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1 Introduction

Investor �ows in and out of mutual funds respond to past fund performance. Conventional wis-

dom has long held that this �ow-performance relationship represents irrational �return chasing�

by investors, since past performance does not appear to reliably predict future performance. Berk

and Green (2004) (hereafter BG) upended this consensus by pointing out that rational Bayesian

learning about unobserved fund manager skill is consistent with a positive �ow-performance re-

lationship, while decreasing returns to scale imply a lack of persistence in observed performance.

Since both views are qualitatively consistent with the empirical evidence, distinguishing between

the two is a quantitative challenge (e.g., as argued by Cochrane, 2013), which we undertake in

this paper.

We proceed in two steps. First, we estimate the optimally �ltered dynamics of beliefs of skills

about the entire cross-section of U.S. equity mutual funds, together with the shape of returns

to scale and the prior beliefs about fund manager's skill, based on their historical performance

data.1 In this step, our estimation does not make any assumption on investor behavior driving

mutual fund size or �ows. As a result, the estimates serve as a rational benchmark that re�ects

the econometrician's best estimate of manager's skill at a given point in time. We uncover

substantial variation in latent manager skill, which is persistent over time but subject to fairly

steep decreasing returns to scale.

Second, we show that fund �ows respond very weakly to variation in the estimated rational

beliefs. At the same time, a measure of misallocation - the di�erence between actual fund size

and the �e�cient� fund size implied by the BG model (given the estimated beliefs) strongly

predicts subsequent fund performance. Funds that are �too small� relative to their �e�cient�

fund size subsequently outperform, and vice versa. We proceed to estimate the parameters of

the belief process that best �t the observed relationship between past performance and fund �ows

(assuming standard Bayesian updating of those beliefs). Our estimation reveals that the �average�

mutual fund investor is substantially more optimistic about the underlying fund manager skill

than is warranted by the historical performance data. Consistent with the �return chasing� view,

investor �ows appear to respond too strongly to recent performance relative to more distant

historical performance, suggesting either mistaken beliefs about mean reversion in manager skill

and the relative role of skill and luck in generating performance, or a type of �recency� bias

in beliefs, consistent with models based on the representativeness heuristic of Kahnemann and

Tversky.2 At the same time, �ows adjust very sluggishly towards these implied beliefs, suggesting

1This generalizes the estimation approach we follow in Roussanov et al. (2018).
2The representativeness heuristic was introduced by Kahneman and Tversky (1972a), Tversky and Kahneman

(1974), Tversky and Kahneman (1983) and can be used as an organizing principle for explaining several related
biases in probabilistic decision making that imply over-inference from small samples and excessive reliance on the
most recent or salient observations at the expense of prior beliefs or �base rates,� as detailed in a survey chapter
by Benjamin (2018). Rabin (2002), Rabin and Vayanos (2010), Gennaioli and Shleifer (2010), Bordalo et al.
(2017), Bordalo et al. (2018) develop theoretical models based on this principle that apply to various aspects of

1



a combination of limited attention and information/search frictions might play an important role.

Speci�cally, the �rst step of our exercise starts by considering that the BG model relies

on fund-level decreasing returns to scale (hereafter DRS) to maintain a non-degenerate cross-

sectional distribution of funds.3 However, existing empirical evidence on this key component

of the model is mixed.4 Early studies quantify the magnitude of DRS by regressing the fund

performance on assets under management (hereafter AUM).5 A potential concern in these studies

is that fund size is not randomly assigned. An omitted factor, such as manager's skill, can a�ect

both fund size and fund performance, leading to biases in DRS estimates. Pástor et al. (2015) use

fund �xed e�ects to remove this bias under the assumption of constant skill and �nd insigni�cant

DRS. Building on BG's framework with a �exible parameterization of DRS, we use Kalman �lter

to express the conditional posterior of manager's skill at a given point in time as a function of

historical fund performance and AUM. This allows us to obtain a consistent estimate of the

DRS using maximum-likelihood method (MLE), by matching the model-predicted performance

based on these posteriors to the performance data. The estimation does not rely on the cross-

sectional correlation between size and performance, which is the source of bias in regression-based

estimates. A key di�erence between our method and Pástor et al. (2015) is that the MLE is

e�cient, giving us enough power to reject the null that DRS is zero. Assuming the fund size

increases by $100 million, which is about 40% of the median fund size, our estimate indicates

that the annual fund performance would decrease by 105.9 bps. Our estimate is slightly smaller

than the estimated DRS in Chen et al. (2004) and Ferreira et al. (2013).

The estimated model for fund performance allows us to compute the posterior belief for each

fund's skill in each period. In BG's theory, fund size is adjusted by investor in- or out�ows in

response to the most recent performance to the extent that the expected performance (based on

the posterior belief and the impact of DRS) is equated to the fund's expense ratio. This relation-

ship allows us to compute the fund size predicted by the rational (and frictionless) benchmark.

We then construct a misallocation measure which is the di�erence between the model-predicted

fund size and observed AUM. We �nd that this misallocation is large and persistent.6 More

importantly, this measure of misallocation strongly predicts subsequent fund performance, indi-

cating that it is not simply re�ecting mismeasurement of skill. A standard deviation increase in

misallocation leads to a statistically signi�cant 34 bps decrease in the current-year performance

and a 25 bps decrease in next-year performance. In addition, fund �ows also respond to misal-

location but much slower than predicted by the frictionless model. This evidence indicates that

decision-making in �nance and macroeconomics.
3In the absence of frictions and decreasing returns to scale the cross-section of fund sizes collapses to a point

mass where the most skilled fund captures the entire market.
4Chen et al. (2004), Ferreira et al. (2013), Yan (2008) use OLS method and �nd a signi�cant DRS at the

fund-level. Pástor et al. (2015) use a recursive demeaning method and fail to �nd DRS at the fund-level.
5Including Chen et al. (2004); Ferreira et al. (2013); Yan (2008).
6Roussanov et al. (2018) document large cross-sectional misallocation but do not explore its variation over

time. Pastor et al. (2017) measure misallocation by looking at properties of fund portfolio returns.
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investors are either adjusting their fund investments slowly in response to new information, or

systematically deviating from the rational beliefs, or both.

Motivated by the above �ndings, we estimate a model of fund �ows that allows for all of

these possibilities. Speci�cally, the model allows investors to use a belief updating process that

deviates from the rational benchmark as measured by the performance data, at least in terms

of the parameters underpinning the Kalman �lter. In addition, we allow for a �exible elasticity

of net �ows to the (implied) beliefs about manager skill. In contrast to our �rst step, these

parameters are estimated by matching the model to the �ows data (again with MLE), instead

of the performance data.

First, we �nd that, comparing with the rational benchmark, investors are more optimistic

about fund managers' average skill. Investors' prior on the average skill of the funds is 6.1%

compared to 1.3% estimated from the performance data. Intuitively, the stark di�erence is due

to the fact that, despite the relatively poor record of average performance of mutual funds, they

still enjoy signi�cant in�ows, particuarly in the �rst years after inceptions.

Second, we �nd that investors tend to over-weight recent realized performance (a noisy sig-

nal of skill) against the prior. In other words, investors seem to think that a fund's recent

performance re�ects the manager's skill more than what it actually does, consistent with the

�over-inference� implied by the representativeness heuristic of Kahnemann and Tversky (see Ra-

bin (2002) and Benjamin (2018) for discussion). Moreover, we �nd that investors discount the

more distant information more heavily than a rational Bayesian would. For example, the 5-

years-ago performance is weighted 0.25 times less than the last-year performance in the rational

benchmark, whereas it is weighted 0.89 times less by investors. This pattern of belief updating is

also consistent with the representativeness heuristic, as argued by Gennaioli and Shleifer (2010)

and Bordalo et al. (2017), Bordalo et al. (2018). The implied persistence of managers' skill is

also substantially lower, at 0.77 in the �ow model versus 0.96 estimated by the econometrician.

