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Abstract

We show that outcomes (parameter estimates and R-squareds) of regressions of prices on
fundamentals allow us to recover exact measures of the ability of asset prices to aggregate dispersed
information. We formally show how to recover absolute and relative price informativeness in dynamic
environments with rich heterogeneity across investors (regarding signals, private trading needs, or
preferences), minimal distributional assumptions, multiple risky assets, and allowing for stationary
and non-stationary asset payoffs. We implement our methodology empirically, finding stock-specific
measures of price informativeness for U.S. stocks. We find a right-skewed distribution of price
informativeness, measured in the form of the Kalman gain used by an external observer that
conditions its posterior belief on the asset price. The recovered mean and median are 0.05 and 0.02
respectively. We find that price informativeness is higher for stocks with higher market capitalization
and higher trading volume.
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1 Introduction

Financial markets play an important role by aggregating dispersed information about the fundamentals
of the economy. By pooling different sources of information, asset prices act as a public signal to any
external observer, potentially influencing individual decisions. This view, uncontested within economics
and traced back to Hayek (1945), has faced significant challenges when translating its theoretical findings
to more applied settings because measuring the informational content of prices is not an easy task.1

In particular, one may be interested in understanding whether different markets aggregate dispersed
information to different degrees. However, without direct measures of the informational content of
prices (price informativeness), how can one know which markets are better at aggregating information?

In this paper, we develop a methodology that allows us to recover exact stock-specific measures
of price informativeness. Formally, we show that the outcomes (parameters and R-squareds) of linear
regressions of prices on fundamentals are sufficient to identify absolute and relative price informativeness
within a large class of linear asset demand models that feature rich heterogeneity across investors
(regarding signals, private trading needs, or preferences) and minimal distributional assumptions.2

Throughout the paper, we formally define and study two measures of the informational content
of prices: absolute and relative price informativeness. Absolute price informativeness measures the
amount of information contained in the price for an investor who only learns about an asset’s payoff
from the price. We formally define absolute price informativeness as the precision of the unbiased
signal about the innovation to the fundamental revealed by asset prices. Relative price informativeness
measures the informational content of prices relative to the total amount of uncertainty about the
asset’s payoff. Formally, relative price informativeness corresponds to the ratio between absolute price
informativeness and the precision of the innovation to the fundamental, which measures the underlying
source of uncertainty. This measure captures how much can be learned from the price relative to the
total amount that can be learned.

The main contribution of this paper is methodological. For illustration, let us describe how price
informativeness can be recovered. In a stationary environment, consider running the following regression
relating the ex-dividend price at which an asset is traded in period t, pt, to the asset payoff to be realized
at the end of period t, θt+1, and its contemporary payoff, θt,

pt = β0 + β1θt + β2θt+1 + εt. (R0)

The equilibrium relation that supports Regression R0 provides the foundation for our procedure
to identify price informativeness. We show that β2

2
Var[εt] exactly corresponds to absolute price

informativeness, that is, to the precision of the unbiased signal about the innovation to the fundamental
1Hayek (1945) highlights the relevance of price informativeness as follows: “The economic problem of society is (...)

rather a problem of how to secure the best use of resources known to any of the members of society, for ends whose relative
importance only these individuals know. Or, to put it briefly, it is a problem of the utilization of knowledge which is not
given to anyone in its totality.”

2Given that linear asset demands can be interpreted as an approximation to more general models, one should expect
our results to be valid more broadly in an approximate sense.

2



contained in asset prices. We structurally map the error term εt to the noise component of asset prices,
and we show how it can arise from different primitive assumptions (e.g. random heterogeneous priors,
multiple risky assets, unlearnable component of the fundamental, etc.).

We also show that the difference between the R-squared of Regression R0 and the R-squared of an
identical regression that does not include θt+1 can be directly mapped to relative price informativeness.
Formally, we show that a corrected incremental R-squared between both regressions exactly determines
relative price informativeness. Under Gaussian primitives, we also show that the same difference directly
determines the Kalman gain that an external observer attributes to the innovation to the fundamental
when forming a posterior about the future payoff of the asset. Importantly, our results are not only
qualitative, but they provide exact measures of informativeness. For instance, finding a Kalman gain
of K = 0.2 implies that an external observer weighs the information contained in the price by 20%
relative to his prior.

It is worth highlighting that our identification procedure does not make parametric assumptions
regarding the underlying source of noise and does not require that investors form beliefs using Bayesian
updating. We also discuss in detail how our results relate to alternative measures that relate to price
informativeness, like the posterior variance of the fundamental or forecasting price efficiency measures.

Although we derive our identification results without the need to fully specify the model primitives,
we explicitly develop a fully microfounded dynamic model of trading in Section 4 of the paper. In the
context of this model, we provide a new identification result that allows us to recover, using aggregate
information, the precision of investors’ private signals and the volatility of the aggregate component
of investors trading needs (noise). To our knowledge, this result provides the first methodology that
transparently recovers the precision of investors’ signals precision in REE models. It also provides a
direct methodology to capture the amount of noise trading in REE models.

We systematically extend our methodology to more general environments. In particular, we show
how to adapt our methodology to allow for unit-roots in the process followed by the fundamental. When
allowing for non-stationary payoffs, we show how to implement our results in difference form. We also
extend our results to include multiple risky assets, payoffs with learnable and unlearnable components,
and public signals about the asset payoff. In all scenarios, our methodology remains valid to answer the
question of how much an external observer can learn from the price. These extensions highlight that
the exact interpretation of the noise term depends on the exact assumptions of the model. Throughout
the paper, we discuss at length the rationale behind our measures of informativeness, and how the
exercise of identifying price informativeness is distinct from exploring predictability relations.

