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Abstract

When does efficiency justify affirmative action and gender equity policies in educa-
tion and labor markets? Or, more generally, when does efficiency require differential
treatment based on observable and surplus-irrelevant characteristics, such as race, gen-
der, or socioeconomic status?

This paper proposes an assignment model of differential treatment, where a poli-
cymaker assigns agents to different treatments or positions in order to maximize total
surplus, based on the agents’ characteristics and on noisy information about their
types (i.e. abilities or productivities). I provide necessary and sufficient conditions on
the agents’ signaling structures which characterize whether surplus maximization re-
quires differential treatment or not, in a general non-parametric information economics
framework. I show that under certain reasonable conditions the optimal assignment
policy is characterized by an index which measures the agents’ expected marginal ben-
efits from different treatments, and also examine further conditions on the bias and
informativeness of signaling structures that determine the efficiency implications of
differential treatment. The model also provides novel questions and predictions for
empirical research on the economics of discrimination.
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1 Introduction

Affirmative action policies are often controversial in debates about public policy, education,
hiring and promotions within organizations, and in other examples of differential treatment,
whereby economic agents are treated differently depending on some observable characteris-
tics. For example, in an education context, whether a student is admitted to a university
or not may depend on their socio-economic status, race, or some other characteristic of the
student or of their environment—an issue currently under scrutiny in the “Students for Fair
Admissions v. Harvard” lawsuit, for instance. Similarly, in a labor market context, an or-
ganization’s promotion or hiring decisions may depend not just on the performance of an
employee, but also on characteristics such as the opportunities that the employee has had,
their gender, or some other characteristic of the employee or of their environment—a topic
of discussion in the ongoing global debate on the gender gap in employment. Debates about
such differential treatment policies are often based on concerns about fairness, and one can
make ethical arguments both in favor and against differential treatment. This paper offers
a different approach and considers differential treatment from the perspective of efficiency,
rather than fairness. Fairness is of course an important concern, but understanding the
positive implications of affirmative action and other differential treatment policies, before
debating their merits on normative grounds, may provide more constructive grounds for de-
bate. It may also inform public policy and provide new conceptual questions for empirical
research on the economics of discrimination.

I study an assignment problem where a policy-maker must assign agents to different treat-
ments or positions, based on some observable signals and characteristics of the agents. The
policy-maker’s objective is to design an assignment policy which maximizes total expected
surplus, subject to an ex post feasibility constraint—i.e. the number of agents assigned to
each position must not exceed the capacity of that position. I highlight two leading exam-
ples from education and labor contexts: a university’s admissions office must decide which
students to admit or not; and an organization must decide which job candidates to hire, or
how to promote employees to different ranks within the organizational hierarchy.

Each agent generates some surplus or value (e.g. student achievement or employee output),
which depends on their unobservable type (e.g. the ability of a student or the productivity
of an employee) and on the treatment or position they are assigned to. The policy-maker
observes a noisy signal of the agent’s type (e.g. a student’s standardized test score or an
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employee’s past performance), and also some characteristics of the agent (e.g. a student’s
socio-economic status, race, gender, etc., or an employee’s demographics, gender, etc.)

This paper characterizes the surplus-maximizing policy in a general setting, under mild non-
parametric assumptions on values and signal distributions. First, I show that the optimal
assignment policy will generically feature differential treatment across the observable charac-
teristics of the agents, even if these characteristics are not directly payoff relevant, as long as
the distributions of signals vary across these observable characteristics. More precisely, the
optimal assignment policy is assortative with respect to a benefit index, which measures the
expected incremental benefit from being assigned to a higher position or treatment. But the
optimal policy need not be monotonic with respect to signals, because signals need not mono-
tonically translate into expected incremental benefits, if the conditional distribution of types,
given signals, differ across characteristics. The optimal policy is deterministic (except for
tie-breaking among payoff-equivalent agents) and can be implemented with category-specific
thresholds, i.e. signal cutoffs which generally vary across agents’ characteristics. In fact, I
show that the optimal policy is only assortative with respect to signals, for any capacities, if
and only if the conditional signal distributions are identical across observable characteristics
in a particular sense. This is a very strong condition, which suggests that in many realistic
settings the surplus-maximizing policy will feature some differential treatment, which favors
agents whose signal distributions are “worse”—i.e. a form of affirmative action.

Second, I show that the optimal policy may also feature differential treatment even in the
case where signals are unbiased predictors of agents’ types, i.e. an agent’s expected type,
conditional on a signal, does not vary across other observable characteristics. This is be-
cause the policy-maker’s objective function may feature an intrinsic preference for or against
dispersion in types, and the conditional type distributions can be noisier or less noisy across
different characteristics, even if expected types are equal across characteristics. That is,
some categories of agents may have more or less informative signals, defined in terms of
mean-preserving spreads in conditional type distributions, and as a result may optimally be
treated differently, depending on the shape of the surplus function. Hence the optimal policy
is monotonic with respect to the benefit index, but need not be monotonic with respect to
the agents’ expected types, and may favor agents whose type distributions are more or less
dispersed—i.e. another form of affirmative action.

To derive my main results, outlined above, I provide a definition of comparability across
categories, which requires that the expected incremental benefits from any two positions,
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as a function of an agent’s signal, can be translated across characteristics. This notion
allows signals to be compared across different characteristics, in an environment with any
signal distributions. Comparability implies an ordering over type distributions, which is
more general than the usual stochastic orderings used in economics, since it only imposes
restrictions on the expected values of the conditional type distributions, rather than on the
shape of the distributions. Moreover, I show that comparability is satisfied in a variety of
environments. I provide 3 different sufficient conditions for the notion of comparability to
hold: either (i) treatments are binary; or (ii) the surplus is multiplicatively separable in type
and position; or (iii) the family of signal distributions are similar, in a particular sense. Each
of these conditions is enough to ensure comparability, making it a widely applicable concept.

My main results can be interpreted for example in the context of university admissions poli-
cies. One may think that the distribution of students’ university exam scores, conditional on
their true abilities, varies across socio-economic status or some other observable character-
istic (e.g. because parents invest different time and resources in their children’s education,
depending on their status). A university admissions office, seeking to maximize surplus,
would therefore use socio-economic status information in forming beliefs about the students’
true abilities. My first main result shows that the optimal admissions policy may admit
students non-monotonically with respect to their exam scores—a lower-score student from
a socio-economic group whose score distributions are worse may be preferred over a higher-
score student from a socio-economic group with higher score distributions. This highlights a
nominal motive for differential treatment, which results from the fact that surplus is a func-
tion of the agents’ types, not of their signals per se. Moreover, the optimal policy may favor
some group even if expected abilities are the same across groups, conditional on scores, for
example if the variance of abilities is different across characteristics and if there are increas-
ing or decreasing marginal values from higher types (e.g. if the value of “superstar” students
is disproportionally high). This highlights a substantive motive for differential treatment,
which results from the fact that the informativeness of signal distributions can vary across
characteristics and thus affect the dispersion of types across characteristics. Such nominal
and substantive motives may arise in the context of hiring and promotions decisions within
organizations, for example in thinking about differential treatment based on gender.

The paper also highlights several important observations for public policy debates and em-
pirical research on the topic of affirmative action and gender equity in education and labor
market settings. First, differential treatment may arise out of concerns for economic effi-
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ciency, rather than fairness, which is often presumed in such debates. Second, comparing
signals (e.g. university exam scores or past employee performance) may be asking a mis-
guided question, as it focuses on the wrong metric. In the context of maximizing surplus, it
is expected incremental benefits that matter, not signals per se. Therefore a more relevant
empirical question would be to estimate the returns to education across different character-
istics for the marginal admitted students at a university, or the productivity across different
characteristics for the marginal employees at an organization. If these are consistent across
characteristics, this would point to an efficiency rationale for differential treatment. Third,
comparing expected abilities or productivities across characteristics, conditional on exam
scores or past performance, may also be asking the wrong questions, as the optimal policy
can depend on the dispersion of types, not just on means, across characteristics. So a more
relevant empirical question would be to estimate whether there is inherently a dispropor-
tional benefit or loss due to dispersion in the abilities of students or in the productivity of
employees. If so, this would also point to an efficiency rationale for differential treatment.

