

Lemma 1. (a) If X ∈ KJ , then X − PCX ∈ VJ and PCX ∈ CJ .

(b) The set of all KJ for J ⊆ {1, ..., dA} is a partition of RdX .

(c) For every J ⊆ {1, ..., dA}, X ∈ KJ iff J = J(X).

Next, we define some notation for translations of cones. Let V denote an arbitrary

cone in Rr for a positive integer r.9 Let V ∗ denote the polar cone. That is, V ∗ =

{γ ∈ Rr|〈y, γ〉 ≤ 0 for all y ∈ V }. For any γ ∈ V ∗, let Y ∼ N(γ, Ir). The following

lemma provides a property of probabilities of cones under a translation.

Lemma 2. For every γ ∈ V ∗, Prγ(‖Y ‖2> χ2
r,1−α|Y ∈ V ) ≤ α.

Lemma 2 states that the probability that a random vector, Y , belongs to the tail

of its distribution, conditional on belonging to the cone, V , is less than or equal to α,

where the tail is any point outside a sphere of radius
√

χ2
r,1−α. The key assumption

is that the mean of Y must belong to the polar cone, V ∗, which translates the distri-

bution away from the cone, V . When γ = 0, this lemma holds with equality because

the tail of the χ2
r distribution has mass exactly α.

We conclude this section by illustrating the proof of Theorem 1 with Example 1.

Example 1, Continued. Returning to Example 1, we separate the rejection event

into the four quadrants of the plane. Notice that

Pr µ(T > χ2
r(AJ ),1−α) = Pr µ(X

2
1 +X2

2 > χ2
2,1−α|X ∈ I) Pr µ(X ∈ I)

+ Pr µ(X
2
2 > χ2

1,1−α|X ∈ II) Pr µ(X ∈ II)

+ Pr µ(0 > χ2
0,1−α|X ∈ III) Pr µ(X ∈ III)

8When J = ∅, then VJ = {0dX
}.

9A cone is a set, V , such that for all v ∈ V and for all λ ≥ 0, λv ∈ V .
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+ Pr µ(X
2
1 > χ2

1,1−α|X ∈ IV ) Pr µ(X ∈ IV ).

For each quadrant, the conditional rejection probability is less than or equal to α

when µ belongs to the null hypothesis. In the notation of Lemma 1, each quadrant

can be written as the sum of a cone, VJ , and a subset of the third quadrant, CJ .

For quadrant III, J = ∅, VJ = {02}, CJ = {(x1, x2) : x1 < 0, x2 < 0}, and the

conditional rejection probability is zero. For quadrant II, J = {2}, VJ = {01} × R+

and CJ = {(x1, x2) : x1 < 0, x2 = 0}, where R+ denotes the nonnegative real numbers.

For quadrant IV, J = {1}, VJ = R+ × {01} and CJ = {(x1, x2) : x1 = 0, x2 < 0}. In

these two cases, the conditional rejection probability is less than or equal to α because

Xj ∼ N(µj , 1). By Lemma 2, we have

Pr µj
(X2

j > χ2
1,1−α|Xj ∈ VJ) ≤ α.

In this one-dimensional case, this follows from the monotone hazard property of the

univariate normal distribution:

Pr µj
(X2

j > χ2
1,1−α|Xj ≥ 0) =

1− Φ(−µj +
√

χ2
1,1−α)

1− Φ(−µj)




= α if µj = 0

< α if µj < 0
.

For quadrant I, J = {1, 2}, VJ = R2
+, and CJ = {02}. In this case, the conditional

rejection probability is less than or equal to α because, by Lemma 2, we have

Pr µ(X
2
1 +X2

2 > χ2
2,1−α|X ∈ VJ) ≤ α,

with equality if µ = 0. Thus, Lemma 2 can be seen as a multivariate generalization

of the monotone hazard property of the univariate normal distribution.

3 Moment Inequality Models

In this section, we consider constructing a confidence set for parameters defined by

moment inequalities, as in AS and AB, among others.

Let Θ be a parameter space for the unknown parameter θ. Let A(·) be a dA ×
dm matrix-valued function of the parameter, and let b(·) be a dA × 1 vector-valued

function of the parameter. The moment inequality model is defined by the following

9



inequalities:

A(θ0)EF0m̄n(θ0) ≤ b(θ0), (1)

where m̄n(θ) = n−1
∑n

i=1m(Wi, θ), m(·, θ) is a dm-dimensional moment function of

θ ∈ Θ, and {Wi : i ≥ 1} are the data with joint distribution, F0. The moment

inequality model identifies the true parameter value θ0 up to the identified set,

Θ0(F0) = {θ ∈ Θ : A(θ)EF0m̄n(θ) ≤ b(θ)}. (2)

This specification of a moment inequality model includes the more familiar spec-

ification found, for example, in AS, by taking b(θ) = 0 and

A(θ) =




−Ip 0p×v

0v×p −Iv

0v×p Iv


 , (3)

where dA = p+ 2v, the first p moments are inequalities, and the last v moments are

equalities. The generalization to equation (1) is useful because, below, we assume

the asymptotic variance matrix of m̄n(θ0) is nonsingular. The generalization allows

us to incorporate cases where the asymptotic variance matrix of the inequalities is

singular, as long as the inequalities can be written as a linear function of a core set of

moments, whose asymptotic variance is nonsingular. An example where this is useful

is given in Section 5.2 below.

Let Σ̂n(θ) be an estimator of the asymptotic variance matrix of m̄n(θ). In the

case the data are independent, we simply take

Σ̂n(θ) = n−1
n∑

i=1

(m(Wi, θ)− m̄n(θ))(m(Wi, θ)− m̄n(θ))
′. (4)

Let F be a set of distributions of the data that satisfies the following assumption.

Notice that part (b) of the following assumption is only used to show that the asymp-

totic minimum coverage probability of the confidence set proposed below is equal to

1− α.

Assumption 1. (a) For every sequence, {Fn ∈ F}∞n=1, for every sequence, {θn ∈
Θ0(Fn)}∞n=1, and for every subsequence, nm, there exists a further subsequence, nq,

10



there exists a sequence of positive definite dm × dm matrices, {Dq}, and there exists

a positive definite correlation matrix, Ω, such that under the sequence {Fnq}∞q=1,

√
nqD

−1/2
q (m̄nq(θnq)−EFnq

m̄nq(θnq)) →d N(0,Ω), (5)

and

‖D−1/2
q Σ̂nq(θnq)D

−1/2
q − Ω‖→p 0. (6)

(b) There exist sequences {Fn ∈ F} and {θn ∈ Θ0(Fn)} such that for any sub-

sequence, nm, there exists a further subsequence, nq, along which Dq is defined in

Assumption 1(a), there exists a pair of indices ℓ, ℓ′ ∈ {1, . . . , dA}, there exists a se-

quence of positive definite diagonal dA × dA matrices, {Λq}, and there exists a finite

matrix A0 such that

aℓ(θnq) = −aℓ′(θnq) 6= 0 and bℓ(θnq) = −bℓ′(θnq) (7)

for all q,

ΛqA(θnq)D
1/2
q → A0, (8)

where r(AJ,0) = r(AJ(θnq)) for all q and all J ⊆ {1, . . . , dA}, and

√
nqΛq(b(θnq)− A(θnq)EFnq

m̄nq(θnq)) → h̄, (9)

for some h̄ ∈ {0,+∞}dA, where the convergence holds element by element.

Remarks:

1. There are several ways to impose lower level conditions on F to guarantee

that Assumption 1(a) holds. For example, in the case of the simple moment

inequality model (with A(θ) given in (3)) with i.i.d. data, we can assume that

F is the collection of all F ’s such that

(i) {Wi : i ≥ 1} are i.i.d. under F

(ii) σ2
F,j(θ) := V arF (mj(Wi, θ)) ∈ (0,∞) for all θ ∈ Θ0(F ), j = 1, . . . , k

(iii) |CorrF (m(Wi, θ))|> c for all θ ∈ Θ0(F )

(iv) EF |mj(Wi, θ)/σF,j(θ)|2+δ≤ M for j = 1, . . . , p+ v,

where |·| denotes the determinant in (iii), and where c, δ, and M are fixed
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positive constants not dependent on F or θ. See Andrews and Guggenberger

(2009) or AS for other examples.

2. The subsequencing component of Assumption 1 is a technicality used to show

uniformity. It is similar to other subsequencing conditions found, for example,

in Andrews and Guggenberger (2009) or Andrews et al. (2019).

3. The matrix Dq typically is the diagonal matrix of variances of the elements of
√
nqm̄nq(θnq). We allow each diagonal element to go to zero (or infinity) at dif-

ferent rates, to incorporate the cases where different moments are on different

scales or where different moments involve time series processes of different sta-

tionarity status. Andrews and Guggenberger (2009), AS, and Andrews et al.

(2019) also use a diagonal normalizing matrix for this purpose.

Moreover, the matrix Dq can be non-diagonal, which is useful when the asymp-

totic variance matrix of
√
nq(m̄nq(θnq)−EFnm̄nq(θnq)) is singular but a certain

rotation of the vector with proper scaling has a non-singular asymptotic variance

matrix.

4. Assumption 1(b) states additional conditions that are sufficient for the asymp-

totic minimum coverage probability of our proposed confidence set below to be

equal to 1−α. It is most easily satisfied when there is an F ∈ F under which the

data are stationary and the long-run variance matrix of {m(Wi, θ) : i ≥ 1} for

some θ ∈ Θ0(F ) is non-singular. In this case, Dq can be a constant diagonal ma-

trix equaling the diagonal of the long-run variance matrix of {m(Wi, θ) : i ≥ 1},
and Λq = IdA . Then (8) and (9) are satisfied trivially, and (7) is satisfied as

long as at least one equality is included.

We propose a confidence set for θ that is defined through test inversion. Specifi-

cally, let

Tn(θ0) = inf
t:A(θ0)t≤b(θ0)

n(m̄n(θ0)− t)′Σ̂−1
n (θ0)(m̄n(θ0)− t) (10)

denote the statistic for testing the hypothesis H0 : θ = θ0. This statistic is the

quasi-likelihood ratio statistic used in Rosen (2008) and AS, among others.

We propose a data-dependent critical value that is based on the rank of A(θ0)

for those inequalities that are active in finite sample. Note that the minimization

12



problem in (10) has a unique solution because the constraint set is convex and the

criterion function is strictly convex. This solution is the restricted estimator for the

moments, which we denote by t̂n(θ0). Let a
′
ℓ(θ0) denote the ℓth row of A(θ0) and let

bℓ(θ0) denote the ℓth element of b(θ0) for ℓ = 1, 2, . . . , dA. Let

Ĵ(θ0) = {ℓ ∈ {1, 2, . . . , dA} : a′ℓ(θ0)t̂n(θ0) = bℓ(θ0)}, (11)

which is the set of indices for the active inequalities. As before, let r(AJ) denote the

rank of AJ . Let the critical value be

cn(θ0, 1− α) = χ2
r(A

Ĵ(θ0)
(θ0)),1−α. (12)

For any α ∈ (0, 1), let the nominal 1− α confidence set be

CSn(1− α) = {θ ∈ Θ : Tn(θ) ≤ cn(θ, 1− α)}.

Theorem 2. (a) Under Assumption 1(a),

liminf
n→∞

inf
F0∈F

inf
θ∈Θ0(F0)

Pr F0(θ ∈ CSn(1− α)) ≥ 1− α.

(b) Under Assumption 1(a) and (b),

liminf
n→∞

inf
F0∈F

inf
θ∈Θ0(F0)

Pr F0(θ ∈ CSn(1− α)) = 1− α.

Remarks:

1. Part (a) shows that the confidence set has asymptotic coverage probability

greater than or equal to the nominal coverage probability. The proof of part

(a) appears complicated, but the general structure of the proof is quite simple,

appealing to Theorem 1(a) as the limit experiment. The almost sure represen-

tation theorem is used to show that the event that any given subset, J , of the

inequalities are active in sample converges to the event that those J inequalities

are active in the limit.

2. Part (b) shows that the confidence set has asymptotic minimum coverage prob-

ability equal to the nominal coverage probability when at least one equality is

imposed on the moments.
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3. Notice that no assumptions are placed on A(θ) for Theorem 2. It can be low-

rank or any submatrix of A(θ) can be local to singular as θ varies. This is

achieved by an extra step in the proof that adds inequalities that are redundant

in the finite sample but are relevant in the limit (see Lemma 3, in the Appendix).

4 Testing Nonlinear Inequalities

In this section, we consider testing nonlinear inequality restrictions about a pa-

rameter, µ, as considered in Kodde and Palm (1986) and Wolak (1991). Unlike

Kodde and Palm (1986) or Wolak (1991), our test uses a conditional chi-squared

critical value, rather than a fixed least favorable critical value or its approximation.