After describing the methodology, we proceed to implement our results empirically, recovering actual
measures of price informativeness. Exploiting our theoretical framework, we run regressions of prices on
fundamentals at the stock level to recover exact measures of absolute and relative price informativeness.
Crucially, by exploiting time series variation for a given stock, we are able to recover exact measures
of price informativeness that are asset-specific. Our theoretical results allow us to provide an exact
structural interpretation of our estimates and their magnitudes.

To implement our identification results empirically, we use stock market values and quarterly
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earnings as a measure of fundamentals. Using data from 1963 to 2017, compute exact measures of price
informativeness for each individual stock in our sample using our identification results. Our empirical
implementation generates distributions of absolute price informativeness, relative price informativeness,
and Kalman gains across stocks. We find a right skewed distribution of Kalman gains, with a mean
and median Kalman gain of 0.05 and 0.02. These numbers imply that, for half of the stocks in the
sample, the information contained in the price would weight less than 2% in the posterior of a Bayesian
investor. The magnitudes of these estimates suggest that prices contain substantially more noise than
information.

The distribution of stock-specific estimates exhibits substantial cross-sectional dispersion. This
heterogeneity in price informativeness at the stock level is ubiquitous across stock characteristics such
as the exchange in which they are traded, their market capitalization, the volume traded and their
corresponding industry. We find that price informativeness is higher for stocks traded in the NYSE,
with higher market capitalization, and traded more frequently. By comparing the estimates on the first
and second half of our sample, we find that price informativeness increased for 58% of the stocks.

Related Literature Our theoretical framework builds on the literature that studies the role played
by financial markets in aggregating dispersed information, following Grossman and Stiglitz (1980),
Hellwig (1980), and Diamond and Verrecchia (1981), De Long et al. (1990), among others. Vives
(2008) and Veldkamp (2009) provide thorough reviews of this well-developed and growing body of
work.

While the role of financial markets aggregating information has been the subject of a substantial
theoretical literature, the development of empirical measures of price informativeness is more recent.
The work of Bai, Philippon and Savov (2015) is perhaps the closest. Leaving aside that we consider a
substantially richer framework than theirs, there are three significant differences between their approach
and ours. First, we focus on the ability of financial markets to aggregate information while their focus
is on the allocation of capital. As we show in the paper, the measure they use to make inferences about
price informativeness (forecasting price efficiency, VFPE) does not allow to separately identify the role of
financial markets aggregating dispersed information from the volatility of the fundamental. While their
measure VFPE is relevant to infer whether the allocation of capital in financial markets has improved
or worsened, our results show that it is not the right measure to understand whether financial markets
have become better at aggregating information. Forecasting price efficiency, VFPE , can be high due to
a low volatility of the fundamental or due to a high level of price informativeness. Second, since their
focus is on the forecasting power of prices (about future fundamentals), they focus on a regressions of
fundamentals on asset prices. Instead, we focus on the relation between an endogenous variable (price)
and exogenous variables (fundamentals), which avoids potential biases in the estimation. Finally, they
estimate VFPE by running cross-sectional regressions, which implicitly assumes that the fundamental
and noise are distributed identically across all of the stocks in their sample. Instead, we exploit time
series variation to recover asset specific measures of informativeness.

Following the approach in Bai, Philippon and Savov (2015), Farboodi, Matray and Veldkamp (2017)
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also use forecasting price efficiency to infer changes in price informativeness. They find that while
average price informativeness increased in the S&P500, it decreased for the whole sample. They argue
that this can be due to a composition effect in the S&P500 as price informativeness increased for large
firms and decreased for small ones. Kacperczyk, Sundaresan and Wang (2018) find that forecasting
price efficiency increases with ownership by foreign investors.

There exists earlier work that proposes ad-hoc variables to study the informational content of
prices. Influenced by the predictions of the CAPM/APT frameworks and following Roll (1988), Morck,
Yeung and Yu (2000) study regressions of returns on a single or multiple factors and informally argue
that the R2 of such regressions can be used to capture whether asset prices are informative/predictive
about firm-specific fundamentals. This measure, sometimes referred to as price nonsynchronicity, has
been used in several empirical studies that link price informativeness to capital allocation. Wurgler
(2000) finds that countries with higher price nonsynchronicity display a better allocation of capital.
Durnev, Morck and Yeung (2004) document a positive correlation between price nonsynchronicity
and corporate investment. Chen, Goldstein and Jiang (2006) show a positive relation between the
sensitivity of corporate investment to price and two measures of the information contained in prices,
price nonsynchronicity and the probability of informed trading (PIN), and conclude that managers
learn from the price when making corporate investment decisions.3

More recently, Weller (2018) uses a price jump ratio to measure how much information enters prices
relatively to how much is potentially acquirable at the stock level. Using this measure, he finds that
algorithmic trading decreases the amount of information that is incorporated in prices.

While these results uncover interesting empirical relations, the measures used by this body of work
do not have a structural interpretation. Hou, Peng and Xiong (2013) forcefully highlight the importance
of this structural link in the context of the return R2. They question the link between return R2 and
price informativeness theoretically, in rational and behavioral settings, and empirically. Moreover,
even if the existing measures may correlate with price informativeness, it is impossible to translate
the magnitude of the changes in these variables into changes in the informational content of prices
without a structural interpretation. By showing how to recover exact measures of stock specific price
informativeness, we can reach quantitative conclusions about price informativeness.