In addition to my main results, I also discuss more specific applications of the model. First, I
consider an environment with biased signals, where the distributions of types, conditional on
any signal, can be ordered across characteristics in terms of first-order stochastic dominance.
In this application signals over-estimate types for higher categories and under-estimate them
for lower ones. Such a model may accurately describe the relationship between student
abilities, standardized test scores, and socio-economic status (with higher socio-economic
status corresponding to higher categories). The optimal policy here favors agents from
categories with worse signals, and the optimal cutoffs for each position are increasing across
categories—lower categories have lower signal cutoffs.

Next, I consider an environment with unbiased but noisier signals, where type distributions,
conditional on scores, are mean-preserving spreads across categories, and the value func-
tion features a preference for or against dispersion. I show the optimal policy implies that
the aggregate treatments will vary across categories, even though the unconditional type
distributions are the same a priori. Hence an environment with ex ante symmetric types
would endogenously give rise to aggregate inequality of treatments. For example, if the
policy-maker has a preference for dispersion, then agents from categories with noisier type
distributions will be favored for each position, creating aggregate inequality.
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2 Literature

This paper relates to a growing literature which studies the effect and implementation of
diversity and distributional objectives in matching and assignment models. Several recent
papers consider affirmative action and diversity aspects in school choice and in contests. Ab-
dulkadiroğlu and Sŏnmez (2003) study a model of controlled school choice, introducing type-
specific quotas motivated by diversity concerns into a matching framework. Abdulkadiroğlu
(2005) considers a two-sided matching setting and studies the existence of stable matching
mechanisms with and without affirmative action. Kojima (2012) shows that quota- and
priority-based affirmative action constraints may, in some cases, hurt all members of the tar-
geted group and lead to Pareto worse outcome in any stable matching mechanism. Hafalir,
Yenmez and Yildirim (2013) study the welfare effect of minority reserves, which are one
possible implementation of affirmative action policies. Ehlers, Hafalir, Yenmez and Yildirim
(2014) introduce a matching model of control constraints as soft bounds, and study fairness
and welfare. Hafalir, Kojima and Yenmez (2019) develop a framework to study inter-district
school choice, whereby students can be assigned to schools across districts, with one of the
main policy objectives being to balance diversity, and study the diversity and efficiency prop-
erties of deferred acceptance and top trading cycles mechanisms. Fu (2007) models college
admissions in an asymmetric all-pay auction model with complete information, where max-
imizing student efforts requires using a handicap that resembles affirmative action. This
paper contributes to the literature by studying differential treatment, a broader class of poli-
cies than affirmative action, in the context of an assignment model. Moreover, this model
explicitly makes a distinction between agents’ payoff-relevant types and their signals, whereas
the matching literature typically interprets signals as types. The latter distinction turns out
to be critical for studying the efficiency implications of differential treatment.

More broadly, a large economics literature studies statistical discrimination, including papers
by Phelps (1972) and Arrow (1973), which offered an alternative to the model of taste-based
discrimination by Becker (1957). These seminal papers created two strands of literature:
one where there are exogenous differences between different groups of agents, giving rise to
discrimination; and another where differences between groups of agents arise endogenously
in equilibrium, even though groups are ex ante identical. In the former strand, Chambers
and Echenique (2019) study the connection between statistical discrimination and the statis-
tical identification of workers’ signals from skills. Lundberg and Startz (1983) study human
capital investment in a model where different groups have more or less noisy signals of pro-
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ductivity. Moro and Norman (2003b) study human capital in a model with heterogeneous
investment costs across groups. Cornell and Welch (1996) study labor tournaments where
groups have access to more or fewer signals of their productivity, and the scarcity of jobs
leads to differential treatment across groups. In the latter strand, Coate and Loury (1993)
study noisily observed skill investments by workers, which lead to a multiplicity of equilibria,
whereby some groups may invest more than others and thus endogenously be favored by em-
ployers, even though groups are ex ante identical. Several papers study discrimination which
arises with interactions between groups. Moro and Norman (2004) study a model of human
capital investment with endogenous wages, where groups may in equilibrium specialize in
different jobs, leading to asymmetric outcomes that do not rely on a coordination failure
within groups. Mailath, Samuelson and Shaked (2000) study discrimination that arises due
to search frictions, even with perfect information about agents’ types. These strands of the
literature are summarized in a comprehensive survey by Fang and Moro (2011). This paper
contributes to the literature in three main aspects. First, I focus on the problem of designing
assignment policies which maximize efficiency, rather than on explaining discrimination per
se, which is the main aim of statistical discrimination theories. I take differences in signalling
technologies as given, and show that affirmative action may be an optimal policy response
to differences across groups. Hence this paper provides an efficiency rationale for differen-
tial treatment.1 Second, I study a general assignment model, with arbitrary treatments or
positions, without making any specific parametric assumptions about the distributions of
types and signals or the functional form of payoffs, in contrast to the existing literature on
discrimination. I provide general results using tools from information economics, monotone
comparative statics, and stochastic ordering theory. Third, in an application of my model I
show that aggregate inequality across groups can arise even in the absence of human capital
investment, search frictions, coordination failure, or interactions across groups, as a result
of purely informational frictions.

A subset of the discrimination literature considers affirmative action as a possible policy
remedy to discrimination. This literature generally finds that affirmative action may exac-
erbate differences across groups, for example in terms of human capital, and may lead to
lower welfare (Coate and Loury, 1993; Moro and Norman, 2003b, 2004; Norman, 2003; Fang

1For example, the literature on labor discrimination seeks to explain why an employer may favor one
group of workers over another, whereas I consider how an employer who understands that some groups
have less favorable signalling technologies may optimally treat workers in a way that compensates for such
differences.
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and Norman, 2006). It is important to note, however, that affirmative action is distinct from
merely banning statistical discrimination, which much of the literature focuses on. I consider
a richer model of differential treatment, which applies to more general policies, beyond affir-
mative action or banning or allowing statistical discrimination. Differential treatment more
generally considers the possibility of treating groups differently, hence affirmative action may
itself entail a form of discrimination.

Other models of the effect of affirmative action include Chung (2000), who provides a theory
of role models. Chan and Eyster (2003) study color-blind affirmative action in a university
admissions model, where signals are directly payoff-relevant and the university has an ex-
plicit preference for diversity. They show that the optimal color-blind admissions policy may
involve randomization, which allows the university to balance its preferences for diversity
with its preference for higher-score students. Epple, Romano and Sieg (2008) study a related
model with competing colleges which have a preference for diversity. Fryer and Loury (2007)
consider a similar model with an added ex ante investment stage, where groups have exoge-
nous differences in skill investment costs, and analyze the optimal timing of interventions. In
contrast to this literature, the policy-maker in my model has no preference for diversity, and
only seeks to maximize expected total surplus. Moreover, signals are distinct from types, and
only the latter are directly payoff-relevant. Finally, I do not assume any a priori differences
in the distributions of types across groups, and differences only arise due to signalling.

3 Model

A policy-maker wants to assign agents to treatments or positions. There is a set of agents
N with cardinality n, and an ordered set of positions P = (p1, ..., pm) with corresponding
capacities (k1, ..., km) > 0, where ∑

j kj ≥ n.2

Each agent has an unknown type ti ∈ T , drawn from a distribution F , and a publicly
observed category or characteristic xi ∈ X. The policy-maker observes a noisy signal of
each agent’s type, si ∈ S, drawn from a distribution Fti,xi

. I assume S is an ordered convex
set, T is an ordered set with discrete or continuous values, and X is any set of (possibly
vector-valued) characteristics with discrete or continuous values.