Let µ ∈ M ⊆ Rdm be an unknown parameter vector, where M is compact, and

let h : Mo → Rdh be a known function defined on an open set Mo containing M .

We assume that h(µ) = (h1(µ), h2(µ)) with dimensions dh1 and dh2 satisfying dh1 +

dh2 = dh. We also assume that h(µ) is continuously differentiable with derivative,

H(µ) = ∂
∂µ′h(µ), that has full rank, dh, for all µ ∈ M . We consider a hypothesis

that includes nonlinear inequality restrictions, and may also include some nonlinear

equality restrictions:

H0 : h1(µ) ≤ 0 and h2(µ) = 0.

This is tested against the alternative hypothesis H1 : h1(µ) � 0 or h2(µ) 6= 0.

We assume that there is an estimator µ̂n of µ, whose distribution is indexed by

µ ∈ M and F ∈ F(µ), where F(µ) is a possibly infinite dimensional space for every

µ ∈ M . Below we assume that µ̂n is
√
n-consistent and asymptotically normal with

asymptotic variance matrix, Σµ. We also assume there is an estimator, Σ̂µ
n for Σµ.

Assumption 2. For every sequence µn ∈ M such that h1(µn) ≤ 0 and h2(µn) = 0,

for every sequence Fn ∈ F(µn), and for every subsequence, nm, there exists a further

subsequence, nq, and a positive definite matrix, Σµ, such that

√
nq(µ̂nq − µnq) →d N(0,Σµ) and Σ̂µ

nq
→p Σ

µ

as q → ∞.

Remark: Assumption 2 is only slightly stronger than a more common convergence

in distribution assumption, requiring convergence along arbitrary subsequences of

14



drifting sequences of parameters. This additional subsequencing component is used

for asymptotic size control in a uniform sense, as in Remark 2 after Assumption 1.

We use the following quasi-likelihood ratio statistic:

Tn = inf
t≤0

n(h(µ̂n)− (t, 0))′(H(µ̂n)Σ̂
µ
nH(µ̂n)

′)−1(h(µ̂n)− (t, 0)). (13)

Let t̂n denote the solution to the minimization problem, and let Ĵ = {ℓ ∈ {1, . . . , dh1} :

t̂ℓ,n = 0}, where t̂ℓ,n is the ℓth element of t̂n. For any subset, J , of {1, . . . , dh1}, let
|J | denote the number of elements of J . We use the critical value χ2

|Ĵ|+dh2,1−α
. Thus,

the CC test rejects H0 if and only if Tn > χ2
|Ĵ |+dh2,1−α

.

Theorem 3. (a) Under Assumption 2,

lim sup
n→∞

sup
{µ∈M :h1(µ)≤0,h2(µ)=0}

sup
F∈F(µ)

Pr F,µ(Tn > χ2
|Ĵ |+dh2,1−α

) ≤ α.

(b) In addition, if dh2 > 0, then

lim sup
n→∞

sup
{µ∈M :h1(µ)≤0,h2(µ)=0}

sup
F∈F(µ)

Pr F,µ(Tn > χ2
|Ĵ|+dh2,1−α

) = α.

Remark: Part (a) shows that the CC test asymptotically controls size in a uniform

sense for H0. Part (b) shows that, as long as H0 hypothesizes at least one equality,

the asymptotic size is equal to α.

5 Monte Carlo Simulation

In this section, we report Monte Carlo simulation results to compare the CC test

to existing tests. Specifically, we compare to two tests in AB: AQLR/Bt, which is

their recommended test and calculates the critical value based on the bootstrap, and

AQLR/Nm, which is the same as AQLR/Bt except that the critical value is based

on simulations for the asymptotic distribution rather than the bootstrap. We denote

the AQLR/Bt test by AB/Bt and the AQLR/Nm test by AB/Nm. We also compare

to the two-step procedure of RSW.10

10We choose the AB tests and RSW’s two-step test for comparison because both have the IDI
property like ours and because the former tests are tuning parameter-free like ours (in the sense that
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We make the comparison in two Monte Carlo settings, the first being the generic

moment inequality design from AB, and the second being a version of the entry game

example popular in the moment inequality literature. Overall, we find that the CC

test is comparable to AB/Bt, AB/Nm, and RSW in terms of size and power and

meanwhile is much faster computationally.

5.1 Generic Moment Inequality Design

AB introduce a Monte Carlo design that is sufficiently general to be used for com-

paring different testing procedures. We use this exact Monte Carlo design. In this

subsection, we run a horse race of maximum null rejection probabilities (MNRP) and

size-corrected average power of our test, AB/Bt, and AB/Nm.

We briefly describe the Monte Carlo design here and refer the readers to Section

6 of AB for further details. Consider the moment inequality model

E[Wi − θ] ≥ 0,

and the null hypothesis H0 : θ = 0, where Wi is a p-dimensional random vector. Let

the data {Wi}ni=1 be i.i.d. with sample size n. Let Wi = Ω1/2Z† + µ, where Ω is

a correlation matrix, µ is a mean-vector, and Z† is a vector of independent random

variables with zero mean and unit variance. Three choices of distribution for the

elements of Z† are considered: N(0, 1) to represent a best-case scenario for asymptotic

approximation, t3 to represent fat-tailed distributions, and χ2
3 to represent skewed

distributions. Three choices of Ω are considered: ΩNeg, ΩZero, and ΩPos, indicating

negative, zero, and positive correlation among the moments, respectively. The exact

numerical specifications of these matrices for different p’s are in Section 4 of AB and

Section S7.1 of the Supplemental Material of AB. Also, three choices of p, 2, 4, and

10, are considered.

For each combination of the distribution of Z†, Ω and p, we follow AB exactly to

compute the MNRP and the size-corrected average power. Specifically, we compute

the rejection probability under a set of µ values that satisfies µ ≥ 0 (so that the

moment inequalities hold), and take the maximum over this set of µ values to be

the MNRP. The set of µ values considered are {0,∞}p. This may differ from the

AB propose and use an optimal choice of the AS tuning parameter), and the latter test is insensitive
to reasonable choices of its tuning parameter.
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Table 1: Finite Sample Maximum Null Rejection Probabilities and Size-Corrected Average
Power of Nominal 5% Tests

p = 10 p = 4 p = 2

Test Distribution H0/H1 ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

CC N(0, 1) H0 .074 .069 .043 .058 .049 .034 .048 .039 .035
AB/Bt N(0, 1) H0 .061 .062 .058 .053 .056 .049 .054 .053 .052
AB/Nm N(0, 1) H0 .088 .092 .057 .065 .062 .049 .056 .058 .053

CC t3 H0 .067 .063 .043 .053 .048 .037 .046 .041 .032
AB/Bt t3 H0 .043 .055 .055 .051 .058 .052 .057 .055 .056
AB/Nm t3 H0 .059 .067 .045 .050 .049 .047 .053 .047 .046

CC χ2
3 H0 .132 .145 .068 .086 .101 .060 .070 .073 .062

AB/Bt χ2
3 H0 .062 .066 .057 .050 .055 .050 .054 .053 .056

AB/Nm χ2
3 H0 .136 .153 .068 .093 .101 .062 .085 .087 .080

CC N(0, 1) H1 .54 .57 .73 .59 .63 .68 .59 .61 .63
AB/Bt N(0, 1) H1 .46 .62 .77 .54 .64 .76 .63 .68 .71
AB/Nm N(0, 1) H1 .45 .59 .78 .54 .63 .76 .63 .68 .71

CC t3 H1 .64 .66 .77 .67 .70 .73 .66 .68 .69
AB/Bt t3 H1 .56 .67 .79 .61 .71 .78 .67 .72 .71
AB/Nm t3 H1 .58 .69 .84 .66 .76 .81 .70 .76 .72

CC χ2
3 H1 .42 .42 .66 .52 .50 .64 .54 .54 .59

AB/Bt χ2
3 H1 .43 .51 .72 .53 .57 .70 .57 .59 .62

AB/Nm χ2
3 H1 .37 .42 .72 .48 .53 .71 .56 .57 .61

Note: CC denotes the conditional chi-squared test, AB/Bt denotes the adjusted quasi-likelihood ratio (AQLR) test with boot-
strap critical value in AB, and AB/Nm denotes the AQLR test with asymptotic normality-based critical value. The rejection
probabilities under H0 are the maximum null rejection probabilities, and those under H1 are the average power across the
alternative points specified in AB. The numbers for the AB tests are from Table III of AB, which use 5000, 3000, 1000 for both
critical value and rejection probability repetitions, respectively for p = 2, 4, 10. The numbers for the CC test are computed using
5000 rejection probability repetitions for all p.

true maximum of null rejection probabilities over all nonnegative µ’s. For power

comparison, we compute the average power for a multitude of µ values that do not

satisfy µ ≥ 0. These µ values are given in Section 4 of AB and Section S7.1 of the

Supplemental Material of AB. The power is size-corrected by adding a positive number

to the critical value where the positive number is set to make the size-corrected MNRP

equal to the nominal level.

The results are reported in Table 1. Since we follow the design and the procedure

to obtain MNRP and size-corrected average power of AB exactly, it is not necessary

to re-do their simulations. Thus, the results for AB/Bt and AB/Nm tests are from

Table III of AB. The results for our tests are based on 5000 Monte Carlo repetitions.

The first panel of the table shows the MNRP of the CC test and the two versions

of the AB adjusted quasi-likelihood ratio tests. As we can see, our test has good
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Table 2: Finite Sample Maximum Null Rejection Probabilities and Size-Corrected Average
Power of Nominal 5% CC Test

p = 10 p = 4 p = 2

n Distribution H0/H1 ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

100 N(0, 1) H0 .074 .069 .043 .058 .049 .034 .048 .039 .035
500 N(0, 1) H0 .058 .054 .042 .051 .043 .034 .046 .035 .034
2000 N(0, 1) H0 .055 .056 .042 .056 .046 .032 .046 .038 .033

100 t3 H0 .067 .063 .043 .053 .048 .037 .046 .041 .032
500 t3 H0 .051 .051 .044 .051 .046 .033 .048 .039 .035
2000 t3 H0 .055 .053 .039 .051 .048 .035 .048 .038 .034

100 χ2
3 H0 .132 .145 .068 .086 .101 .060 .070 .073 .062

500 χ2
3 H0 .074 .079 .052 .062 .066 .044 .054 .049 .043

2000 χ2
3 H0 .061 .066 .048 .057 .057 .039 .049 .042 .036

100 N(0, 1) H1 .54 .57 .73 .59 .63 .68 .59 .61 .63
500 N(0, 1) H1 .58 .63 .73 .60 .62 .67 .58 .61 .62
2000 N(0, 1) H1 .58 .60 .72 .57 .62 .67 .58 .61 .62

100 t3 H1 .64 .66 .77 .67 .70 .73 .66 .68 .69
500 t3 H1 .64 .66 .75 .63 .66 .70 .62 .64 .65
2000 t3 H1 .61 .63 .74 .62 .65 .70 .61 .64 .65

100 χ2
3 H1 .42 .42 .66 .52 .50 .64 .54 .54 .59

500 χ2
3 H1 .54 .56 .72 .57 .59 .68 .58 .61 .62

2000 χ2
3 H1 .57 .57 .73 .59 .60 .68 .60 .62 .63

Note: The rejection probabilities under H0 are the maximum null rejection probabilities, and those under H1 are the average
power across the alternative points specified in AB. We use 5000 Monte Carlo repetitions for all p.

size-control unless the data have the highly skewed χ2
3 distribution. This may be

due to the fact that this test is based on asymptotic normality and the asymptotic

normal approximation can be poor when the sample size is small (n = 100) and the

underlying distribution is highly skewed. In Table 2, we verify that the over-rejection

of the CC test disappears as the sample size increases.

Interestingly, the over-rejection is slightly worse for the AB/Nm test, which is

also based on the asymptotic normal approximation. The AB/Bt test has good size

control across all cases.11

Another thing to note is that the CC test appears conservative when the moments

11A bootstrap version of the CC test can be computed by replacing the χ2
r(AJ (θ0)),1−α critical

value by the conditional 1 − α quantile of n‖Pn
J Σ̂

∗,−1/2
n (θ0)(m̄

∗
n(θ0) − m̄n(θ0))‖2, where Pn

J is the

projection matrix onto the space spanned by the rows of AJ (θ0)Σ̂
1/2
n , and m̄∗

n(θ0) and Σ̂∗
n(θ0) are the

bootstrap counterparts of m̄n(θ0) and Σ̂n(θ0), respectively. Similar to the AB/Bt test, the bootstrap
version of the CC test can reduce the over-rejection in the presence of highly skewed distributions,
but with an increased computational cost. For this reason, we recommend the χ2-based test unless
the user has reason to suspect a high degree of skewness in their moments.
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are positively correlated (that is, in the ΩPos cases). This is consistent with Theorem

1 because, when moments are positively correlated, it is more likely none of the

inequalities are active in finite sample. Theorem 1 suggests the CC test should be

less conservative when the probability that none of the inequalities are active is lower.

