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Abstract

In this paper, we propose a framework to estimate the distribution of marginal effects in
a general class of structural models that allow for arbitrary smooth nonlinearities, high di-
mensional heterogeneity, and unrestricted correlation between the persistent components
of this heterogeneity and all covariates. The main idea is to form a derivative dependent
variable using two periods of the panel, and use differences in outcome variables of nearby
subpopulations to obtain the distribution of marginal effects. We establish constructive
nonparametric identification for the population of “stayers” (Chamberlain (1982)), and
show generic non-identification for the “movers”. We propose natural semiparametric
sample counterparts estimators, and establish that they achieve the optimal (minimax)
rate. Moreover, we analyze their behavior through a Monte-Carlo study, and showcase
the importance of allowing for nonlinearities and correlated heterogeneity through an ap-
plication to demand for junk food. In this application, we establish profound differences
in marginal income effects between poor and wealthy households, which may partially
explain health issues faced by the less privileged population.
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1 Introduction

It is commonplace that panel data allows researchers to model the impact of correlated un-

observed individual specific heterogeneity, as is illustrated by the fixed effects approach and

generalizations to linear random coefficients models (Chamberlain (1982), Wooldridge (2005),

Graham and Powell (2012), Arellano and Bonhomme (2012)). A particular challenge, however,

arises with the presence of nonlinearities in many microeconometric models, even in models

that do not feature a limited dependent variable. This situation arises frequently in economics.

While economic models often exhibit qualitative restrictions stemming from constrained opti-

mization of rational agents, e.g., convexity or monotonicity, they feature linearity or additivity

only in exceptional cases. In consumer demand which motivates the application of this paper,

this has led to the rise and popularity of nonlinear models (e.g., the QUAIDS, see Banks, Blun-

dell and Lewbel (1997)), and nonparametric and nonseparable models in general, because they

capture important aspects of the data that are otherwise missed.

But while it is now commonly found that microeconomic relationships should allow for non-

linearities on the individual level, there is even more experimental and observational evidence

that individuals differ across the population in ways that are not entirely captured by observable

variables. There are basically two ways to deal with this complex unobserved heterogeneity:

considering average effects, or recovering the distribution of heterogeneity parameters. The

former is easier to obtain than the latter, and frequently less stringent assumptions have to be

imposed for its recovery. As a case in point, in a cross-section setup, average treatment effects

are identified under general conditions, while to recover heterogeneous functions or parameters

one has to, for instance, impose monotonicity of the structural function in a scalar unobservable

(see, e.g., Matzkin (2003)), or a linear random coefficients structure (Hoderlein, Klemelä and

Mammen (2011)). Moreover, when covariates are endogenous, further restrictions are necessary

(see Imbens and Newey (2009), Kasy (2011), or Hoderlein, Holzmann and Meister (2017)).

This paper establishes the strength of panel data to allow recovery of the distribution of

heterogeneous nonparametric marginal effects, even if covariates are correlated and the time

span considered is very short. More precisely, we show that the distribution of marginal effects

of a very general class of structural models is nonparametrically identified. This allows for

arbitrary dependence between the time-invariant unobservable and the covariates of interest,

provided as little as two observations are available for the individuals. Formally, we consider a

nonparametric and heterogeneous model of the form

Yk,t = Φ(Xk,t, Ak) + Uk,t , k = 1, . . . , n; , t = 1, . . . , T , (1.1)

where Yk,t ∈ Y ⊆ R, and Xk,t ∈ X ⊆ RJ are observable variables, and Ak ∈ A ⊆ R∞

and Uk,t ∈ U ⊆ R are unobserved. Note that in this model, the dimension of Ai is not
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restricted, and the structural function φ is assumed to be smooth in the sense of being twice

continuously differentiable in xj for all j = 1, .., J, with bounded second derivatives, but is

otherwise unrestricted. Moreover, we allow for arbitrary dependence (correlation) between any

element of Ak and any element of Xk,t for any k, t. These facts make our model different from

the models of Altonji and Matzkin (2005) and Evdokimov (2010) with which it shares structural

similarities.

The main result in this paper establishes nonparametric identification of the (marginal)

distribution of marginal effects ∂xjφ(x,A), for j = 1, . . . , J , and all x ∈ X , even with many

regressors and only two time periods (i.e., T = 2). If T ≥ J + 1, we also show that the joint

distribution of all marginal effects, i.e., ∇xφ(x,A) = (∂x1φ(x,A), . . . , ∂xJφ(x,A))′ is identified,

for all x ∈ X . As a corollary, we obtain identification of objects like the average structural

marginal effect, as well as the variance of marginal effects. An important limitation of our

analysis is that we can only make statements for the population for which Xk,1 = Xk,2 =

... = Xk,T , i.e., we are only identifying the distribution f∇xφ(x,A)|X1−X2=0 for the “stayers”

(in the sense of Chamberlain (1982)). To fix ideas, in our demand application this will be

the population for which income and prices stay approximately constant. As an important

contribution, we establish that this limitation is not an accident of the identification approach

taken, but a consequence of a profound non-identification result for nonlinear marginal effects

outside of the stayers sub-population. The intuition behind this result is as follows: Suppose

the true model is a J-th order polynomial in a scalar Xit with random coefficients on every

term. Then, the number of time periods acts as limiting factor for our ability to learn about

this complex models - if J exceeds T − 1,; there is generic non-identification (i.e., with T = 2,

at most a linear random coefficients model is identified for x2 6= x1).

The essential idea which underlies this strong constructive identification result for the stayers

is as follows: Unlike with repeated cross section data, we utilize the fact that we observe

individuals repeatedly in a panel to form a derivative dependent variable ∂Y/∂X. Specifically,

by considering individuals whose Xk,2 is close to their Xk,1 we construct a sample counterpart to

the limiting process when taking derivatives. A complication arises because we have to correct

for the transitory error Uk,t. This is done by considering people who have exactly Xk,2 = Xk,1 =

x for every x ∈ X (or, in the sample, almost exactly), because for these individual all changes

in Yk,t can be attributed to changes in Uk,t. In the sample, we thus use the difference between

people who are at or very near the diagonal from those who are near, but not quite as near, to

the diagonal. The difference in the distribution of Yk,t is then due to the (heterogeneous) causal

marginal effect of Xk,t. This effect depends, obviously, in general on the position Xk,2 = Xk,1 = x

we consider; by letting the position x vary, we obtain an arbitrary nonlinear relationship.

Fig. 1 illustrates the population used in the sample. Finally, that this works only near the

diagonal (i.e., only for the stayers) is due to the fact that higher order terms in the derivative
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Figure 1: The shaded region is the region we will use, which is more than h1 away from where
X1 = X2 but less than h2 away from where X1 = X2.

approximation only disappear in this neighborhood.

The baseline specification allows us to identify the marginal distribution of every marginal

effect needing only two time periods. However, its driving force is the time invariance of the

unobservable as well as the structural function. With more time periods, we may relax this

assumption and allow for the structural relationship to change over time under restrictions on

the way time enters which may be weakened as T becomes large. Several other extensions are

briefly discussed in this paper: The approach can be augmented to allow for discrete covariates;

however, the effect of interest has to be on a continuous variable. More generally, we may control

for additional covariates through a semiparametric specification. Finally, we conjecture that

the approach can be extended to a discrete dependent variable if one exogenous regressor with

large support is available, similar to Honoré and Lewbel (2002).

When it comes to estimation, we follow a semiparametric route. That is, we assume that

the distribution of marginal effects follows a known parametric distribution governed by a

finite parameter θ(x) which depends on the position X1 = X2 = x at which we evaluate the

conditional distribution. As such, our approach can be described as conditionally parametric.

The advantage of such a procedure is as follows: Since our identification argument and the

associated sample counterparts estimator is based on (conditional) characteristic functions, we

avoid having to invert these estimators to obtain the (conditional) density. In the sample,

this inversion step comes at the cost of having to pick an additional regularization parameter.

Moreover, since one of the main objectives of our approach is to get an estimator for the

quantiles of marginal effects as well, we avoid having to add another cumbersome inversion.

Instead, the conditional parametric approach obtains all of these quantities: the conditional
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characteristic function, density, as well as the quantiles in one convenient step. Moreover, the

characteristic function need not be observed for every value of the argument (s, say).

The core principle employed in our estimator is a minimum contrast step. We first form

the sample counterpart to the identified nonparametric characteristic function for every value

of X1 = X2 = x, and then pick the the parameter θ(x) that minimizes the contrast (distance)

between the approximating parametric specification and this object. For this estimator, we

establish the (optimal) minimax rate, and establish that our estimator achieves this rate. The

rate is governed by the dimensionality of X and the fact that we work with the set X1 = X2 = x.

If there is no Uk,t and X is scalar, the rate is equivalent to a two dimensional nonparametric

regression. Having, in addition, a Uk,t that follows an ordinary smooth distribution slows the

convergence rate down by the expected factor, α, due to the added deconvolution step in

removing the influence of Uk,t.

Importantly, this paper contains an application to consumer demand for junk food. Because

of the relationship to obesity and other adverse health effects, this is a question of obvious

importance for the society (see also the short literature review in the applied section). A key

concern is that “poor” households - which we define to be households with low total expenditure

for goods that Nielsen scanner data tracks - spend marginally more on junk food than wealthy,

high income households. This means that a model that forces all households to have the same

“income” and price elasticities, i.e., a linear random coefficients model, is not able to capture

this important feature. Similarly, we want to control for unobserved factors that are correlated

with poverty, e.g., education levels, in particular regarding nutrition, and hence it is imperative

to allow for the unobservables to be correlated. Therefore, we feel that our approach, which

allows for nonlinearities, high dimensional heterogeneity, and complicated correlation patterns,

is particularly well suited for this application.

When applying our approach to the Nielsen Homescan data, we indeed find evidence of the

aforementioned nonlinearities. Indeed, for every dollar spent on Nielsen products, poor house-

holds seem to consume twice as much junk food on average compared to wealthy households,

even implicitly controlling for persistent correlated effects like education. Moreover, there also

seems to be more heterogeneity within poor households (compared to wealthy ones), perhaps

a function of the larger degree of addiction to an unhealthy lifestyle of at least parts of this

subpopulation. It is interesting to muse about the reason for the significant correlation between

expenditure levels and marginal effects, even after controlling for fixed factors. We also find

very reasonable price elasticities that increase in the own price. Since we use a bundle of goods

and Stone-Lewbel prices, we feel that this reflects heterogeneity in the composition of junk

food. The more high level it is, the higher the price and the more elastic demand. More details

can be found in the section on the application below.

Related Literature: Analyzing nonlinear panel data models has a long tradition, dating

back to the conditional ML approach by Rasch (1960, 1961); see also Andersen (1970) and
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Chamberlain (1982, 1984) for models with non-additive individual heterogeneity. Nonlinear

parametric panel data models have frequently been analyzed. For an overview of work related

to discrete choice models, see Arellano (2003). Closely related to our work is that of Graham

and Powell (2012), and Arellano and Bonhomme (2013), who consider estimation of moments

and the distribution of random coefficients in a linear correlated coefficient panel data model.

Compared to this line of work, we allow for the structural model to be arbitrarily nonlinear.