This suggests that investors might �chase returns� or over-extrapolate from recent performance

because of an implicit belief that manager ability (or at least that of a given fund) varies over

time a lot more than it actually does.

Finally, we �nd that investors adjust their fund investments slowly in response to shifting

posterior beliefs. Over time, fund sizes do tend towards the frictionless model-predicted alloca-

tions but at a speed much slower than predicted by the theory. In particular, it is expected to

take 6 years for a typical fund to reach halfway of the adjustment towards its e�cient allocation.

This fact might be explained by information/search costs as in Hortaçsu and Syverson (2004)

and Roussanov et al. (2018), or by models of limited attention and/or adjustment costs (see

Gabaix (2017) for a survey).

To the extent that investors are heterogeneous in their beliefs about mutual fund performance,

we also consider �ows into retail and institutional share classes separately. We estimate beliefs

implied by institutional fund �ows to be closer to the rational beliefs than those of retail investors,
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even though they are still quite optimistic about fund managers' skill, perceive skill as much less

persistent than it appears to be in the historical data, and are also quite slow in adjusting towards

e�cient allocations.

1.1 Literature

To the best of our knowledge, our paper is the �rst to formally test the model of Berk and

Green (2004) or to estimate the beliefs of mutual fund investors that are implied by the data.

The closest to our paper is work by Baks et al. (2001), who develop a Bayesian method of

performance evaluation and �nd that even extremely skeptical prior beliefs still lead to sizable

allocation to active mutual funds. Pástor and Stambaugh (2012) show that uncertainty about

decreasing returns to scale and the priors on average manager skill can lead to slow learning. In

a related but distinct branch of literature focusing on asset prices, Pástor and Stambaugh (2002)

develop an econometric framework that combines investor priors about asset pricing models and

managerial skill with return data.

Our paper is related to a large literature on learning in �nance. Learning has been applied

in di�erent areas in �nance, such as volatility and predictability of asset returns, stock price

bubbles, portfolio choice, IPO, trading volume, �rm pro�tability and etc.7Among those, a closely

related paper is Huang et al. (2012) which use mutual fund �ows to infer how rational mutual

fund investors are. They �nd empirical evidence consistent with rational learning. Based on

our structural estimation approach, we �nd investors signi�cantly deviating from the rational

benchmark.

Our paper is also related to the vast literature on �ow-performance relationship. Prior works

show that fund �ows respond to fund performance (Ippolito (1992), Chevalier and Ellison (1997),

Sirri and Tufano (1998)). Our contribution to this literature is to empirically estimate the

canonical BG model and explore its quantitative implications.

This paper also contributes to the large literature on how agents utilize historical information.

Malmendier and Nagel (2011) show that investors who have experienced low stock-market returns

throughout their lives so far report lower willingness to take �nancial risks. Greenwood and Nagel

(2009) show that younger mutual fund managers invested more heavily in technology stocks

than older mutual fund managers around the peak of the tech bubble. Our contribution to this

literature is to show that mutual fund investors over-weight recent performance in a manner

consistent with models based on the representativeness heuristic such as those in Bordalo et al.

(2017) and Bordalo et al. (2018), which feature decision-makers putting excessive weight on the

most recent observations (relative to the optimal Kalman �lter).

The paper is organized as follows. In Section 2, we develop the model. In Section 3, we

discuss the estimation methods. In Section 4, we describe the data used for the estimation. In

7For an extensive survey, please refer to Pástor and Veronesi (2009).
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Section 5, we present our estimation results. In Section 6, we explore the implications of the

estimates. In Section 7, we extend our model to account for investor heterogeneity. Section 8

summarizes our conclusions.

2 Model

The model of rational fund �ows articulated by BG has two key components: (i) fund performance

dynamics driven by unobservable skill and decreasing returns to scale and (ii) fund �ows that

are driven by learning about fund skill. To bring these components to data, we generalize them

along a few dimensions. With the generalizations, our model still nests the rational benchmark

as given by BG. In Section 3, the model is structurally estimated to reveal whether and to what

extent our generalizations hold according to the data.

2.1 Fund performance

The realized gross alpha, denoted by rj,t , for an active fund j ∈ {1, ..., N} in a time period t is
determined by three factors: (i) the fund manager's skill to generate expected returns in excess

of those provided by a passive benchmark in that period, denoted by aj,t , (ii) the impact of

decreasing returns to scale, given by D(Qj,t) where Qj,t is the fund's asset under management

(AUM), and (iii) an idiosyncratic shock εj,t ∼ N
(0, δ2). Accordingly,

rj,t = aj,t −D
(
Qj,t
) + εj,t . (1)

The above equation is the same as Equation (1) in BG. Next, we generalize slightly from BG

by allowing the manager's skill to be time-varying. We assume manager's skill follows an AR(1)

process:

aj,t = (1− ρ)µ + ρaj,t−1 +√1− ρ2 · vj,t , (2)

where vj,t ∼ N (0, κ2). We specify that a fund's �rst-period skill is drawn from N (µ, κ2), the
stationary distribution of the above process. Parameter ρ captures the persistence of the skill

level. In the limiting case ρ → 1, skill is �xed over time. The possibility of ρ < 1 captures the

fact that fund managers and/or their strategies may change over time. More importantly, this

possibility later allows us to examine whether investors' reaction to performance history (how

they weight recent vs. earlier performance) aligns with the exact underlying degree of persistence

of skill.

Following BG, we assume that the manager's skill is not observable to either the investors

or the fund manager herself. Let âj,t be a rational investor's belief about aj,t in period t. More

speci�cally, âj,t is the posterior mean of aj,t given all the historical information up to t − 1 (not
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including rj,t or Qj,t). One can apply Kalman �lter to derive an expression for âj,t . Intuitively,
equation (2) can be thought of as describing how the �hidden state�, aj,t , evolves over time, and

equation (1) implies that a signal of this hidden state is rj,t + D
(
Qj,t
)
. Applying the Kalman

�lter gives us the following recursive formula for the posterior mean:

âj,t+1 = ρ
[
âj,t + σ̂2

j,t

σ̂2
j,t + δ2 (rj,t +D(Qj,t)− âj,t)] + (1− ρ)µ, (3)

where the posterior variance satis�es:

σ̂2
j,t+1 = ρ2 δ2σ̂2

j,t

σ̂2
j,t + δ2 + (1− ρ2)κ2. (4)

For the initial period t when fund j was born, we simply have âj,t = µ and σ̂2
j,t = κ2. In the

special case of ρ = 1, these expressions coincide with BG's Proposition 1. For ρ < 1, the �ltered
posterior beliefs assign more weights to the realized performance in the more recent periods

compared to earlier periods. Later, we will estimate δ, µ, κ, and ρ all from the performance

data.

As to the functional form of D(·), that is, decreasing returns to scale, we assume the following

parameterization:

D(Qj,t ; η, γ) = η ·
Qγ
j,t − 1
γ , γ ∈ [0, 1]. (5)

This power function speci�cation is fairly �exible. When γ = 1, it is linear in Qj,t ; when γ → 0,
it converges to log(Qj,t). For the intermediate values γ ∈ (0, 1), the function is somewhere

in between. One of the reasons to use this �exible parameterization is that the literature is

inconclusive on the appropriate functional form for DRS.8 Later, we estimate the exact value of

η and γ from the performance data.

2.2 Fund �ows (asset allocation)

In the model of BG, the impact of decreasing returns to scale (DRS) under the �e�cient� fund

size exactly o�sets the di�erence between the posterior belief of fund skill (âj,t) and the expense

ratio (pj,t). In other words, we have

D(Q̂BG
j,t ; η, γ) = âj,t − pj,t .