This occurs when the moments are negatively correlated or the number of inequalities

increases, and this is what we observe in Table 1.

The second panel of the table shows the finite sample size-corrected average power

of the CC test against that of AB/Bt and AB/Nm. It is encouraging to see that our

simple method has comparable power with the more intricate AB/Bt and AB/Nm

tests. In the cases with p = 4 and 10, negatively correlated moments, and symmetric

errors (N(0, 1) or t3), the CC test has noticeably better average size-corrected power

than both AB/Bt and AB/Nm.

The RSW test is not included in Table 1, but because RSW already compare their

test and AB/Bt in their paper using the same design, we can draw a comparison

between RSW and the CC test indirectly. RSW’s results show that the average size-

corrected power of AB/Bt is slightly higher than RSW in all cases, although RSW can

have higher power against some of the individual alternatives included in the average

power calculation. Their results and ours together are sufficient to show that RSW

and the CC test do not dominate each other in terms of either average size-corrected

power as defined in AB or size-corrected power against individual alternatives. Their

results also show that the RSW test has similar size performance (at n = 100) as

AB/Bt which is similar to the CC test when the error is normal or Student-t.

5.2 Entry Game

In this subsection, we report the finite sample performance of the CC test in the

stylized entry game considered in Shi and Shum (2015). An entry game similar to

this is used widely in the moment inequality literature for illustration purposes. We

include this model for two reasons: first, it includes moment equalities and thus

is useful for illustrating Theorem 2(b); second, it can be written as the moment

inequality model in equation (1) with nonzero b(θ), and thus differs from the Monte

Carlo design in the previous subsection.

The game considered is a two-firm entry game with complete information. Player

j, j = 1, 2 enters the market if the profit of entering exceeds 0: yj = 1{πj ≥ 0}.
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The profit is modeled as πj = aj + δjy−j + εj, where aj is the expected monopoly

profit, δj is the competition effect assumed to be nonpositive, and (ε1, ε2) follows an

independent standard normal distribution.

Consider a simple model with no covariates and let Y denote the equilibrium

outcome which could take one of four values {(1, 1), (1, 0), (0, 1), (0, 0)}, with the first

number in the pair indicating the entry status of the first player and the second

number indicating the entry status of the second player. We assume that the agents

play a pure strategy Nash equilibrium and the econometrician does not know the

equilibrium selection mechanism when there are multiple equilibria. Then the model

implies the following moment inequalities/equalities:

E[1{Y = (0, 0)}] = g00(a, δ)

E[1{Y = (1, 1)}] = g11(a, δ)

E[1{Y = (1, 0)}] ≤ g10(a, δ)

E[1{Y = (1, 0)}] ≥ 1− g00(a, δ)− g11(a, δ)− g01(a, δ), (14)

where

g00(a, δ) = (1− Φ(a1))(1− Φ(a2))

g11(a, δ) = Φ(a1 + δ1)Φ(a2 + δ2)

g10(a, δ) = Φ(a1)(1− Φ(a2 + δ2))

g01(a, δ) = Φ(a2)(1− Φ(a1 + δ1)). (15)

This model fits into the framework of (1) with

m̄n(θ) = n−1

n∑

i=1

(
1(Yi=(0,0))
1(Yi=(1,1))
1(Yi=(1,0))

)

A(θ) =




1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1


 and

b(θ) =




g00(a,δ)
−g00(a,δ)
g11(a,δ)
−g11(a,δ)
g10(a,δ)

g00(a,δ)+g11(a,δ)+g01(a,δ)−1


 . (16)
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Table 3: Finite Sample Rejection Probabilities of Nominal 5% Tests

Test θnull n = 100 n = 250 n = 500
CC θ0 = (0.5, 0.5,−0.25,−0.25)′ .0742 .0568 .0492

AB/Bt θ0 = (0.5, 0.5,−0.25,−0.25)′ .0250 .0450 .0370
AB/Nm θ0 = (0.5, 0.5,−0.25,−0.25)′ .0580 .0550 .0360
RSW θ0 = (0.5, 0.5,−0.25,−0.25)′ .0272 .0448 .0428

CC θ1 − θ0 = (−0.13, 0.13, 0, 0)′ .2106 .4402 .6904
AB/Bt θ1 − θ0 = (−0.13, 0.13, 0, 0)′ .1140 .3450 .6540
AB/Nm θ1 − θ0 = (−0.13, 0.13, 0, 0)′ .1840 .3880 .6730
RSW θ1 − θ0 = (−0.13, 0.13, 0, 0)′ .1170 .3634 .6736

CC θ2 − θ0 = (0,−0.2,−0.21, 0.25)′ .1960 .3284 .5652
AB/Bt θ2 − θ0 = (0,−0.2,−0.21, 0.25)′ .0950 .2750 .5120
AB/Nm θ2 − θ0 = (0,−0.2,−0.21, 0.25)′ .1840 .3140 .5310
RSW θ2 − θ0 = (0,−0.2,−0.21, 0.25)′ .1136 .2840 .5278

Note: CC denotes the conditional chi-squared test, AB/Bt denotes the adjusted quasi-likelihood ratio
(AQLR) test with bootstrap critical value in AB, AB/Nm denotes the AQLR test with asymptotic
normality-based critical value, RSW denotes the Bonferroni-corrected test in Romano, Shaikh, and
Wolf (2014). All tests use 5000 rejection probability repetitions. The AB/Bt, AB/Nm, and RSW tests
use 999 repetitions for their simulated critical values.

A confidence set for the parameter θ = (a1, a2, δ1, δ2)
′ can be constructed by inverting

a test for the moment inequalities/equalities in (14) at each given value of θ. In this

exercise, we compute the rejection probabilities of the CC test, the AB tests, and the

RSW test for the null hypothesis: H0 : θ = θnull for several θnull values.

We consider an i.i.d. sample with three choices of sample sizes: n = 100, 250,

and 500. We generate the data according to the entry game described as above,

and let the equilibrium selection rule maximize the joint profit of the two firms

when there are multiple equilibria. We set the true value of the parameters to

be θ0 = (0.5, 0.5,−0.25,−0.25).12 The null parameter values tested are θ0, θ1 =

(0.37, 0.63,−0.25,−0.25), and θ2 = (0.50, 0.30,−0.46, 0.00)′. The two false null val-

ues are chosen to be outside the identified set, both being about .14 away from their

corresponding closest points in the identified set in terms of Euclidean distance.13

Table 3 reports the results. As we can see from the table, the CC test has moderate

12Other choices of the true parameter value and null parameter values yield qualitatively similar
results.

13The identified set of θ has an empty interior (see Shi and Shum (2015)). Thus, θ0 is on the
boundary of the identified set.
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over-rejection at the true parameter value at n = 100 but the over-rejection disappears

as the sample size increases. The AB tests and the RSW test seem to have under-

rejection in most cases, especially AB/Bt. On the other hand, at the false null values,

the CC test has noticeably better (higher) rejection rates than the AB tests and the

RSW test.

The CC test is a lot faster to compute than either of the three existing tests. For

example, on a 2010 Dell Precision workstation with 12G RAM and 3.33GHZ Intel

Xeon X5650 CPU running Matlab 2018b, at n = 500, the CC test (repeated 5000

times for all three null values) finishes in less than 0.01 hours, while the AB/Nm test

uses 4.28 hours. The AB/Bt test (4.77 hours) is slightly more time consuming than

AB/Nm, while the RSW (5.8 hours) is even more so possibly because it involves two

bootstrapping components rather than one.14 This is because the CC test requires

only one calculation of the quasi likelihood ratio statistic, while the AB and RSW

tests require calculating this statistic and its bootstrapped or simulated version many

times. Thus, the computational improvement of the CC test is on the same order as

the number of simulations or bootstrap draws the AB or RSW tests require. Such

a computational improvement is especially useful for inverting a test to construct a

confidence set for θ.

6 Conclusion

This paper first considers testing a statistical hypothesis defined by affine inequalities

in a multivariate normal model. We propose a new test that compares the likelihood

ratio statistic to a chi-squared critical value, where the number of degrees of freedom

is the rank of the active inequalities. We show that this test controls size in the mul-

tivariate normal model. We also propose a version of the test for moment inequality

models and for testing nonlinear inequalities in general asymptotically normal models.

We show that these versions of the test asymptotically control size in a uniform sense.

These tests provide a simple and practical way to test inequalities or to construct a

confidence set for a parameter defined by moment inequalities.

14In this example, we are able to and already do use the tabulated optimal tuning parameter and
size-correction parameter values given in AB, which drastically reduces computational time for the
AB tests.
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A Proofs

Proof of Theorem 1

We first prove part (a). Fix µ ∈ C. First, we use lemma 1, parts (b) and (c) to get

Pr(||X−PCX||2> χ2
r(AJ(X)),1−α) =

∑

J⊆{1,...,dA}

Pr(X ∈ KJ and ||X−PCX||2> χ2
r(AJ ),1−α).

(17)

For each J , we consider the span of VJ as a subspace of RdX . Let PJ denote the

projection onto span(VJ), and MJ denote the projection onto its orthogonal com-

plement. We note that, given J , there exists a κJ ∈ span(VJ) such that for every

z ∈ CJ , PJz = κJ . This follows because for two z1, z2 ∈ CJ , and for any v ∈ span(VJ),

〈z1 − z2, v〉 = 0, which implies that z1 − z2 ⊥ span(VJ), so that PJ(z1 − z2) = 0dX .

We write PJX = PJ(X − PCX) + PJPCX = X − PCX + κJ , where the second

equality follows by lemma 1(a) and the above discussion. We also write MJX =

X − PJX = PCX − κJ . Therefore,

Pr(X ∈ KJ and ||X − PCX||2> χ2
r(AJ ),1−α)

=Pr(MJX + κJ ∈ CJ , PJX − κJ ∈ VJ , and ||PJX − κJ ||2> χ2
r(AJ ),1−α)

=Pr(MJX + κJ ∈ CJ)× Pr(PJX − κJ ∈ VJ and ||PJX − κJ ||2> χ2
r(AJ ),1−α), (18)

where the first equality uses the facts that X = PJX +MJX and KJ = CJ +VJ , and

the second equality follows from the fact that PJX is independent of MJX .

For J such that r(AJ) = 0, we have span(VJ) = {0dX}. Thus, PJX = κJ = 0dX .

Then by (18), we have

Pr(X ∈ KJ and ||X − PCX||2> χ2
r(AJ ),1−α) = 0. (19)

For J such that r(AJ) > 0, we would like to apply Lemma 2 to the second

probability in (18). We first define a linear isometry from span(VJ) to Rr(AJ). Let

BJ be a dX × r(AJ) matrix whose columns form a basis for span(VJ). Then PJX =

BJ(B
′
JBJ)

−1B′
JX . The projection matrix BJ(B

′
JBJ)

−1B′
J is idempotent with rank

r(AJ), and thus there exists a dX × r(AJ) matrix with orthonormal columns, QJ ,

such that QJQ
′
J = BJ(B

′
JBJ)

−1B′
J . The linear isometry from span(VJ) to Rr(AJ ) is
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QJ(X) = Q′
JX . This is an isometry because for any v1, v2 ∈ span(VJ),

‖v1 − v2‖2 = (v1 − v2)
′(v1 − v2)

= (v1 − v2)
′(PJ(v1 − v2))

= (v1 − v2)
′QJQ

′
J(v1 − v2)

= ‖QJ(v1)−QJ(v2)‖2, (20)

where the second equality holds because v1, v2 ∈ span(VJ).

Now let Q′
JVJ = {Q′

Jv : v ∈ VJ}. Then PJX − κJ ∈ VJ if and only if Q′
J(PJX −

κJ) ∈ Q′
JVJ because an isometry is bijective. Therefore, we have

Pr(PJX − κJ ∈ VJ and ||PJX − κJ ||2> χ2
r(AJ ),1−α)

= Pr(Q′
J(PJX − κJ) ∈ Q′

JVJ and ||Q′
J(PJX − κJ)||2> χ2

r(AJ ),1−α). (21)

Since X ∼ N (µ, I), we have

Q′
J(PJX − κJ) ∼ N(Q′

J (PJµ− κJ), Q
′
JIQJ) = N(Q′

J (PJµ− κJ), I). (22)

Next, note that Q′
JVJ is a cone in Rr(AJ ). The random vector Q′

J(PJX − κJ) ∼
N(γ, I) where γ = Q′

J(PJµ − κJ). The vector γ is in the polar cone because, for all

ỹ ∈ Q′
JVJ , there exists a y =

∑
j∈J vjaj ∈ VJ such that ỹ = Q′

Jy , and thus

〈γ, ỹ〉 = 〈Q′
J(PJµ− κJ), Q

′
Jy〉

= 〈PJµ− κJ , y〉
= 〈(µ−MJµ− PJz), y〉
= 〈(µ−MJµ− z +MJz), y〉
= 〈(µ− z), y〉
=

∑

j∈J

vj(〈µ, aj〉 − 〈z, aj〉)

≤ 0, (23)

where z is any element15 of CJ so that κJ = PJz, the second equality holds because

15If CJ is empty, so that no such z exists, then Pr(X ∈ KJ) = 0, so that the following inequalities
hold trivially.
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〈Q′
J(PJµ − κJ), Q

′
Jy〉 = y′QJQ

′
J(PJµ − κJ) = y′PJ(PJµ − κJ) = y′(PJµ − κJ), and

the inequality follows because 〈z, aj〉 = bj ≥ 〈µ, aj〉, using the facts that z ∈ CJ and

µ ∈ C.