Chamberlain (2010) discusses the identification of the dynamic panel data binary choice model,

and why the logistic distribution assumption is required for identification of βo, unless one is

willing to assume unbounded support for one of the regressors, as is the case in Manski (1987).

For other nonlinear fixed effects models, see also Hausman, Hall, and Griliches (1984) for panel

count data and Honoré (1992) for panel censored regression. Like all of this work, our approach

assumes a fixed number of time periods. Indeed, it is one of the appealing features of our

approach that we only require T = 2.

All of the work just described is concerned with a specific semiparametric model, e.g., the

dynamic binary choice model. Approaches that are closer in spirit to our work are those of Cher-

nozhukov, Fernandez-Val, Hahn, and Newey (2014), who consider discrete variation, whereas

we consider derivatives, and Graham and Powell (2012), who focus on a linear heterogeneous

population (i.e., the structure is linear in the coefficients, with coefficients that vary across the

population) and not on a fully nonseparable structure. Other than the differences mentioned

above, Graham and Powell (2012) also require (at least) as many time periods as regressors plus

one, while we require only two time periods, even with a large number of regressors. Less closely

related is the work on the correlated random coefficients models in panel data, see in particular

Wooldridge (2005) and Murtazashvili and Wooldridge (2008). This line of work studies the

linear random coefficients model as well, but imposes restriction on the correlation between

time invariant individual specific effects and covariates of interest. In contrast, our approach

allows for unobserved heterogeneity to enter nonlinearly and does not limit its correlation with

the covariates of interest.

Finally, related is also the literature on nonseparable models using panel data, in particular

Altonji and Matzkin (2005), Evdokimov (2010), Hoderlein and White (2012) and Chernozhuov,

Fernandez-Val, Hoderlein, Holzmann and Newey (2015). Unlike our paper, Altonji and Matzkin

(2005) impose constraints on the correlation between Ak and the Xk,t process, but are more

general in the structural function φ in that they allow interaction between the transitory error

Uk,t and the other variables, and focus on averages. Evdokimov (2010) also imposes additivity

of the error Uk,t, but assumes that Ak is a scalar and independent of Xk,t. Hoderlein and White

(2012) and Chernozhuov, Fernandez-Val, Hoderlein, Holzmann and Newey (2015) again admit

a more general structural function φ (as in Altonji and Matzkin (2005)), but are only able to

identify averages of the marginal effects, even though Chernozhuov, Fernandez-Val, Hoderlein,

Holzmann and Newey (2015) use distributional information. Instead, in this paper we use a
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deconvolution step to purge the model from the influence of Uk,t. This also allows to impose

different, and arguably weaker, assumptions on the Uk,t.process. In particular, we do not require

the stationarity assumption in their papers (see also Manski (1987)).

Outline of the Paper: Section 2 introduces the model and the precise assumptions we

require. In Section 3, we present the general non-identification result for arbitrary values

x2 6= x1, which motivates our focus on the set of stayers. Section 4 then presents the main

constructive nonparametric identification result and discusses extensions. Section 5 establishes

the asymptotic lower bound for any estimator under this scenario. In Section 6, we introduce

our conditional parametric estimator and the modeling assumptions, establish an upper bound

under these conditions, and show that our estimator achieves the minimax rate. Section 7

analyzes the finite-sample performance of our estimators using several example of nonlinear

heterogeneous DGPs. Section 8 discusses the application to consumer demand for junk food.

The final section contains a summary and concluding remarks.

2 The Model: Basic Structure and Main Assumptions

We consider the panel data model

Yk,t = Φ(Xk,t, Ak) + Uk,t , k = 1, . . . , n; , t = 1, . . . , T , (2.1)

where all Xk,t and Yk,t are observed. Therein, the random vectors (Xk,t, Ak, Uk,t)t=1,...,T are

i.i.d. (i.e. independent copies) for all k = 1, . . . , n. Therefore, when addressing identification

issues, we omit the index k in the notation of all random variables. We impose the following

assumptions:

(A1) The random vectors U := (U1, . . . , UT ) and (A,X1, . . . , XT ) are independent.

This assumption is similar in spirit to the strict exogeneity assumptions commonly invoked

in the panel data literature. It could be weakened, as is obvious from the proof. In particular,

for T = 2 and using the notation ∆S = S2 − S1 for any random variable S, we only need that

∆U independent of ∆X,A|X1. However, since we use this stronger version in the construction

of the estimator, we impose it henceforth.

(A2) The random vector X := (X1, . . . , XT ) has a T -dimensional Lebesgue density.

Our goal is to identify the conditional distribution L(Zj | X) of the random variable

Zj :=
∂Φ

∂x
(x,A) |x=Xj

,
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given X. From a famous result in probability theory (e.g. p. 439, Theorem 33.3, Billingsley

(1995)), we learn that there exists a function ζj from the domain RT to the set of all probability

measures on the Borel σ-field B(R) of R such that

{
ζj(X)

}
(B) = P [Zj ∈ B | X] , a.s. ,

for all elements B of the Borel σ-field B(R). This equation, however, does not determine the

value of the mapping ζj at any fixed x ∈ RT . In particular, the value of ζj at one singular

x ∈ RT can be changed without switching to an observationally non-equivalent model due to

condition (A2). As a consequence, identification and estimation of ζj(x), for any specific value

x ∈ RT , is impossible unless continuity conditions are assumed such as

(A3) There exists a function ζj on the domain RT to the set of all probability measures on B(R)

which is continuous with respect to the Fourier distance on its codomain; and satisfies

{
ζj(X)

}
(B) = P [Zj ∈ B | X] , a.s. ,

for all B ∈ B(R).1

Condition (A3) resembles the usual constraints in the setting of standard nonparametric

regression where the regression function is required to be continuous under continuously dis-

tributed covariates in order to attain pointwise consistency at a fixed site. The following lemma

shows that ζj(x) is uniquely determined for each x in the support of X.

Lemma 2.1. Assume two functions ζj and ζ̃j which satisfy the continuity assumptions imposed

on ζj in (A3); and

{
ζj(X)

}
(B) = P [Zj ∈ B | X] =

{
ζ̃j(X)

}
(B) a.s., ∀B ∈ B(R) .

Then the restrictions of ζj and ζ̃j to the support SX of X coincide.

1Here, the Fourier distance between two probability measures P and Q on B(R) is defined by

F(P,Q) := sup
s∈R

∣∣P ft(s)−Qft(s)
∣∣ , (2.2)

where P ft(s) :=
∫

exp(isx)dP (x) denotes the Fourier transform of P . Note that the total variation distance
TV(P,Q) between P and Q, i.e.

TV(P,Q) := sup
B∈B(R)

|P (B)−Q(B)| ,

dominates the Fourier distance F(P,Q). The set of all probability measures on B(R), equipped with the Fourier
distance F , forms a complete metric space thanks to the completeness of the space C0(R) and Lévy’s continuity
theorem (e.g. Williams, 1991, section 18.1).
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3 Non-Identification

Now we focus on the question for which elements x of SX the probability measure ζj(x) can

be identified from the observed data (Xt, Yt), t = 1, . . . , T , under the Assumptions (A1)–(A3).

Using the notation p(x) := (1, x1, . . . , xT )† and q(x) := (0, 1, 2x, . . . , TxT−1)†, we provide the

following useful tool.

Lemma 3.1. The vectors p(x1), . . . , p(xT ), q(xj), for any j ∈ {1, . . . , T}, are linearly indepen-

dent if and only if all x1, . . . , xT differ from each other.

By H(x), x = (x1, . . . , xT ), we denote the linear hull of p(x1), . . . , p(xT ). The squared distance

between H(x) and q(xj) is called τj(x).

Lemma 3.2. The function τj is continuous and takes on only strictly positive values on the set

TX :=
⋂
k 6=l{x ∈ RT : xk 6= xl}.

In order to prove a non-identification result, we may, in addition, assume that the function

Φ and the distribution of the random vector U, as well as the distribution of the covariates X,

are known. Concretely, we impose that

Φ(x,A) =
T∑
t=0

Atx
t . (3.1)

Let q∗j (x) denote the orthogonal projection of q(xj) onto the orthogonal complement of H(x)

with respect to RT+1 as this notation has already been used in the proof of Lemma 3.2. This

lemma also yields q∗j (x) 6= 0 for all x ∈ TX since |q∗j |2 = τj. Then we are ready to define the

random variables

A[b] := A[0] +
√
b δ q∗j (X) , b ≥ 0 , (3.2)

where the random variable δ is standard normal; A[0] is an arbitrary (T+1)-dimensional random

vector; and (X,A[0]) and δ are independent. Then

L[b](A | X) = L(A[b] | X) , b ≥ 0 ,

denote competing candidates for the conditional distribution of A given X.

The conditional characteristic function of V :=
(
Φ(X1, A), . . . ,Φ(XT , A)

)
given X equals

ψV |X(t) = E
{

exp
(
i

T∑
k=1

tkΦ(Xk, A)
)
| X
}

= E
{

exp
(
i

T∑
l=1

Al

T∑
k=1

tkX
l
k

)
| X
}

= ψA|X

( T∑
k=1

tkX
0
k , . . . ,

T∑
k=1

tkX
T
k

)
,
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for all t ∈ RT whenever (3.1) holds true. Hence, for the candidates L[b](A | X), b ≥ 0, it holds

that

ψ
[b]
V |X(t) = exp

(
− 1

2
b
∣∣∣ T∑
k=1

tkp(Xk)
†q∗j (X)

∣∣∣2) · ψA[0]|X

( T∑
k=1

tkp(Xk)
)

= ψA[0]|X

( T∑
k=1

tkp(Xk)
)
,

for all t ∈ RT and b ≥ 0 so that the conditional distributions L[b](V | X) coincide almost surely

for all b ≥ 0. Therefore, the distribution of the observed data (X, Y ) with Y := (Y1, . . . , YT ),

are identical for all candidates (b ≥ 0) thanks to the independence of U and (A,X). Therefore

one is unable to decide what is the value of b based on the distribution of the observations.

Due to (3.1) and (3.2) we have Z
[b]
j = (A[b])†q(Xj) so that

ζ
[b]
j (x) = L

(
A[0]†q(xj) | X = x

)
∗ N(0, bτ 2

j (x)) , (3.3)

where ∗ denotes convolution. Consider N(0, 0) as the Dirac measure which is concentrated at

0. The corresponding Fourier transform equals

{
ζ

[b]
j (x)

}ft
(s) = ψA[0]|X=x

(
sq(xj)

)
· exp

(
− 1

2
bs2τ 2

j (x)
)
, s ∈ R . (3.4)

We impose the Assumption

(A4) The random vector A[0] has a conditional Lebesgue density fA[0]|X=x given X = x for all

x ∈ RT ; moreover, we have that

lim
y→x
F
(
L(A[0] | X = x),L(A[0] | X = y)

)
= 0 , ∀x ∈ RT .

In Assumption (A4), we have extended the definition of the Fourier distance in (2.2) to

probability measures on B(RT+1) in a natural way by the supremum norm distance of the

Fourier transforms of both measures. Note that Assumption (A4) is satisfied in particular if

A[0] has a Lebesgue density and A[0] and X are independent, which is related to the scenario

considered in Evdokimov (2010). The following lemma verifies Assumption (A3) in our setting.

Lemma 3.3. The functions ζ
[b]
j in (3.3) are continuous for any b ≥ 0 with respect to the Fourier

distance on the codomain under the Assumption (A4).