As in any structural model, the measure of informativeness that we recover is linked to our
assumptions on the behavior of investors and the market structure. While our framework is general
along several dimensions, there is scope to think about how to identify price informativeness in
alternative models of trading that depart from our linearity assumption. In particular, our analysis
purposefully abstracts from feedback between prices and fundamentals, summarized in Bond, Edmans
and Goldstein (2012), and tested in and Chen, Goldstein and Jiang (2006), which introduces
fundamental non-linearities that can only be considered using full-information methods.

3The PIN, developed in Easley, O’Hara and Paperman (1998), seeks to measures the probability of an informed trade
in a model with noise and informed traders.
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Outline Section 2 describes the assumptions of our baseline model, formally introduces the definitions
of absolute and relative price informativeness, and presents our main results regarding how to recover
price informativeness from linear regressions. Section 3 introduces a fully microfounded model that maps
to the assumptions on endogenous objects made in Section 2 and that allows us to fully recover model
primitives. Section 4 extends our methodology to more general environments, including non-stationary
payoffs, multiple risky assets, and payoffs with learnable and unlearnable components. Section 5
empirically implements the methodology introduced in the paper, while Section 6 concludes. All proofs
and derivations are in the Appendix.

2 Identifying Price Informativeness

In this section, we introduce the main identification results in the context of a dynamic model with a
single risky asset whose payoff process is stationary. We extend the results to more general environments
in Section 4.

2.1 Model

Time is discrete, with periods denoted by t = 0, 1, 2, . . . ,∞. There is a continuum of investors, indexed
by i ∈ I, who trade a risky asset in fixed supply each period at a price pt. The payoff of the risky asset
in period t+ 1, θt+1, is given by the following stationary AR(1) process

θt+1 = µθ + ρθt + ηt,

where µθ is a scalar, |ρ| < 1, and where the innovations to the payoff, ηt, have mean zero, finite variance,
and are independently distributed. Investors trade in period t with imperfect information about the
innovation to the payoff, ηt, which is realized at the end of the period. When trading in period t, the
contemporaneous payoff θt has already been realized and is common knowledge to all investors. We
often refer to the asset payoff θt+1 as the fundamental.

Each period t, an investor i observes a private signal sit of the innovation to the payoff ηt.4 Investors
have an additional motive for trading the risky asset that is orthogonal to the asset payoff. We denote
by nit investor i’s additional trading motive in period t. These additional trading motives are private
information of each investor and are potentially random in the aggregate.

We derive the main results of the paper under two assumptions. The first assumption imposes an
additive informational structure and guarantees the existence of second moments, while the second
assumption imposes a linear structure for investors’ equilibrium asset demands. In general, linear
demands can be interpreted as a first-order approximation to other forms of asset demands, so one may
expect our results to approximately hold in a larger class of models. Both assumptions facilitate the
aggregation of individual demands in order to yield a linear equilibrium pricing function.

4Assuming that investors observe private signals about the payoff, θt+1, or its innovation, ηt, is formally equivalent,
since θt is known to investors when trading in period t.
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Assumption 1. (Additive noise) Each period t, every investor i receives an unbiased private signal
sit about the innovation to the payoff, ηt, of the form

sit = ηt + εist, (1)

where εist, ∀i ∈ I, ∀t , are random variables with mean zero and finite variances, whose realizations are
independent across investors and over time. Each period t, every investor i has a private trading need
nit, of the form

nit = nt + εint, (2)

where nt is a random variable with finite mean, denoted by µn, and finite variance, and where εint, ∀i ∈ I,
∀t , are random variables with mean zero and finite variances, whose realizations are independent across
investors and over time.

Assumption 1 imposes restrictions on the noise structure in the signals about the innovation to the
fundamental ηt and on all other sources of investors’ private trading needs by making them additive
and independent across investors. This assumption does not restrict the distribution of any random
variable beyond the existence of finite first and second moments. Our second assumption describes the
structure of the investors’ net demands for the risky asset ∆qit.

Assumption 2. (Linear asset demands) Investors’ net asset demands satisfy

∆qit = αiss
i
t + αiθθt + αinn

i
t − αippt + ψi,

where αis, αiθ, αin, αip, and ψi are individual demand coefficients, determined in equilibrium.

Assumption 2 imposes a linear structure on the individual investors’ net asset demand for the risky
asset. More specifically, that an individual investor’s net demand is linear in his signal about the
fundamental and his private trading needs, as well as in the asset price pt and the current realization of
the fundamental θt. It also allows for an individual specific invariant component ψi. In Section 3, we
provide a fully specified model that is consistent with Assumptions 1 and 2 and briefly describe other
models that are consistent with both assumptions.

Given our assumptions, market clearing for the risky asset implies that
´

∆qitdi = 0, ∀t. Market
clearing, exploiting a Law of Large Numbers, yields an equilibrium pricing equation of the form

pt = αs
αp
ηt + αθ

αp
θt + αn

αp
nt + ψ

αp
, (3)

where we denote the cross sectional averages of individual demand coefficients by αs =
´
I α

i
sdi,

αp =
´
I α

i
pdi, αθ =

´
I α

i
θdi, αn =

´
I α

i
ndi, and ψ =

´
I ψ

idi. The linearity of net demands implies
that the equilibrium asset price is also linear in the future realization of the fundamental θt+1, the
current fundamental θt, and the common component of investors’ private trading needs nt. Without
loss of generality, we assume that nt and ηt are independent.5 An interpretation of Equation (3) as a
linear regression provides the foundation for our procedure to identify price informativeness.