Therefore, we can apply Lemma 2 to get that

Pr(PJX − κJ ∈ VJ and ||PJX − κJ ||2> χ2
r(AJ ),1−α})

= Pr
(
Q′

J(PJX − κJ) ∈ Q′
JVJ and ||Q′

J(PJX − κJ)||2> χ2
r(AJ ),1−α

)

≤ αPr(Q′
J(PJX − κJ) ∈ Q′

JVJ)

= αPr(PJX − κJ ∈ VJ). (24)

Plugging this and (19) into equation (17) for every J , we get that

∑

J⊆{1,...,dA}

Pr(X ∈ KJ and ||X − PCX||2> χ2
r(AJ ),1−α)

≤
∑

J⊆{1,...,dA}:r(AJ )>0

αPr(MJX + κJ ∈ CJ)× Pr(PJX − κJ ∈ VJ),

= α×


 ∑

J⊆{1,...,dA}:r(AJ(X))>0

Pr(X ∈ KJ)




= α(1− Pr(r(AJ(X)) = 0)) ≤ α,

where the last equality uses the fact that KJ form a partition of RdX .

Next, we prove part (b). We start with equation (17). We can exclude those J

for which Pr(X ∈ KJ) = 0:

Pr(||X − PCX||2> χ2
r(AJ(X)),1−α)

=
∑

J⊆{1,...,dA} s.t. Pr(X∈KJ )>0

Pr(X ∈ KJ and ||X − PCX||2> χ2
r(AJ ),1−α). (25)

As before, for each J , we define κJ ∈ span(VJ) to be such that for every z ∈ CJ ,

PJz = κJ . We write PJX = X−PCX+κJ and MJX = PCX−κJ . Then (18) holds.

We show that κJ = PJµ. We note that since Pr(X ∈ KJ) > 0, it must be the case

that CJ is nonempty. Let z ∈ CJ and for every λ ∈ [0, 1] let µλ = λz + (1 − λ)µ.
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Recall that in part (b), we have Aµ = b. Thus, for each λ ∈ (0, 1]

a′jµλ = λa′jz + (1− λ)a′jµ = λbj + (1− λ)bj = bj for j ∈ J, and

a′jµλ = λa′jz + (1− λ)a′jµ < λbj + (1− λ)bj = bj for j ∈ Jc.

This implies that µλ ∈ CJ , and hence, for every λ ∈ (0, 1], PJµλ = κJ . Take λ → 0

and by the continuity of the projection, κJ = PJµ.

Next, we apply the isometry to PJX − κJ = PJ(X − µ) in the second probability

of equation (18). Then,

Pr(PJX − κJ ∈ VJ and ||PJX − κJ ||2> χ2
r(AJ ),1−α)

=Pr(Q′
JPJ(X − µ) ∈ Q′

JVJ and ||Q′
JPJ(X − µ)||2> χ2

r(AJ ),1−α)

=Pr

(
Q′

JPJ(X − µ)

||Q′
JPJ(X − µ)|| ∈ Q′

JVJ and ||Q′
JPJ(X − µ)||2> χ2

r(AJ ),1−α

)
, (26)

where the second equality follows from the fact that Q′
JVJ is a cone.

We notice that Q′
JPJ(X − µ) ∼ N(0, I), where the dimension is r(AJ). By a

property of the multivariate standard normal distributions, the magnitude of the

vector, ||Q′
JPJ(X − µ)|| is independent of the direction,

Q′
JPJ(X−µ)

||Q′
JPJ(X−µ)||

. Therefore,

whenever r(AJ) > 0,

Pr

(
Q′

JPJ(X − µ)

||Q′
JPJ(X − µ)|| ∈ Q′

JVJ and ||Q′
JPJ(X − µ)||2> χ2

r(AJ ),1−α

)

=Pr

(
Q′

JPJ(X − µ)

||Q′
JPJ(X − µ)|| ∈ Q′

JVJ

)
× Pr

(
||Q′

JPJ(X − µ)||2> χ2
r(AJ ),1−α

)

=Pr

(
Q′

JPJ(X − µ)

||Q′
JPJ(X − µ)|| ∈ Q′

JVJ

)
× α

=Pr (Q′
JPJ(X − µ) ∈ Q′

JVJ)× α

=Pr (PJ(X − µ) ∈ VJ)× α, (27)

where the second equality follows from the fact that ||Q′
JPJ(X − µ)||2∼ χ2

r(AJ )
, the

third equality uses the fact that Q′
JVJ is a cone, and the fourth equality uses the

isometry. When r(AJ) = 0, the probability is equal to zero.

Plugging this into equation (25), we get that

Pr(||X − PCX||2> χ2
r(AJ(X)),1−α)
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=
∑

J⊆{1,...,dA} s.t. Pr(X∈KJ )>0 and r(AJ )>0

αPr(MJX + κJ ∈ CJ)× Pr(PJX − κJ ∈ VJ),

=
∑

J⊆{1,...,dA} s.t. Pr(X∈KJ )>0 and r(AJ )>0

αPr(X ∈ KJ)

= α×


 ∑

J⊆{1,...,dA} s.t. r(AJ )>0

Pr(X ∈ KJ)




= α× (1− Pr(r(AJ(X)) = 0)),

where the first equality follows from equations (18), (19), (26), and (27) and the last

equality uses the fact that KJ form a partition of RdX .

Proof of Theorem 2

We first prove part (a). Let {θn, Fn}∞n=1 be an arbitrary sequence satisfying Fn ∈ F
and θn ∈ Θ0(Fn) for all n. Let {nm} be an arbitrary subsequence of {n}. It is

sufficient to show that there exists a further subsequence, {nq}, such that as q → ∞,

liminf
q→∞

Pr Fnq
(Tnq(θnq) ≤ cnq(θnq , 1− α)) ≥ 1− α. (28)

Fix an arbitrary subsequence, {nm}. By Assumption 1(a), there exists a further

subsequence, {nq}, a sequence of positive definite matrices, Dq, and a positive definite

correlation matrix, Ω0, such that16

√
nqD

−1/2
q (m̄nq(θnq)−EFnq

m̄nq(θnq)) →d Y ∼ N(0,Ω0), and (29)

D−1/2
q Σ̂nq(θnq)D

−1/2
q →p Ω0. (30)

We introduce some simplified notation. Let Ω̂q = D
−1/2
q Σ̂nq(θnq)D

−1/2
q ,X = Ω

−1/2
0 Y ∼

N(0, I), Yq =
√
nqD

−1/2
q (m̄nq(θnq) − EFnq

m̄nq(θnq)), and Xq = Ω̂
−1/2
q Yq. Equations

(29) and (30) imply that

Xq →d X ∼ N(0, I), and (31)

Ω̂q →p Ω0. (32)

The remainder of the proof proceeds in four steps. (A) In the first step, the

16For notational simplicity, we denote all further subsequences by {nq}
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problem defined in (10) is transformed to include additional inequalities. (B) In the

second step, notation is defined for partitioning Rdm according to Lemma 1, for both

finite q and the limit. (C) In the third step, the almost sure representation theorem

is invoked on the convergence in (31) and (32). (D) In the final step, we show that

(almost surely) the event Tnq(θnq) ≤ cnq(θnq , 1−α) eventually implies a limiting event

based on X and Ω0. This limiting event has probability greater than or equal to 1−α

from Theorem 1.

(A) Consider the sequence of matrices A(θnq)D
1/2
q . For each q, let Λq denote a

dA × dA diagonal matrix with positive entries on the diagonal such that each row of

ΛqA(θnq)D
1/2
q is either zero or belongs to the unit circle. Such a Λq always exists by

taking the diagonal element to be the inverse of the magnitude of the corresponding

row of A(θnq)Dq, if it is nonzero, and one otherwise. Let gq =
√
nqΛq(b(θnq) −

A(θnq)EFnq
m̄nq(θnq)). With this notation, we can write

Tnq(θnq) = inf
y:ΛqA(θnq )D

1/2
q y≤gq

(Yq − y)′Ω̂−1
q (Yq − y), (33)

which adds and subtracts EFnq
m̄nq(θnq) in the objective and applies the change of

variables, y =
√
nqD

−1/2
q (t− EFnq

m̄nq(θnq)).

We can apply Lemma 3 to ΛqA(θnq)D
1/2
q and gq to get a further subsequence, nq,

a sequence of matrices, Bq, a sequence of vectors, hq, matrices A0 and B0, and vectors

g0 and h0, satisfying conditions (a)-(d) of Lemma 3. Let

Āq =

[
ΛqA(θnq)D

1/2
q

Bq

]
and h̄q =

[
gq

hq

]
,

and similarly for Ā0 and h̄0. Let dĀ = dA + dB. We have that

Tnq(θnq) = inf
y:Āqy≤h̄q

(Yq − y)′Ω̂−1
q (Yq − y) (34)

= inf
z:ĀqΩ̂

1/2
q z≤h̄q

(Xq − z)′(Xq − z), (35)

where the first equation follows from condition (b) of Lemma 3 and the second equa-

tion follows from the change of variables z = Ω̂
−1/2
q y.

Equation (35) has changed the problem by adding additional inequalities. We

verify that the rank of the binding inequalities is unchanged. For any positive definite
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matrix, Ω, let Jq(x,Ω) be the set of indices for the binding inequalities in the problem:

inf
y:ΛqA(θnq )D

1/2
q y≤gq

(x− y)′Ω−1(x− y).

Recall that Ĵ(θnq) is the set of binding inequalities for the problem defined in (10),

which is equal to Jq(Yq, Ω̂q) by a change of variables. Similarly, let J̄q(x,Ω) be the

set of binding inequalities in the problem:

inf
z:ĀqΩ1/2z≤h̄q

(x− z)′(x− z). (36)

Also let z∗q (x,Ω) denote the unique minimizer. We have that for any y ∈ Rdm and for

any positive definite Ω,

r(AJq(y,Ω)(θnq)) = r([ΛqA(θnq)D
1/2
q ]Jq(y,Ω)) = r([Āq]J̄q(Ω−1/2y,Ω)) = r([ĀqΩ

1/2]J̄q(Ω−1/2y,Ω)),

(37)

where the first equality follows because Λq is diagonal with positive entries on the

diagonal and Dq is positive definite, the second equality follows by condition (c) of

Lemma 3, and the final equality follows from the fact that Ω is positive definite.

Before proceeding to the next step, we simplify the rank calculation by taking a

further subsequence. Notice that for each J ⊆ {1, ..., dĀ}, r([Āq]J) ∈ {1, ..., dm}. We

can denote it by rqJ , and then take a subsequence, nq, so that for all J , rqJ does not

depend on q. Similarly, we define r∞J = r([Ā0]J). Note that by the convergence of Āq

to Ā0, r
q
J ≥ r∞J for all J .

(B) For any positive definite dm× dm matrix, Ω, and for every J ⊆ {1, ..., dĀ}, let

Aq(Ω) = ĀqΩ
1/2

aqℓ
′(Ω) = ℓth row of Aq(Ω)

Cq(Ω) = {x ∈ Rdm : aqℓ
′(Ω)x ≤ h̄ℓ,q for all ℓ = 1, ..., dĀ}

Cq
J(Ω) = {x ∈ Cq : aqℓ

′
(Ω)x = h̄ℓ,q for all ℓ ∈ J and aqℓ

′
(Ω)x < h̄ℓ,q for all ℓ ∈ Jc}

V q
J (Ω) =

{
∑

ℓ∈J

vℓa
q
ℓ(Ω) : vℓ ∈ R, vℓ ≥ 0

}
, and

Kq
J(Ω) = Cq

J(Ω) + V q
J (Ω). (38)
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Furthermore, for every J ⊆ {1, ..., dĀ}, let P q
J (Ω) denote the projection onto span(V q

J (Ω)),

and let M q
J(Ω) denote its orthogonal projection. There exists a κq

J(Ω) ∈ span(V q
J (Ω))

such that for every x ∈ Cq
J(Ω), P q

J (Ω)x = κq
J(Ω). This follows because for two

x1, x2 ∈ Cq
J(Ω), and for any v ∈ span(V q

J (Ω)), v
′(x1 − x2) = 0, which implies that

P q
J (Ω)(x1 − x2) = 0.