Here, we generalize slightly by allowing investors to hold a belief that is di�erent from âj,t (which
represents the correct or �rational� belief). Let ãj,t denote the investor's belief. This belief might

or might not coincide with âj,t . To keep our model empirically tractable, we still impose a

structure on ãj,t , which we will make clear in just a bit. In addition, we also allow investors to

use a set of DRS parameters that might be di�erent from the underlying correct parameters, η
8Linear speci�cations were used in Pástor et al. (2015); logarithm speci�cations were used in Chen et al. (2004),

Yan (2008), Elton et al. (2012), Ferreira et al. (2013), Reuter and Zitzewitz (2015).
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and γ. Denote the investors' parameters as η̃ and γ̃. The BG-implied fund size, under investor's

beliefs, is given by:

D(Q̃BG
j,t ; η̃, γ̃) = ãj,t − pj,t . (6)

For ease of notation, in what follows, we use the lower-case q to denote the log transformation

of any value represented by Q. Thus, q̃BGj,t ≡ log(Q̃BG
j,t ). Using equation (6) and equation (5), we

have

q̃BGj,t = 1̃
γ log [1 + γ̃

η̃ (ãj,t − pj,t)] . (7)

Note that for γ̃ → 0, the above equation reduces to

q̃BGj,t = ãj,t − pj,t
η̃ .

Intuitively, q̃BGj,t is the log size for fund j that would be achieved if the capital allocations are fully

adjusted to re�ect investor beliefs within the period. For empirical application, we maintain the

assumption that fund size adjusts towards q̃BGj,t , albeit allowing a possibly slower rate:

qj,t − qj,t−1 = φ(q̃BGj,t − qj,t−1) + ξj,t (8)

In the above, qj,t = logQj,t is the log of fund size observed in the data, φ governs the rate

of the convergence towards the e�cient fund size, and ξj,t is a shock term. If φ = 1 then fund

�ows adjust immediately in response to performance information, as is the case of the BG model.

Solving for qj,t in equation (8) gives

qj,t = φq̃BGj,t + (1− φ)qj,t−1 + ξj,t .

We may assume that the error term ξj,t is an independent innovation at time t. However, it
is likely that ξ is serially correlated � a fund may carry on growing from one year to the next.

So we allow serial correlation through an AR(1) process:

ξj,t = βξj,t−1 +√1− β2 · ζj,t ,
and ζj,t ∼ N (0, ω2) is an innovation at time t.

To complete the model, we need to specify ãj,t . We assume that it follows the same structure

as âj,t but under a potentially di�erent set of performance-model parameters: µ̃, κ̃, δ̃, and ρ̃,
as well as the DRS parameters: γ̃ and η̃. In other words, we assume that the skill-performance

process as perceived by investors follows the same distributional family as we speci�ed in Section

2.1. As a result, ãj,t+1 and σ̃2
j,t+1 follow the same recursive formula as in equation (3) and (4)

but with tilded parameters:

ãj,t+1 = ρ̃
[
ãj,t + σ̃2

j,t

σ̃2
j,t + δ̃2 (rj,t +D(Qj,t ; η̃, γ̃)− ãj,t)] + (1− ρ̃)µ̃, (9)

σ̃2
j,t+1 = ρ̃2 δ̃2σ̃2

j,t

σ̃2
j,t + δ̃2 + (1− ρ̃2)κ̃2. (10)
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For the initial period t when fund j was born, we have ãj,t = µ̃ and σ̃2
j,t = κ̃2. Imposing

a structure on ãj,t (instead of estimating it non-parametrically) keeps our model empirically

tractable. Moreover, by keeping the rational belief and investor belief in the same distributional

family, it facilitates a direct comparison between the two.

It is important to note that qj,t as speci�ed in our model depends on the ratio κ̃/δ̃ but not

the absolute sizes of κ̃ or δ̃. To see this, note that qj,t depends on the investor's posterior ãj,t ;
however, in Bayesian updating, posterior means are not a�ected by an increase in the prior

variance κ̃2 and a proportional increase in the signal variance δ̃2. Hence, κ̃ and δ̃ cannot be

separately identi�ed using only data on �ows. Instead we can estimate the relative precision

parameter λ ≡ κ̃/δ̃, which captures how much of variation in the observed outperformance is

perceived to be driven by skill (since κ̃ controls the dispersion in the implied distribution of skill)

relative to luck (since δ̃ is the implied volatility of random shocks to outperformance).

To summarize, our model allows the investor's behavior to deviate from the rational bench-

mark in several aspects. The �rst aspect is the way they form beliefs on the managers' skills.

We assume investor beliefs to follow the same parametric family as the rational benchmark, but

we allow their beliefs to follow a potentially di�erent set of parameters from the �correct� param-

eters consistent with the performance data. Second and related, we allow investor behaviors to

re�ect a di�erent degree of DRS from that consistent with the performance data. Third, we allow

investors to adjust capital allocations slowly rather than immediately to the e�cient benchmark.

At this stage, it is important to point out that the �learning� in our model happens on the

same subject as in BG: the investors learn about the managers' skills. One can think of a further

level of learning where investors also learn about the parameters (such as η and γ). However,

this would lead to a much more complex model beyond the scope of this paper. We partially

extend our analysis to this issue in Section 6.3.

Finally, we do not tempt to specify an explicit model for fund pricing, pj,t . A bene�t of this

approach is to avoid biasing our estimation with a possibly misspeci�ed pricing model. However,

consistent with BG, we do assume that pj,t does not reveal about the underlying skill aj,t beyond
âj,t .

3 Estimation

There are three sets of parameters include to be estimated: (i) η, µ, κ, δ, ρ, γ, which together

govern the evolution of fund performance, (ii) η̃, µ̃, λ, ρ̃, γ̃, which together govern investor's

beliefs, and (iii) φ, β, ω, which a�ect investor's choices. Below, we describe the estimation

strategy for these parameters.

For ease of notation, let Y j,t = {rj,t , qj,t , pj,t} denote the data about fund j from period t.
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By equation (1), we can write down the conditional likelihood of observing rj,t asPr(rj,t | qj,t , pj,t ,Y j,t−1,Y j,t−2, ...) ∼
N
[
âj,t −D(Qj,t ; η, γ), σ̂2

j,t + δ2] . (11)

In the above, âj,t is the rational posterior on skill conditional on {Y j,t−1,Y j,t−2, ...}. Its recursive
expression is derived in equation (3). Particularly, note that âj,t does not change upon observing

the current-period fund size qj,t or price pj,t . This is because: (i) price pj,t is assumed not to

reveal about the underlying skill aj,t beyond âj,t , and (ii) qj,t is a function of {Y j,t−1,Y j,t−2, ...}
and pj,t , plus innovation ζj,t that does not hold information about the underlying skill.

From equation (8), we can write down the conditional likelihood of observing qj,t :Pr(qj,t | pj,t ,Y j,t−1,Y j,t−2, ...) ∼
N
(
φq̃BGj,t + (1− φ)qj,t−1 + βξj,t−1, (1− β2)ω2) , (12)

where ξj,t−1 can be backed out using equation (8) from the observed previous-period fund sizes

as follows.9

ξj,t−1 = qj,t−1 − [φq̃BGj,t−1 + (1− φ)qj,t−2] .
Combining equation (11) and (12), we can write the partial likelihood function10 as∏
j,t

Pr(rj,t , qj,t | pj,t ,Y j,t−1, ...) =∏
j,t

Pr(rj,t | qj,t , pj,t ,Y j,t−1, ...)︸ ︷︷ ︸
Performance

·Pr(qj,t | pj,t ,Y j,t−1, ...)︸ ︷︷ ︸
Flows

. (13)

In the above, the �rst part of the likelihood (labeled �performance�) tries to �t the observed

returns, particularly how returns correlate across periods. Note this part only relies on the

performance model and does not make any assumptions on how fund sizes are determined (in

other words, how investors choose funds). The observed fund sizes do enter this part of the

likelihood, but only as conditional variables to account for the DRS. In contrast, the second part

of the likelihood (labeled ��ows�) tries to �t the observed fund sizes.