Furthermore Lemma 3.2 and the equation (3.3) yield that, for all b 6= b′ > 0, the probability

measures ζ
[b]
j (x) and ζ

[b′]
j (x) are different from each other for all x ∈ SX ∩ TX where we use the

following result.
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Lemma 3.4. Let Q be an arbitrary probability measure on B(R). Then the equality Q ∗
N(0, α) = Q ∗ N(0, α′) implies α = α′ for all α, α′ ∈ [0,∞).

Thus, we have established the following theorem about non-identification of ζj(x), for all

x ∈ SX ∩ TX , i.e., values of x for which x1 6= x2, in the model (2.1).

Theorem 1. In the model (2.1), fix some j = 1, . . . , T ; select the function Φ as in (3.1); and

grant the Assumptions (A1) and (A2). Set the random variable A equal to A[b] in (3.2) where

the choice of A[0] is only restricted by Assumption (A4). Then the corresponding distributions

of the observations (X, Y ) coincide for all b ≥ 0 while Assumption (A3) is satisfied for all

b ≥ 0; and ζ
[b]
j (x) 6= ζ

[b′]
j (x) holds true for all b 6= b′ and x ∈ SX ∩ TX .

4 Identification

Now assume that T = 2 and j = 1. According to Theorem 1, the function ζ(x) cannot be

identified from the data distribution unless we restrict to x ∈ SX\TX , which equals {(x1, x2) ∈
SX : x1 = x2}. Moreover we impose

(A5) There exists some ρ > 0 such that the density fX of X = (X1, X2) is continuous and

strictly positive on the strip

S(ρ)
X := {(x1, x2) ∈ R2 : |x1 − x2| ≤ ρ} .

Under Assumption (A5) it holds that SX\TX is a subset of S(ρ)
X . The smoothness condition

(A4) is quantified via the Assumption

(A6) The function Φ is twice continuously differentiable and we have

E
(

sup
ξ∈[X1,X2]∪[X2,X1]

∣∣∣∂jΦ
∂xj

(ξ, A)
∣∣∣ ∣∣∣X1, X2

)
≤ cΦ a.s.,

for j = 1, 2 and some constant cΦ. Moreover ζ1 satisfies the Lipschitz condition

F
(
ζ1(x), ζ1(y)

)
≤ cζ |x− y| , ∀x, y ∈ S(ρ)

X ,

for some constant cζ ∈ (0,∞).
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We introduce the notation

∆Y := Y1 − Y2 = ∆Φ + ∆U ,

∆Φ := Φ(X1, A)− Φ(X2, A) ,

∆U := U1 − U2 ,

∆X := X1 −X2 . (4.1)

The Assumption saying that

(A1’) the random variables ∆Φ and ∆U are conditionally independent given X; and ∆U and

X are independent,

is weaker than the Assumption (A1) and suffices to show that the corresponding conditional

characteristic functions satisfy

ψ∆Y |X = ψ∆Φ|X · ψ∆U , a.s. . (4.2)

In fact, as mentioned before and as is obvious from what follows, this assumption could even

be weakened further, but since we implement our estimator with this stronger assumption we

desist from doing so. For some h0 ∈ (0, ρ) let us consider the term

TU(h0, s) := E exp(is∆Y ) · 1S(h0)X

(X)/P
[
X ∈ S(h0)

X

]
= Eψ∆Y |X(s) · 1S(h0)X

(X)/P
[
X ∈ S(h0)

X

]
= ψ∆U(s) · Eψ∆Φ|X(s) · 1S(h0)X

(X)/P
[
X ∈ S(h0)

X

]
,

for any s ∈ R, which is directly accessible from the distribution of the observation (X, Y ).

Therein note that P
[
X ∈ S(h0)

X

]
> 0 is guaranteed for any h0 ∈ (0, ρ) by Assumption (A5);

and that we have used (4.2). By Assumption (A6) it holds that

∣∣Eψ∆Φ|X(s) · 1S(h0)X

(X) − P
[
X ∈ S(h0)

X

]∣∣ ≤ cΦ |s|E|∆X| · 1S(h0)X

(X)

≤ cΦ |s|h0 P
[
X ∈ S(h0)

X

]
, (4.3)

so that ∣∣TU(h0, s)− ψ∆U(s)
∣∣ ≤ cΦ |s| |ψ∆U(s)|h0 ,

and, thus, limh0↓0 TU(h0, s) = ψ∆U(s) for any s ∈ R. Therefore ψ∆U and, hence, the distribution

of ∆U are identified from the distribution of (X, Y ). This motivates the following estimator of
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ψ∆U(s),

ψ̂
(h0)
∆U (s) :=

n∑
k=1

exp
(
is∆Yk

)
· 1S(h0)X

(Xk,1, Xk,2)
/ n∑

k=1

1S(h0)X

(Xk,1, Xk,2) , (4.4)

based on the moment method, for some h0 ∈ (0, ρ) still to be selected. By convention put

ψ̂
(h0)
∆U (s) equal to 0 if the denominator in (4.4) vanishes.

Writing S(h1,h2)
X := S(h2)

X \S(h1)
X for some ρ > h2 > h1 > 0, we consider the term

TZ := TZ(x, h1, h2, h3, s) := Eψ∆U(−s/∆X) exp(is∆Y/∆X)1S(h1,h2)X

(X)1[0,h3](|X1 − x|)

/E
∣∣ψ∆U(s/∆X)

∣∣21S(h1,h2)X

(X)1[0,h3](|X1 − x|)

= E
∣∣ψ∆U(s/∆X)

∣∣2ψ∆Φ|X(s/∆X)1S(h1,h2)X

(X)1[0,h3](|X1 − x|)

/E
∣∣ψ∆U(s/∆X)

∣∣21S(h1,h2)X

(X)1[0,h3](|X1 − x1|) ,

for some h3 > 0 and any fixed x = (x1, x2) with x1 = x2, which is directly accessible from the

distribution of (X, Y ) as ψ∆U has already been identified. Again we have used (4.2). Combining

Assumption (A5) with the Assumption

(A7) The characteristic function ψ∆U does not vanish,

we may ensure that the denominator of the term TZ does not vanish. Assumption (A6) and

Taylor approximation yield that

∆Φ = Z1 ·∆X + R , (4.5)

where the random remainder term R satisfies

∣∣R∣∣ ≤ 1

2
cΦ(∆X)2 a.s. .

It follows from there that, on the event
{
X ∈ S(h1,h2)

X

}
∩ {|X1 − x1| ≤ h3}, we have that

∣∣ψ∆Φ|X(s/∆X)− {ζ1(x)}ft(s)
∣∣ ≤ (cΦ|s|/2

)
h2 + cζ (2h3 + h2) ,

using Assumption (A6) so that

lim
h2↓0

TZ(x, h1, h2, h3, s) = {ζ1(x)}ft(s) ,

for all s ∈ R where we arrange that h1 = h2/2 and h3 = h2 to calculate the limit. Note that

x ∈
⋂
h2>0 S

(h2/2,h2)
X . Therefore ζ1(x) is identified. Moreover the quantity TZ along with its

13



asymptotic behavior motivates an estimator of {ζ1(x)}ft(s), namely

ψ̂
(h0,h1,h2,h3)
Z1

(x; s)

:=
n∑
k=1

exp
(
is∆Yk/∆Xk

)
ψ̂

(h0)
∆U (−s/∆Xk) · 1S(h1,h2)X

(Xk,1, Xk,2) ·K(|Xk,1 − x1|/h3)

/{
ρn +

n∑
k=1

∣∣ψ̂(h0)
∆U (s/∆Xk)

∣∣2 · 1S(h1,h2)X

(Xk,1, Xk,2) ·K(|Xk,1 − x1|/h3)
}
, (4.6)

for some 0 < h0 < h1 < h2 < ρ, h3 > 0, some kernel function K and some ridge parameter

ρn > 0 in order to prevent the denominator from getting too close to zero. This approach to

heteroskedastic deconvolution is inspired by Delaigle and Meister (2007, 2008).

Before studying the estimator (4.6) let us summarize the identification result in the following

theorem.

Theorem 2. Under the Assumptions (A1’), (A2), (A3) and (A5)–(A7), ζ1(x) is identified in

the model (2.1) for any x = (x1, x2) ∈ R2 with x1 = x2 from the distribution of the observations

(X, Y ).

Remark 1. The model (2.1) may be generalized to the setting of multiple regressors, i.e. one

observes the i.i.d. data (Xk,t, X
′
k,t, Yk,t), k = 1, . . . , n, t = 1, 2, where

Yk,t = Φ(Xk,t, X
′
k,t, Ak) + Uk,t .

Then we modify the definition

Zj :=
∂Φ

∂x
(x, x′, A) |x=Xj ,x′=X′

j
,

and that of ζj accordingly. Let us assume that (X1,1, X
′
1,1, X1,2, X

′
1,2) has a four dimensional

Lebesgue density, which is continuous and strictly positive. Also impose additional Lipschitz

conditions on ζ1 and its partial derivatives with respect to the bivariate component (x, x′)

in Assumption (A6). Then Theorem 2 can be extended to identify ζ1(x, x′) at any (x, x′) =

(x1, x2, x
′
1, x
′
2) with x1 = x2 and x′1 = x′2. For any unitary matrix U define

Φ̃(x, y, a) := Φ(UT (x, y)T , a) .

Then use the above arguments to identify the conditional distribution of

∂Φ̃

∂x
(W1,W

′
1, A) = U1,1 ·

∂Φ

∂x
(X1, X

′
1, A) + U1,2 ·

∂Φ

∂x′
(X1, X

′
1, A) ,

given W1 = W2 and W ′
1 = W ′

2 based on the data Zj and (Wj,W
′T
j = U(Xj, X

′T
j for j = 1, 2.

That opens the perspective to identify any directional derivative of Φ at x1 = x2 = x and
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x′1 = x′2 = x′ and, hence, the gradient of Φ under appropriate smoothness conditions on Φ and

ζ1.

Remark 2. If there are more time periods, it is also possible to allow for a time trend. Specif-

ically, we allow for a linear time trend which modifies the structural function φ by adding the

same the structural function in each time period. More formally, the model takes the form

Yk,t = Φ0 (Xk,t, Ak) + Φ1 (Xk,t, Ak) t+ Ukt, t = 1, . . . , T, k = 1, . . . , n, (4.7)

where Φ0 and Φ1 satisfy analogous conditions to before. To identify this model, we require

T = 4. Since

Y1,2 − Y1,1 = U1,2 − U1,1 + Φ1(X1,1, A1) ,

Y1,4 − Y1,3 = U1,4 − U1,3 + Φ1(X1,3, A1) ,

holds on the event {X1,1 = X1,2, X1,3 = X1,4} we are able to identify the conditional distribution

of ∂xΦ1(x,A) |x=X1,1 given X1,1 = x at x = λ · (1, 1, 1, 1), λ ∈ R, by the arguments from section

4 under the given assumptions. Moreover

2Y1,1 − Y1,2 = 2U1,1 − U1,2 + Φ0(X1,1, A1) ,

4Y1,3 − 3Y1,4 = 4U1,3 − 3U1,4 + Φ0(X1,3, A1) ,

holds on {X1,1 = X1,2, X1,3 = X1,4} again so that the conditional distribution of ∂xΦ0(x,A) |x=X1,1

given X1,1 = x at x = λ · (1, 1, 1, 1), λ ∈ R, is identified as well. Note that continuity conditions

analogous to Assumption (A6) have to be imposed on both Φ0 and Φ1.