For every given Ω, we can apply Lemma 1 to the objects defined in (38). This

implies that

(a) if x ∈ Kq
J(Ω) then x− z∗q (x,Ω) ∈ V q

J (Ω) and z∗q (x,Ω) ∈ Cq
J(Ω),

(b) the sets Kq
J(Ω) for all J ⊆ {1, . . . , dĀ} form a partition of Rdm , and

(c) for each J ⊆ {1, . . . , dĀ}, we have

x ∈ Kq
J(Ω) iff J = J̄q(x,Ω). (39)

These properties imply that, for all x ∈ Kq
J(Ω), we can write

P q
J (Ω)x = P q

J (Ω)(x− z∗q (x,Ω)) + P q
J (Ω)z

∗
q (x,Ω) = x− z∗q (x,Ω) + κq

J (Ω), (40)

where the second equality follows by (a) and the definition of κq
J(Ω). Then, we can

also write M q
J(Ω)x = x− P q

J (Ω)x = z∗q (x,Ω)− κq
J(Ω).

We define similar notation for the limiting objects. Let J∞ = {ℓ ∈ {1, ..., dĀ} :

h̄ℓ,0 < ∞}. These are the indices for the inequalities that are “close-to-binding.” For

any positive definite matrix, Ω, let A∞(Ω) denote the matrix formed by the rows of

Ā0Ω
1/2 associated with the indices in J∞. For notational simplicity, we refer to the

rows of A∞(Ω) using ℓ ∈ J∞ even though the matrix A∞(Ω) has been compressed.

Let

a∞ℓ
′(Ω) = ℓth row of A∞(Ω) for ℓ ∈ J∞

C∞(Ω) = {x ∈ Rdm : a∞ℓ (Ω)′x ≤ h̄ℓ,0 for all ℓ ∈ J∞}
C∞

J (Ω) = {x ∈ C∞(Ω) : a∞ℓ (Ω)′x = h̄ℓ,0 for all ℓ ∈ J and a∞ℓ (Ω)′x < h̄ℓ,0 for all ℓ ∈ J∞\J}

V ∞
J (Ω) =

{
∑

ℓ∈J

vℓa
∞
ℓ (Ω) : vℓ ∈ R, vℓ ≥ 0

}
, and

K∞
J (Ω) = C∞

J (Ω) + V ∞
J (Ω). (41)
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Furthermore, for every J ⊆ J∞, let P∞
J (Ω) denote the projection onto span(V ∞

J (Ω)).

There exists a κ∞
J (Ω) ∈ span(V ∞

J (Ω)) such that for every x ∈ C∞
J (Ω),

P∞
J (Ω)x = κ∞

J (Ω). (42)

This follows because for two x1, x2 ∈ C∞
J (Ω), and for any v ∈ span(V ∞

J (Ω)), v′(x1 −
x2) = 0, which implies that P∞

J (Ω)(x1 − x2) = 0.

Let h∞ denote the vector formed from the elements of h̄0 that are finite. Let

J∞(x,Ω) be the indices for the binding inequalities in the problem:

inf
z:A∞(Ω)z≤h∞

(x− z)′(x− z).

Also let z∗∞(x,Ω) denote the unique minimizer. We can apply Lemma 1 to the objects

defined in (41). This implies that

(a∞) if x ∈ K∞
J (Ω) then x− z∗∞(x,Ω) ∈ V ∞

J (Ω) and z∗∞(x,Ω) ∈ C∞
J (Ω),

(b∞) the set of all K∞
J (Ω) form a partition of Rdm , and

(c∞) x ∈ K∞
J (Ω) iff J = J∞(x,Ω).

Before proceeding to the next step, consider M q
J(Ω0), which is a sequence of pro-

jection matrices in Rdm onto a space of dimension dm − rqJ . Since the space of such

matrices is compact, we can find a subsequence, nq, such that for all J ⊆ {1, ..., dĀ},
M q

J(Ω0) → MN
J , where MN

J is a projection matrix onto a subspace, NJ , of dimen-

sion dm − rqJ .
17 Furthermore, for any sequence of positive definite matrices such that

Ωq → Ω0, we have M
q
J(Ωq) → MN

J . This follows because, if we let Eq denote a dm×rqJ
matrix whose columns form an orthonormal basis for span(V q

J (Ω0)) (which is the range

of P q
J (Ω0)) then for any positive definite matrix, Ω, the columns of Ω1/2Ω

−1/2
0 Eq form

a basis for span(V q
J (Ω)), which implies that

M q
J(Ωq) = Idm − Ω1/2

q Ω
−1/2
0 Eq(E

′
qΩ

−1/2
0 ΩqΩ

−1/2
0 Eq)

−1E ′
qΩ

−1/2
0 Ω1/2

q

= Idm −Eq(E
′
qEq)

−1E ′
q + o(1) = M q

J(Ω0) + o(1).

17Recall that rqJ does not depend on q due to the construction of the subsequence {nq}.
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(C) Next, we invoke the almost sure representation theorem on the convergence

in (31) and (32).18 Then, we can treat the convergence in (31) and (32) as holding

almost surely.19

We now construct an event, X ⊆ Rdm , such that Pr(X ∈ X ) = 1. For every

L ⊆ J∞, let

V ∞
L+ = {x ∈ V ∞

L |∀L′ ⊆ L, if rqL′ < r∞L then MN
L′x 6= 0}. (43)

For each L ⊆ J∞ such that r∞L > 0, let

XL = {x ∈ K∞
L : P∞

L x− κ∞
L ∈ V ∞

L+ and (P∞
L x− κ∞

L )′(P∞
L x− κ∞

L ) 6= χ2
r∞L ,1−α}. (44)

Since r∞L > 0, P∞
L X ∼ N(0, P∞

L ), which is absolutely continuous on span(V ∞
L ), and

therefore the probability that P∞
L X−κ∞

L lies in any one of the finitely many subspaces,

null(MN
L′ ) = {x ∈ Rdm : MN

L′x = 0}, each with dimension rqL′ < r∞L , is zero. Also,

(P∞
L X − κ∞

L )′(P∞
L X − κ∞

L ) is absolutely continuous because it can be written as the

sum of r(A∞
L ) squared normal random variables. Therefore,

Pr(P∞
L X − κ∞

L ∈ V ∞
L /V ∞

L+ or (P∞
L X − κ∞

L )′(P∞
L X − κ∞

L ) = χ2
r(A∞

L ),1−α) = 0. (45)

For L ⊆ J∞ such that r(A∞
L ) = 0, let XL = K∞

L . Then, let X = ∪L⊆J∞XL.

Therefore, by property (b∞) and equation (45), Pr(X ∈ X ) = 1.

(D) We consider the set of all sequences such that xq → x∞ ∈ X and Ωq → Ω0.

By the definition of X , these sequences occur with probability one. Below we show

that for each sequence,

1{‖xq − z∗q (xq,Ωq)‖2≤ χ2
rq
J̄(xq,Ωq)

} ≥ 1{‖x∞ − z∗∞(x∞,Ω0)‖2≤ χ2
r∞
J∞(x∞,Ω0)

} (46)

eventually. Notice that by (35) and (36), the probability of the left hand side is equal

to Pr Fnq
(Tnq(θnq) ≤ cnq(θnq , 1− α)). If (46) holds, then by the bounded convergence

theorem,

liminf
q→∞

Pr Fnq
(Tnq(θnq) ≤ cnq(θnq , 1− α)) ≥ Pr (‖X − z∗∞(X,Ω0)‖2≤ χ2

r∞
J∞(X,Ω0)

). (47)

18See van der Vaart and Wellner (1996), Theorem 1.10.3, for the a.s. representation theorem.
19This can be formalized by defining random variables, X̃q, X̃, and Ω̃q, satisfying X̃q =d Xq,

X̃ =d X , Ω̃q =d Ω̂q, X̃q →a.s. X̃, and Ω̃q →a.s. Ω0.
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Also,

Pr (‖X − z∗∞(X,Ω0)‖2≤ χ2
r∞
J∞(X,Ω0)

) ≥ 1− α (48)

by Theorem 1(a), because z∗∞(X,Ω0) = PC∞X , where PC∞ is the projection of X

onto C∞ = {z ∈ Rdm : A∞(Ω0)z ≤ h∞}. Together, (47) and (48) imply (28) for the

given subsequence, nq.

To finish the proof of part (a), we prove (46). Fix a sequence, xq → x∞ ∈ X and

Ωq → Ω0. For the rest of this step, consider A∞(Ω), P∞
J (Ω), κ∞

J (Ω), and the objects

defined in (41) and let the objects without the argument (Ω) denote the objects

evaluated at Ω0. For example, A∞ = A∞(Ω0). Similarly, consider the objects defined

in (38) and let the objects without the argument (Ω) denote the objects evaluated at

Ωq.

Let L∞ be the subset of J∞ for which x∞ ∈ K∞
L∞ . We show that

1 =
∑

L⊆{1,...,dĀ}

1{xq ∈ Kq
L} =

∑

L⊆L∞:rqL≥r∞
L∞

1{xq ∈ Kq
L} (49)

eventually. Property (b) above implies that the first equality holds at every q. Thus

it is sufficient to show the second equality. For the second equality, it is sufficient

to show that, for all L /∈ {L ⊆ L∞ : rqL ≥ r∞L∞}, xq /∈ Kq
L eventually. Specifically,

we consider three cases: (I) L 6⊆ J∞, (II) L ⊆ J∞ but L 6⊆ L∞, (III) L ⊆ L∞ but

rqL < r∞L∞ . By Lemma 7, z∗q (xq,Ωq) → z∗∞(x∞,Ω0), where the conditions of the lemma

are satisfied by condition (d) from Lemma 3 and the fact that h̄q ≥ 0 for all q.

(I) Let L 6⊆ J∞. Then, there exists a ℓ ∈ L such that h̄ℓ,q → ∞. Then

aqℓ
′
z∗q (xq,Ωq) < h̄ℓ,q eventually because z∗q (xq,Ωq) → z∗∞(x∞,Ω0). This implies that

z∗q (xq,Ωq) /∈ Cq
L, and therefore by (a), xq /∈ Kq

L eventually.

(II) Let L ⊆ J∞ but L 6⊆ L∞. Then, there exists a ℓ ∈ L such that a∞ℓ
′z∗∞(x∞,Ω0) <

h̄ℓ,0. By the fact that aqℓ
′
z∗q (xq,Ωq) → a∞ℓ

′z∗∞(x∞,Ω0) and h̄ℓ,q → h̄ℓ,0, we have that

aqℓ
′z∗q (xq,Ωq) < h̄ℓ,q eventually. This implies that z∗q (xq,Ωq) /∈ Cq

L, and therefore by

property (a) above, xq /∈ Kq
L eventually.

(III) Let L ⊆ L∞ such that rqL < r∞L∞ . This case is impossible if r∞L∞ = 0. Thus

we only need to consider r∞L∞ > 0. Note that x∞ − z∗∞(x∞,Ω0) = P∞
L∞x∞ − κ∞

L∞ by

property (a∞) above. Also, by the definition of X we have x∞ ∈ XL∞ , which implies

that x∞− z∗∞(x∞,Ω0) ∈ V ∞
L∞+, which in turn means that MN

L (x∞− z∗∞(x∞,Ω0)) 6= 0.

By the convergence that M q
L(xq− z∗q (xq,Ωq)) → MN

L (x∞− z∗∞(x∞,Ω0)), we have that
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M q
L(xq−z∗q (xq,Ωq)) 6= 0 eventually. However, if xq ∈ Kq

L, then by property (a) above,

xq − z∗q (xq,Ωq) ∈ V q
L , which implies that M q

L(xq − z∗q (xq,Ωq)) = 0. This means that

xq /∈ Kq
L eventually. Therefore, (49) holds eventually.