Maximizing the likelihood in equation (13) estimates the performance and �ow model jointly.

It is important to point out that, instead of a joint estimation, we can also conduct our estimation

in a separate manner. We can either: (i) maximize the performance part in (13) alone to estimate

η, µ, κ, δ, ρ, γ (which together govern the evolution of fund performance), or (ii) maximize the

�ow part alone to estimate η̃, µ̃, λ, ρ̃, γ̃ (which together govern investor's beliefs) and φ, β,
ω (which a�ect investor's choices). Technically, maximizing either part amounts to a partial

likelihood estimation.

In general, a joint estimation has advantages and disadvantages. It o�ers more e�ciency,

however, mis-speci�cation in any part of the likelihood may �contaminate� the estimates in an-

other part, if the two parts depend on some common parameters. Fortunately, in our context,

9For the likelihood at period t, our estimation needs to use the information of qt−1 and qt−2 so that we restrict
the sample to periods of t ≥ 3.

10For partial likelihood estimation, see Wooldridge (2001), chapter �13.8.
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the performance model and �ow model are allowed to use two completely di�erent sets of pa-

rameters. As a result, a joint estimation of equation (13) is equivalent to separate estimations

of the performance and �ow parts.

3.1 Identi�cation of decreasing returns to scale

BG model relies on the existence of fund-level DRS to maintain a non-degenerate cross-sectional

distribution of funds.11 However, previous �ndings on the fund-level DRS are mixed in the liter-

ature. Early studies employ the ordinary least square (OLS) method to quantify the magnitude

of DRS by directly regressing fund returns on lagged fund sizes.12 This method generates biased

estimates due to the fact that fund sizes are not randomly assigned to mutual funds. There could

exist omitted factors (such as fund skill) that a�ect both fund size and fund returns.

Recognizing this identi�cation challenge, Reuter and Zitzewitz (2015) use the impact of

Morningstar star change on in�ow as an exogenous shock to fund size to gauge the causal impact

of fund size on performance. Pástor et al. (2015) use a recursive demeaning method to remove

the impact of skill on fund size and fund performance. Both studies failed to �nd statistically

signi�cant fund-level DRS.13

In this paper, we employ a di�erent method which is to structurally estimate the BG model

so that we can explicitly account for manager skills. While operationally this can be implemented

through a partial MLE as described above, it is still important to understand, in theory, whether

it is possible at all to identify DRS in the BG model from just fund performance and size

data. To this end, we o�er an argument on the identi�cation of DRS in the BG model. With

the generalizations of BG that we made in Section 2, the identi�cation should be much more

complex and we do not attempt it here. Nevertheless, our Monte Carlo experiments show that

all the parameters in our generalized model can be recovered.

Speci�cally, let D(Qj,t) = ηqj,t , where qj,t is the log size of the fund j in period t (in other

words, γ = 0). Also, let a fund's skill be persistent over time, that is, aj,t = aj for all t (in other

words, ρ → 1). For the ease of notation, here we will assume that every fund is born at t = 1.
The performance of fund j in period t is given by

rj,t = aj − ηqj,t + εj,t .

So rj,t + ηqj,t can be regarded as a normally distributed signal centered around the underlying

skill aj . At period T , the posterior about the skill as seen by econometrician is given by

E(aj | Y j,T , ...,Y j,1) = κ−2µ + δ−2∑T
t=1(rj,t + ηqj,t)

κ−2 + δ−2T ,

11In the absence of frictions and decreasing returns to scale, the cross-section of fund sizes collapses to a point
mass where the most skilled fund captures the entire market.

12Including Chen et al. (2004); Ferreira et al. (2013); Yan (2008).
13Pástor et al. (2015) �nd decreasing returns to scale at the industry level.
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where Y j,t = {rj,t , qj,t , pj,t} again denotes the data about fund j from period t.14 We assume

that qj,T+1 does not provide more information about aj beyond {Y j,T , ...,Y j,1}, which holds in

both BG and our model. With this assumption, we have:

E(rj,T+1 | qj,T+1,Y j,T , ...,Y j,1) = E(aj |Y j,T , ...,Y j,1)− ηqj,T+1
= κ−2µ
κ−2 + δ−2T + δ−2∑T

t=1 rj,t
κ−2 + δ−2T + δ−2η∑T

t=1 qj,t
κ−2 + δ−2T − ηqj,t+1.

As an identi�cation argument, consider T → +∞, in which case the role of prior diminishes:

E(rj,T+1 | qj,T+1,Y j,T , ...,Y j,1)→ rj,T + η
(
qj,T − qj,T+1) ,

where

rj,T ≡
1
T

T∑
t=1 rj,t ,

qj,T ≡
1
T

T∑
t=1 qj,t .

The identi�cation of η should be clear from the above expression. The expression also o�ers

an intuitive way to relate DRS to data pattern. For large T , the DRS η essentially manifests

itself as the elasticity at which the deviation of return from historical average (i.e., rj,T+1 − rj,T )
responds to a deviation of fund size from historical average (i.e., qj,T − qj,T+1).
4 Data

We collect data from CRSP and Morningstar. Our sample contains 2,885 well-diversi�ed actively

managed domestic equity mutual funds from the United States between 1965 and 2014. Our

sample has 31,098 fund-year observations. We closely follow data-cleaning procedures in Berk

and van Binsbergen (2015) and Pástor et al. (2015).

There are three main data variables to be used in estimation: annual gross realized alpha

(i.e. fund performance), fund size, and expense ratio. To compute the annual realized alpha

rj,t , we start with monthly return data. We �rst augment each fund's monthly net return with

its monthly expense ratio (1/12th of the annual expense ratio) to get the monthly gross return.

Then, we regress the excess gross return (over the 1-month U.S. T-bill rate) on the risk factors

throughout the life of the fund to get the betas for each fund. We multiply betas with factor

returns to get the benchmark returns for each fund at each point in time. We subtract the

benchmark return from the excess gross return to get the monthly gross alpha. Last, we aggregate

the monthly gross alpha to the annual realized alpha rj,t . We use 5 di�erent benchmark models:

CAPM, the three-factor model of Fama and French (1993), the four-factor model of Carhart

(1997), the �ve-factor model of Fama and French (2015), and a six-factor model that adds a

momentum factor of Fama and French (2018). For our main results, we use the Fama-French

14See Proposition 1 in BG for more details about the derivation.
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six-factor model as the benchmark. There is an alternative way of risk adjustment which is to

use Morningstar benchmark index data. There are two shortcomings about this method: 1) the

data is not freely available, 2) the researcher needs to assume the loading of each fund on the

benchmark. Usually, the researcher will assume a loading equal to 1. But this doesn't have to be

the case for each fund in a given category. In addition, Pástor et al. (2015) show that in terms

of studying the impact of decreasing returns to scale and performance, the two methods yield

similar results. Therefore, we take the �rst route.

Fund size for each year is the fund's AUM at the end of the previous year. To make fund

size comparable across time, we in�ate all the fund sizes to December 2011 dollars by following

Pástor et al. (2015)'s method which is to use the ratio of the total market value of all CRSP

stocks in December 2011 to its value at the end of the previous year. In our dataset, there is a

huge skewness in funds' AUM. From the summary statistics, we can see that the mean of funds'

AUM is much larger than the median. The funds at the 99 percentile are over 4,000 times larger

than the funds at the 1 percentile. And the fund size at the third quartile is 13 times larger than

the fund size at the �rst quartile. In the literature, to study the impact of decreasing returns

of scale, dollar amount of the funds' AUM were used in Pástor et al. (2015), and the logarithm

of the funds' AUM were used in Chen et al. (2004), Yan (2008), Elton et al. (2012), Ferreira et

al. (2013), and Reuter and Zitzewitz (2015). Our �exible functional form of the DRS allows the

data to inform us about the shape of the function. To lessen the e�ects of �incubation bias�15,

following Fama and French (2010), we limit the tests to funds that reach 15 million 2011 dollars

in AUM. Once a fund passes the threshold, it is included for all subsequent periods, so this

requirement does not create selection bias.