2This is without loss of generality, in the sense that position p1 can be a “null” position, with unlimited
capacity, reflecting the possibility that agents are not assigned to any position.
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A policy is a stochastic assignment of agents, mapping observables to positions, denoted by
a function P : (X × S)n → ∆(P n). I denote by P(p|xi, si) the distribution of agent i’s
position, and by p(xi, si) the realized position. Every possible assignment generates some
individual ex post surplus, given by v : T×P → R, where v is increasing in both arguments.3

The policy-maker’s objective is to design a policy that maximizes the expected total surplus
from the assignment, subject to ex post feasibility:

max
P

∑
i

E[v(ti, p(xi, si))] =
∑

i

∑
j

∫
T
v(ti, pj)dF (ti|xi, si) · P(pj|xi, si) (1)

s.t. |{i : p(xi, si) = pj}| ≤ kj

I make three standard assumptions to analyze this problem.

Assumption 1 (Supermodularity). The surplus v is supermodular (equivalently, has increas-
ing differences) in (t, p): v(t′′, p′′) + v(t′, p′) > v(t′′, p′) + v(t′, p′′) for all t′′ > t′ and p′′ > p′.

Assumption 1 provides a form of complementarity between the agent’s type and their po-
sition. Supermodularity of the surplus function is sufficient to guarantee that the first-best
assignment features positive assortative matching: i.e. it is optimal to assign higher positions
to higher types. Such assortative matching is common in all of the motivating examples for
this paper, and supermodularity is commonly used to motivate this observation in many
applications.

Assumption 2 (Continuity). The expected surplus E[v(t, p)|x, s] is continuous in s.

Assumption 2 is a mild technical assumption for practical applications, as it only requires
that the expected surplus for an agent with signal s varies continuously in s, holding the
position p and the category x constant. This assumption is satisfied whenever the density
f(t|s) is uniformly continuous is s, which by the monotone convergence theorem implies that
E[v(t, p)|x, s] is continuous in s. Moreover, the main intuitions of this paper do not crucially
rely on continuity, and one can state analogous results in the absence of this assumption.

3Note that this surplus depends on types, whereas signals are not directly payoff-relevant. Alternatively,
one can consider a model where signals are themselves productive, i.e. V : S × T × P → R. As will be clear
from the subsequent analysis, my main results on differential treatment would continue to hold qualitatively.
That is, the optimal policy has similar features and the main intuitions remain valid, but the amount of
differential treatment is moderated to some extent. This setting offers a fruitful avenue for future research.
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Assumption 3 (MLRP). The family of signal distributions {Ft,x} satisfies the strict monotone
likelihood ratio property in t: for s′′ > s′, the ratio of the densities ft,x(s′′)

ft,x(s′) is increasing in t,
conditional on x, whenever it is well-defined.4

Assumption 3 is a standard assumption in the literature. It ensures that there is an intu-
itive way to interpret signals and update beliefs regarding an agent’s type, conditional on
observing some signal, as in the following proposition.

Proposition 1 (Milgrom 1981). Under Assumption 3, F (·|xi, si = s′′) �F OSD F (·|xi, si = s′)
for any s′′ > s′.

Proposition 1, due to Milgrom (1981), shows that observing a higher signal s is good news
regarding the agent’s type (conditional on any category x), i.e. a higher signal improves the
distribution of t in the sense of first-order stochastic dominance. This proposition implies that
E[v(t, p)|x, s] =

∫
T v(t, p)dF (t|x, s) is increasing in s, for any x, p, since v(t, p) is increasing in

t and F (t|x, s) is increasing in s in the first order. Furthermore, the proposition also implies
that E[v(t, p′′)|x, s] − E[v(t, p′)|x, s] =

∫
T v(t, p′′) − v(t, p′)dF (t|x, s) is increasing in s, for

any x and p′′ > p′, because v(t, p) is supermodular, hence v(t, p′′) − v(t, p′) is an increasing
function of t, and F (t|x, s) is increasing in s in the first order.

The assumptions above are assumed to hold within categories. Next, I define a notion of
comparability across different categories. In principle the distributions of types and signals
may differ in arbitrary ways across categories, e.g. as functions of x, these distributions may
be shifting or spreading, or may not be comparable using any of the standard stochastic
orders at all. Indeed, for the main result of the paper it is sufficient to define comparability
of the categories as in the definition below, which is much weaker than the usual notions
of stochastic orders over distributions. First, this definition only imposes conditions on the
expected values of the distributions, rather than the whole distribution functions. Second,
these conditions allow for comparisons of distributions that cannot be ranked according to
FOSD, SOSD, etc. Third, such conditions may be easier to test empirically, as they only
require comparing conditional expectations.

Definition 1. Two categories, x and x′, are comparable if ∀s ∈ S either:
4Alternatively, one can define MLRP as ft′′,x(s′′)ft′,x(s′) > ft′,x(s′′)ft′′,x(s′) for all t′′ > t′ and s′′ > s′,

such that ft′,x(s′) > 0 or ft′′,x(s′) > 0, holding x constant (cf. Athey (2002)). The latter is only slightly
more general and makes no difference to the analysis, so I focus on the case where the ratio is well-defined.
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(i) ∃s′ ∈ S s.t. E[v(t, p)|x, s]− E[v(t, p′)|x, s] = E[v(t, p)|x′, s′]− E[v(t, p′)|x′, s′]∀p, p′, or

(ii) ∀s′ ∈ S: either ∀p and p′ < p E[v(t, p)|x, s] − E[v(t, p′)|x, s] ≥ E[v(t, p)|x′, s′] −
E[v(t, p′)|x′, s′], or ∀p and p′ < p E[v(t, p)|x, s] − E[v(t, p′)|x, s] ≤ E[v(t, p)|x′, s′] −
E[v(t, p′)|x′, s′].

This definition of comparability establishes an equivalence across categories, defined in terms
of differences in expected surplus. For example, a signal s, for given category x, may be
similar to a signal s′ 6= s, for given category x′, in the sense that they imply the same
differences in expected values for different positions, or one implies higher or lower differences
in expected values across positions. Such comparability is required to hold for any p and p′,
i.e. it is invariant across p.

One can define an alternative, more demanding notion of strong comparability, which implies
the notion above and is easier to state (and perhaps to verify empirically, as it does not require
comparing differences across positions). This stronger notion is not necessary for my main
results, but it relates to several of the propositions that follow below, so I state it here for
completeness.

Definition 2. Two categories, x and x′, are strongly comparable if ∀s ∈ S either:

(i) ∃s′ ∈ S s.t. E[v(t, p)|x, s] = E[v(t, p)|x′, s′]∀p, or

(ii) ∀s′ ∈ S: either E[v(t, p)|x, s] ≥ E[v(t, p)|x′, s′]∀p or E[v(t, p)|x, s] ≤ E[v(t, p)|x′, s′] ∀p.

The following examples illustrate the notions of comparability above.

Example 1. Consider the following 4 categories, x1, x2, x3, x4. Note that x1 and x2 are
comparable, x1 and x3 are strongly comparable, and x1 and x4 are not comparable.

x1 p1 p2 p3

E[v(t, p)|x1, s1] 1 3 6
E[v(t, p)|x1, s2] 2 5 10
E[v(t, p)|x1, s3] 3 7 13

x2 p1 p2 p3

E[v(t, p)|x2, s1] 1 4 9
E[v(t, p)|x2, s2] 4 8 14
E[v(t, p)|x2, s3] 5 10 17

x3 p1 p2 p3

E[v(t, p)|x3, s1] 2 5 10
E[v(t, p)|x3, s2] 3 7 13
E[v(t, p)|x3, s3] 4 9 16

x4 p1 p2 p3

E[v(t, p)|x4, s1] 1 2 4
E[v(t, p)|x4, s2] 2 3.9 10
E[v(t, p)|x4, s3] 3 7 14
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First, categories x1 and x2 are comparable because

E[v(t, p′)|x1, s2]− E[v(t, p)|x1, s2] = E[v(t, p′)|x2, s1]− E[v(t, p)|x2, s1]∀p, p′,

E[v(t, p′)|x1, s3]− E[v(t, p)|x1, s3] = E[v(t, p′)|x2, s2]− E[v(t, p)|x2, s2]∀p, p′,

and the remaining signals also satisfy the conditions for comparability.