5In the Appendix, we consider the case in which the aggregate noise nt is correlated with the fundamental ηt and show
that all our identification results remain valid.

7



Although the equilibrium price pt is the main endogenous observable variable generated by the
model, the relevant variable from the perspective of information aggregation is p̂t, defined by

p̂t ≡
αp
αs
pt −

αθ
αs
θt −

αn
αs
µn −

ψ

αs
, (4)

which corresponds to the unbiased signal of the innovation ηt contained in the price pt. Note that p̂t
corresponds to p̂t = ηt + αn

αs
(nt − µn) , implying that E [p̂t|θt+1, θt] = ηt. Because the contemporary

realization of the fundamental θt is observed at date t, information about the innovation ηt translates
one-for-one to information about the asset payoff. Using the definition of p̂t, we can formally define the
two measures of price informativeness that we show how to recover in this paper as follows.6

Definition 1. (Absolute price informativeness) We define absolute price informativeness as the
precision of the unbiased signal about the innovation to the fundamental payoff θt+1 contained in the
asset price pt. We denote absolute price informativeness by τp̂, which formally corresponds to

τp̂ ≡ (Var [p̂t|θt+1, θt])−1 =
(
αs
αn

)2
τn, (5)

where τn ≡ Var [nt]−1.

Absolute price informativeness increases when investors trade more aggressively on their private
signals (high αs), when they trade less aggressively on their private trading motives (low αn), and when
the aggregate component of trading motives is less volatile (has a high precision τn). Absolute price
informativeness reveals, for given realizations of the future and current fundamentals θt+1 and θt, the
possible dispersion of observed equilibrium prices. In a statistical sense, it indicates whether the signal
contained in the price is close to the fundamental. Consequently, absolute price informativeness captures
how much information about the fundamental can be gained by an uninformed external observer by
exclusively observing the price. When absolute price informativeness is high, an external observer
receives a very precise signal about the fundamental by observing the asset price pt. On the contrary,
when price informativeness is low, an external observer learns little about the fundamental by observing
the asset price pt.

Definition 2. (Relative price informativeness) We define relative price informativeness as the
ratio between absolute price informativeness and the precision of the innovation to the fundamental.
We denote relative price informativeness by τRp̂ , which formally corresponds to

τRp̂ ≡
τp̂
τη
, (6)

where τη ≡ Var [ηt]−1.
6The measures of price informativeness that we study in this paper are the relevant measures for an external observer

who learns about the fundamental from the price. See Davila and Parlatore (2018) for a discussion on how to link external
price informativeness to internal price informativeness, which may be the relevant object of interest for investors within
the model in some environments. That paper systematically studies the subtle relation between the volatility of the
equilibrium price pt and the precision of the unbiased signal about the fundamental innovation p̂t.
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Relative price informativeness simply corrects absolute price informativeness for the precision of
the innovation to the fundamental. This measure expresses how much can be learned by observing the
price relative to the volatility of the fundamental. As we will show below, there is a tight connection
between relative price informativeness and the Kalman gain of an external observer in Gaussian models
with Bayesian updating.

We would like to conclude the description of the model environment with the following remarks.

Remark 1. Precision of price as signal of fundamentals versus posterior variance. The variance of
the signal about the innovation to the fundamental has the advantage that it can be derived without
the need to make assumptions about how an external observer updates its information about the
fundamental. In our setup, it is possible to calculate Var [p̂t|θt+1, θt] without making distributional
assumptions beyond the existence of second moments. However, to calculate the posterior variance
Var [θt+1|p̂t, θt], it is necessary to make assumptions regarding the distribution of priors and signals.
For this reason, τp̂ as defined in Eq. (5) is a more appealing measure of informativeness, since it can
be derived (and, as we show in this paper, recovered from observables) without specifying the nature
of updating/filtering used by investors. We further discuss the adequacy of the measures just defined
and other measures of informativeness after introducing our main results in Section 3.

Remark 2. Cross-sectional Heterogeneity. Our framework allows for a rich cross-sectional heterogeneity
among investors. In particular, it accommodates heterogeneity in investors’ risk aversion, in the
precision of their information, and in the distribution of their idiosyncratic trading motives. For
instance, our assumptions can accommodate models with informed and uninformed traders, which
can be mapped to environments in which one set of agents does not observe any private signal, and
those with classic noise traders, which can be mapped to environments in which one set of agents trades
fixed amounts regardless of the price or other features of the environment.

Remark 3. Distributional Assumptions. It’s worth highlighting that Assumption 1 does not require
normality of signals or fundamentals, so our main results in Propositions 1 and 2 do not rely on
distributional assumptions beyond the existence of well-defined first and second moments. However,
at times, we discuss how our results can be more easily interpreted if we assume that signals and
fundamentals have a Gaussian structure – we explicitly state in the text for which results/interpretations
normality is needed.