Remark 3. Our framework may be extended to allow for additional covariates, denoted in the

following by St. The main motivation to do so stems typically from the objective to simply

control for these variables; their influence is typically of lesser interest. Due to the curse of

dimensionality, it is impractical to let them enter in an unrestricted fashion. Hence we propose

a partially linear structure, i.e.,

Yk,t = Φ (Xk,t, Ak) + γ′Sk,t + Ukt, t = 1, . . . , T, k = 1, . . . , n, (4.8)

where γ ∈ Rdim(St) is a fixed parameter. Constructive identification of γ is straightforwardly

established by noting that, conditional on Xk,1 = Xk,2 = x, this equation is

Yk,t = Ãk + γ′Sk,t + Ukt, t = 1, . . . , T, k = 1, . . . , n, (4.9)

where Ãk = Φ (x,Ak) is a classical, time invariant, additive “fixed effect”. This implies that, for

every value of x, we obtain a classical linear fixed effect model. Since the coefficient γ is invariant
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over x, we can then average out over x. A sample counterpart estimator to this identification

argument would produce an estimator that converges at the dim(X) nonparametric regression

rate (because we have to impose that Xk,1 = Xk,2).

Finally, after forming Yk,t − γ′Sk,t, the further analysis can proceed exactly as outlined above.

5 Asymptotic Lower Bound

In this section, we investigate the limits for the asymptotic performance of an arbitrary estima-

tor under the conditions of Theorem 2. For that purpose we consider the polynomial approach

(3.1) with T = 2 and the random vector A equals

A =

X1X2 − (X1 +X2)B/2

B −X1 −X2

1

 , (5.1)

where the random vector B remains to be specified. Under given X = (X1, X2), observing

Y1 + Y2 = U1 + U2 ,

∆Y/∆X = B + ∆U/∆X , (5.2)

is equivalent with the observation of the data (Y1, Y2), i.e. the random variable (Y1, Y2) can be

uniquely reconstructed from (5.2) and vice versa. Then ζ1(x), at any x = (x1, x2) with x1 = x2,

equals the conditional distribution of B given X = x. With respect to the random vector U we

impose Assumption (A1) and

(A8) U = (U1, U2) has the bivariate Lebesgue density

(s, t) 7→ 2f∆U(s− t)f∆U(s+ t) ,

where the Fourier transform of the univariate density f∆U satisfies

0 < cU,1 ≤ (1 + |t|α) ·
∣∣ψ∆U(t)

∣∣ ≤ cU,2 < ∞ , ∀t ∈ R ,

for some constants α > 0 and cU,1 < cU,2. Moreover ψ∆U is twice continuously differen-

tiable and its derivatives satisfy

sup
t

(1 + |t|α+`) ·
∣∣ψ(`)

∆U(t)
∣∣ ≤ cU,3 ,

for another constant cU,3 > 0 and ` = 1, 2.

16



Under the Assumption (A8), f∆U is an ordinary smooth density in the terminology of Fan

(1991). Moreover (A8) yields that U1 + U2 and ∆U are independent and that ∆U has the

density f∆U . Considering (5.2), it follows that

(Xj,t,∆Yj/∆Xj), j = 1, . . . , n, t = 1, 2 , (5.3)

forms a sufficient statistic for ζ1(x) in the model in which the data (Xj,t, Yj,t), j = 1, . . . , n,

t = 1, 2, are observed. Therefore we may focus on that experiment in which only the i.i.d.

sample (5.3) is available.

Let us now determine the conditional distribution of B given X. Define

f0(x) := c · {1− cos(x)}2/x4 , x ∈ R ,

with some constant c > 0 such that f0 integrates to one. We introduce

f
[θ]
B|X(t) :=

3

4
· (1 + |t|)−4 +

1

2
f0(t) · {1 + θ ·K

(
|X − x|/θ

)
· cos(4t)

}
, ∀t ∈ R , (5.4)

for any θ ∈ [0, 1], as the competing conditional densities of B given X. Therein K denotes

some continuously differentiable kernel function which is supported on [−1, 1], bounded by 1

and satisfies K(0) = 1. As f ft0 is supported on [−2, 2] the function f
[θ]
B|X is a probability density

indeed. Moreover we put f
[0]
B|X(t) := 3(1 + |t|)−4/4 + f0(t)/2.

With respect to the design distribution we modify Assumption (A5) via

(A5’) There exists some ρ > 0 such that the density fX of X = (X1, X2) is continuous and

strictly positive on the ball around x = (x1, x1) with the radius ρ. Moreover fX is

compactly supported.

We provide the following lower bound on the convergence rates for the estimation of the pa-

rameter θ in the model (5.4).

Theorem 3. We impose that Φ has the polynomial shape (3.1) with T = 2; that A and B obey

(5.1) and (5.4), respectively; and that the Assumptions (A1), (A2), (A5’) and (A8) hold true.

Then Assumption (A6) is satisfied for appropriate finite constants cΦ and cζ. For an arbitrary

sequence of estimators (θ̂n)n, where θn is based on the i.i.d. data (Xj,t, Yj,t), j = 1, . . . , n,

t = 1, 2, there exists a constant d > 0 such that

lim inf
n→∞

sup
θ∈[0,1]

P
(n)
θ

[
|θ̂n − θ|2 > d2 · n−1/(2+α)

]
> 0 .
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6 A Conditional Parametric Estimator

In this section, our goal is to construct a parametric estimator of ζ1(x) which attains the

convergence rates outlined in Theorem 3. The parametric nature of the estimation problem is

represented by the following assumption

(A9) For some fixed x = (x1, x2) ∈ R2 with x1 = x2, there exists a parametrization

θ ∈ Θ ⊆ Rd, θ 7→ ζ1(θ;x) ,

of the admitted conditional measures ζ1(x) for d ≥ 1 such that

inf
θ′ 6=θ∈Θ

FR
(
ζ1(θ′;x), ζ1(θ;x)

)
/|θ′ − θ| ≥ cp > 0 ,

holds true for some fixed R ∈ (0,∞).

Therein FR denotes following distance between two probability measures P and Q,

F2
R(P,Q) :=

∫ R

−R

∣∣P ft(t)−Qft(t)
∣∣2dt .

The specific parametrization in (5.4), which has been used to prove the lower bound in Theorem

3, satisfies Assumption (A9) when putting

c2
p =

π

8

∫
f 2

0 (t)dt .

As the estimator θ̂ of θ we define that θ̃ which minimizes the contrast functional

γ(x; θ̃) :=

∫ R

−R

∣∣ψ̂(h0,h1,h2,h3)
Z1

(x; s)− {ζ1(θ̃;x)}ft(s)
∣∣2ds ,

among all θ̃ ∈ Θ where ψ̂
(h0,h1,h2,h3)
Z1

is as in (4.6) and h0, h1, h2 and h3 remain to be selected.

The following theorem provides an upper bound on the estimation error of our estimator

θ̂ under appropriate selection of the smoothing parameters. For simplicity we restrict to the

uniform kernel K.

Theorem 4. We consider the model (2.1) for T = 2 under the Assumptions (A1’), (A2),

(A5’), (A6), (A8) and (A9). The distribution of (X1, X2) and the constants in the assumptions

are imposed to be fixed while Φ, θ and the distributions of A and (U1, U2) may move in n and

d. Then, our estimator θ̂ of θ satisfies

∣∣θ̂ − θ∣∣2 = OP
(
n−1/(2+α)

)
,
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under the selection K = 1[0,1], ρn � 1, h2 = 2h1, h3 � h1, h0 � h2
1, h1 � n−1/(4+2α).

Combining Theorem 3 and 4, it follows that our estimator θ̂ achieves the optimal minimax

convergence rate. It is remarkable that, in spite of the parametric nature of the estimation

problem, the usual square-root-asymptotics are not attainable by any estimator. In the error-

free case (i.e. α = 0), the convergence rate is OP (n−1/4) with respect to the non-squared

estimation error.

Critically we mention that the asymptotic order of h1 in Theorem 4 depends on the param-

eter α from Assumption (A8), which is usually unknown. Therefore we propose a data-driven

choice of h1 (and h0, h2, h3 according to Theorem 4) by splitting the sample. Precisely the

estimator θ̂ is only based on bqnc of the complete sample for some constant q ∈ (0, 1). All

other observations are used to construct an empirical selector ĥ1 of h1 as follows: Define

α̂ := −
(

log
∣∣ψ̂(h4)

∆U (sn)
∣∣) / log sn ,

with some deterministic positive parameters h4 and sn > 1 and the estimator of ψ∆U from

(4.4); and, finally,

ĥ1 := n−1/(4+2α̂) . (6.1)

The following result suffices to show that the asymptotic upper bound from Theorem 4 is

maintained when using the split-of-the-sample estimator with the plug-in selector ĥ1 for h1.

Nevertheless a rough upper on α is required to be known in order to select the parameter γ in

Theorem 5.

Theorem 5. We impose the conditions of Theorem 4; and we choose K = 1[0,1], sn = nγ for

some γ ∈ (0, 1/(1 + 2α)); and h4 = 1/sn. Then there exist some positive constants b0 and b1

such that the estimator ĥ1 in (6.1) satisfies

lim
n→∞

P
(
n1/(4+2α) · ĥ1 ∈ [b0, b1]

)
= 1 .

Remark 4. Note that we estimate the parameter α under general nonparametric constraints

(see Assumption (A8)), leading to the empirical bandwidth ĥ1 in (6.1). If more restrictive

parametric assumptions are imposed on the distribution of ∆U then the parameter α could

also be estimated e.g. by maximum likelihood methods.

7 Simulation

For an illustration of the estimator in the univariate case, remember the panel data model in

(2.1). Within this class of models, we constructed two leading specifications: a second and a
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third-order polynomial in the sole regressor Xk,t.

Yk,t = Φ (Xk,t, Ak) + Uk,t where:

Φ (Xk,t, Ak) = A0,k + A1,kXk,t + A2,kX
2
k,t Quadratic 1D Model

Φ (Xk,t, Ak) = A0,k + A1,kXk,t + A2,kX
2
k,t + A3,kX

3
k,t Cubic 1D Model

where, for all k = 1, . . . , n and t = 1, . . . , T :

• Aj,k ∼ N (0, .5) ∀ j ∈ {0, 1, 2, 3}

• Xk,t ∼ .5 + ex ex ∼ N (0, .5)

• Uk,t ∼ ev ev ∼ Laplace(0, .1)

Since this is a univariate case, we can simply nonparametrically estimate the distribution

of the conditional characteristic functions by using our estimator from Equation (4.6).

We select a proper α to optimize our results, and determine the bandwidths in the following

way: h1 = n−1/(4+α), h2 = 2h1, h3 = h1, h0 = h2
1, as suggested by Theorem 4. While these

are the asymptotically most efficient bandwidths, there may be better bandwidths in practical

application. The restrictions that the bandwidths must obey imply that 0 < h1 < h2 < ρ and

h3 > 0.