Second, categories x1 and x3 are strongly comparable because E[v(t, p)|x1, s2] = E[v(t, p)|x2, s1]∀p,
and E[v(t, p)|x1, s3] = E[v(t, p)|x2, s2] ∀p, and the remaining signals also satisfy the conditions
for strong comparability.

Finally, categories x1 and x4 are not comparable: notice that

E[v(t, p2)|x4, s2]− E[v(t, p1)|x4, s2] < E[v(t, p2)|x1, s]− E[v(t, p1)|x1, s] ∀s,

E[v(t, p3)|x4, s2]− E[v(t, p2)|x4, s2] > E[v(t, p3)|x1, s]− E[v(t, p2)|x1, s] ∀s,

hence the signal s2 for category x4 cannot be compared to any signal for category x1.

3.1 Conditions for comparability

Comparability across categories is satisfied in many environments. I provide three proposi-
tions which characterize some natural settings where it holds: (i) when the set of positions
is binary; (ii) when v(·) satisfies an additional condition, which ensures that categories are
comparable for any {Ft,x}; and (iii) when {Ft,x} satisfies an additional condition, which
ensures that categories are comparable for any v(·).

Proposition 2. Suppose P = (p1, p2), with corresponding capacities k1, k2. Then all categories
are comparable.

With a binary set of positions, the assumptions made earlier ensure that categories are
comparable. These assumptions ensure that E[v(t, p)|x, s] is increasing in s for any p, and
moreover E[v(t, p2)|x, s]− E[v(t, p1)|x, s] is also continuous and increasing in s. Therefore a
violation of comparability requires at least 3 positions among which agents must be assigned.

There are several applications where the set of treatments that the policy-maker must assign
is binary: in school and university admissions, the decision to admit or not admit a student
is binary, and similarly hiring decisions in organizations are also binary. In such settings,
categories are comparable without any further assumptions on v(t, p) or {Ft,x}.
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The next proposition provides another environment where comparability holds.

Proposition 3. Suppose v(t, p) is multiplicatively separable in v and p. Then all categories
are strongly comparable (hence also comparable), for any family of signals {Ft,x}.

Proposition 3 shows that comparability is satisfied for any family of distributions {Ft,x},
as long as v(·) is multiplicatively separable. This makes comparability a widely applicable
concept. Such separable value functions are commonly used in auction theory, mechanism
design, and other settings, as they provide easy ways to model complementarities and su-
permodularity. For example, the value function in a quasilinear environment is v · x, where
v is the agent’s type and x is the allocation; the equivalent here is v(t, p) = t · p.

Next I provide a definition of equivalence of signal structures, which yields another sufficient
condition for categories to be comparable, for any v(·). This result provides an alternative
approach to think about comparability, which complements the one in Proposition 3.

To state the definition, first let ṽp,x(s) ≡ E[v(t, p)|x, s] denote the expected value of v(·) with
respect to F (t|x, s), for any p and x. Then let w̃p,x(v) ≡ ṽ−1

p,x(s) denote the inverse, for any
p and x.5

Definition 3. The signal structures Ft,x and Ft,x′ are equivalent with respect to v(·) if ∃δ s.t.

w̃p,x(v) = w̃p,x′(v) + δ

for any p, for all v ∈ Im[ṽp,x(s)] ∩ Im[ṽp,x′(s)].
The signals Ft,x and Ft,x′ are identical with respect to v(·) if this holds for δ = 0.

In words, two signal structures are equivalent if the expected values as a function of signals
are horizontal translations of each other, over their common image. That is, the expected
value ṽp,x(s) corresponding to a signal distribution Ft,x is a shift to the left or right of the
expected value ṽp,x′(s) corresponding to a signal distribution Ft,x′ . These expected value
functions only need to agree with each other over the range where their images intersect.
Analogously, two signal structures are identical with respect to v(·) if their expected values
as a function of signals are exactly equal. This is the case, for example, if F (t|x, s) is constant
in x, i.e. t conditional on s is independent of x.

5This inverse is well-defined, because v(t, p) is increasing in t and the expectation is taken with distribu-
tions F (t|x, s) which are FOSD-increasing in s.
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Example 2 below is an especially simple one, where the distributions of signals are horizontal
translations of one another. But the equivalence can hold more generally—it would be
sufficient, for example, that for every s there exists some s′ = s + δ such that the Bayesian
posteriors F (t|x, s) and F (t|x′, s′) are equal.

Example 2. Let t ∈ {tL, tH} and S = [0, 1]. Suppose

F (s|t, x) =


min{3s, 1} for t = tL

min{(3s)3, 1} for t = tH

F (s|t, x′) =


max{0, 3(s− 2

3)} for t = tL

max{0, [3(s− 2
3)]3} for t = tH .

Then Ft,x and Ft,x′ are equivalent, because a signal s for category x is equivalent to a signal
s′ = s+ 2

3 for category x’.

0.2 0.4 0.6 0.8 1
0

0.5

1

s

F (s|t, x)

Figure 1: Signal distributions for x (solid) and x′ (dashed)

The definition of signal equivalence above is useful because it provides another type of
sufficient condition for categories to be comparable, without imposing additional conditions
on v(·).

Proposition 4. Suppose the family of signal distributions {Ft,x} are (pairwise) equivalent.
Then all categories are strongly comparable.

Proposition 4 establishes a close connection between the equivalence of signals and the com-
parability of categories. Intuitively, if a signal s, for given category x, is equivalent to a
signal s′, for given category x′, then the two categories are comparable. For the remainder
of the analysis I will assume that all categories are comparable.

14



3.2 Optimal policy

Theorem 1. If categories are comparable, the optimal policy P ∗ assigns agents to positions
assortatively with respect to an index defined by r(x, s) = E[v(t, pm)|x, s]−E[v(t, pm−1)|x, s].

In this theorem I first define an index function, given by E[v(t, p)|x, s] − E[v(t, p′)|x, s], for
some p > p′, and show that this index induces a total preorder over {(xi, si)}. I then show
that this preorder is invariant with respect to p and p′. Hence without loss of generality
I let p = pm and p′ = pm−1. Then I show that among policies that are deterministic (up
to tie-breaking among index-equivalent agents), optimality implies that agents are assigned
assortatively according to this index. Finally, I extend the result to stochastic policies, to
show that there is no gain from randomization among non-payoff-equivalent agents; hence
the optimal policy is essentially deterministic, and assigns agents to positions assortatively
with respect to the index function, i.e. the optimal policy is weakly increasing in r(x, s).

The Hungarian assignment algorithm and recent developments from the engineering and
computer science literatures that build on it can be used to solve for the optimal assignment
even in the absence of comparability. While these algorithms find the optimal assignment
in a more general setting, they are less interpretable in terms of economic intuition and do
not provide comparative statics, since the algorithms do not have an index implementation
for the optimal assignment, unlike the result in Theorem 1. That is, the predictions of these
algorithms are more of a black box. Theorem 1 and the definition of comparability suggest
an interesting avenue for future work: one can decentralize this assignment model so that a
different principal is in charge of each treatment or position, and decides whether each agent
is admitted to it or not in order to maximize the set of types admitted to that position. Such
a model would be useful to study decentralized college admissions, relative to the efficient
assignment that is characterized in this paper.6

The proof of Theorem 1 also implies the following observation.