Remark 4. Multiple Assets/General Shock Structure. For clarity, we introduce our results in the context
of a single asset model. We show in Section 4.2 how to reinterpret our results when investors can trade
many risky assets with payoff processes that are potentially correlated across assets and with the
aggregate trading needs. The more general framework studied in Section 4.2 shows how to reinterpret
our results when there are multiple risky assets. In Section 4.1, we extend the methodology to non-
stationary processes. We also show in Sections 4.3 how to interpret our results when the payoff features
a learnable and an unlearnable component.
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2.2 Identification Results

Exploiting Assumptions 1 and 2, as well as market clearing, we now proceed to derive Propositions 1
and 2, which provide the main identification results of the paper. We can rewrite the equilibrium price
introduced in Equation (3) in terms of the future and contemporary asset payoffs as follows:

pt =
(
αθ
αp
− αs
αp
ρ

)
θt + αs

αp
θt+1 + αn

αp
nt + ψ

αp
. (7)

This reformulation of the equilibrium pricing equation allows us to identify price informativeness
from measures of prices and fundamentals. We sequentially show how to use the outcomes (coefficients
and R-squareds) of a regression of prices on fundamentals to exactly recover measures of absolute and
relative price informativeness.

Proposition 1. (Identifying absolute price informativeness) Assume that the additive noise
assumption and the linear asset demands assumption are satisfied. Let β0, β1, and β2 denote the
coefficients of the following regression of prices on fundamentals,

pt = β0 + β1θt + β2θt+1 + εt, (R1)

where pt denotes the ex-dividend price at the beginning of period t, θt+1 denotes the measure of
fundamentals realized over period t, and where we denote the variance of the error by σ2

ε = Var [εt]
. Then, absolute price informativeness, τp̂, can be recovered by

τp̂ = β2
2
σ2
ε

. (8)

The proof of Proposition 1 relies on finding the right combination of parameters in our econometric
specification defined in Regression R1, that maps into the definition of absolute price informativeness,
τp̂. By comparing Equation (7) with Regression R1, it is easy to verify that

β2
2
σ2
ε

=

(
αs
αp

)2

(
αn
αp

)2
τ−1
n

=
(
αs
αn

)2
τn = τp̂,

which proves our statement. Intuitively, a strong co-movement between the price pt and the fundamental
θt+1 (high β2) and a high explanatory power of the regression (low σ2

ε) indicates that prices are more
informative. Since the error in Regression R1 is orthogonal to the regressors, OLS provides consistent
estimates of β2 and σ2

ε , and consequently of τp̂.7

7Formally, when β̃2 and σ̃2
ε denote consistent estimates of β2 and σ2

ε in Regression R1, τp̂ can be consistently estimated
as τ̃p̂ = β̃2

2
σ̃2
ε
, since

plim (τ̃p̂) = plim
(
β̃2

2
σ̃2
ε

)
= β2

2
σ2
ε

=

(
αs
αp

)2

(
αn
αp

)2
τ−1
n

=
(
αs
αn

)2
τn = τp̂.

Throughout the paper we distinguish between economic identification, understood as the ability to recover model
parameters or other endogenous objects of interest from observable variables, and consistent estimation. The focus of
this paper is on identification, although at times with discuss the consistency properties of standard estimators when
implementing the results of our model.
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It may seem that Proposition 1 allows us to recover relative price informativeness by computing
and dividing by the precision of the innovation to the fundamental τη. However, this procedure would
require to directly estimate the process for θt+1, which would require parametric assumptions on the
process. Instead, in Proposition 2, we show how to directly recover relative price informativeness,
exclusively as a function R-squareds of regressions of prices on fundamentals.

Proposition 2. (Identifying relative price informativeness) Assume that the additive noise and
the linear asset demands assumptions are satisfied. Let R2

|θt+1,θt
≡ 1 − Var[εt]

Var[pt] be the R-squared of
Regression R1. Let R2

|θt, ζ0, and ζ1 respectively denote the R-squared and the coefficients of the following
regression of prices on lagged fundamentals

pt = ζ0 + ζ1θt + εζt . (R2)

Then, relative price informativeness τRp̂ can be recovered by

τRp̂ = τp̂
τη

=
R2
|θt+1,θt

−R2
|θt

1−R2
|θt+1,θt

.

Note that the recovered value of relative price informativeness τRp̂ has to be non-negative, since
R2
|θt+1,θt

≥ R2
|θt and R

2
|θt+1,θt

∈ [0, 1]. Intuitively, τRp̂ is increasing on R2
|θt+1,θt

for two reasons: a higher
R2
|θt+1,θt

reflects a lower residual uncertainty after observing the price and accounting for the lagged
fundamental (

(
1−R2

|θt+1,θt

)
is lower) and a larger reduction in uncertainty after observing the price

relative to only accounting for the lagged fundamental (
(
R2
|θt+1,θt

−R2
|θt

)
is higher). By directly relying

on Proposition 2 there is no need to directly estimate τη or the AR coefficient ρ.
It may be helpful to relate relative price informativeness to the Kalman gain used by an outside

observer. In particular, if we further assume that all primitive random variables are Gaussian, a non-
linear transformation of relative price informativeness maps to the Kalman gain of an external Bayesian
observer, as expressed in the following corollary to Proposition 2.8

Corollary. (Kalman gain) Under a Gaussian information structure, the Kalman gain for an external
Bayesian observer, denoted by K, can be recovered as follows

K ≡ τp̂
τp̂ + τη

=
τRp̂

1 + τRp̂
=
R2
|θt+1,θt

−R2
|θt

1−R2
|θt

.