We will compute the values of µ and σ to minimize the Euclidean distance between φ̂Z(s, x)

and the characteristic normal distribution.

φ∆Z(s, x) = exp(iµs− σ2s2/2)

7.1 Results in the Baseline Specification

The specifications outlined above have easily represented true values. These are given by:

Zk,t :=
∂Φ

∂x
(x,A)|x=Xk,t

= A1,k + 2A2,kXk,t Quadratic 1D Model

Zk,t :=
∂Φ

∂x
(x,A)|x=Xk,t

= A1,k + 2A2,kXk,t + 3A2
3,kX

2
k,t Cubic 1D Model

To display the true model, we use an oracle kernel density estimator that uses the (in the real

world unobserved) values of Zk.t. Figures 2 and 3 show the results comparing our estimator to

the true distribution estimated by such an oracle kernel density estimator.

Start out by considering Figure 2: The blue line in the left two graphs corresponds to

the true mean, resp., standard deviation, of the conditional marginal effects. The left two

graphs display moreover the estimated conditional means, resp. standard deviations, for each

value of x, and the corresponding estimation uncertainty as given by bootstrap 95% confidence
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bands. As is evident, the estimated means track the true values very closely, while the standard

deviations perform (expectedly) worse, yet still deliver a quite satisfactory fit.

On the right are two contour graphs showing first a contour plot of the true conditional

density of the marginal treatment effects along with the conditional means, as estimated using

again an oracle kernel density estimator, and secondly an estimate of the conditional densities

estimated using our method. As before, our estimator for the density of marginal effects matches

the true distribution of the marginal effect very closely.
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Figure 2: Estimates of quadratic 1D model using: α = 2 and N = 10,000.The black line is our
estimate. The dotted lines are our 95% confidence bands estimated with 100 bootstraps. The
blue line is the true means and standard deviation we are trying to estimate.

Figure 3 then repeats the exercise for the cubic model and obtains similar, if slightly worse,

performance, which is to expected given the slightly more complex model.

We also include an estimate of the quantiles of marginal effects in Figure 4, using our

approach. This is done by inferring the quantiles from the conditional normal density, for

which we have estimates of µ and σ for each value of X.

Note that these are conditional densities of marginal effects, so the most dense regions are

on the boundaries where the standard deviation is the lowest, even though most of the data

are near the mean of X. We can also estimate the joint densities of Z := ∂Φ
∂x

(x,A) and X, by

multiplying our estimate of the conditional density with the density of X, f(x). We estimate

the density of X using a kernel density estimation function. The resulting joint densities are

displayed in Figure 5 below:
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Figure 3: Estimates of cubic 1D model using: α = 2 and N = 10,000. The dotted lines are
our 95% confidence bands estimated with 100 bootstraps. The blue line is the true means and
standard deviation we are trying to estimate.
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Figure 4: Estimates of Quantile Effects.

7.2 A Violation of Conditional Normality: Skewed Distribution of

Effects

Next, in order to evaluate the robustness of our estimation procedure, we study the performance

of our estimator in a simulation scenario which violates the conditional parametric assumption

imposed for semiparametric estimation. We will assume that A comes from a mixed normal

distribution.
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Figure 5: Estimates of joint distribution of the quadratic 1D model on the left and of the cubic
1D model on the right using the same parameters as above.

• Aj,k ∼ 0.5 · N (0.7, 0.2) + 0.5 · N (−0.25, 0.1) ∀ j ∈ {0, 1, 2, 3}

This function is skewed to the right, i.e., it will not exhibit symmetrical marginal effects.

The results for both the cubic case and quadratic case are included below. In Figures 6 and 7,

we see that our estimates of the means are still quite accurate. However, our estimates for the

standard deviation are slightly too high, since the estimated density exhibits a wider spread

because of the skewed density of marginal effects.

Moreover, the joint and conditional estimated densities (see Figures 6, 7, and 8) do a

reasonable job in capturing the general orientation of effects, but are unsurprisingly not fully

able to capture the true model perfectly, as we (wrongly) impose normality of the conditional

distribution. Note, however, that estimated conditional means are quite close to the true

results, and the overall performance appears to be reasonably robust against violations of the

parametric specification.

8 Empirical Application

In this section, we study the performance of our estimation procedure using real world data.

We consider the estimation of the distribution of marginal effects of every additional dollar

on the consumption of junk food. Because of the implied health consequences, as outlined

below this question is highly policy relevant. In addition, our model is very well suited to
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Figure 6: Estimates of quadratic 1D model using: α = 2 and N = 10,000.The black line is our
estimate. The dotted lines are our 95% confidence bands estimated with 100 bootstraps. The
blue line is the true means and standard deviation we are trying to estimate.

0.0 0.5 1.0

2
4

6
8

X

M
T

E

MTE Means

Estimate
95% Bands
True Model

0.0 0.5 1.0

1
2

3
4

5

X

S
ig

m
a

Standard Deviation

Estimate
95% Bands
True Model

Conditional Marginal Effect Distribution Parameters: Cubic

X

M
ar

gi
na

l E
ffe

ct
(x

)

 0.05 

 0.05 

 0.1 

 0
.1

 

 0.15 

 0.15 

 0.2 

 0.25 

 0.3 

 0.35 

 0.4  0.45 

 0.5 

 0.55 

 0
.6

 

0.0 0.5 1.0

−
1

0
1

2
3

4
5

Estimated

Conditional 
Means

X

M
ar

gi
na

l E
ffe

ct
(x

)

 0.05 

 0
.0

5 

 0.1 

 0
.1

  0.15 

 0.2 

 0.25 

 0.3 

 0.35 

 0.4 

 0.45 

 0
.5

 

0.0 0.5 1.0

−
1

0
1

2
3

4
5

True

Conditional 
Means

Conditional Density of Marginal Effects: Cubic

Figure 7: Estimates of cubic 1D model using: α = 2 and N = 10,000. The dotted lines are
our 95% confidence bands estimated with 100 bootstraps. The blue line is the true means and
standard deviation we are trying to estimate.

capture differences in these marginal effects between wealthy and poor households, which are

not captured at all by linear random coefficients models. This ability to exhibit differences for

different wealth and income levels is crucial for the policy debate, as it is widely believed that

excessive consumption of junk food is particularly prevalent at the lower end of the income

distribution. As such, we hope that our estimator is able to inform this policy debate by
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Figure 8: Estimates of joint distribution of the quadratic 1D model on the left and of the cubic
1D model on the right using the same parameters as above.

providing a more nuanced picture of the distribution of marginal effects.

We start out with an overview of the data we use in our estimation exercise. After that,

we provide a brief review of the policy debate surrounding junk food demand, especially with

respect to differences in income. We then display our empirical findings which corroborate

many of the suggestions put forward in the literature.

8.1 Data

8.1.1 An Overview

For our application, we use the Nielsen Scanner Dataset which is available through the Kilts

Center at the University of Chicago Booth School of Business2. We will focus our study on the

year 2014 where there are about 55,000 individuals. This is a helpful dataset for estimating

demand behavior since it contains detailed information based on price and quantity of all retail

purchases as well as detailed household characteristics for all consumers. The data contain a

representative sample of households in the United States who use in-home scanners to record all

of their purchases intended for personal, in-home use. Nielsen matches the product scanned by

the household to the actual price of the store where the product was bought. Nielsen estimates

that about 30% of household consumption is accounted for by these purchases.

2Researcher(s) own analyses calculated (or derived) based in part on data from The Nielsen Company (US),
LLC and marketing databases provided through the Nielsen Datasets at the Kilts Center for Marketing Data
Center at The University of Chicago Booth School of Business. The conclusions drawn from the Nielsen data
are those of the researcher(s) and do not reflect the views of Nielsen. Nielsen is not responsible for, had no role
in, and was not involved in analyzing and preparing the results reported herein.
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We will call this sum over all Nielsen expenditure categories total expenditure; under ad-

ditive separability of the utility function this is the relevant total outlay variable. The same

variable also takes the place in derivations involving economic rationality - under additive

separability, this is the relevant “income” variable, e.g., to analyze Slutsky negative semidef-

initeness. For this model, we estimate the total outlay (“income”) and own price elasticities

and the marginal effects of an additional unit of total outlay (“income”) on the demand for

junk food. Nielsen aggregates millions of universal product codes (UPC) into different groups

of food.

We define junk food as any food classified as potato chips, candy or carbonated beverages

by Nielsen. Junk food is a good example in our situation because these items lie on one extreme

of the nutrition-taste trade-off (Blaylock et al. (1999)). Junk food sacrifices almost all of its

nutrition for taste. We aggregate the data to a monthly level such that period 1 is January 2014

and period 2 is February 2014. Of course, we could use different months as the time periods in

our dataset as long as these periods exclude the irregular Christmas shopping period.

Prices are more precisily an aggregate price index called Stone-Lewbel (SL) cross section

prices (see Lewbel (1989) and Hoderlein and Mihaleva (2008)). Generally speaking, SL prices

use the fact that within a category of goods (junk food in our case), people have different

tastes for the individual goods. Using standard aggregate price indices for junk food implicitly

assumes that all individuals have identical Cobb Douglas preferences for all goods within this

category, but SL prices allow all individuals to have heterogeneous Cobb Douglas preferences

for the various commodities in this bundle. This implies that the typical approach of using

aggregate price indices is a restrictive case of using SL prices. For this reason, SL prices should

always be used when possible.

Total expenditure for all Nielsen goods and all junk food is aggregated each month as well.

In order to get the proper expenditure, we only use households with two individuals and no

children and divide expenditure by two, in order to estimate average expenditure per consumer.

This is justified, as junk food is arguable a private good, and household composition effects can

be expected to be negligible.

8.1.2 Limitations

There are a few concerns with the data. The data rely on participants successfully recording

their purchases in their home, so they may suffer from recording error. The specific issue that

we might be concerned with is that consumers may consume a good when it is purchased and

will not record the purchase when they return home. Einav et al. (2010) finds that consumable

goods like soft drinks, chips, or candy are likely to be consumed before getting home so are more

likely to not be scanned. There are also recording errors such as when a six-pack of goods are

purchased and recorded as quantity six. However, these errors only seem to have minor effects.
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When compared to data from grocery store recorded sales, the data in Nielsen Homescan data

matched 94% of the time (Einav et al. (2010)).

Another potential source of measurement error is related to the price rather than the quan-

tity. Individuals record their purchases by scanning the items they buy when they get home.

The individuals input the quantity they purchase, and Nielsen matches it with the average

price of the good at the store where they purchased it that week. This can lead to two types

of errors. The first comes from the price changing in the middle of the week, though frequent

changes during several weeks are less likely. The second type of error comes from not including

discounts from loyalty cards. Einav et al. (2010) examines a retailer used in the Homescan

data which has loyalty cards and finds that loyalty cards are used in about 75-80% of the

transactions. Further, this would bias our prices and expenditure upwards. When comparing

Homescan data with data from the retailer, Einav et al. (2010) finds that the prices used in the

Homescan data is about 7% higher and the overall expenditure is 10% higher. On the other

hand, these price measurement errors may be overestimated since some retailers do not have

loyalty cards at all.