Corollary 1. The optimal policy is deterministic, except for tie-breaking among payoff-equivalent
agents.

Moreover, the optimal assignment described in Theorem 1 can be implemented with category-
6Interestingly, the equilibrium of this decentralized version of the model will be efficient if and only if

categories are comparable, suggesting that the concept of comparability has important implications beyond
the scope of this paper. This is a promising direction that will be explored in subsequent research.
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specific signal thresholds for each position. The proof of the result directly shows how to set
these thresholds optimally.

Corollary 2. For a set of agents with observables {(xi, si)}, the optimal policy is implemented
by category-specific signal cutoffs for each position: s̄p(x) ≡ min{si : P∗(p|x, si) > 0}.

Theorem 1 shows that affirmative action arises endogenously in this environment, as the
solution to the policy-maker’s surplus maximization problem. In general, the category-
specific cutoffs that implement P ∗ need not be the same across categories, and hence some
categories of agents will be favored, relative to their signal realizations. In an education
context, it may be efficient to admit students to schools or universities according to exam
score cutoffs that are different across categories (e.g. across socio-economic status or some
other observable covariate). Similarly, in a labor market context, it may be efficient to hire or
promote employees according to performance thresholds that are different across categories
(e.g. across gender or some other observable covariate).

Corollary 2 implies that the optimal policy is assortative with respect to the agent’s index,
r(x, s), but in general need not be assortative with respect to signals. The optimal assignment
is monotonic in signals within categories, but not across categories. That is, to maximize
surplus the policy-maker may assign agents with lower signals to higher positions. Note
that assortativity with respect to signals would be equivalent to the optimal signal threshold
for each position being category-invariant, i.e. s̄p(x) would be constant in x for each p.
Example 3 below illustrates the non-monotonicity with respect to signals in a very simple
setting.

Example 3. Suppose there are 2 positions, p1, p2, with capacities k1 = 2, k2 = 1, and 3
agents with observables (x1, s1), (x1, s2), (x2, s1), for some categories x1, x2 and some signals,
s1 < s2, with corresponding expected values for the positions given by the following table:

p1 p2

E[v(t, p)|x1, s1] 1 2
E[v(t, p)|x1, s2] 2 4
E[v(t, p)|x2, s1] 0 3

The optimal assignment here is p(x2, s1) = p2, p(x1, s2) = p(x1, s1) = p1. So p(x2, s1) >
p(x1, s2) even though s1 < s2, and despite the fact that E[v(t, p2)|x2, s1] < E[v(t, p2)|x1, s2].
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Therefore the optimal policy is not increasing with respect to either the agents’ signals or the
agents’ expected values.

The next result shows that the optimal policy is assortative with respect to signals only
in a very special case, when the signal structures are identical with respect to v(·). More
generally, one might only expect the optimal policy to be “quasi-assortative,” in the sense
that it assigns agents to policies according to their index, which only loosely corresponds to
their signal realizations.

Theorem 2. The optimal policy P ∗ can be implemented with category-invariant cutoffs for
any (k1, ..., km) if and only if the signals {Ft,x} are identical with respect to v(·).
In particular, if {Ft,x} are equivalent but not identical, ∃ categories x, x′, capacities (k1, ..., km)
and signals s > s′ such that P∗(x, s) < P∗(x′, s′).

This result illustrates a nominal aspect of affirmative action: to maximize surplus the policy-
maker must translate signals across categories. Since surplus is a function of types, not
signals per se, the policy-maker maps signals into beliefs about types, and this mapping
may be different across categories.7 The signal structures across different categories may
be inherently biased in favor of some categories, unless these signal structures are identical,
which is unlikely to be the case in practice. If the distributions that generate these signals
are not identical, then this translation will compensate agents from categories whose signals
are inherently worse, giving rise to affirmative action.

The next result highlights a separate, substantive aspect of affirmative action: even if signals
are unbiased across categories (i.e. a signal implies the same expected type for any cate-
gory), the surplus-maximizing policy may feature affirmative action in favor of agents whose
categories have noisier or less noisy signals. This is because the optimal policy is assortative
with respect to r(x, s), which need not be constant in x even if E[t|x, s] is constant in x.
In particular, if v exhibits some intrinsic preference for or against variability, then agents
whose expected types are equal, conditional on the same signal, will be ranked differently
according to r(x, s).

This intuition is quite general and can be formalized and illustrated in a more specific setting.
7The definition of comparability ensures that such a mapping is possible—if categories are not comparable,

then the optimal policy may assign agents to positions in a way that is not assortative with respect to any
index across categories.
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To do so, I consider two special classes of surplus functions, which exhibit a preference for
and against dispersion in types, akin to risk averse and and risk seeking preferences.

Definition 4. A value function v(t, p) has (strictly) convex differences in t if v(t, p′)− v(t, p)
is a (strictly) convex function of t, for any p′ > p. Analogously, v(t, p) has (strictly) concave
differences in t if v(t, p′)− v(t, p) is a (strictly) concave function of t, for any p′ > p.8

The next result uses these definitions to illustrate the substantive aspect of affirmative action.

Theorem 3. Suppose {Fs,x} is such that E[t|x, s] is constant in x, for every s, and for some
x′, x′′, F (t|x′′, s) is a mean-preserving spread of F (t|x′, s).
If v(t, p) has convex differences in t, then r(x′′, s) ≥ r(x′, s) for all s, with a strict inequality
when v has strictly convex differences in t. If v(t, p) has concave differences in t, then
r(x′′, s) ≤ r(x′, s) for all s, with a strict inequality if v has strictly concave differences in t.

Theorem 3 illustrates the substantive aspect of affirmative action: even if signals are unbi-
ased, the noisiness of signals affects how agents are ranked across categories. Because these
ranks differ across categories, there exist problems where the capacities are such that the
optimal policy assigns some agents with lower signals to higher positions, based on the dif-
ferences in ranks across categories. I.e. agents from categories with more or less noisy signals
may have a higher or lower index, depending on whether v has convex or concave differences
in type. Noisiness is formalized in terms of mean preserving spreads, which in this case is
equivalent to the convex stochastic order and second-order stochastic dominance.

3.3 Applications and extensions

Theorem 1 provides a general characterization of the optimal policy which maximizes ex-
pected total surplus. Theorem 2 shows when the optimal policy features differential treat-
ment. Theorem 3 shows that differential treatment can be optimal because of differences in
the informativeness or noisiness of signal structures across characteristics, not just because
of “biases” in these signals. These results are derived in a general, non-parametric setup. In
the following subsections I consider some applications to more specific settings which may
be of interest to policy-makers.

8One can also define analogous properties of the differences when T is a discrete space, but for ease of
exposition I will focus on the case where T is continuous.
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3.3.1 Affirmative action with biased signals

In some environments signalling technologies may be biased across categories. That is, for
some categories the mapping between types and signals may be consistently higher, in some
sense, thus making the informational content of signals biased across categories. To model
such an application, I assume that signal structures can also be ordered across categories
(whereas in my main analysis I only assumed that signals can be compared according to
the MLRP within categories). In particular, the distributions of types conditional on some
signal s may be comparable across characteristics x in the FOSD sense.

In the context of university admissions, for example, it may be the case that the distribution
of abilities, conditional on some university entrance score s, is FOSD-decreasing in a socio-
economic status covariate x. That is, conditional on the same exam score, a lower socio-
economic status student would have a higher distribution of ability, if socio-economic status
tends to raise students’ exam scores in some sense. This may reflect the fact that in order to
achieve the same exam score, a lower socio-economic status student may have to overcome
larger obstacles, requiring higher ability; or it may reflect the beneficial effect of parental
investments in education on exam performance.9 This setting can be formalized with the
following assumption.