Note that Kalman gains must take values between 0 and 1. This feature makes them appealing from
the perspective of interpreting the results. When R2

|θt+1,θt
→ 1, the posterior of an external observer

fully disregards the prior information, putting all the weight on the price as a signal of the innovation.
8The Kalman gain corresponds to the relative weight given to the price as a signal about the fundamental. Formally,

the posterior distribution of an external observer who makes use of the price as a signal about the innovation to the
fundamental is given by

ηt|pt ∼ N
(
K · p̂t, (τp̂ + τη)−1) , where K = τp̂

τp̂ + τη
,

and p̂t corresponds to Equation (4).
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Figure 1: Kalman gain interpretation

On the contrary, when R2
|θt+1,θt

→ R2
|θt , an external observer does not update his prior at all after

observing the price. In the special case in which the payoff process is i.i.d., so the lagged fundamental
is irrelevant to predict future fundamentals, R2

|θt → 0, and the R-squared of a regression of prices on
fundamentals exactly maps to the Kalman gain of an external observer.

Figure 1 illustrates how to graphically interpret the recovered Kalman gain. Intuitively, the
denominator 1 − R2

|θt can be interpreted as the share of uncertainty to be learned after accounting
for the contemporary fundamental. The numerator can be interpreted as the share of information
learned by conditioning on the price relative to the contemporary fundamental. The Kalman gain
corresponds to the fraction of an external observer’s precision about the fundamental that is conveyed
by observing the price. For instance, a Kalman gain of 0.4 implies that 40% of investors’ ex-post
precision about the innovation to the fundamental comes from conditioning on the price.

Together, Propositions 1 and 2 show that the outcomes of regressions of prices on fundamentals
are sufficient to directly recover exact measure of absolute and relative price informativeness in
environments with rich heterogeneity across investors (regarding signals, private trading needs, or
preferences) and minimal distributional assumptions.

In the remainder of this section, we would like to make two remarks concerning our main results.

Remark 5. (Alternative measures of informativeness) Although we have advocated for the precision
of the unbiased signal about the fundamental as an appropriate measure to assess the role of prices
aggregating information, one can consider other measures. Two alternative measures are i) the posterior
variance of the fundamental given the price, that is, VP ≡ Var [θt+1|θt, pt], and ii) forecasting price
efficiency (FPE), which is given by VFPE ≡ Var [E [θt+1|θt, pt]].9 Under Gaussian uncertainty and
Bayesian updating, both measures can be expressed as

VP = (τη + τp̂)−1 = 1
1 + τRp̂

1
τη

and VFPE =
τRp̂

1 + τRp̂

1
τη
. (9)

9Note that the posterior variance of the fundamental and forecasting price efficiency are two sides of the same coin.
While the former measures the residual uncertainty about the fundamental after observing the price, the latter measures
how much uncertainty about the fundamental is dissipated by observing the realization of the price. Both measures are
linked through the Law of Total Variance, as follows

Var [θt+1|θt] = Var [E [θt+1|θt, pt]]︸ ︷︷ ︸
VFPE

+E

Var [θt+1|θt, pt]︸ ︷︷ ︸
VP

 .
In Bai, Philippon and Savov (2015) ρ = 0 and, hence, forecasting price efficiency is defined as VFPE ≡ Var [E [θt+1|pt]].
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From Equation (9), it is evident that both measures face the same challenge: They confound the
effect of uncertainty about the fundamental with price informativeness. For instance, VFPE , which is
the measure of informativeness used by Bai, Philippon and Savov (2015) and subsequent work, can be
be high because the fundamental is easy to predict (high τη) or because the price is a very precise signal
of the fundamental (high τRp̂ ). The same ambiguous inference applies to VP , suggesting that neither of
these measures is adequate to recover price informativeness.

Remark 6. (Predictability versus informativeness/Reverse regression) It’s worth highlighting that our
goal is not to predict future fundamentals from current prices. Instead, our goal is to understand
how good are financial markets at aggregating information. For this reason, it is natural to consider
regressions of prices (endogenous variable) on future fundamentals (exogenous), even though this entails
considering the regression of a variable observable in period t on a explanatory variable realized in the
future. Even if one is not interested in predictability, one may wonder why not run regressions of
fundamentals on prices, since this type of regression can be use for predictive purposes. This would
imply reinterpreting Regression R1 as follows

θt+1 = γ0 + γ1θt + γ2pt + νt, (R3)

where γ0 = − ψ
αs
, γ1 = αθ

αs
−ρ, γ2 = αp

αs
, and νt = −αn

αs
nt. The main pitfall of this regression is that OLS

estimates of the coefficients and the residual variance will be biased, since Cov (pt, νt) = αn
αs

αn
αp

Var (nt) 6=
0.10 For this reason, given the question addressed in this paper and the exclusion restrictions imposed
by our model, it is more natural to consider regressions similar to R1.

Remark 7. (Irrelevance of Bayesian updating) Finally, it’s worth noting that the measures of absolute
and relative price informativeness do not require that investors update their beliefs by Bayesian
updating. This is an important consideration, since it allows for rich patterns of belief formation.
See Barberis (2018) and Gennaioli and Shleifer (2018) for recent accounts of the importance of non-
fully rational expectation formation. That said, any results presented in the form of Kalman gains rely
on the assumption that the external observer faces Gaussian uncertainty and uses Bayesian updating.

3 Fully Specified Environment

In our analysis so far, we have remained agnostic about the source of the noise that is impounded in
the price and the way in which investors learn from the price. In this section, we study a particular
dynamic learning model with overlapping generations that endogenously satisfies Assumptions 1 and
2. Our goal in describing this particular model is two-fold. First, it provides a tractable framework
that maps to the main assumptions on equilibrium objects made in Section 2. Second, it allows us to
provide a new identification result. Given the new set of assumptions, we are able to exactly recover,

10When ρ = 0, the bias of the OLS estimate of γ1 can be easily calculated: γ̃1 = κ
αp
αs

, where κ =(
αs
αp

)2
Var(θt)(

αs
αp

)2
Var(θt)+

(
αn
αp

)2
Var(nt)

.
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using aggregate information, the precision of investors’ private signals and the volatility of the aggregate
component of investors trading needs (noise).