Finally, homescan data errors are comparable to errors found in other commonly used data

sets. Aguiar and Hurst (2007) finds that life-cycle pattern of household expenditures recorded in

Homescan Data is consistent with those reported for food expenditures at home in Panel Study

of Income Dynamics (PSID). Einav et al. (2010) finds that these issues are not more serious

than those in any other consumption surveys like the Current Population Survey (CPS). Lin

(2018) compares the fraction of expenditures on different categories of products in the Nielsen

Homescan Data and finds the results consistent to results from the Consumer Expenditure

Survey (CES). In sum, we feel that these potential sources of measurement error may bias our

results somewhat, but are unlikely to invalidate them.

8.2 Literature Review

There is a large literature on the determinants, extent and consequences of the consumption of

junk food. As regards determinants, sometimes low-income propensity to consume unhealthy is

attributed to the cost of healthy food (see, e.g., Drewnowski and Darmon (2005), Golan et al.

(2008), and Drewnowski and Eichelsdoerfer (2010)). However, Carlson and Frazo (2012) found

that junk food is cheaper on a per-calorie basis than healthier foods like fruits, vegetables,

whole grains and proteins, but that the healthier foods are actually cheaper on a per-serving

basis. Rider et al. (2012) found that health attributes have been found to not be associated

with higher average transaction prices.

When it comes to extent and possible consequences, obesity is one of the most important

health problems in the United States, as well as many other countries. Many of the junk foods

we consider are high in sugar, and excess sugar consumption is strongly linked with many
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diet-related diseases such as diabetes, cancers and heart disease (see WHO (2015)). Obesity

leads to several hundred billion dollars spent on medical costs in the US annually, about 10-27

percent of all medical costs (See Finkelstein et al. (2009) and Cawley et al. (2015)). Thus,

consumption of unhealthy food, such as junk food, can have a major impact on individual well

being as well as the economy at large.

Our estimator allows for a more nuanced picture of the demand patterns for junk food, and

hence enables policy makers to better target policy measures on subgroups of the population.

Obesity and diabetes rates are higher for low income individuals (see Drewnowski and Specter

(2004) and Robbins et al. (2001)). Binkley and Golub (2011) and Chen et al. (2012) all found

that low-income households consume less nutritious foods. Allcott et al. (2017) showed that

even when controlling for supply side factors, high-income households have a greater demand

for healthy foods. We add to this literature a more differentiated description of the distribution

of marginal effects for individuals with different incomes, which crucially relies on the added

flexibility that our approach warrants relative to linear random coefficients models, e.g., Graham

and Powell (2012).

8.3 Income Elasticities and Marginal Effects of Income

To begin, as a building block for our model, but also to obtain naive “income” elasticities, we

display the mean budget share of junk food (i.e., the proportion of Nielsen recorded junk food

over all Nielsen recorded items) for each household, ωk,t, as the dependent variable and total

log expenditure, Ek,t, as the right hand variable in the first period (denoted t). Throughout

this subsection, we control for prices by using households whose prices are in a neighborhood

of the median price in period t, denoted p. Thus, the model we estimate is as follows:

ωk,t = Φ (Ek,t, Ak,t, pt) + Uk,t (8.1)

The associated graph is included in Figure 9. Note that budget share is decreasing with total

expenditure which strengthens the idea that low-income households eat more unhealthy food

than high-income households. The convex curve implies that both the marginal effect of income

on consumption of junk food and the income-elasticity of demand of junk food varies across

expenditure. We will use our method to estimate Zj(e, p) = ∂Φ
∂e
e. We then follow standard

arguments from Almost Ideal Demand System (AIDS) (Deaton and Muellbauer, 1980), and

use equation (8.2) estimate to identify and estimate the elasticity of income, εd using our

estimate of Zj(e, p) from equation (8.1).

εdj (e, p) =
Zj(e, p)

ωj(e, p)
+ 1 (8.2)
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Figure 9: Nardaya-Watson kernel regression estimator of Budget Share of Junk Food based on
total expenditures

To utilize this for the estimation of the elasticities, we use ωj(e, p) which, as mentioned, is

estimated using Nadaraya-Watson kernel regression estimator. This allows us then to estimate

the conditional density of income elasticities of demand for junk food. The means and standard

deviations of the coefficients, as well as the conditional density of marginal effects, are displayed

in Figure 10. The pointwise standard errors have been constructed using the naive bootstrap.

Note that the income elasticities of demand decrease with expenditure, and are clearly signifi-

cantly non-linear. Thus, given an one percent increase in income, low-income individuals will

increase their junk food consumption by a higher percentage than high-income individuals.

Note that these are estimates of the conditional density of income elasticities of the demand

for junk food conditioned on “income” (as discussed, actually total Nielsen goods expenditure).

We can estimate the joint density by multiplying this conditional density by the distribution

of total expenditure, measured using a kernel density estimation. The result of this procedure

can be seen in Figure 11 where we also include estimates of the conditional quantiles of the

distribution of income elasticities and income.

Furthermore, we can then use the elasticity estimates to estimate the density of marginal

effects of an unit of additional income on the demand for junk food, using the following identity:

Let q be the quantity of junk food consumed. Consider

εd(e, p) =
∂ log(q)

∂ log(e)
=
∂q

∂e

e

q
=
∂q

∂e

p

ω(e, p)
(8.3)

Since we control for own price and keep it constant, we can normalize price to be equal to
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Figure 10: Estimates of Elasticity of demand using: α = 6. For this sample, N = 6, 870
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Figure 11: Joint distributions are calculated by multiplying the conditional distribution by the
distribution of expenditure.

one for computational ease. Thus, we can estimate the marginal effect of an additional dollar on

consumption of junk food, ∂q
∂e

. The result of this analysis is displayed in Figure 12, along with

the quantile of these marginal effects. The effects follow the same trend as the income elasticities

of demand, but the difference between low-income individuals and high-income individuals is

more pronounced.

To understand this graph better we show, in Figure 13, the estimated density of marginal

effects of income on consumption of junk food for different groups based on their income
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quantile. Specifically, we graph the distribution of marginal effects for those at the .2, .4,

.6 and .8 quantiles of the income distribution. To illustrate this point, consider the following

example. In our example, low income individuals have income elasticities of about 0.8 and

high income individuals have income elasticities of about 0.5. Consider that low income budget

share of junk food is 0.08 while high income budget share of junk food is about 0.04. If we

plug these values into equation (12), for low income individuals we obtain 0.8 = ∂q
∂e

1
0.08

so that

the marginal effect is ∂q
∂e
∼= 0.064. For high income individuals, ∂q

∂e
∼= 0.02. Thus, while the

income elasticity of low income individuals is on average only 50% higher than the elasticity

of high income individuals, the marginal effect of income on quantity of junk food consumed

of poor individuals is more than twice as high compared to their high income counterparts. In

other words, for every dollar they spend on Nielsen goods, they consume more than twice the

quantity of junk food.
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Figure 12: Estimates of the marginal effect of an additional dollar of expenditure on junk food
using: α = 6. For this sample, N = 6, 870

Remember that these densities of marginal effects are conditional on total expenditure

(“income”). To estimate the joint density, as before we multiply the estimate of the conditional

density by a kernel density estimate of total expenditure (“income”). The results for the joint

density of marginal effects are found in Figure 14, along with the density of marginal effects for

those in the .2, .4, .6 and .8 quantiles of the “income” distribution. As is to be expected, this

reweighting results in the 0.6 quantile of the income distribution to deliver the density with

largest values, rather than the edge case of the 0.8 quantile as is the case with the conditional

densities.
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Figure 13: Conditional density and different expenditure quantiles of the estimates of marginal
effect.
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Figure 14: Joint distributions are calculated by multiplying the conditional distribution by the
distribution of expenditure

Finally, note that a naive estimator could be based on an estimated derivative of the budget

share graph in Figure 9. However, we expect these estimates to be biased because they do

not account for the endogeneity stemming from the correlation between the high dimensional

unobservables and income. The results are included below in Figure 15, which exhibit significant

differences from our previous estimates.

Additional results with a different method to control for prices can be found in the appendix.
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Figure 15: Mean and 95% bands of the mean of our estimates of income elasticity and marginal
effect estimates compared to a nonparametric estimate of the derivative of the budget share
graph.

8.4 Own Price Elasticities

Following similar steps as above, we estimate own-price elasticities by using the budget share

of junk food for each household, ωk,t, as the dependent variable and log of our SL price indices,

Pk,t, as the right hand variable, but control again for income by selecting households with total

expenditure close to the median, denoted e. Thus,

ωk,t = Φ (e, Pk,t, Ak,t) + Uk,t (8.4)

We will use our method to estimate Z̃j(p, e) = ∂Φ
∂p

(p, e, A) |p=Pj
, and use equation (8.5) to

identify the elasticity of income, εp using our estimate of Z̃j(e, p) from equation (8.4).

εpj(e, p) =
Z̃j(e, p)

ωj(e, p)
(8.5)

We use again the Nadaraya-Watson estimator of ωj(e, p), now as a function of price, see

Figure 16.

With the estimate of budget share conditional on price, we can use our estimate of the

density of Z̃j(e, p) and equation (8.5) to estimate the conditional distribution of own-price

elasticities of for junk food. Below are the means and standard deviations of the coefficients

as well as a contour map of the density in Figure 17, along with bootstrap standard errors.

Note that own-price elasticities generally are negative and decrease with prices, i.e., increase

in absolute value. Thus, given an increase of one percent in price, the reduction in demand for
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Figure 16: Nadaraya-Watson kernel regression estimator of Budget Share of Junk Food based
on prices

high-priced junk food is larger than for low-priced junk food.
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Figure 17: Estimates of Elasticity of demand using: α = 6. For this sample, N = 8, 086

Note again that these estimates are for the own-price elasticity for junk food conditional

on price (and income). We can estimate the joint distribution by multiplying this conditional

distribution by the density of expenditure, estimated using a kernel density estimation, see

Figure 18 for the result. We also include the quantile estimates of own-price elasticities which
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Figure 18: Joint distributions are calculated by multiplying the conditional distribution by the
distribution of prices.

allows to assess the difference in quantiles of consumers’ own-price elasticities at different prices.

Finally, we compare our results again with the naive procedure that takes the derivative

of the budget share regression, which differ because they do not properly account for the

correlation stemming from the high dimensional correlated unobservables, see Fig 19.
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Figure 19: Mean and 95% bands of the mean of our estimates of own-price elasticity compared
to a nonparametric estimate of the derivative of the budget share graph.
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A Proofs

Proof of Lemma 2.1: As B(R) is generated by a countable system of sets (e.g. consider the

intervals (−∞, q], q ∈ Q) the uniqueness theorem for probability measures guarantees that the

measures ζj and ζ̃j coincide almost surely by the assumptions of the lemma. Thus the set

Zj :=
{
x ∈ RT : ζj(x) 6= ζ̃j(x)

}
,

is a L(X)-null set; and Zj is open in RT thanks to the continuity of ζj and ζ̃j. Hence, the random

vector X lies in the closed set SX\Zj almost surely. As SX is defined as the intersection of all

those closed sets in which X is located almost surely, it follows that

SX = SX\Zj ,

so that ζj(x) = ζ̃j(x) for all x ∈ SX . �

Proof of Lemma 3.1: For any x ∈ R, we consider the (T + 1) × (T + 1)-Vandermonde matrix

M(x) which contains p(x1)†, . . . , p(xT )†, p(x)† as its rows; and the matrix N(x) which is ob-

tained from M(x) by replacing its last row by q(x). Note that detN(xj) = 0 is equivalent to

linear independence of the vectors p(x1), . . . , p(xT ), q(xj). Thanks to the multilinearity of the

determinant and the well-known representation of determinants of Vandermonde matrices we

deduce that

detN(x) =
d

dx
{detM(x)} =

( ∏
1≤k<l≤T

(xl − xk)
)
· d
dx

T∏
t=1

(x− xt) .