Assumption 4. Suppose X can be ordered in such a way that F (·|x′, s) �F OSD F (·|x′′, s) for
x′ < x′′, for any s.

Assumption 4 says that the set of possible characteristics X can be ordered in some way
so that “higher” characteristics are more strongly associated with lower types, given the
same signal. A sufficient condition for this assumption to hold would be that the family of
distributions {Ft,x} satisfies a version of the strict monotone likelihood ratio property in x,10

which would imply Assumption 4, analogously to Proposition 1.
9The literature on human capital (see e.g. Todd and Wolpin, 2007; Heckman, 2011; Fiorini and Keane,

2014) documents that higher socio-economic status parents tend to contribute more time and money to their
children’s education, which would justify such an assumption. Such an assumption is also consistent with the
idea of “belief flipping” in the theoretical models of Fryer (2007) and Bohren, Imas and Rosenberg (2018),
and with the latter’s experimental evidence of belief reversion.

10Specifically: the family of signal distributions {Ft,x} satisfies the strict inverse monotone likelihood ratio
property in x if X can be ordered so that for x′′ > x′, the ratio of the densities ft,x′ (s)

ft,x′′ (s) is increasing in t, for
any s, whenever it is well-defined.
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Following a similar logic to that in Theorem 1, Assumption 4 implies that the optimal policy
features a form of affirmative action, which favors lower categories.

Proposition 5. If categories are comparable, the optimal policy P ∗ is implemented by category-
specific cutoffs s̄p(x) that are increasing in x.

That is, conditional on the same signal s, a lower-category agent is assigned according to a
lower cutoff for each position, compared to a higher-category agent, and hence is favored by
the optimal assignment policy.11 This is because the optimal policy assigns agents according
to the ranking function r(x, s), which is increasing in s and decreasing in x under the
assumptions in this application of the model.12 Thus Proposition 5 characterizes a particular
form of affirmative action which maximizes surplus: agents are treated differently depending
on their characteristics, with lower-characteristics agents being “favored” by implementing
lower signal cutoffs for each position.

3.3.2 Optimal treatment inequality with unbiased signals

My results so far have considered how a policy-maker should use the signals and charac-
teristics of the agents to implement an assignment that maximizes total surplus. In many
empirically relevant settings I find that the optimal policy “favors” some groups, relative to
their signals, in the sense that it treats signals differently across characteristics. But this
need not imply that different groups receive different treatments relative to their types. For
example, if signals for one group are mechanically shifted downwards, compared to another
group, as in Example 2, it may be the case that the mapping from types to positions induced
by P ∗ is in fact the same across X—that is, no group is actually favored when one considers
how types are treated, even though P ∗ treats groups differentially in terms of signals.

However, in some cases P ∗ does induce unequal treatment across groups, with respect to
types, not just signals. Interestingly, this can also be the case when signals are unbiased

11This favoritism may not strictly benefit lower-category agents, if the realizations of observables {(xi, si)}i

and the capacities for each position happen to be such that the differences in ranks are irrelevant around
the cutoffs for each position. But more generally, because r(x, s) is strictly decreasing in x, there exist some
capacities and realizations of the observables such that the optimal policy strictly favors lower-category
agents.

12The fact that categories are comparable ensures that such a ranking function is invariant with respect
to the positions (p, p′) with which r(x, s) is defined, as in the proof of Theorem 1.
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across characteristics, i.e. E[t|x, s] is constant in x. In this section I study such a setting as
an application of the model.

Assumption 5. Suppose {Fs,x} is such that E[t|x, s] is constant in x, for every s, and for
some x′, x′′, F (t|x′′, s) is a mean-preserving spread of F (t|x′, s).

Assumption 5 is the same as the setting of Theorem 3, and represents an environment where
signals are unbiased across categories, but their noisiness differs across categories. Signals
are noisier for category x′′, in the sense that the distribution of types conditional on a signal
s is a mean-preserving spread of the distribution of types for category x′, conditional on the
same signal. In an education context, this could be the case if university entrance scores are
more or less noisy measures of ability for some categories than others; that is, conditional
on the same score, one group may have higher or lower dispersion in ability.

Proposition 6. If v(t, p) has convex [concave] differences in t, then p∗(x′′, s) ≥ [≤]p∗(x′, s) for
all s, with strict inequality for some capacities and realizations of the observables. Moreover,
for all p, {s : P∗(p|x′′, s) > 0} ≤ [≥]{s : P∗(p|x′, s) > 0} in the strong set order.

Proposition 6 shows that aggregate inequality of treatments across groups can be optimal
even when signals are unbiased, with identical prior distributions of types across groups.
This is driven by the fact that the optimal policy assigns agents according to their expected
incremental gains from higher treatments, not according to their expected types. Therefore
the treatments of agents from categories x′ and x′′ differ in aggregate, with x′′ receiving
higher treatments when v(t, p) has convex differences in t, because x′′ has noisier signals
and the policy-maker has a preference for dispersion. As a result, for any given treatment
p, agents from category x′′ who are assigned to p have lower signals, leading to aggregate
inequality, despite the fact that the prior distribution of types is the same across categories.

In the context of university admissions this leads to the conclusion that average exam scores
or expected abilities need not be equal across groups for each treatment. Rather, an efficient
admission policy would equalize the expected incremental surplus from admission. Similarly,
in the context of hiring and promotion policies in organizations, the result implies that past
performance or expected productivity need not be equal across groups.

The optimal treatment inequality characterized in Proposition 6 can be illustrated with a
parametric example.
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Example 4. Suppose a university is deciding which of 2 students to admit, i.e. the positions
are (p1, p2) with capacities k1 = k2 = 1. The students have normally distributed abilities,
ti ∼ N(0, 1), and belong to categories x1 and x2. A category xj student has a university
admission score si = ti + εj

i , where ε
j
i ∼ N(0, σj) is zero-mean, normally-distributed noise,

with variance σ2 > σ1, for categories x1, x2. Note that F (t2|x2, s2 = s) is a mean-preserving
spread of F (t1|x1, s1 = s), for any s.

For any v(t, p) that has strictly convex differences in t, conditional on s1 = s2 = s, the
university would strictly prefer to admit student 2, since r(x2, s) > r(x1, s), and for any s2

in some neighborhood below s, the university would prefer to admit student 2. That is, there
exists some threshold s̄2(s1) < s1 such that for a given s1, the university prefers to admit
student 2 if and only if s2 ≥ s̄2(s1).

Then student 2 is admitted with probability P(s2 ≥ s̄2(s1)) =
∫
P(s2 − s1 ≥ s̄2(s1) −

s1|s1)dF (s1). Note that s2 − s1 is normally distributed, with mean 0, and for any s1,
s̄2(s1) − s1 < 0. Therefore the integrand is strictly larger than 1

2 everywhere, and P(s2 ≥
s̄2(s1)) > 1

2 . That is, the optimal policy is more likely to admit student 2 than student
1. Moreover, given that the type distributions are the same ex ante, the expected ability of
student 2 conditional on 2 being admitted is lower than the corresponding expected ability
of student 1 conditional on 1 being admitted. Therefore aggregate inequality arises both in
terms of admission scores, since s̄2(s1) < s1, and in terms of expected types who are admitted
across different categories.

4 Conclusions

I study a setting where a policy-maker wants to assign agents with unobservable types and
observable signals and characteristics to different positions or treatments. I characterize the
policy that maximizes expected total surplus: it assigns agents to positions monotonically
with respect to an index function that measures the expected incremental gains from different
treatments. However the optimal policy is in general not monotonic with respect to the
agents’ signals, or even the agents’ expected types. Therefore the optimal policy will feature
differential treatment in a variety of cases, where the distributions of signals conditional on
types vary across characteristics.
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I highlight two main intuitions for these results. First, to maximize surplus the policy-
maker must translate signals into beliefs about types, and this translation need not be the
same across characteristics if some groups of agents have different signal distributions—i.e.
if signals are “biased” across characteristics. In this case the policy-maker may optimally
favor groups whose signal distributions are worse. Second, differential treatment can be
optimal even if signals are unbiased across characteristics, provided their informativeness
differs across characteristics. That is, different groups may have more or less noisy signal
distributions, and the optimal policy may favor some groups depending on whether the
policy-maker’s objective function has a preference for or against dispersion in types.