3.1 Environment

Time is discrete, with periods denoted by t = 0, 1, 2, . . . ,∞. Each period t, there is a continuum of
investors, indexed by i ∈ I. Each generation lives two periods and has exponential utility over their
last period wealth. An investor born at time t has preferences given by

U (wt+1) = −e−γwt+1 ,

where γ is the coefficient of absolute risk aversion and wt+1 is the investor’s wealth in his final period.
There are two long-term assets in the economy: A risk-free asset in perfectly elastic supply, with return
R > 1, and a risky asset in fixed supply Q. The payoff of the risky asset each period t is given by

θt+1 = µθ + ρθt + ηt,

where µθ is a scalar, |ρ| < 1, and θ0 = 0. The dividend θt is realized and becomes common knowledge
at the end of period t−1. The innovation in the dividend, ηt, and, hence, θt+1 are realized and observed
at the end on period t. The innovations in the dividend are independently distributed over time.

We assume that investors’ private trading needs arise from random heterogeneous priors. This
is a particularly tractable formulation that sidesteps many of the issues associated with classic noise
trading and that prevents full revelation of information – see Davila and Parlatore (2017) for a thorough
analysis of this formulation. Formally, each investor i in generation t has a prior over the innovation
at time t given by

ηt ∼i N
(
ηit, τ

−1
η

)
,

where
ηit = nt + εiηt with εiηt

iid∼ N
(
0, τ−1

η

)
and nt ∼ N

(
µn, τ

−1
n

)
can be interpreted as the aggregate sentiment in the economy, where nt ⊥ εiηt for

all t and all i. The aggregate sentiment nt is not observed and acts as a source of aggregate noise in
the economy, preventing the price from being fully revealing.

Each investor i in generation t receives a signal about the innovation in the asset payoff ηt given by

sit = ηt + εist with εist ∼ N
(
0, τ−1

s

)
and εit ⊥ εjt for all i ⊥ j, and ηt ⊥ εit for all t and all i.

We focus on stationary equilibria in which demand functions are linear in the price and information
set of the investors.

Definition. (Equilibrium) A stationary rational expectations equilibrium in linear strategies is a set
of linear demand functions qit for each investor i in generation t and a price function pt such that: a)
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qit maximizes investor i’s expected utility given his information set for every possible price and b) the
price function pt is such that the market for the risky asset clears each period t, that is,

´
qitdi = 0.

There always exists a unique stationary rational expectations equilibrium in linear strategies. In
the Appendix, we characterize the equilibrium demand coefficients which are the basis to our procedure
to identify the parameters of the model.

3.2 Equilibrium Characterization and Identification Result

As we show in the Appendix, the asset demand submitted by investor i born in period t is given by
the solution to the following problem

max
qit

(
E
[
θt+1 +R−1pt+1|Iit

]
− pt

)
qit −

γ

2Var
[
θt+1 +R−1pt+1|Itt

] (
qit

)2
,

where Iit =
{
θt, s

i
t, η

i
t, pt

}
is the information set of an investor i in period t.

The optimality condition for an investor i in period t satisfies

qit = E
[
θt+1 +R−1pt+1|Iit

]
− pt

γVar
[
θt+1 +R−1pt+1|Iit

] .
In a stationary equilibrium in linear strategies, the equilibrium demand of investor i can be expressed
as

∆qit = αiθθt + αissit + αiηη
i
t − αippt + ψi, (10)

where αiθ, αin, αip, and ψi are individual equilibrium demand coefficients, whose expressions are derived
in the Appendix. Market clearing and the Strong Law of Large Numbers allows us to express the
equilibrium price in period t as

pt = αθ
αp
θt + αs

αp
ηt + αη

αp
nt + ψ

αp
,

and the unbiased signal of the innovation to the fundamental contained in the price can be defined as
p̂t = αp

αs

(
pt − αη

αp
µn − αθ

αp
θt − ψ

αp

)
, so

p̂t = ηt + αη
αs

(nt − µn) ,

as in Section 2. Note that p̂t|θt+1, θt ∼ N
(
ηt, τ

−1
p̂

)
, with absolute price informativeness given by

τp̂ = (Var [p̂|θt+1, θt])−1 =
(
αs
αη

)2

τn.

Lemma 1. (Assumptions 1 and 2 satisfied) The set of assumptions considered in Section 2 are such
that Assumptions 1 and 2 are endogenously satisfied. Therefore, the model described in this section is
a special case of the more general framework studied in Section 2.

We are ready to introduce the new identification result that allows to recover several primitives of
the model in this environment in the following Proposition.
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Proposition 3. (Identifying signal precision and trading needs precision) Consider the environment
described in Section 3 and assume that τ is = τs and τ in = τn, ∀i. Let β0, β1, and β2 denote the
coefficients of Regression R1, and let ζ0 and ζ1 denote the coefficients of Regression R2. The precision
of investors’ private signals τs, and the precision of the aggregate component of investors trading needs
(noise), τn, can be recovered as follows:

τs = τp̂

(
β2

1 +R−1ζ1 − β2

1
τRp̂
− 1

)
(Signal Precision)

τn = τp̂

(
β2

1 +R−1ζ1 − β2
− τRp̂

)−2
, (Noise)

where τp̂ and τRp̂ are respectively recovered as in Propositions 1 and 2 and R corresponds to the risk-free
rate.