In the mutual fund industry, a single mutual fund may provide several share classes to in-

vestors that di�er in their fees structures. Following much of the literature (with some exceptions,

e.g., Bergstresser et al. (2009)), we conduct our analysis at the fund level instead of the share

class level. We compute a fund's AUM by summing AUM across the fund's share classes, and

compute the fund's realized alphas, expense ratios by using AUM weighted average across share

classes.

[Table 1 about here.]

5 Parameter Estimates

The parameter estimates of the performance and �ow models are presented in Table 2.

[Table 2 about here.]

15For details, please refer to Evans (2010).
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5.1 Performance model parameters

Our estimate of the decreasing returns to scale (DRS), η, is 23 basis points with a t-statistic of

2.3. To see the economic magnitude of this estimate, consider an increase in fund size by $100

million, which is about a 40% increase in the size for the median size fund. The estimate of

η indicates that such an increase in size is associated with a decrease in expected annual fund

performance of 105.9 bps. To compare, Chen et al. (2004) �nd that the same increase in the

fund size leads to around 110 bps decrease in fund performance.16 Ferreira et al. (2013) �nd that

the same increase in the fund size leads to around 124 bps decrease in fund performance.17 Note

that both papers relied on OLS regressions. Pástor et al. (2015) overcomes the potential bias in

OLS by a method of recursive demeaning. Their estimate of DRS is statistically insigni�cant,

potentially due to a lack of statistical power.

To put the DRS estimate further in perspective, we note that the volatility of annual perfor-

mance in our data is around 7 percent. Hence, a decrease of 105.9 bps of a fund's performance

is approximately 15% of the annual volatility in mutual fund's performance (105.9 basis points

divided by 7 percent).

Parameter γ, which measures the curvature of DRS, is estimated to be very close to zero.

The estimate implies that a log speci�cation of decreasing returns to scale is most in line with

the data.

The mean of the prior distribution of managerial skill is 1.3% (per annum). This number is

positive and statistically signi�cant, which means that an average active mutual fund manager is

skilled. This result is consistent with previous literature, for example, Berk and van Binsbergen

(2015). Based on our estimates, for a fund with the average skill level, its size should be no

larger than $324 million, otherwise, DRS would make it produce negative expected performance.

However, in the data, the average fund size is $1.45 billion. This observation indicates that

the mutual fund industry on average might be too large. Meanwhile, we do �nd a signi�cant

variation in skill across funds. For example, for a fund with the skill level one standard deviation

(0.26%) higher than the average, its size can grow to around $1 billion before generating negative

expected performance.

Parameter ρ, which measures the persistence in fund manager's skill is estimated to be 0.96.

The estimate indicates a fund's skill changes slowly over time and consequently, distant past

performance are likely still relevant in predicting a manager's skill. This result of skill persistence

is consistent with Berk and van Binsbergen (2015), who �nd that cross-sectional di�erences in

value added persist for as long as 10 years.

16We use their coe�cient of DRS for the monthly 4-factor alpha, 0.020. The result 110 bps equals 0.020 times
the logarithm of 100 million dollars times 12.

17We use their coe�cient of DRS for the quarterly 4-factor alpha, 0.0675. The result 124 bps equals 0.0675
times the logarithm of 100 million dollars times 4
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5.2 Flow model parameters

First, we see that parameter µ̃, the prior mean of manager skills, is estimated to be 6.1%. Recall
this estimate represents the investor belief, and is estimated from the �ow data (instead of the

performance data). This estimate is close to the value of the prior mean (6.5%) shown in BG's

Table 1. In their paper, the value of the prior mean is picked using a calibration procedure to

match the empirical relation between the �ow of funds and performance, which is conceptually

similar to our estimation based on �ow data.

The di�erence between the mean of investor prior of skills (µ̃) and the rational benchmark

(µ) is about 4.8%. Together with the estimate of DRS, this di�erence indicates that for an

average fund ($1.45 billion), investors hold an optimism that the fund generates an extra annual

performance of 1.38% compared to what the performance data tell us.18 Intuitively, the stark

di�erence is due to the fact that despite the relatively mediocre performance record of average

mutual funds, they still enjoy signi�cant in�ows, especially in the early years after a fund's

inception. In Figure 1, we plot the average annual net in�ow of funds as a function of fund age.

We can see that before the age of 6, the average in�ows are statistically greater than zeros.

[Figure 1 about here.]

Parameter φ, which measures the adjustment rate of �ow towards the e�cient fund size, is

estimated to be 0.068. Recall that for φ = 1, we have qj,t = q̃BGj,t , that is, the market adjusts

capital allocations completely in each period. The other polar case, φ = 0, means the fund �ows

do not adjust towards the e�cient allocations at all. Our point estimate of φ indicates that fund

�ows do respond to past performance, but slowly. Based on this estimate, it takes about 6 years

for a typical fund to reach halfway of Q̃BG
j,t , the e�cient fund size under investor belief.19 This

slow adjustment might be explained by information/search costs as in Hortaçsu and Syverson

(2004) and Roussanov et al. (2018), or by models of limited attention and adjustment costs

(Gabaix, 2017 and the references there within).

Parameter λ ≡ κ̃/δ̃ is estimated to be 0.664, which is substantially larger than κ/δ = 0.208.
Recall that δ2 is the variance of εj,t , the noise on fund performance, and κ2 is the variance of

the prior. So our estimates indicate an average investor regards the realized performance as less

noisy signals of underlying skills than how noisy they really are. Put di�erently, investors seem

to under-estimate the role of luck (against skill) in a fund's performance. Consequently, investors

tend to over-react to fund performance. We will discuss more on this point later in Section 6.2.

18The average optimism is computed as follows: 0.061−0.007× log(1453)−0.013+0.0023× log(1453) = 0.0138.
19For this calculation, we start with a fund whose: (i) skill equals µ, (ii) initial fund size equals the median

fund size at the age of 1 ($63 million), and (iii) fund price �xes at the median expense ratios (1.14%). We set all

shocks in the model to zero and check how long it takes for the fund size to reach half of Q̃BG
j,t .
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6 Implications

In this section, we use several exercises to illustrate the implications of our structural estimated

model. First, we illustrate the persistence of misallocations by examining whether misalloca-

tion predicts performance. Second, we graphically illustrate how investors weight the historical

performance of a fund when updating their beliefs about the fund's skill, and compare their

weighting scheme to what a rational investor would do. Third, we compare the estimated ratio-

nal beliefs and investor beliefs in terms of the ability to predict fund performance out-of-sample.

We also compare them with simple prediction rules, such as 3-year and 10-year average past

performance.

6.1 Misallocation and performance

According to BG's theory, if fund allocations are e�cient (that is, the decreasing return o�sets any

positive skill), then fund performance will not be forecastable. Following this line of thought,

we analyze whether misallocation, measured as the di�erence between fund's actual size and

e�cient size, can predict fund performance. The idea is as follows: if misallocation is non-

existent or simply a noise independent across periods, then on average it should not predict

fund performance. However, if fund �ows adjust slowly, then misallocation will be able to

predict performance. Funds that are �too small� relative to the benchmark would subsequently

outperform due to DRS, and funds that are �too big� would subsequently underperform.

The results are provided in Panel A in Table 3. In Column (1), we regress realized performance

rj,t onto misallocation, computed as the di�erence between the actual and e�cient fund size,

qj,t − q̂BGj,t . Here, the e�cient fund size is de�ned by (compare to equation 6)

D(Q̂BG
j,t ; η, γ) = âj,t − pj,t .