These results provide a novel efficiency-based rationale for affirmative action and other dif-
ferential treatment policies in education and labor markets. Affirmative action has clear effi-
ciency implications, not just ethical ones, which should inform decisions and policy-making.
The model also highlights some important features for empirical research. First, an efficient
assignment policy should equalize the expected incremental gains from treatments for the
marginally treated agents. Second, treatment cutoffs need not in general be equal across
characteristics, if the distributions of signals differ. Third, average signals and types within
each treatment need not be equal across characteristics. These observations can be clearly
mapped into measurable quantities in the contexts of university admissions and hiring and
promotion policies in organizations.
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A Proofs

Proposition 2

Proof. From Proposition 1 it follows that E[v(t, p)|x, s] is increasing in s for any p, and
moreover E[v(t, p2)|x, s] − E[v(t, p1)|x, s] is also increasing in s. Consider any category x

and signal s. For any category x′, since E[v(t, p2)|x′, s] − E[v(t, p1)|x′, s] is continuous and
increasing in s, either ∃s′ such that E[v(t, p2)|x′, s′] − E[v(t, p1)|x′, s′] = E[v(t, p2)|x, s] −
E[v(t, p1)|x, s], or E[v(t, p2)|x′, s′]−E[v(t, p1)|x′, s′] > E[v(t, p2)|x, s]−E[v(t, p1)|x, s] for all s′,
or E[v(t, p2)|x′, s′]−E[v(t, p1)|x′, s′] < E[v(t, p2)|x, s]−E[v(t, p1)|x, s] for all s′. In all 3 cases,
the condition for comparability is satisfied for all p, p′, hence x and x′ are comparable.
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Proposition 3

Proof. Let v(t, p) = v1(t) ·v2(p) and consider any family of signal structures {Ft,x}. Consider
two categories, x and x′, and an arbitrary signal s. Then

E[v(t, p)|x, s] = E[v1(t)|x, s] · v2(p).

Consider {E[v1(t)|x′, s] : s ∈ S}, i.e. the range of possible values E[v1(t)|x′, s] over all s.
Because E[v(t, p)|x, s] is continuous in s, this set is an interval. There are two cases.

Case 1: E[v1(t)|x, s] ∈ {E[v1(t)|x′, s] : s ∈ S}. Then ∃s′ ∈ S s.t. E[v1(t)|x, s] = E[v1(t)|x′, s′].
Hence ∃s′ s.t. ∀p:

E[v(t, p)|x, s] = E[v1(t)|x, s] · v2(p) = E[v1(t)|x′, s′] · v2(p) = E[v(t, p)|x′, s′].

Case 2: E[v1(t)|x, s] 6∈ {E[v1(t)|x′, s] : s ∈ S}. If E[v1(t)|x, s] < [resp. >] {E[v1(t)|x′, s] : s ∈
S}, then ∀s′ and ∀p we have

E[v(t, p)|x, s] = E[v1(t)|x, s] · v2(p) < [resp. >]E[v1(t)|x′, s′] · v2(p) = E[v(t, p)|x′, s′]

In both cases we conclude that x and x′ are strongly comparable.

Proposition 4

Proof. Consider two categories, x and x′, and an arbitrary signal s.

{Ft,x} and {Ft,x′} are equivalent, so ∃δ s.t.

w̃p,x(v) = w̃p,x′(v) + δ

for any p, for all v ∈ Im[ṽp,x(s)] ∩ Im[ṽp,x′(s)].

There are 2 cases to consider.

Case 1: Im[ṽp,x(s)] ∩ Im[ṽp,x′(s)] = ∅. Because ṽp,x(s) and ṽp,x′(s) are continuous, the
intermediate value theorem implies that either ṽp,x(s) > ṽp,x′(s′) ∀s, s′, or ṽp,x(s) < ṽp,x′(s′)
∀s′. This holds for any arbitrary p, hence part 2 of the definition of strong comparability is
satisfied.
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Case 2: Im[ṽp,x(s)]∩ Im[ṽp,x′(s)] 6= ∅. Take any v ∈ Im[ṽp,x(s)]∩ Im[ṽp,x′(s)], and take δ s.t.

w̃p,x(v) = w̃p,x′(v) + δ.

Let s′ = s− δ. Then

E[v(t, p)|x, s] = E[v(t, p)|x′, s− δ] = E[v(t, p)|x′, s′]

holds ∀v ∈ Im[ṽp,x(s)] ∩ Im[ṽp,x′(s)]. Hence part 1 of the definition of strong comparability
is satisfied for all such v.

Next, consider v < Im[ṽp,x(s)] ∩ Im[ṽp,x′(s)]. Because ṽp,x(s) is continuous and increasing
in s, this implies that ∀s′ ∈ S we have E[v(t, p)|x′, s′] > E[v(t, p)|x, s] or E[v(t, p)|x′, s′] <
E[v(t, p)|x, s], ∀p. Analogously, the same holds for v > Im[ṽp,x(s)] ∩ Im[ṽp,x′(s)]. Hence part
2 of the definition of strong comparability is satisfied for all such v.

In both cases we conclude that x and x′ are strongly comparable.

Theorem 1

Proof. Consider any positions p, p′ with p > p′ and let

rp,p′(x, s) = E[v(t, p)|x, s]− E[v(t, p′)|x, s]

be the index of an agent with observables (x, s).

Note that rp,p′(·) induces a total preorder on X×S, with totally ordered equivalence classes,
denoted by Cl. Then (xi, si) and (xj, sj) belong to the same equivalence class iff rp,p′(xi, si) =
rp,p′(xj, sj), and (xi, si) ∈ Cl and (xj, sj) ∈ Cl′ with l < l′ iff rp,p′(xi, si) < rp,p′(xj, sj).

Furthermore, for any positions p̂ and p̂′ with p̂ > p̂′, let rp̂,p̂′(x, s) = E[v(t, p̂)|x, s] −
E[v(t, p̂′)|x, s] be an alternative index, which also induces a total preorder on X×S. Because
all categories x and x′ are comparable, by definition we have that rp,p′(xi, si) ≥ rp,p′(xj, sj)
if and only if rp̂,p̂′(xi, si) ≥ rp̂,p̂′(xj, sj). Hence the equivalence classes defined by rp,p′(·)
and rp̂,p̂′(·) are the same, and total preorders induced by E[v(t, p)|x, s] − E[v(t, p′)|x, s] are
invariant with respect to (p, p′). So without loss of generality let the index be defined by

r(x, s) = E[v(t, pm)|x, s]− E[v(t, pm−1)|x, s].
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First, I show that in any deterministic policy P , if agents are not assigned to policies in
weakly increasing order of their index, the policy is suboptimal.

Consider any (xi, si) and (xj, sj) with r(xi, si) < r(xj, sj). Suppose a policy P assigns
P(xj, sj) = p′ and P(xi, si) = p′′ for some p′ < p′′.

Since r(xi, si) < r(xj, sj), we have E[v(t, p′′)|xi, si] − E[v(t, p′)|xi, si] < E[v(t, p′′)|xj, sj] −
E[v(t, p′)|xj, sj]. Switching the assignment of agents i and j, holding all other assignments
fixed, produces another feasible policy, with strictly higher total surplus, since

E[v(t, p′′)|xi, si] + E[v(t, p′)|xj, sj] < E[v(t, p′′)|xj, sj] + E[v(t, p′)|xi, si],

where the left-hand side is the i and j surplus under P , and the right-hand side is the i and
j surplus under the alternative policy.