We now verify (46). Notice that

1{‖xq − z∗q (xq,Ωq)‖2≤ χ2
rq
J̄(xq,Ωq)

,1−α}

=
∑

J⊆{1,...,dĀ}

1{‖xq − z∗q (xq,Ωq)‖2≤ χ2
rq
J̄(xq,Ωq)

,1−α}1{xq ∈ Kq
J}

=
∑

L⊆L∞:rqL≥r∞
L∞

1{‖xq − z∗q (xq,Ωq)‖2≤ χ2
rq
J̄(xq,Ωq)

,1−α}1{xq ∈ Kq
L}

=
∑

L⊆L∞:rqL≥r∞
L∞

1{‖xq − z∗q (xq,Ωq)‖2≤ χ2
rqL,1−α}1{xq ∈ Kq

L}

≥
∑

L⊆L∞:rqL≥r∞
L∞

1{‖xq − z∗q (xq,Ωq)‖2≤ χ2
r∞
L∞ ,1−α}1{xq ∈ Kq

L} (50)

=1{‖x∞ − z∗∞(x∞,Ω0)‖2≤ χ2
r∞
L∞ ,1−α}

∑

L⊆L∞:rqL≥r∞
L∞

1{xq ∈ Kq
L} (51)

=1{‖x∞ − z∗∞(x∞,Ω0)‖2≤ χ2
r∞
L∞ ,1−α}1{x∞ ∈ K∞

L∞}
=

∑

J⊆J∞

1{‖x∞ − z∗∞(x∞,Ω0)‖2≤ χ2
r∞J ,1−α}1{x∞ ∈ K∞

J }

=
∑

J⊆J∞

1{‖x∞ − z∗∞(x∞,Ω0)‖2≤ χ2
r∞
J∞(x∞,Ω0)

,1−α}1{x∞ ∈ K∞
J }

=1{‖x∞ − z∗∞(x∞,Ω0)‖2≤ χ2
r∞
J∞(x∞,Ω0)

,1−α}, (52)

where: the first equality follows from property (b); the second equality follows from

(49); the third equality follows from property (c); the inequality follows because

rqL ≥ r∞L∞ ; the fourth equality must hold eventually because, when r∞L∞ > 0,

‖xq − z∗q (xq,Ωq)‖2→ ‖x∞ − z∗∞(x∞,Ω0)‖2= ‖P∞
L∞x∞ − κ∞

L∞‖2 6= χ2
r∞
L∞ ,1−α

(the equality follows from property (a∞) above because x∞ ∈ K∞
L∞ , and the inequality

follows because x ∈ XL∞) and when r∞L∞ = 0, A∞
L∞ = 0, we have Aq

L∞ = 0 eventually

(because each row of A∞ either belongs to the unit circle or is zero), and therefore,

xq ∈ Kq
L for L ⊆ K∞ implies xq − z∗q (xq,Ωq) = 0 eventually; the fifth equality

follows from (49) and x∞ ∈ K∞
L∞ ; the sixth equality follows because all the terms
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with J 6= L∞ are zero; the seventh equality follows from (c∞); and the final equality

follows from (a∞). This verifies (46), proving part (a).

Next, we prove part (b). Let {(θn, Fn)} be the sequence specified in Assumption

1(b). It is sufficient to show that for every subsequence, nm, there exists a further

subsequence, nq, such that

lim
q→∞

Pr Fnq
(Tnq(θnq) ≤ cnq(θnq , 1− α)) = 1− α. (53)

Let nm be an arbitrary subsequence. The proof follows that of part (a) with the

following changes.

(i) The existence of Λq satisfying (33) now follows from Assumption 1(b).

(ii) The existence of Bq is no longer needed, so we can take Āq = ΛqA(θnq)D
1/2
q

and h̄q = gq. Then, Āq → A0 and h̄q → h̄ follows from (8) and (9). Notice that

without Bq, (37) still holds without appealing to Lemma 3.

(iii) We show that (46) is satisfied with equality by the arguments in part (a) with

modifications (iv)-(vi) below. In this case, the bounded convergence implies that

equality holds in (47). Also, an appeal to Theorem 1(b) implies that equality holds

in (48), where the conditions of Theorem 1(b) are satisfied because A∞µ = h∞ since

µ = 0 and h∞ = 0, and Pr(A0,J∞(X,Ω0) = 0) = 0 since a∞ℓ = −a∞ℓ′ 6= 0 (so at least one

of those inequalities is always active in the limit).

(iv) The conditions of Lemma 7 are satisfied, not by Lemma 3, but by Lemma 8,

where the condition is satisfied by Assumption 1(b).

(v) The inequality in (50) holds with equality because rqL = r∞L ≤ r∞L∞ for all L

by Assumption 1(b).

(vi) Equality (51) holds when r∞L∞ = 0 because by Assumption 1(b), Aq
L∞ = 0

eventually. No change is needed when r∞L∞ > 0.

Combining these changes with the proof of part (a) proves (53), and therefore,

part (b).

Proof of Theorem 3

The proof of Theorem 3 follows from the same argument as the proof Theorem 2

with the following changes: there is no dependence on θ; the distribution is indexed

by both µ ∈ M and F ∈ F(µ); m̄n(θ) is replaced by h(µ̂n); EF m̄n(θ) is replaced by
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h(µ); b(θ) is replaced by 0dh1+2dh2 ; and

A(θ) =




Idh1 0

0 Idh2
0 −Idh2


 . (54)

The identified set is given by M0 = {µ ∈ M : h1(µ) ≤ 0, h2(µ) = 0}. We let

Σ̂n(θ) = H(µ̂n)Σ̂
µ
nH(µ̂n)

′, which does not depend on θ.

We verify a modification of Assumption 1(a) to account for the above changes. Fix

a sequence, µn, Fn, such that µn ∈ M0, and fix a subsequence, nm. By Assumption 2,

there exists a further subsequence, nq, and a positive definite matrix, Σµ, such that
√
nq(µ̂nq−µnq) → N(0,Σµ) and Σ̂µ

n →p Σ
µ. Furthermore, by compactness ofM , there

exists a further subsequence, nq, such that µnq → µ0 ∈ M . Let Σ = H(µ0)Σ
µH(µ0)

′.

Then, (5) is satisfied with Dq = I by the delta method (note that Ω needs not be a

correlation matrix in this case), and (6) is satisfied by the continuous differentiability

of h(µ) and the consistency of µ̂nq for µ0.

We also note that r(AĴ(θ0)
(θ0)) = |Ĵ |+dh2 because of the definition of Ĵ and the

fact that A(θ) takes the form of (54). Therefore,

lim sup
n→∞

sup
{µ∈M :h1(µ)≤0,h2(µ)=0}

sup
F∈F(µ)

Pr F,µ(Tn > χ2
|Ĵ |+dh2,1−α

)

=1− lim inf
n→∞

inf
{µ∈M :h1(µ)≤0,h2(µ)=0}

inf
F∈F(µ)

Pr F,µ(Tn ≤ χ2
|Ĵ|+dh2,1−α

)

≤1− (1− α) = α, (55)

where the inequality follows from the modified proof of Theorem 2(a).

For part (b), we verify a modification to Assumption 1(b). Under the null hypothe-

sis there exists a µ0 ∈ M0 and an F0 ∈ F(µ0). We take our sequence to be the constant

sequence, (µ0, F0), for all n. Then, for every subsequence, nm, there exists a further

subsequence, nq, satisfying Assumption 1(a) with Dq = I. Condition (7) is satisfied

with ℓ = dh1 + 1 and ℓ′ = dh1 + dh2 + 1 by (54) and the fact that dh2 > 0. Condition

(8) is satisfied with Λq = I because the left hand side does not depend on q. Also,

condition (9) is satisfied because every element of Λq(b(θnq) − A(θnq)EFnq
m̄nq(θnq)),

which is just equal to −A(θ)h(µ0), does not depend on q and is nonnegative. There-

fore, when multiplied by
√
nq, each element either diverges to +∞ or converges to

zero. Therefore, by the modified proof of Theorem 2(b), the inequality in (55) holds
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with equality, and part (b) of Theorem 3 holds.

Proof of Lemma 1

(a) By assumption, X ∈ KJ = CJ +VJ . So, we write X = X1+X2, where X1 ∈ CJ

and X2 ∈ VJ . Then, PCX1 = X1 because X1 ∈ C already. We show that

PCX = X1. By a property of projection onto convex sets, it is necessary and

sufficient that for all y ∈ C, we have 〈X − X1, y − X1〉 ≤ 0.20 This follows

because X2 =
∑

j∈J vjaj with vj ≥ 0, so

〈X2, y −X1〉 =
∑

j∈J

vj(〈aj , y〉 − 〈aj, X1〉) ≤ 0,

where the inequality uses the fact that y ∈ C, so a′jy ≤ bj and X1 ∈ CJ , so

a′jX1 = bj . Combining these, we get that PCX = X1 ∈ CJ and X − PCX =

X −X1 = X2 ∈ VJ .

(b) We first show that every X belongs to some KJ . For every X , PCX ∈ C, so

there exists a J such that PCX ∈ CJ .

By the inner-product property of projection, we know that for all y ∈ C, 〈y −
PCX,X−PCX〉 ≤ 0. Using this fact, let z ⊥ span(VJ). Then, there exists a ǫ >

0 such that PCX+ǫz and PCX−ǫz both belong to C.21 Then, 〈ǫz,X−PCX〉 ≤ 0

and 〈−ǫz,X−PCX〉 ≤ 0. These two inequalities imply that 〈z,X−PCX〉 = 0.

Thus, X−PCX is orthogonal to all vectors, z, which are orthogonal to span(VJ).

This implies that X − PCX ∈ span(VJ).

If X − PCX /∈ VJ , then by the separating hyperplane theorem,22 there exists a

direction, c ∈ span(VJ) such that 〈c,X−PCX〉 > 0 and 〈c, aj〉 < 0 for all j ∈ J .

We consider PCX+ ǫc. We show that for ǫ sufficiently small, (1) PCX+ ǫc ∈ C,

and (2) 〈X − PCX, ǫc〉 > 0.

(1) For j ∈ J , 〈PCX + ǫc, aj〉 = bj + ǫ〈c, aj〉 < bj , where the equality follows

because PCX ∈ CJ and the inequality follows from the definition of c. For

20See Section 3.12 in Luenberger (1969). Hereafter, call this property of projection onto a convex
set the “inner-product property.”

21This uses the slackness of the inequalities in the definition of CJ .
22See Section 11 of Rockafellar (1970) or Section 5.12 in Luenberger (1969).
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j ∈ Jc, 〈PCX+ǫc, aj〉 = 〈PCX, aj〉+ǫ〈c, aj〉, which is less than bj for ǫ sufficiently

small because 〈PCX, aj〉 < bj .

(2) 〈X − PCX, ǫc〉 = ǫ〈X − PCX, c〉 > 0 by the definition of c.

This contradicts the inner-product property of projection onto a convex set,

and therefore X − PCX ∈ VJ , and X ∈ KJ .

We next show that no X belongs to two distinct KJ . If X ∈ KJ and KJ ′, then,

by part (a), PCX ∈ CJ and PCX ∈ CJ ′. But this is a contradiction because the

projection onto a convex set is unique, and the CJ form a partition of C.

(c) If X ∈ KJ , then PCX ∈ CJ , so all the inequalities in J are binding. If X /∈ KJ ,

then X is in a different KJ ′ , for some J ′ 6= J , by part (b). Thus, J 6= J(X) = J ′.

Proof of Lemma 2

It is without loss of generality to assume γ = −λe1 for some λ ≥ 0 because the

inequality to be proved is invariant to a rotation of Y .

First we change variables to spherical coordinates. Essentially, this reduces the

problem from any cone, V , to a ray. Calculate

αPrγ(Y ∈ V )− Prγ({Y ∈ V and ||Y ||2> χ2
n,1−α})

=

∫
1{Y ∈ V }(α− 1{||Y ||2> χ2

r,1−α})φ(Y + λe1)dY

=

∫ ∫
(α− 1{ρ2 > χ2

r,1−α})βρr−1e−
1
2
(ρ+λ cos(φ1))2dρ1{Y/||Y ||∈ V }c(φ, λ)dφ1 · · ·dφn−1,

where the last equality is a conversion to spherical coordinates: ρ = ||Y ||, φ1, φ2,

..., φr−1 are angles that satisfy Y1 = ρ cos(φ1), Y2 = ρ sin(φ1) cos(φ2), ..., Yr−1 =

ρ sin(φ1) · · · sin(φr−2) cos(φ(r−1)), and Yn = ρ sin(φ1) · · · sin(φr−2) sin(φr−1), c(φ, λ) =
Γ(r/2)

2πr/2 e
− 1

2
λ2(1−cos2(φ1))

∏r−2
i=1 sin

r−1−i(φi) ≥ 0 (which mostly comes from the Jacobian of

the transformation, but also includes a constant), and β = 1
2r/2−1Γ(r/2)

. Because any

Y ∈ V has Y1 ≥ 023, φ1 only ranges from 0 to π/2. φi for i = 2, ..., n− 2 ranges from

0 to π, while φn−1 ranges from 0 to 2π.

23This follows because −e1 is in the polar cone, so 〈Y,−e1〉 ≤ 0.
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We focus on the inner integral, which is along a ray defined by φ with distribution

that is very similar to a χ distribution, but with an extra noncentrality parameter,

λ cos(φ1) ≥ 0. Let λ̄ = λ cos(φ1), and we show that for every λ̄ > 0, the inner integral

is nonnegative. This is sufficient because the weights in the outer integral are all

nonnegative.

For every λ̄ ≥ 0, let

f(λ̄) =

∫ ∞

0

(α− 1{ρ2 > χ2
r,1−α})βρr−1e−

1
2
(ρ+λ̄)2dr.