We �nd a statistically signi�cant coe�cient in front of the misallocation measure. In terms of

economic magnitude, a standard deviation increase in misallocation leads to 34 bps decrease in

the expected performance. To check whether our misallocation measure is sensible, we break

it up into q̂BGj,t and qj,t separately. The results are provided in column (2). As intended, the

coe�cient in front of q̂BGj,t is positive, while the coe�cient in front of qj,t is negative.
As a robustness check, we repeat the above analysis but replace q̂BGj,t with q̃BGj,t , which is the

e�cient fund size computed using investor's belief (see equation 6). The results are provided

in columns (3) and (4), which are not qualitatively di�erent from columns (1) and (2). The

magnitude of the coe�cients are somewhat larger. This is due to the fact that q̃BGj,t is structurally

estimated to �t qj,t , and consequently, the variation of qj,t − q̃BGj,t tends to be smaller than the

variation of qj,t − q̂BGj,t .
As a further robustness check, in Panel B of Table 3, we re-run the above regressions after

changing the dependent variable to the next-period performance, rj,t+1. The results stay qualita-
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tively the same. One standard deviation increase in misallocation leads to about 25 bps decrease

in next period's performance.

[Table 3 about here.]

Lastly, we test the prediction of the BG model that underpins the (lack of ) persistence in

performance: investor �ows respond to misallocation of capital, whereby in�ows inrease the size

of funds that are �too small� given their updated skill, while out�ows shrink the funds that are

�too big.� Thus, we regress �ow (qj,t+1−qj,t) onto the misallocation measure and other controls.

The results are provided in Table 4. If investors are quick to correct misallocation and push funds'

sizes towards their e�cient levels, the magnitude of the coe�cient in front of the misallocation

should be close to 1. Meanwhile, we �nd that the magnitude of the coe�cient is signi�cantly

smaller than 1. This result is consistent with our estimate of φ in the model, meaning that fund

�ows respond to misallocation but the response is much weaker than predicted by the frictionless

model.

[Table 4 about here.]

6.2 Weighting scheme

Our model allows the posterior of skills to �exibly weight the past performance of a fund. There

are two important aspects in the investor's weighting scheme: (i) the extend to which more

distant information is discounted, as measured by parameter ρ̃, and (ii) how informative the

realized performance is about the underlying skill, in comparison to the prior, which is measured

by λ = κ̃/δ̃.

[Figure 2 about here.]

In Figure 2, we plot the weighting schemes for four cases. Each weighting scheme shows how

to weight the historical DRS-adjusted performance, {rj,t + D(Qj,t), t < T}, when forming the

posterior about aj,T .20

The blue curve with stars plots the weighting scheme under the estimated performance model

(i.e., how the rational posterior âj,t weights historical information). The yellow curve with

circles plots the weighting scheme under the estimated investor beliefs (i.e., how the ãj,t weights
historical information). Comparing these two curves, we can clearly see that relative to the

rational benchmark, investors over-weight recent performance (lag period 1 to 4) in a manner

20The weighting scheme can be easily computed by exploiting the fact that the posterior should be a linear
function of the prior and signals. Technically, we �rst simulate the model for a number of funds and T periods,
then regress âj,T or ãj,T on {rj,t +D(Qj,t), t < T} and the prior. If implemented correctly, the regression will have
a R2 = 1 and the coe�cients will sum up to 1.
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consistent with models based on the �representativeness� heuristic, and under-weight distant

performance information (lag period 5 onward).

To obtain more intuitions on the roles of di�erent parameters in the weighting scheme, we plot

two additional curves. The red curve with squares plots the same investor's weighting scheme

as the yellow curve except that we impose ρ̃ = 0.95 (the estimated ρ̃ = 0.766). Comparing the

red and yellow curves, we see that a larger ρ̃ (red curve) implies more weight on the distant

signals, which is intuitive because a larger ρ̃ means manager skills are more persistent over time.

Another useful result here is that the weight on prior for the red curve is 0.26; for the yellow

curve is 0.55. Hence, when ρ̃ is larger (red curve), the posterior puts less weight on the prior.

Intuitively, this is because a smaller ρ̃ means that the manager skill reverts to the stationary

distribution faster, so that the posterior should rely more on the prior. In the opposite extreme

case where ρ̃ → 1, the weight on the prior will go to zero as T → ∞.

The gray curve with asterisks plots the same investor's weighting scheme as the yellow curve

except that we impose λ = 0.45 (the estimated λ = 0.664). The weight on prior for gray curve is

0.68; for the yellow curve is 0.55. We can see that as λ gets smaller (gray curve), the weight on

the prior increases. Intuitively, this is because λ = κ̃/δ̃ measures how one perceives the precision

of signals against the precision of prior.

Finally, it is important to note that the weighting curve changes di�erently when we vary ρ̃
and when we vary λ. Particularly, ρ̃ mainly calibrates the relative weights of recent vs. older

signals, while λ mainly calibrates the relative weights of signals vs. prior. Conceptually, this

di�erence explains how the two parameters can be separately identi�ed from the data.

6.3 Out-of-sample prediction

In this section, we explore the out-of-sample prediction of outperformance by the estimated

rational belief (âj,t), investor belief (ãj,t), and some naive predictors such the moving averages.

The goal is to see whether there is any gain, and if yes, how much gain we can get from using

an econometrically estimated model, when predicting future performance out-of-sample.

To operationalize, we estimate our model parameters (both the performance and �ow model)

using data from 1965 up to 2009. Then, we use the estimated parameters to generate the rational

posteriors and investor posteriors of fund skills from 2010 to 2014. The posteriors are computed

using equation (3) and (9), respectively. Note, importantly, the performance data after 2009 are

used in computing these posteriors. It is the parameter estimates that are obtained without using

post-2009 data. Next, we subtract the impact of DRS (using last-period fund size qt−1) from
the posterior to construct the predictor for fund performance rj,t . Aside from �ltered posteriors,

we also consider simple moving averages, such as
∑5

k=1 rj,t−k /5, as predictors for rj,t .
We compute the mean squared error (MSE) of the various predictors for rj,t from 2010 to

2014. The results are provided in Table 5. We �nd that the rational posterior has the smallest

17



MSE, which means that it performs the best in the out of sample prediction. Both rational

posterior and the investor posterior outperform the naive predictors. The result suggests that it

o�ers some advantage to use a properly speci�ed econometric model to extract useful information

from historical data.

[Table 5 about here.]

7 Extension: institutional vs. retail investors

Up to now, we have assumed a representative investor. While this is clearly a dramatic simpli�-

cation, we cannot identify the heterogeneous beliefs of individual investors without account-level

data, which is not available to us. We can, however, consider di�erent groups of investors aggre-

gated into (admittedly coarse) segments. In particular, it is natural to ask whether institutional

investors are more sophisticated (and, by extension, more �rational�) than households (see, e.g.,

Glode et al., 2017).

In order to explore this question, we exploit the fact that there are usually multiple share

classes of the same fund, some are marketed to retail investors and others are only available to

institutions. We extend our model of fund �ows to allow for two types of investors, who hold

di�erent beliefs and invest in the two di�erent classes of the same fund. We assume that each

type of investors are dogmatic in their beliefs (ignoring the fact that their beliefs might di�er

from those of the other type of investors). While this is admittedly a simpli�cation, we make

this assumption for the sake of tractability.

7.1 Model and estimation

Let there be two di�erent classes for each fund: (1) institutional and (2) retail. Then the sizes

of the two share classes add up to the total net assets of the fund:

Qj,t = Q(1)
j,t +Q(2)

j,t .