Second, I show that there is no gain from randomization of non-index-equivalent agents
within each position.

Consider any policy that randomizes among non-equivalent agents. Take the largest position
p′′ such that qi ≡ P[p(xi, si) = p′′] ∈ (0, 1) and qj ≡ P[p(xj, sj) = p′′] ∈ (0, 1), for some agents
(xi, si) and (xj, sj) with r(xi, si) < r(xj, sj). Optimality requires that agents are matched to
a position with probability 1, so ∃ another position p′ < p′′ s.t. q′j ≡ P[p(xj, sj) = p′] ∈ (0, 1).
Let q̂ = min{qi, qj, q

′
j}, and consider an alternative policy that moves a probability mass q̂

of agent j’s assignment from position p′ to position p′′, and a probability mass q̂ of agent i’s
assignment from position p′′ to position p′. Such a policy is feasible, holding all else constant.
Because r(xi, si) < r(xj, sj), we have E[v(t, p′′)|xi, si]− E[v(t, p′)|xi, si] < E[v(t, p′′)|xj, sj]−
E[v(t, p′)|xj, sj]. Hence the alternative policy yields strictly larger expected total surplus,
since

q̂ E[v(t, p′′)|xi, si] + q̂ E[v(t, p′)|xj, sj] < q̂ E[v(t, p′′)|xj, sj] + q̂ E[v(t, p′)|xi, si],

where the left-hand side is the relevant i and j surplus under P , and the right-hand side
is the relevant i and j surplus under the alternative policy. Therefore the optimal policy
cannot randomize among agents with different indices who are assigned to the same position.

Hence the optimal policy is weakly increasing in r(x, s) and assigns agents assortatively with
respect to r(x, s), up to randomization among r-equivalent agents.
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Theorem 2

Proof. Proving sufficiency is straight-forward: if the signals {Ft,x} are identical with respect
to v(·), then for any (k1, ..., km) the optimal policy P ∗ can be implemented with category-
invariant cutoffs.

Suppose {Ft,x} are identical with respect to v(·). Then w̃p,x(v) = w̃p,x′(v) for any x, x′, hence
ṽp,x(s) = ṽp,x′(s) for any x, x′. Therefore r(x, s) = r(x′, s) for any x, x′. Hence the optimal
policy P ∗ has P∗(x, s) = P∗(x′, s), and hence s̄p(x) = s̄p(x′).

Next, I prove necessity by contrapositive: if the signals {Ft,x} are not identical, then there
exist (k1, ..., km) such that the optimal policy P ∗ is implemented with cutoffs that vary
across categories.

Suppose {Ft,x} are not identical. Then for some x′, x′′ and p, ∃v∗ ∈ Im[ṽp,x′(s)]∩ Im[ṽp,x′′(s)]
such that w̃p,x′(v∗) 6= w̃p,x′′(v∗). Note that ṽp,x(s) is continuous, so there exists a neigh-
borhood around w̃p,x′(v∗) and around w̃p,x′′(v∗) such that w̃p,x′(v) 6= w̃p,x′′(v) in the neigh-
borhood. Consider the largest such neighborhood of signals, denoted (smin, smax), where
ṽp,x′(s) 6= ṽp,x′′(s) for any s ∈ (smin, smax). W.l.o.g. suppose ṽp,x′(s) > ṽp,x′′(s) and
r(x′, s) > r(x′′, s) for all s ∈ (smin, smax).

Let km = 1− Ft,x′(smin) + ∑
x 6=x′ [1− Ft,x(smax)].

Then by Theorem 1, for s ∈ (smin, smax) the optimal policy P ∗ assigns p∗(x′, s) = pm, while
p∗(x′′, s) < pm. Hence P ∗ is implemented by cutoffs s̄pm(x′) < s̄pm(x′′), i.e. the optimal
cutoffs vary across categories.

Finally, the above implies that in particular if {Ft,x} are equivalent, but not identical, then
there exist capacities such that the optimal cutoffs vary across categories.

Theorem 3

Proof. Suppose {Fs,x} is such that E[t|x, s] is constant in x, for every s, and for some x′, x′′,
F (t|x′′, s) is a mean-preserving spread of F (t|x′, s).
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Suppose v(t, p) has convex [strictly convex] differences in t. Then

r(x′′, s) = E[v(t, pm)|x′′, s]− E[v(t, pm−1)|x′′, s]

=
∫

t
v(t, pm)− v(t, pm−1)dF (t|x′′, s)

≥ [>]
∫

t
v(t, pm)− v(t, pm−1)dF (t|x′, s)

= r(x′, s)

where the [strict] inequality follows from the fact that v(t, pm)−v(t, pm−1) is a convex function
of t and F (t|x′′, s) is a mean-preserving spread of F (t|x′, s).

The proof that r(x′′, s) ≤ [<]r(x′, s) if v(t, p) has concave [strictly concave] differences in t
is analogous.

Proposition 5

Proof. First, by Theorem 1, the optimal policy P ∗ is assortitative with respect to the index
r(x, s) ≡ E[v(t, pm)|x, s]− E[v(t, pm−1)|x, s].

Second, r(x, s) =
∫

T [v(t, pm) − v(t, pm−1)]dF (t|x, s) is increasing in s, because v(t, pm) −
v(t, pm−1) is increasing in t, and under Assumption 3 F (t|x, s) is FOSD-increasing in s.

Third, r(x, s) =
∫

T [v(t, pm) − v(t, pm−1)]dF (t|x, s) is decreasing in x, because v(t, pm) −
v(t, pm−1) is increasing in t, and under Assumption 4 F (t|x, s) is FOSD-decreasing in x.

That is, for any s and x′′ > x′, r(x′′, s) < r(x′, s). Therefore p∗(x′, s) ≥ p∗(x′′, s), for any s
(with strict inequality for some capacities). If P ∗ involves some randomization due to tie-
breaking, this inequality is in terms of FOSD of the distributions P∗(p|x, s), and the support
of P∗(p|x, s), as a function of (x, s), can be compared in the strong set order.

Hence for any position p,

s̄p(x′′) ≡ min{si : P∗(p|x′′, si) > 0} ≥ s̄p(x′) ≡ min{si : P∗(p|x′, si) > 0},

hence s̄p(x) is increasing in x, for any p.
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Proposition 6

Proof. Suppose v(t, p) has convex differences in t (the proof with concave differences is
analogous). By Theorem 3, under Assumption 5, r(x′′, s) ≥ r(x′, s) for all s. Therefore we
have to consider 2 cases.

First, if P ∗ does not involve randomization due to tie-breaking, because P ∗ is monotonic
in r(x, s), we have that p∗(x′′, s) ≥ p∗(x′, s), with a strict inequality for some capacities and
realizations of the observables.

Second, if P ∗ involves randomization due to tie-breaking, since (x′′, s) and (x′, s) are not
payoff-equivalent, it must be the case that | supp[p∗(x′′, s)]∩supp[p∗(x′, s)]| ≤ 1, and moreover
min{supp[p∗(x′′, s)]} ≥ max{supp[p∗(x′, s)]}, and supp[p∗(x′′, s)] ≥ supp[p∗(x′, s)] in the
strong set order. Then p∗(x′′, s) FOSD-dominates p∗(x′, s). Thus in both cases we have that
p∗(x′′, s) ≥ p∗(x′, s), which proves the first part of the proposition.

Finally, consider the sets of agents assigned to any position p from each category. Since
p∗(x′′, s) ≥ p∗(x′, s) for each s, we have that {s : P∗(p|x′′, s) > 0} ≤ {s : P∗(p|x′, s) > 0} in
the strong set order, for any p.
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