Thus, detN(xj) vanishes if and only if at least two of the x1, . . . , xT coincide or the polynomial

x 7→
∏T

t=1(x− xt) has a multiple zero at xj. The latter claim requires at least one of the xt for

t 6= j to coincide with xj, which implies the first claim. �

Proof of Lemma 3.2: We easily recognize by definition that the vectors p(x1), . . . , p(xT ), q(xj)

are all continuous functions in x ∈ RT . Applying a Gram-Schmidt process we obtain that

p∗k(x) = p(xk)−
k−1∑
l=1

(
p(xk)

†p∗l (x)
)
p∗l (x)/

∣∣p∗l (x)
∣∣2 , k = 1, . . . , T ,

q∗j (x) = q(xj)−
T∑
l=1

(
q(xj)

†p∗l (x)
)
p∗l (x)/

∣∣p∗l (x)
∣∣2 ,

τj(x) =
∣∣q∗j (x)

∣∣2 ,
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for x ∈ X so that τj is continuous on TX as well. The positivity of τj is an immediate conse-

quence of Lemma 3.1 as τj(x) = 0 implies linear dependence between p(x1), . . . , p(xT ), q(xj).

�

Proof of Lemma 3.3: For any x, y ∈ RT , b ≥ 0, we deduce by the triangle inequality that

F
(
ζ

[b]
j (x), ζ

[b]
j (y)

)
≤ F

(
L(A[0] | X = x),L(A[0] | X = y)

)
+ sup

s∈R

∣∣ψA[0]|X=x

(
sq(xj)

)
− ψA[0]|X=x

(
sq(yj)

)∣∣
+ sup

s∈R

∣∣ψA[0]|X=x

(
sq(xj)

)∣∣ · ∣∣∣ exp
(
− 1

2
bs2τ 2

j (x)
)
− exp

(
− 1

2
bs2τ 2

j (y)
)∣∣∣ . (A.1)

The first term in (A.1) converges to 0 as y → x by Assumption (A4). As A[0] has a conditional

Lebesgue density given X = x it follows from the Riemann-Lebesgue lemma (see e.g. Bochner

& Chandrasekharan, 1949) that lim|u|→∞ ψA[0]|X=x(u) = 0. Thus, for any ε > 0, there exists

some R > 0 such that
∣∣ψA[0]|X=x(u)

∣∣ < ε/4 for all u with |u| > R. Since |q(x)| ≥ 1 for all x ∈ R
the second term in (A.1) obeys the upper bound

ε/2 + sup
|s|≤R

∣∣ψA[0]|X=x

(
sq(xj)

)
− ψA[0]|X=x

(
sq(yj)

)∣∣ . (A.2)

As the function x 7→ q(x) is continuous and any characteristic function is uniformly continuous,

(A.2) is bounded from above by ε whenever |y − x| is sufficiently small with respect to only ε

and R. Therefore the second term tends to 0 as y → x.

It remains to consider the third term in (A.1). Let ε and R be as in the previous paragraph.

Then the third term is smaller or equal to

ε/2 + sup
|s|≤R

∣∣∣ exp
(
− 1

2
bs2τ 2

j (x)
)
− exp

(
− 1

2
bs2τ 2

j (y)
)∣∣∣ . (A.3)

As x 7→ τj(x) is continuous (see Lemma 3.2) and the exponential mapping is uniformly contin-

uous on any bounded domain, the term (A.3) is bounded from above by ε whenever |y − x| is

sufficiently small with respect to ε and R. Finally we have shown that all three terms in (A.1)

converge to 0 as y tends to x. �

Proof of Lemma 3.4: Applying Fourier transformation to both sides of the given equality we

obtain that

Qft(x) · exp
(
− 1

2
αx2
)

= Qft(x) · exp
(
− 1

2
α′2
)
, ∀x ∈ R .

As Qft is continuous and satisfies Qft(0) = 1 there exists a non-void open neighborhood of 0 in

which Qft does not vanish. Therefore the functions x 7→ exp
(
−αx2/2

)
and x 7→ exp

(
−α′2/2

)
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coincide on this neighborhood so that α = α′. �

Proof of Theorem 3: Thanks to (5.4) and the compact support of fX , which is guaranteed

by Assumption (A5’), we may easily verify the first part of Assumption (A6) for some cΦ

sufficiently large. With respect to the second part we deduce that

F
(
ζ1(y), ζ1(z)

)
≤ cζ · |y − z| ,

for all y, z ∈ R where cζ := ‖K ′‖∞/2. Thus Assumption (A6) holds true.

As the statistic ∆Yj, j = 1, . . . , n, has been shown to be sufficient for ζ1(x) and, hence,

for the parameter θ, we may consider P
(n)
θ as the image measure of this statistic. Now we

put θn := 3d · n−1/(4+2α) so that at least one of the events {|θ̂n − θn| > d · n−1/(4+2α)} and

{|θ̂n| > d · n−1/(4+2α)} occurs. For sufficiently large n it holds that

sup
θ∈[0,1]

P
(n)
θ

[
|θ̂n − θ| > d · n−1/(4+2α)

]
≥ 1

2
− 1

2
TV
(
P

(n)
θn
, P

(n)
0

)
.

By standard information-theoretic arguments, we deduce that

TV
(
P

(n)
θn
, P

(n)
0

)
≤ 2

{(
1 +Eχ2

(
f

(θn)
B|X ∗ f∆U(·/(X1 −X2)), f

(0)
B|X ∗ f∆U(·/(X1 −X2))

))n
− 1
}1/2

,

where χ2 stands for the χ2-distance between two measures. By Parseval’s identity, it holds that

Eχ2
(
f

(θn)
B|X ∗ f∆U(·/(X1 −X2)), f

(0)
B|X ∗ f∆U(·/(X1 −X2))

)
≤ const. · θ2

n · EK2
(
|X − x|/θn

)
·
∫ ∣∣{f0 cos(4·)} ∗ f∆U(·/(X1 −X2))

∣∣2(t)(1 + t4)dt

= const. · θ2
n ·max

{
EK2

(
|X − x|/θn

)
|X1 −X2|−2`2

·
∫ ∣∣{f ft0

}(`1)
(t± 4)

∣∣2 ∣∣ψ(`2)
∆U (t/(X1 −X2))

∣∣2 : `1, `2 ∈ N0, `1 + `2 ≤ 2
}

= O
(
θ4+2α
n

)
.

Therefore, choosing d > 0 sufficiently small, we may ensure that

lim sup
n→∞

TV
(
P

(n)
θn
, P

(n)
0

)
< 1 ,

which completes the proof of the theorem. �
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Proof of Theorem 4: Writing

N0 :=
n∑
k=1

1S(h0)X

(Xk,1, Xk,2) ,

N1 :=
n∑
k=1

1S(h1,h2)X

(Xk,1, Xk,2) · 1[0,h3](|Xk,1 − x1|) ,

we introduce the events

E0 := {N0 ≥ c · nh0} ,

E1 := {N1 ≥ c · nh3(h2 − h1)} ,

for some constant c > 0. By Chebyshev’s inequality and Assumption (A5’) we deduce that the

probabilities for the complements of E0 and E1 converge to zero as n tends to infinity for c > 0

sufficiently small. The events E0 and E1 are contained in the σ-field σX which is generated by

the random variables Xk,t, k = 1, . . . , n, t = 1, 2.

Now put εn := dn−1/(4+2α) for some constant d > 0. By Assumption (A9) the inequality∫ R

−R

∣∣{ζ1(θ̂;x)}ft(s)− {ζ1(θ;x)}ft(s)
∣∣2ds ≥ c2

p ε
2
n ,

holds true on the event {|θ̂ − θ| > εn}. Then it follows from the definition of θ̂ that∫ R

−R

∣∣ψ̂(h0,h1,h2,h3)
Z1

(x; s)− {ζ1(θ;x)}ft(s)
∣∣2ds ≥ 1

4
c2
p ε

2
n ,

whenever |θ̂ − θ| > εn. Hence, by Markov’s inequality, we deduce that

P
[
|θ̂−θ| > εn

]
≤ 4c−2

p ε−2
n ·
∫ R

−R
E 1E0∩E1

∣∣ψ̂(h0,h1,h2,h3)
Z1

(x; s)−{ζ1(θ;x)}ft(s)
∣∣2ds+ 1−P (E0∩E1) .

(A.4)

By a standard bias-variance decomposition for the conditional expectation, the Cauchy-Schwarz

inequality and Assumption (A6), we obtain that

E
{∣∣ψ̂(h0,h1,h2,h3)

Z1
(x; s)− {ζ1(θ;x)}ft(s)

∣∣2 | σX , ψ̂(h0)
∆U

}
≤ (2ρn + 1)/

{
ρn + Ξ̂U

}
+ 4

{
cΦRh2/2 + cζ(2h3 + h2)

}2
+ 4 Ξ̂∆ /

{
ρn + Ξ̂U

}
, (A.5)
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for all s ∈ [−R,R] where σX denotes the σ-field generated by X1, . . . , Xn; and

Ξ̂U :=
n∑
k=1

∣∣ψ̂(h0)
∆U (s/∆Xk)

∣∣2 · 1S(h1,h2)X

(Xk,1, Xk,2) · 1[0,h3](|Xk,1 − x1|) ,

Ξ̂∆ :=
n∑
k=1

∣∣ψ̂(h0)
∆U (s/∆Xk)− ψ∆U(s/∆Xk)

∣∣2 · 1S(h1,h2)X

(Xk,1, Xk,2) · 1[0,h3](|Xk,1 − x1|) ,

ΞU :=
n∑
k=1

∣∣ψ∆U(s/∆Xk)
∣∣2 · 1S(h1,h2)X

(Xk,1, Xk,2) · 1[0,h3](|Xk,1 − x1|) .

We deduce by Assumption (A6) that

E
(
Ξ̂∆ | σX

)
≤ N1/N0 + R2c2

Φ ΞU h
2
0/h

2
1 . (A.6)

Thus, on the event E3(s) := {Ξ̂U > ΞU/2}, |s| ≤ R, the conditional expectation of term (A.5)

given σX obeys the upper bound

O
(
h2

2 + h2
3 + h2

0/h
2
1 + 1/ΞU +N1/(ΞUN0)

)
, (A.7)

where Ξu has the asymptotic lower bound N1 · h2α
1 with uniform constants by the Assumptions

(A5’) and (A8). On the complement of E3(s), the conditional expectation of term (A.5) given

σX is bounded from above by

O(n2) · exp
{
−N0(1− 1/

√
2− cΦh0/h1)2c2

U,1(1 +R/hα1 )−2/8
}
, (A.8)

by Assumption (A6) and Hoeffding’s inequality. Applying the expectation to the terms (A.7)

and (A.8) – multiplied by 1E0∩E1 – we conclude that the right hand side of (A.4) tends to zero if,

first, the limit superior is taken with respect to n→∞ and, then, the limit d→∞ is applied. �

Proof of Theorem 5: It suffices to show the existence of some c > 0 such that

lim sup
n→∞

P
(∣∣α̂− α∣∣ > c/ log n

)
= 0 . (A.9)

Using that the probability of E4 (equivalent to the event E0 from the proof of Theorem 4 when

replacing h0 by h4) converges to 1; that (4.2) holds true; and Hoeffding’s inequality – condi-

tionally on σX – we can verify (A.9) when c is sufficiently large with respect to γ. �
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B Summary Statistics

Below is the Summary Statistics for the data we used in our empirical application.