Let f ′(λ̄) denote the derivative of f . We show that (1) f(0) ≥ 0 and (2) for all λ̄ ≥ 0,

f ′(λ̄) ≥ −
(√

χ2
r,1−α + λ̄

)
f(λ̄). Together, these two properties imply that f(λ̄) ≥ 0

because, if not, then there exists a λ̄ > 0 such that f(λ̄) < 0. Then, by the mean

value theorem, there exists a λ̃ ∈ (0, λ̄) such that f(λ̃) < 0 and f ′(λ̃) < 0, which

contradicts property (2).

Property (1) holds because, for λ̄ = 0, ρ is a χ distribution with r degrees of

freedom, so the probability that ρ2 > χ2
r,1−α is α. To show that property (2) holds,

we evaluate:

f ′(λ̄) =
d

dλ̄

∫
(α− 1{ρ2 > χ2

r,1−α})βρr−1e−
1
2
(ρ+λ̄)2dρ

=

∫
(α− 1{ρ2 > χ2

r,1−α})βρr−1 d

dλ̄
e−

1
2
(ρ+λ̄)2dρ

= −
∫

(ρ+ λ̄)(α− 1{ρ2 > χ2
r,1−α})βρr−1e−

1
2
(ρ+λ̄)2dρ

= −
∫

(ρ+ λ̄)α1{ρ2 ≤ χ2
r,1−α}βρr−1e−

1
2
(ρ+λ̄)2dρ

+

∫
(ρ+ λ̄)(1− α)1{ρ2 > χ2

r,1−α}βρr−1e−
1
2
(ρ+λ̄)2dρ

≥ −
∫ (√

χ2
r,1−α + λ̄

)
α1{ρ2 ≤ χ2

r,1−α}βρr−1e−
1
2
(ρ+λ̄)2dρ

+

∫ (√
χ2
r,1−α + λ̄

)
(1− α)1{ρ2 > χ2

r,1−α}βρr−1e−
1
2
(ρ+λ̄)2dρ

= −
(√

χ2
r,1−α + λ̄

)∫
(α− 1{ρ2 > χ2

r,1−α})βρr−1e−
1
2
(ρ+λ̄)2dρ

= −
(√

χ2
r,1−α + λ̄

)
f(λ̄),

where the second equality follows by dominated convergence and the inequality follows
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from the events {ρ2 > χ2
r,1−α} and {ρ2 ≤ χ2

r,1−α}.

Lemmas 3–6

For any matrix, A, and for any vector, g, let C(A, g) = {x ∈ Rdx : Ax ≤ g}.

Lemma 3. Let An be a sequence of dA×dx matrices such that each row is either zero

or belongs to the unit circle. Let gn be a sequence of nonnegative dA-vectors. Then,

there exists a subsequence, nq, a sequence of dB × dx matrices, Bq, and a sequence of

nonnegative dB-vectors hq such that the following hold.24

(a) Anq → A0, Bq → B0, gnq → g0, and hq → h0 (some of the elements of g0 and

h0 may be +∞, in which case the convergence/divergence occurs elementwise).

(b) C(Anq , gnq) ⊆ C(Bq, hq) for all q.

(c) If we let JA
q (x) = {j ∈ {1, ..., dA} : a′j,nq

x = gj,nq} and let JB
q (x) = {j ∈

{1, ..., dB} : b′j,qx = hj,q}, then for all x ∈ C(Anq , gnq) and for all q, r({aj,nq}j∈JA
q (x)) =

r({aj,nq}j∈JA
q (x) ∪ {bj,q}j∈JB

q (x)).

(d) C(Anq , gnq) ∩ C(Bq, hq) → C(A0, g0) ∩ C(B0, h0) pointwise, which means that

(i) for every sequence xq ∈ C(Anq , gnq) ∩ C(Bq, hq) such that xq → x0, x0 ∈
C(A0, g0) ∩ C(B0, h0), and

(ii) for every x0 ∈ C(A0, g0)∩C(B0, h0), there exists a sequence, xq ∈ C(Anq , gnq)∩
C(Bq, hq) such that xq → x0.

Proof of Lemma 3. Before proving the lemma, we note that for any subsequence, nq

such that Anq → A0 and gnq → g0, and for any Bq → B0 and hq → h0, condition

(d)(i) is satisfied. Specifically, let xq denote a sequence that belongs to C(Anq , gnq)∩
C(Bq, hq) for all q, and such that xq → x0. Then

a′j,0x0 = lim
q→∞

a′j,nq
xq ≤ lim

q→∞
gj,nq = gj,0.

Also, by the convergence of hq, we have that

b′j,0x0 = lim
q→∞

b′j,qxq ≤ lim
q→∞

hj,q = hj,0.

24We use bj,q to denote the transpose of the jth row of Bq, and similarly for aj,nq
, aj,0, and bj,0.
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Therefore, x0 ∈ C(A0, g0) ∩ C(B0, h0).

We also note that for any q, Bq, and hq satisfying (b), condition (c) must also be

satisfied. If not, then there exists a q, an x ∈ C(Anq , gnq) and a j′ ∈ JB
q (x) such that

bj′,q cannot be written as a linear combination of aj,nq for j ∈ JA
q (x). This implies

that there exists a v such that b′j′,qv > 0 and v ⊥ aj,nq for all j ∈ JA
q (x). But then,

x+αv ∈ C(Anq , gnq) for sufficiently small α, at the same time that b′j′,q(x+αv) > hq.

This contradicts the fact that C(Anq , gnq) ⊆ C(Bq, hq). Therefore, (c) holds.

We now prove the lemma by finding a subsequence, nq, and sequences {Bq} and

{hq} that satisfy conditions (a), (b), and (d)(ii). We first consider An and gn. By

the compactness of the unit circle, let nq be a subsequence so that Anq converges

to some A0. Also suppose gnq converges along the subsequence to some vector g0 ∈
(R+ ∪ {+∞})dA.

Let J+
A denote the subset of {1, ..., dA} for which gj,0 > 0, and let J0

A denote the

subset for which gj,0 = 0. Consider AJ0
A,0, which defines a cone in Rdx : C(AJ0

A,0, 0) =

{x ∈ Rdx : AJ0
A,0x ≤ 0}. Let S denote the smallest linear subspace of Rdx that

contains this cone. (For any two subspaces containing the cone, the intersection also

does. Therefore, the smallest subspace is well-defined.) Let the dimension of S be dS.

Let JS
A be the subset of J0

A for which aj,0 ⊥ S for all j ∈ JS
A. Let J

N
A = {1, ..., dA}\JS

A.

Next, we define sequences Bq and hq that satisfy conditions (a), (b), and (d)(ii) by

induction on the dimension of S. If dS = 0, then no Bq or hq is required. Condition (a)

is satisfied by the above choice of the subsequence. Condition (b) is satisfied because

C(Bq, hq) = Rdx for all q. Condition (d)(ii) is satisfied because C(A0, g0) = {0}, and
then we can take xq = 0 for all q, which belongs to C(Anq , gnq) and converges to

x0 = 0 ∈ C(A0, g0).

If dS > 0, then suppose that the conclusion of Lemma 3 holds for all values

of the dimension of S less than dS. Let Cq = C(AJS
A,nq

, gJS
A,nq

). Let CS
q be the

projection of Cq onto S. That is, CS
q = {PSx : x ∈ Cq}, where PS denotes the

projection onto S and MS = I − PS. The fact that Cq is a polyhedral set (defined

by finitely many affine inequalities) implies by Theorem 19.3 in Rockafellar (1970)

that CS
q is also a polyhedral set. Therefore, there exists a dB1 × dx matrix of unit

vectors in S, B1
q and a vector h1

q such that CS
q = {y ∈ S : B1

qy ≤ h1
q}. We note

that CS
q contains zero, so h1

q ≥ 0. Let nq be a further subsequence so that B1
q → B1

0

and h1
q → h1

0, where some of the elements of h1
0 may be +∞, in which case the

convergence holds elementwise. We note that this construction satisfies conditions
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(a) and (b) because C(Anq , gnq) ⊆ Cq ⊆ C(B1
q , h

1
q) for all q, where the second subset

holds because B1
qx = B1

qMSx+B1
qPSx = B1

qPSx ≤ h1
q for all x ∈ Cq because the rows

of B1
q belong to S and PSx ∈ CS

q .

Let J+
B denote the set of j ∈ {1, ..., dB1} for which h1

j,0 > 0, and let J0
B denote

the set for which h1
j,0 = 0, where h1

j,0 is the jth element of h1
0. Consider B1

J0
B ,0

and

AJ0
A,0, which together define a cone in S: {x ∈ S : B1

J0
B ,0

x ≤ 0 and AJ0
A,0x ≤ 0}. As

before, let S† denote the smallest linear subspace of S that contains this cone. Let

JS†

B denote the set of all j ∈ J0
B for which b1j,0 ⊥ S†. Also let JS†

A denote the set of all

j ∈ J0
A for which aj,0 ⊥ S†. Let the dimension of S† be dS†.

If dS† < dS, then the result follows by the induction assumption. In particular, if

we let

Ãq =

[
Anq

B1
q

]
and g̃q =

[
gnq

h1
q

]
,

then the subspace, S̃, defined to be the smallest linear subspace containing C(Ã0, g̃0),

is equal to S†. Therefore, there exists a further subsequence, nq, and another matrix

of inequalities, B2
q and h2

q such that: (a) B2
q → B2

0 and h2
q → h2

0, (b) C(Ãq, g̃q) ⊆
C(B2

q , h
2
q) for all q along the subsequence, and (d)(ii) C(Ãq, g̃q)∩C(B2

q , h
2
q) → C(Ã0, g̃0)∩

C(B2
0 , h

2
0) pointwise. It is easy to see that these conditions imply conditions (a), (b),

and (d)(ii) for the original An and gn along this subsequence, with

Bq =

[
B1

q

B2
q

]
and hq =

[
h1
q

h2
q

]
,

using the fact that C(Ãq, g̃q) = C(Anq , gnq) ∩ C(B1
q , h

1
q).

Therefore, we only need to show condition (d)(ii) in the case that dS† = dS. In

this case, S = S†, and so JS†

B = ∅ and JS†

A = JS
A. Fix x0 ∈ C(A0, g0) ∩ C(B1

0 , h
1
0).

We show that for every ǫ > 0 there exists a Q such that for all q ≥ Q there exists a

yq ∈ C(Anq , gnq) ∩ C(B1
q , h

1
q) such that ‖yq − x0‖≤ 2ǫ. If true, then this can be used

to construct a sequence, yq → x0, satisfying condition (d)(ii).

Fix ǫ > 0. By Lemma 4, there exists a point, x̃, in S that satisfies b1j,0
′
x̃ < h1

j,0

for all j ∈ {1, ..., dB1}, and a′j,0x̃ < gj,0 for all j ∈ JN
A . There exists a λ ∈ (0, 1) small

enough that x† = λx̃+ (1− λ)x0 ∈ B̄(x0, ǫ), where B̄(x0, ǫ) denotes the closed ball of

radius ǫ around x0. Note that x
† satisfies a′j,0x

† < gj,0 for all j ∈ JN
A and b1j,0

′
x† < hj,0

for all j ∈ {1, ..., dB1}. Therefore, there exists a δ ∈ (0, ǫ) and a Q such that for all
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q ≥ Q, and for all x ∈ B̄(x†, δ), b1j,q
′
x < h1

j,q for all j ∈ {1, ..., dB1}, and a′j,nq
x < gj,nq

for all j ∈ JN
A . Notice that, for all q ≥ Q, x† ∈ CS

q = {y ∈ S : B1
qy ≤ h1

q}, which
means that there exists a yq ∈ Cq such that x† = PSyq. By Lemma 5 applied to

K = {x†} (where the condition is satisfied because, by Lemma 6, S = {x ∈ Rdx :

AJS ,0x ≤ 0}), there exists a larger Q such that for all q ≥ Q, yq ∈ B̄(x†, δ). Therefore,

‖yq − x0‖≤ 2ǫ.

Lemma 4. Let A be a dA×dx matrix. Let g be nonnegative. Let J+ denote the subset

of {1, ..., dA} such that gj > 0, and let J0 denote the subset of {1, ..., dA} such that

gj = 0. Let S denote the smallest linear subspace containing C(AJ0 , 0) = {x ∈ Rdx :

AJ0x ≤ 0}. Let JS be the subset of J0 for which AJS ⊥ S. Let JN = {1, ..., dA}\JS.

There exists a x̃ ∈ S such that a′j x̃ < gj for all j ∈ JN .

Proof of Lemma 4. First, let M > maxj∈J+‖aj‖, and let ǫ ∈ (0,minj∈J+{gj}/M).