In the above, we use superscripts 1 and 2 to denote the two share classes. For the investors

in class k , where k ∈ {1, 2}, we denote their posterior beliefs as ã(k)
j,t and σ̃ (k)

j,t , which follow the

same structure as in equation (9) and (10), but under a di�erent set of parameters µ̃(k), κ̃(k), δ̃ (k),
ρ̃(k), η̃(k), and γ̃(k). So their perceived e�cient fund size is given by (compare to equation 7)

q̃BG(k)
j,t = 1̃

γ(k) log [1 + γ̃(k)
η̃(k) (ã(k)

j,t − p
(k)
j,t )] . (14)

Note that the above is the fund size, not the share class size, as perceived by class-k investors.
Importantly, this is because DRS happens at the fund level, not the share-class level. Because

the investment strategies are the same at the two share classes within the same fund, as the size

of one share class increases, it should cause decreasing return on the other share class as well.
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The �ow for the share class k in fund j is speci�ed as follows (compare to equation 8)

q(k)
j,t − q

(k)
j,t−1 = φ(k) · (ψ(k) · q̃BG(k)

j,t − q(k)
j,t−1) + ξ (k)

j,t . (15)

The new parameter ψ(k) presents the proportion of class k in the fund's e�cient size. We will

estimate the parameter from the data. Given that the sizes of the two share classes should add

up to the fund size, one may impose that ψ(1) + ψ(2) = 1 in the estimation. However, from the

standpoint of estimation, this restriction is not necessary.21

Again, we allow serial correlation in the residual ξ (k)
j,t as in Section 2.2, but with class-speci�c

parameters: β(k) and ω(k), k ∈ {1, 2}.
The estimation of the extended model follows Section 3, with a few di�erences. First, the

data is expanded to included class-speci�c records:

Y j,t ≡
{
rj,t , p(1)

j,t , p
(2)
j,t , q

(1)
j,t , q

(2)
j,t

}
.

Second, the likelihood function �ts the sizes of share classes, instead of the fund size. The partial

likelihood on the �ow model is∏
j,t

[∏
k∈K (j,t) Pr (q(k)

j,t | p
(1)
j,t , p

(2)
j,t ,Y j,t−1,Y j,t−2, ...)] .

In the above K (j, t) ⊆ {1, 2} denotes the share classes that fund j o�ers in period t (some funds

did not have an institutional class in earlier years). Ideally, we want to estimate the model

with the sample that has both share classes available at the same time so that the comparison

between the estimated parameters for di�erent share classes would be meaningful. To achieve

that purpose, we focus on the sample period of 2000-2014, because before 2000, there were

very few institutional share classes in the data. Finally, note that the partial likelihood on the

performance model stays exactly the same as in Section 3, because we have made no changes to

the performance model.

7.2 Results

The estimates of the two-class model are reported in Table 6. It reveals that there is indeed some

heterogeneity in beliefs, at least between the (broadly de�ned) institutional and retail investors.

Overall, compared to the retail classes, the beliefs implied by the �ows at institutional-share

classes are closer to the rational benchmark as estimated from the performance data (Table 2).

Speci�cally, �rst, institutional investors hold a prior about the skill of fund managers that

is lower than retail investors and closer to the benchmark (µ̃(1) = 3.3% vs. µ̃(2) = 5.3%, and
µ = 1.3%). Second, compared to retail investors, institutional investors believe that realized

performance are driven more by luck rather than skill, which is more aligned with the performance

data (λ(1) = 0.423 vs. λ(2) = 0.672, and κ/δ = 0.208). Third, institutional investors exhibits

21Without the restriction, the interpretation of ψ (k) is more akin to what class-k investors perceive as the
proportion of fund size that they should be responsible for.
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a less degree of �over-extrapolation� compared to retail investors, in the sense of believing that

skill is more persistent; however, the degree of �over-extrapolation� is still very strong compared

to the benchmark (ρ̃(1) = 0.745 vs. ρ̃(2) = 0.705, and ρ = 0.958). Fourth, institutional investors
adjust capital allocations somewhat faster than retail investors (φ(1) = 0.076 vs. φ(1) = 0.064).
Lastly, institutional investors perceive a degree of DRS that is smaller than retail investors and

closer to the benchmark.

[Table 6 about here.]

8 Conclusion

We estimate a structural model of investor beliefs implicit in the mutual fund �ows. We compare

this estimated model with the rational Bayesian benchmark that is based on past performance.

Our estimates imply that investors are more optimistic about fund manager's average skill than

warranted by the historical data. They over-weight recent performance in a manner consistent

with models based on the �representativeness� heuristic, yet respond slowly to changes in these

beliefs, consistent with limited attention and/or informational frictions. These results o�er new

perspective on mutual fund investor's behaviors beyond the �ow-performance relationship and

pave roads for fruitful future research on household �nance.
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Figure 1: Average annual net �ow as a function of age
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This �gure plots the average annual net �ow against fund age. The dotted lines indicate the 95%
con�dence intervals.
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Figure 2: Weights on historical information
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A posterior mean on a fund's skill is a weighted sum of the historical DRS-adjusted performances
of the fund. The weight decays with the lag between now and the year when the performance was
realized. This plot displays how the weights decay in di�erent posteriors. The blue curve with
stars plots the weighting scheme under the estimated performance model (i.e., how the rational
posterior âj,t weights historical information). The yellow curve with circles plots the weighting
scheme under the estimated investor beliefs (i.e., how the ãj,t weights historical information).
The red curve with squares plots the same investor's weighting scheme as the yellow curve except
that we impose ρ̃ = 0.95 (the estimated ρ̃ = 0.766). The gray curve with asterisks plots the same
investor's weighting scheme as the yellow curve except that we impose λ = 0.45 (the estimated
λ = 0.664).
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Table 1: Summary statistics

Mean SD P1 P25 P50 P75 P99

Annual alpha (%) 0.24 7.07 -18.00 -3.22 0.04 3.26 22.28
Annual expense ratio (%) 1.18 0.50 0.14 0.90 1.14 1.43 2.55
Fund size ($million) 1,453 5,603 9 73 238 840 23,466

This table presents summary statistics for our sample of U.S. equity mutual funds. The sample
period is from 1965 to 2014. Each observation is a fund-year combination. Annual alpha is
computed using Fama-French six-factor model as in Fama and French (2018). Fund size is the
fund's total AUM aggregated across share classes. Both annual expense ratio and annual alpha
are computed as AUM-weighted averages across share classes.
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Table 2: Parameter estimates

Value SE Description

Panel A: Performance Model

η 2.3e-3 (0.001) size of DRS
γ 3.4e-4 (8.6e-4) shape of DRS
µ 0.013 (0.003) mean of skill prior
κ 0.014 (5.4e-4) stdv. of skill prior
δ 0.067 (2.2e-4) stdv. of return noise
ρ 0.958 (0.013) skill persistence

Panel B: Flow Model

η̃ 0.007 (0.001) size of DRS
γ̃ 0.016 (0.002) shape of DRS
µ̃ 0.061 (0.005) mean of skill prior

λ = κ̃/δ̃ 0.664 (0.033) ratio of prior and noise stdv.
ρ̃ 0.766 (0.015) skill persistence
φ 0.068 (0.005) �ow adjustment rate
β 0.344 (0.005) serial corr. in �ow residual
ω 0.340 (0.001) stdv. of �ow residual

This table reports the maximum likelihood estimates for our model. Panel A reports parameters
in the model of fund performance; Panel B reports parameters in the model of fund �ows. For
more details about the de�nitions of the parameters, please refer to Section 2. The standard
errors are in parentheses.
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Table 3: Sensitivity of performance to misallocation

Panel A: rj,t as dependent variable
(1) (2) (3) (4)

qj,t − q̂BGj,t -0.11***

(5.54)
q̂BGj,t 0.12***

(5.52)
qj,t -0.20*** -0.21***

(6.86) (6.36)
qj,t − q̃BGj,t -0.19***

(6.09)
q̃BGj,t 0.19***

(5.53)
Constant 0.68*** 1.14*** 0.13** 0.23

(6.72) (6.90) (2.99) (1.22)
N 25,530 25,530 25,530 25,530
Adj R2 0.003 0.003 0.004 0.004