Table B1
January 2014 February 2014

SL Price Index 0.7751 0.8069
(0.5850) (0.5769)

Junk Food Share 0.0567 0.0639
(0.0596) (0.0631)

Total Expenditure 477.96 448.33
(325.43) (302.09)

This table contains the mean and standard deviation (in parenthesis beneath the means) for the variables that
we use in our analysis

C Application with Different Prices

Below are the results when we control for prices a little differently. Here, price is controlled

such that price is centered around the .4 quantile. This serves as a robustness check on the

results from our empirical application of the paper. The overall trends are consistent in both

cases.
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Figure 20: Estimates of Elasticity of demand using: α = 6. For this sample, N = 8, 631

The only difference of significance is that the decline of mean Elasticity of Demand does

not change as much for low-income vs. high-income individuals (see Figure 20 compared to
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Figure 21: Joint distributions are calculated by multiplying the conditional distribution by the
distribution of expenditure.

Figure 10). For example, in our base case, mean income elasticity for low-income individuals

is about 0.8 and for high income individuals it is about 0.5. In our adjusted case, the income

elasticity of low-income individuals is 0.8 while for high income individuals it’s about 0.6. This

is a minor difference and the results from these estimates easily fit in our confidence bands from

our paper.
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Figure 22: Estimates of the marginal effect of an additional dollar of expenditure on junk food
using: α = 6. For this sample, N = 8, 631
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Our marginal effects estimation in this case is also very similar (see Figures 12 and 22).

These results imply that these results are consistent across different prices, as long as prices

are properly controlled for.

Expenditure

M
ar

gi
na

l E
ffe

ct

 5 

 5 

 10 

 10 

 15 
 20 

 25 
 30 

 35  40 

 45 
 50 

100 200 300 400 500

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10 Conditional Means

Conditional Density of Marginal Effect: Case 2

0.00 0.02 0.04 0.06 0.08 0.10

0
10

20
30

40
50

Marginal Effect

D
en

si
ty

Income Quantiles

0.2
0.4
0.6
0.8

Quantiles of Conditional Marginal Effect: Case 2

Figure 23: Conditional density and different expenditure quantiles of the estimates of marginal
effect.
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Figure 24: Joint distributions are calculated by multiplying the conditional distribution by the
distribution of expenditure
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[2] Allcott, H., Diamond, R., and J.-P. Dubé, 2017, The Geography of Poverty and Nutrition:

Food Deserts and Food Choices Across the United States, National Bureau of Economic

Research.

[3] Altonji, J., and R. Matzkin (2005): Cross Section and Panel Data Estimators for Nonsep-

arable Models with Endogenous Regressors, Econometrica, 73, 1053–1103.

[4] Andersen, E. (1970):Asymptotic Properties of Conditional Maximum Likelihood Estima-

tors, Journal of the Royal Statistical Society Series B, 32, 283-301.

[5] Arellano, M. (2003): Discrete Choice with Panel Data,Investigaciones Economicas, 27,

423-458.

[6] Binkley, J. K., and A. Golub, 2011, Consumer Demand for Nutrition Versus Taste in Four

Major Food Categories, Agricultural Economics, 42(1), 65-74.

[7] Billingsley, P., Probability and Measure, 3rd ed., 1995, Wiley, New York.

[8] Blaylock, J., Smallwood, D., Kassel, K., Variyam, J., and L. Aldrich, 1999, Economics,

Food Choices, and Nutrition, Food Policy, 24(2-3), 269-286.

[9] Bochner, S. and K. Chandrasekharan, Fourier Transforms, 1949, Princeton University

Press.

[10] Carlson, A., and E. Frazão, 2012, Are Healthy Foods Really More Expensive? It De-

pends How you Measure the Price, United States Department of Agriculture Economic

Information Bulletin, 96.

[11] Cawley, J., Meyerhoefer, C., Biener, A., Hammer, M., and N. Wintfeld, 2015, Savings in

Medical Expenditures Associated with Reductions in Body Mass Index among US Adults

with Obesity, by Diabetes Status, Parmacoeconomics, 33(7), 707-722.

[12] Chamberlain, G. (1982), Multivariate Regression Models for Panel Data, Journal of Econo-

metrics, 18(1), 5 - 46.

[13] Chamberlain, G. (1984): Panel Data, in Z. Griliches and M.D. Intriligator (eds.), Handbook

of Econometrics, Vol. 2. New York: North Holland.

[14] Chamberlain, G. (2010): Binary Response Models for Panel Data: Identification and

Information, Econometrica, 78(1), 159-168.

44



[15] Chen, S.E., Liu, J., and J. K. Binkley (2012). An Exploration of the Relationship between

Income and Eating Behavior, Agricultural and Resource Economics Review, 41(1), 82-91.

[16] Chernozhukov, V., Fernandez-Val, I., Hahn, J., and W. Newey (2009): Identification and

Estimation of Marginal Effects in Nonlinear Panel Models, MIT Working Paper.

[17] Chernozhukov, V., Fernandez-Val, I., Hoderlein, S., Holzmann, H., and W. Newey (2015):

Quantile Derivatives and Panel Data, Journal of Econometrics, 188 (2), 378-392.

[18] Chernozhukov, V., Fernández-Val, I., and W. Newey (2018). Nonseparable multinomial

choice models in cross-section and panel data. Journal of Econometrics.

[19] Deaton, A., and J. Muellbauer, 1980, An Almost Ideal Demand System, The American

Economic Review, 70(3), 312-326.

[20] Delaigle, A., and Meister, A. (2007). Nonparametric regression estimation in the het-

eroscedastic errors-in-variables problem. J. Amer. Statist. Assoc. 102, 1416–1426.

[21] Delaigle, A. and Meister, A. (2008). Density estimation with heteroscedastic error.

Bernoulli 14, 562–579.

[22] Drewnowski, A., and N. Darmon, 2005, The Economics of Obesity: Dietary Energy Density

and Energy Cost, The American Journal of Clinical Nutrition, 82(1), 265S-273S.

[23] Drewnowski, A., and P. Eichelsdoerfer, 2010, Can Low-Income Americans Afford a Healthy

Diet, Nutrition Today, 44(6), 246.

[24] Drewnowski, A., and S. E. Spector, 2004, Poverty and Obesity: the Role of Energy Density

and Energy Costs, The American Journal of Clinical Nutrition, 79(1), 6-16.

[25] Einav, L., Leibtag, E., and A. Nevo (2010). Recording Discrepencies in Nielsen Homescan

Data: Are They Present and Do They Matter? Quantitative Marketing and Economics,

8(2), 207-239.

[26] Evdokimov, K. (2010). Identification and estimation of a nonparametric panel data model

with unobserved heterogeneity. Princeton University, Working paper.

[27] Fan, J. (1991). On the optimal rates of convergence for non-parametric deconvolution

problems. Ann. Statist. 19, 1257–1272.

[28] Finkelstein, E. A., Trogdon, J. G., Cohen, J. W., and W. Dietz, 2009, Annual Medical

Spending Attributable to Obesity: Payer and Service-Specific Estimates, Health Affairs,

28(5), w822-w831.

45



[29] Golan, E. H., Steward, H., Kuckler, F., and D. Dong, 2008, Can Low-Income Americans

Afford a Healthy Diet?, Amber Waves, 6(5), 26-33.

[30] Graham, B., and J. Powell (2008): Identification and Estimation of ’Irregular’ Correlated

Random Coefficient Models, NBER Working Paper 14469.

[31] Hausman, J., Hall, B., and Z. Griliches (1984): Econometric Models for Count Data with

an Application to the Patents-R&D Relationship,Econometrica, 52, 909-938.

[32] Hoderlein, S., and E. Mammen (2007): Identification of Marginal Effects in Nonseparable

Models without Monotonicity, Econometrica, 75, 1513 - 1519.

[33] Hoderlein, S., and S. Mihaleva, 2008, Increasing the Price Variation in a Repeated Cross

Section, Journal of Econometrics, 247(2), 316-325.

[34] Hoderlein, S., and H. White (2012): Nonparametric Identification in Nonseparable Panel

Data Models with Generalized Fixed Effects, Journal of Econometrics, 168 (2), 300–314 .

[35] Honore, B., and E. Kyriazidou (2000): Panel Data Discrete Choice Models with Lagged

Dependent Variables, Econometrica, 68, 839-874.

[36] Imbens, G., and W. Newey (2009): Identification and Estimation of Triangular Simulta-

neous Equations Models Without Additivity,Econometrica, 77, 1481-1512.

[37] Kyriazidou, E. (1997):Estimation of a Panel Data Sample Selection Model, Econometrica,

65, 1335-1364.

[38] Lewbel, A., 1989, Identification and Estimation of Equivalence Scales under Weak Sepa-

rability, The Review of Economic Studies, 56(2), 311-316.

[39] Lin, X., 2018, Snap and Food Consumption Among the Elderly: a Collective Household

Approach with Homescan Data, National Bureau of Economic Research.

[40] Manski, C. (1987): Semiparametric Analysis of Random Effects Linear Models from Binary

Panel Data, Econometrica, 55, 357-62.

[41] Murtazashvili, I. and J. Wooldridge (2008): Fixed Effects Instrumental Variables Esti-

mation in Correlated Random Coefficient Panel Data Models, Journal of Econometrics,

142(1), 539-552.

[42] World Health Organization, 2015, Guideline: sugars intake for adults and children.

[43] Rasch. G. (1960): Probabilistic Models for some Intelligence and Attainment Tests, Den-

marks Paedagogiske Institut, Copenhagen.

46



[44] Rasch, G. (1961): On the General Law and the Meaning of Measurement in Psychol-

ogy,Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Proba-

bility, Vol. 4. Berkeley: UC Press.

[45] Rider, J., Berck, P., and S. B. Villas-Boas, 2012, Eating Healthy in Lean

Times: The Relationship Between Unemployment and Grocery Purchasing Patterns.

https://www.aeaweb.org/conference/2016/retrieve.php?pdfid=1212

[46] Robbins, J. M., Vaccarino, V., Zhange, H., and S. V. Kasl, 2001, Socioeconomic Status

and Type 2 Diabetes in African American and Non-Hispanic White Women and Men:

Evidence from the Third National Health and Nutrition Examination Survey. American

Journal of Public Health 91(1), 76.

[47] Williams, D., Probability with Martingales, 1991, Cambridge University Press.

[48] Wooldridge, J. (2002): Econometrics of Cross Section and Panel Data. Cambridge, MA:

MIT Press.

[49] Wooldridge, J. (2005): Fixed-Effects and Related Estimators for Correlated Random-

Coefficient and Treatment-Effect Panel Data Models,The Review of Economics and Statis-

tics, 87, 385-390.

47