Then, for all x̃ ∈ B̄(0, ǫ), a′j x̃ < gj for all j ∈ J+. Also, for every j ∈ JN ∩ J0,

{x ∈ S : a′jx = 0} defines a subspace of S. We note that for all j ∈ JN ∩ J0,

{x ∈ S : a′jx = 0} is a proper subset of S, because else j would belong to JS. By the

definition of S, S ∩ C(AJN∩J0 , 0) is not contained within any of these subspaces. In

particular, for each j ∈ JN ∩J0, we can find a x̃j and a neighborhood, Nj, (relatively

open in S) that belongs to S ∩ C(AJN∩J0,0, 0)\{x ∈ S : a′jx = 0}. Indeed, we can

consider j ∈ JN ∩J0 sequentially, and define each neighborhood to be a subset of the

previous one. Therefore, the final x̃j must belong to S ∩ C(AJN∩J0,0, 0) and satisfy

a′j x̃ < 0 for all j ∈ JN ∩ J0. Take x̃ = λx̃j , where λ > 0 is small enough that

x̃ ∈ B̄(0, ǫ). Then, x̃ satisfies a′jx̃ < gj for all j ∈ JN .

Lemma 5. Let An → A0 and gn → 0, where gn ≥ 0 for all n. Suppose S = {x ∈
Rdx : A0x ≤ 0} is a linear subspace of Rdx. Let S⊥ denote the orthogonal subspace

to S in Rdx . Let PSx denote the projection of x ∈ Rdx onto S and let MSx denote

x− PSx. Then, for every K ⊆ S, compact, and for every ε > 0, we have

{x ∈ C(An, gn) : PSx ∈ K, ‖MSx‖≥ ε} = ∅

eventually as n → ∞.

Proof of Lemma 5. Suppose that the conclusion of the lemma is not true. Then there

exists a sequence {xn ∈ C(An, gn)} and a subsequence nm such that PSxnm ∈ K and

‖MSxnm‖≥ ε for all m ≥ 1. Define the unit vector x⊥
nm

= MSxnm/‖MSxnm‖. Then,
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by the compactness of K and the unit circle, there exists a further subsequence nq

such that PSxnq → xS and x⊥
nq

→ x⊥ for some xS ∈ S and x⊥ ∈ S⊥ as q → ∞.

Because x⊥ ∈ S⊥ and x⊥ 6= 0, we know that x⊥ /∈ S = {x ∈ Rdx : A0x ≤ 0}, and
therefore there exists a j such that

a′j,0x
⊥ > 0. (56)

Also, since xS ∈ S, a′j,0x
S ≤ 0. Since S is a linear subspace, we have a′j,0(−xS) ≤ 0

as well. This shows that a′j,0x
S = 0 (and more generally, S = {x ∈ Rdx : A0x = 0}).

These imply that

a′j,0(x
S + x⊥) > 0. (57)

Now consider

a′j,nq
xnq − gj,nq = a′j,nq

PSxnq + a′j,nq
MSxnq − gj,nq

= o(1) + a′j,0x
S + ‖MSxnq‖(o(1) + a′j,0x

⊥)− o(1)

= o(1) + ‖MSxnq‖(o(1) + a′j,0x
⊥). (58)

By (56), o(1) + a′j,0x
⊥ > 0 eventually. Thus, eventually

a′j,nq
xnq − gj,nq > 0. (59)

This contradicts the definition of the sequence xn which requires that xn ∈ C(An, gn)

for all n.

Lemma 6. Let A be a matrix. Let S be the smallest linear subspace containing

C = C(A, 0). Let J = {j : aj ⊥ S}. Then, S = C(AJ , 0).

Proof of Lemma 6. First, notice that if x ∈ S, then x ⊥ aj for all j ∈ J , and

therefore, AJx = 0, so x ∈ C(AJ , 0).

To go the other way, let x ∈ C(AJ , 0). Lemma 4 implies that there exists a x̃ ∈ S

such that a′jx̃ < 0 for all j ∈ Jc, where Jc = {1, ..., dA}\J . Consider y = x + Mx̃

for M large. We note that AJy = AJx + MAJ x̃ ≤ 0 since x ∈ C(AJ , 0) and x̃ ∈
S ⊆ C(AJ , 0). We also note that for every j ∈ Jc, a′jy = a′jx +Ma′j x̃ → −∞ as M

diverges. Thus, there exists an M large enough that y ∈ C(A, 0). This implies that
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y ∈ S because C(A, 0) ⊆ S. This also implies that x = y −Mx̃ ∈ S because S is a

linear subspace.

Lemmas 7 and 8

The following lemmas are used in the proof of Theorem 2. For any dA×dx real-valued

matrix A and vector h ∈ RdA
+,∞ := [0,∞]dA, define

z(x,A, h) = arg min
z:Az≤h

‖x− z‖2,

The lemma considers a sequence of dA × dx real-valued matrices {An}∞n=1 and a

sequence of dA × 1 vectors hn ∈ RdA
+ := [0,∞)dA such that, as n → ∞, An → A0

and hn → h0 for a dA × dx real-valued matrix A0 and a vector h0 ∈ RdA
+,∞. Also, let

xn ∈ Rdx be a sequence of vectors such that xn → x0 ∈ Rdx as n → ∞.

Assumption 3. For any z0 such that A0z0 ≤ h0, there exists a sequence, {z∗n}, such
that for large enough n,

Anz
∗
n ≤ hn and z∗n → z0 as n → ∞. (60)

Lemma 7. Under Assumption 3, z(xn, An, hn) → z(x0, A0, h0).

Proof of Lemma 7. Assumption 3 implies that there exists a sequence, z∗n, such that,

for large enough n,

Anz
∗
n ≤ hn and z∗n → z(x0, A0, h0) as n → ∞. (61)

This implies that

‖xn − z(xn, An, hn)‖2≤ ‖xn − z∗n‖2→ ‖x0 − z(x0, A0, h0)‖2. (62)

Taking lim sup on both sides, we get

lim sup n→∞‖xn − z(xn, An, hn)‖2≤ ‖x0 − z(x0, A0, h0)‖2. (63)

Now note that z(xn, An, hn) = argminz:Anx≤hn‖x − z‖2. This sequence of mini-

mizers is necessarily bounded because otherwise (63) cannot hold. Thus for any sub-

45



sequence {nm} there is a further subsequence {nq} such that z(xnq , Anq , hnq) → z∞

for some z∞ ∈ Rdx . Since Anqz(xnq , Anq , hnq) ≤ hnq , we have A0z∞ ≤ h0. Thus,

lim
q→∞

‖xnq − z(xnq , Anq , hnq)‖2= ‖x0 − z∞‖2≥ ‖x0 − z(x0, A0, h0)‖2. (64)

Since the subsequence is arbitrary, this implies that

liminfn→∞‖xn − z(xn, An, hn)‖2≥ ‖x0 − z(x0, A0, h0)‖2. (65)

Combining (63) and (65), we have limn→∞‖xn−z(xn, An, hn)‖2= ‖x0−z(x0, A0, h0)‖2.
This, (64), and the uniqueness of argminz:A0z≤h0‖x0 − z‖2 together imply that

z(xn, An, hn) → z∞ = z(x0, A0, h0) as n → ∞,

proving the lemma.

Lemma 8. If for all J ⊆ {1, . . . , dA}, r(AJ,n) = r(AJ,0) for all n, then Assumption

3 holds.

Proof of Lemma 8. Let a′j,0 denote the jth row of A0 and let a′j,n denote the jth row

of An. Let J0 = {j = 1, . . . , dA : a′j,0z0 = hj,0}. If J0 = ∅, then z∗n = z0 satisfies the

requirement by An → A0 and hn → h0. If J0 6= ∅ but r(AJ0,0) = 0, then aj,0 = 0

for all j ∈ J0, which implies that aj,n = 0 for all j ∈ J0 by the rank condition stated

in the lemma. Then, we can again let z∗n = z0 and a′j,nz
∗
n = 0 ≤ hj,n for all j ∈ J0.

Again, {z∗n} satisfies the requirement due to An → A0 and hn → h0.

Now suppose that r(AJ0,0) > 0. The key for the next step is to partition J0 into

two subsets J∗
0 and Jo

0 . We require the partition to satisfy the following conditions:

(i) J∗
0 contains r(AJ0,0) elements such that {aj∗,0 : j∗ ∈ J∗

0} has full rank, and

for any element in jo ∈ Jo
0 , there exists a unique linear representation ajo,0 =

∑
j∗∈J∗

0
wjo,j∗aj∗,0, where wjo,j∗ : j

∗ ∈ J∗
0 are real-valued weights.

(ii) The linear representation satisfies: for any j∗ ∈ J∗
0 and jo ∈ Jo

0 such that

wjo,j∗ 6= 0, we have hj∗,0 ≤ hjo,0.

Such a partition always exists. To see why, note that the existence of a partition

satisfying (i) is guaranteed by the fact that r(AJ0,0) = r({aj,0 : j ∈ J0}). The number

of partitions satisfying (i) is finite because J0 is a finite set. If we choose the partition
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to be one that minimizes
∑

j∗∈J∗
0
hj∗,0 among those satisfying (i), then the chosen

partition also satisfies (ii).

We note that for all n, r(AJ∗
0 ,n

) = r(AJ0) implies that for every jo ∈ Jo
0 and

j∗ ∈ J∗
0 , there exist weights, wjo,j∗,n, such that

ajo,n =
∑

j∗∈J∗
0

wjo,j∗,naj∗,n.

Furthermore, we know that if wjo,j∗,n 6= 0, then wjo,j∗ 6= 0. This follows because,

otherwise, we would have

r(A{jo}∪(J∗
0 \{j

∗}),n) > r(A(J∗
0 \{j

∗}),n) = r(A(J∗
0 \{j

∗}),0) = r(A{jo}∪(J∗
0 \{j

∗}),0),

contradicting the assumed rank condition.

Let AJ∗
0 ,0

denote the submatrix of A0 formed by the rows selected by J∗
0 , and let

AJ∗
0 ,n

, hJ∗
0 ,0

, and hJ∗
0 ,n

be defined analogously. Now let D be a (dx−|J0|)×dx matrix,

the rows of which form an orthonormal basis for the orthogonal complement of the

space spanned by {aj,0 : j ∈ J∗
0}. Then the matrix

(
AJ∗

0
,0

D

)
is invertible, which implies

that the matrix
(

AJ∗
0 ,n

D

)
is invertible for large enough n. Let h∧

J∗
0 ,n

= min(hJ∗
0 ,n

, hJ∗
0 ,0

)

where the minimum is taken element by element. Let

z†n =
(

AJ∗
0 ,n

D

)−1 ( h∧
J∗
0 ,n

Dz0

)
.

It is easy to verify that

z†n →
(

AJ∗
0
,0

D

)−1 ( hJ∗
0 ,0

Dz0

)
= z0, and (66)

AJ∗
0 ,n

z†n = h∧
J∗
0 ,n

≤ hJ∗
0 ,n

. (67)

If a′j,nz
†
n ≤ hj,n for all j ∈ Jo

0 for large enough n, then (61) holds with z∗n = z†n and

we are done. Otherwise, let

λn =





min

{
1,minj∈Jo

0 :hj,0>0
hj,n

a′j,nz
†
n

}
if {j ∈ Jo

0 : hj,0 > 0} 6= ∅

1 otherwise
.

This is well-defined for large enough n since a′j,nz
†
n → a′j,0z0 = hj,0 and thus a′j,nz

†
n 6= 0
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for large enough n. Also, by definition λn ≤ 1, and

λn → min
j∈Jo

0 :hj,0>0

hj,0

a′j,0z0
= 1. (68)

Now let

z∗n = λnz
†
n. (69)

Then for any j ∈ Jo
0 such that hj,0 > 0, we have

a′j,nz
∗
n ≤ hj,n. (70)

For any j ∈ Jo
0 such that hj,0 = 0, we have

a′j,nz
∗
n = λn

∑

j∗∈J∗
0

wj,j∗,na
′
j∗,nz

†
n

= λn

∑

j∗∈J∗
0

wj,j∗,nmin(hj∗,n, hj∗,0)

= 0 ≤ hj,n, (71)

where the first equality follows by the definition of the weights, wj,j∗,n, the second

equality follows from the definition of z†n, the third equality follows because, if wj,j∗,n 6=
0, then wj,j∗ 6= 0, and therefore 0 ≤ min(hj∗,n, hj∗,0) ≤ hj∗,0 ≤ hj,0 = 0 by property

(ii) of the partition.

Equations (66), (68), and (69) together imply that z∗n → z0. This also implies

that, for all j /∈ J0, a
′
j,nz

∗
n − hj,n → a′j,0z0 − hj,0 < 0 and thus, for large enough n,

A{1,...,dA}\J0,nz
∗
n < h{1,...,dA}\J0,n.

This combined with equations (67), λn ≤ 1, and (69)-(71) implies that Anz
∗
n ≤ hn.

Therefore, {z∗n} satisfies the requirement and the lemma is proved.
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