Panel B: rj,t+1 as dependent variable

(1) (2) (3) (4)

qj,t − q̂BGj,t -0.08***

(3.81)
q̂BGj,t 0.08***

(3.78)
qj,t -0.17*** -0.15***

(5.62) (4.83)
qj,t − q̃BGj,t -0.11***

(4.06)
q̃BGj,t 0.10***

(3.42)
Constant 0.49*** 1.01*** 0.11* 0.43*

(4.89) (5.74) (2.47) (2.13)
N 23,018 23,018 23,018 23,018
Adj R2 0.001 0.002 0.002 0.002

This table reports the regressions of performance on misallocation. In Panel A, we regress
the fund performance rj,t (in percentage) onto misallocation. In Panel B, we regress future
performance rj,t+1 (in percentage) onto misallocation. For the de�nitions of misallocations,
please see Section 6.1. The t-statistics are in parentheses. Signi�cance at the 1%, 5%, and 10%
levels are indicated by ***, **, and *, respectively.
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Table 4: Sensitivity of �ows to misallocation

(1) (2)

qj,t − q̂BGj,t -0.03*** -0.03***

(25.68) (19.90)
Lag expense ratio 1.59*

(2.20)
Lag load dummy 0.01*

(2.08)
Lag �ow 0.13***

(15.12)
Lag annual alpha vol -1.17***

(9.08)
Lag log fundsize -0.01***

(5.40)
Lag age 2e-4

(0.94)
Constant 5e-3* 0.07***

(2.29) (4.32)
N 23,018 20,716
Adj R2 0.06 0.08

This table reports the regression of �ow on misallocation. Flow is de�ned as qj,t+1 − qj,t . The
control variables include: lag expense ratio, lag load fund dummy (takes the value of 1 if the fund
has front loads), lag �ow, lag annual alpha vol measured as a fund's alpha's standard deviation
over the prior year using monthly data, lag log of fund TNA, and lag fund age measured in years.
The t-statistics are in parentheses. Signi�cance at the 1%, 5%, and 10% levels are indicated by
***, **, and *, respectively.
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Table 5: Out-of-sample MSE of various predictors for fund future performance

(1) (2) (3) (4) (5) (6)

Rational
posterior

Investor's
posterior

Lag 1 year
alpha

Lag 3 year
alpha

Lag 5 year
alpha

Lag 10
year alpha

MSE (%) 0.20 0.23 0.44 0.27 0.27 0.25

This table presents the mean squared errors of various predictors for realized alpha in 2010-2014.
The �rst column uses the skill posteriors in the performance model, with the model parameters
estimated from the performance data in 1965-2009. The second column uses the skill posteriors
in the �ow model, with the model parameters estimated from the fund size data in 1965-2009.
For both columns, DRS based on last-period fund size is subtracted from the posterior for the
current-period skill. The last four columns use moving averages.
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Table 6: Parameter estimates: di�erent share classes

Inst Share Retail Share Benchmark

Value SE Value SE Value SE

η̃ 3.7e-3 (0.001) 6.1e-3 (0.001) η 2.3e-3 (0.001)
γ̃ 0.033 (0.015) 0.012 (0.002) γ 3.4e-4 (8.6e-4)
µ̃ 0.033 (0.004) 0.053 (0.003) µ 0.013 (0.003)

λ = κ̃/δ̃ 0.423 (0.042) 0.672 (0.027) κ/δ 0.208 (0.008)
ρ̃ 0.745 (0.024) 0.705 (0.014) ρ 0.958 (0.013)
φ 0.076 (0.005) 0.064 (0.004)
β 0.212 (0.006) 0.301 (0.005)
ω 0.535 (0.002) 0.352 (0.001)
ψInst. 0.417 (0.055)

This table reports parameter estimates for the extended �ow model that accounts for institutional
share class vs. retail share class. The sample period is from 2000 to 2014. The last two columns
reproduce the rational benchmark estimates from panel A of Table 2. The standard errors are
in parentheses.
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Appendix

A Monte Carlo study

We conduct Monte Carlo experiments on our partial MLE described in Section 3. The �rst step is

to simulate panel data on funds' return rj,t , prices pj,t , and size qj,t . Our model speci�es the data

generating process for returns and sizes but not prices. Due to the partial MLE approach, we

can generate pj,t as any function of {Y j,t−1,Y j,t−2, ...}. For the results shown below, we generate

pj,t from a simple AR(1) process. In the simulated panel, we retain the same fund identities and

years of existence for each fund as in the real data. As a result, the simulated panel data is of

the same size as the real data.

The �true� parameters with which we generate the simulated data are set to the values in

Table 2. We simulated 100 datasets, and for each dataset, we apply the partial MLE to recover

the parameters. Table S1 shows the means and standard errors of the means of the recovered

parameter values across the 100 datasets. As we can see, our partial MLE can recover all the

parameters.

[Table S1 about here.]

B Out-of-sample estimation of fund performance

We re-conduct the out-of-sample exercises presented in Table 5 using rolling/expanding window

generated alphas as our measure of fund performance. More speci�cally, we �x the starting point

of the window at the birth time of the fund and the endpoint of the window progresses along

time. The step size is one month since we are using monthly data to estimate alpha. To be able

to estimate the beta for the initial periods of each fund, we set the initial size of the window as 24

months. That means the �rst 24 month's beta is the same. Then, from the 25th month onwards,

we use last period estimated beta to compute the current period alpha. The endpoint of the

window keeps on moving till the end of the fund's return data. The new results are presented in

Table S2. We �nd that the results are quantitatively similar to the original results in Table 5.

[Table S2 about here.]
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Table S1: Monte Carlo Results

True value Estimate mean S.E. for mean

Performance model
η 0.0023 0.0023 (1.95e-05)
γ 0.0001 0.0005 (3.26e-05)
µ 0.0133 0.0133 (8.44e-05)
κ 0.0139 0.0140 (7.73e-05)
δ 0.0672 0.0672 (3.49e-05)
ρ 0.9584 0.9538 (1.66e-03)

Flow model
η̃ 0.0068 0.0068 (2.35e-05)
γ̃ 0.0162 0.0161 (1.40e-04)
µ̃ 0.0606 0.0607 (1.49e-04)

λ = κ̃/δ̃ 0.6636 0.6629 (1.09e-03)
ρ̃ 0.7656 0.7666 (1.11e-03)
φ 0.0682 0.0686 (2.53e-04)
β 0.3442 0.3440 (7.12e-04)
ω 0.3396 0.3396 (2.03e-04)

This table reports the Monte Carlo results. The �true� parameters with which we generate the
simulated datasets are set to the values in Table 2. We simulate 100 datasets, and for each
dataset, we apply the partial MLE to estimate the parameters. This table reports the means
and standard errors of the means of the parameter estimates across the 100 datasets.
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Table S2: Out-of-sample MSE of various predictors for fund future performance (alternative
alpha estimation)

(1) (2) (3) (4) (5) (6)

Rational
posterior

Investor's
posterior

Lag 1 year
alpha

Lag 3 year
alpha

Lag 5 year
alpha

Lag 10
year alpha

MSE (%) 0.22 0.27 0.55 0.32 0.31 0.29

This table presents the mean squared errors of various predictors for realized alpha in 2010-
2014. The �rst column uses the skill posteriors in the performance model, with the model
parameters estimated from the performance data in 1965-2009. The second column uses the
skill posteriors in the �ow model, with the model parameters estimated from the fund size data
in 1965-2009. For both columns, DRS based on last-period fund size is subtracted from the
posterior for the current-period skill. The last four columns use moving averages. In this table,
we use rolling/expanding window generated alphas as our measure of fund performance. More
speci�cally, we �x the starting point of the window at the birth time of the fund and the endpoint
of the window progresses along time. The step size is one month since we are using monthly data
to estimate alpha. To be able to estimate the beta for the initial periods of each fund, we set the
initial size of the window as 24 months. That means the �rst 24 month's beta is the same. Then,
from the 25th month onwards, we use last period estimated beta to compute the current period
alpha. The endpoint of the window keeps on moving till the end of the fund's return data.
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