Intuitively, in this model, β2 = αs
αp

can be interpreted as the share of total ex-post information
(measured in precisions) that is acquired by an investor either privately by observing a private signal,
or publicly, by conditioning on the price. When β2 is high, it means that investors priors are relatively
unimportant, and that investors mostly trade on private information or acquired public information,
which suggests that τs is likely to be high and that τn is likely to be low. When τp̂ and τRp̂ are high too,
this implies that it is likely that investors learn more from the price in relative terms, which suggest
that τs is likely to be low and that τn is likely to be high. A high ζ1 is associated with finding a low τs

and a high τn, given the other estimates, since it increases the amount of common public information.
To our knowledge, we provide the first approach that enables to directly recover measures of noise

trading in Rational Expectations models. However, it’s worth highlighting that the identification result
in Proposition 3 holds for a much more restrictive set of assumptions than the results in Propositions
1 and 2. In this section, we are taking a particular stance regarding the form of noise trading and we
are restricting the information structure to be homogeneous across investors.

4 Extensions

For expositional purposes, we have developed our approach in the context of the single asset model
with a stationary payoff process. However, it’s worth understanding how to extend our methodology
to more general environments. In this section, we extend our results to the case with non-stationary
payoffs, multiple risky assets, payoffs with learnable and unlearnable components, and public signals.

4.1 Non-stationary Payoff

It is well known, see e.g., Campbell (2017) for a recent discussion of the literature, that assuming that
measures of asset payoffs (dividends, earnings, etc) are non-stationary is often perceived as a better
assumption. We show how to adapt our results to an environment in which the asset payoff follows a
non-stationary process. Formally, we assume that the asset payoff follows a random walk with drift

∆θt+1 = µθ + ηt,
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which corresponds to our baseline specification setting ρ = 1.11 In this case, Equation (3) remains
valid, but the fact that the asset payoff and prices are non-stationary complicates the estimation.12

However, taking first differences of the equilibrium pricing equation, we get to the following expression
in differences

∆pt =
(
αθ
αp
− αs
αp

)
∆θt + αs

αp
∆θt+1 + αn

αp
∆nt, (11)

in which all variables are stationary. In this case, we can recover absolute price informativeness as
follows.

Proposition 4. (Identifying absolute price informativeness, non-stationary payoff) Assume
that the additive noise and the linear asset demands assumptions are satisfied. Let β0, β1, and β2

denote the coefficients of the following regression of prices on fundamentals,

∆pt = β0 + β1∆θt + β2∆θt+1 + εt, (R4)

where pt denotes the ex-dividend price at the beginning of period t, θt+1 denotes the measure of
fundamentals realized over period t, and where we denote the variance of the error by σ2

ε = Var [εt]
. Then, absolute price informativeness, τp̂, can be recovered as follows

τp̂ = 2 β2
2

Var [εt]
. (12)

Intuitively, since we can express Var [εt] in the following way,

Var [εt] =
(
αn
αp

)2

Var [∆nt] =
(
αn
αp

)2

2Var [nt] ,

we can combine Var [εt] and β2 to recover τp̂. As in the case in which payoffs are stationary, we can also
recover relative price informativeness without estimating the process for the fundamental by running
our regressions in differences, as follows.

Proposition 5. (Identifying relative price informativeness, non-stationary payoff) Let
R2
|∆θt+1,∆θt ≡ 1 − Var[εt]

Var[∆pt] be the R-squared of Regression R4. Let R2
|∆θt, ζ0 and ζ1 respectively denote

the R-squared and the coefficients of the following regression R5 of price changes on lagged changes on
fundamentals

∆pt = ζ0 + ζ1∆θt + εζt . (R5)

Then, relative price informativeness, τRp̂ , can be recovered as follows

τRp̂ = τp̂
τη

= 2
R2
|∆θt+1,∆θt −R

2
|∆θt

1−R2
|∆θt+1,∆θt

. (13)

11Our methodology can be extended to allow for more general unit root processes.
12If the process for the payoff is non-stationary, estimating Regression R1 using OLS is a spurious regression, using the

terminology of Granger and Newbold (1974).
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Remarkably, the formulas that recover absolute and relative price informativeness when the payoff
process corresponds to a random walk are identical to those in the stationary model with two
modifications. First, the relevant underlying regressions ought to be run in differences, not in levels
to obtain unbiased estimates of the coefficients. Second, the formulas for absolute and relative price
informativeness are multiplied by a factor for two. This factor accounts for the fact that the error term
in the representation in differences is twice as noisy as the one in the equation in levels, since it is given
by the difference of the realizations of nt and nt−1, which are independent and identically distributed.

4.2 Multiple Risky Assets

We now consider a multi-asset extension to our baseline model and show that an appropriate
reinterpretation of aggregate noise allows us to use the single market framework for measurement
purposes. The goal of studying this more general framework is two-fold. First, it allows us to reinterpret
the results of the single-asset model when many assets are available. Second, it suggests how to use
our approach more generally to answer different questions about price informativeness.

We assume that there are N risky assets indexed by j ∈ {1, 2, . . . , N}, with payoffs distributed
according to

θt+1 = µθ + Cθt + ηt, (14)

where µθ, θt and ηt are N×1 vectors and C is an N×N matrix such that the process θt+1 is stationary.
The counterparts of assumptions 1 and 2 for the baseline environment are as follows.

Assumption 3. (Additive noise) Each period t, every investor i receives a vector of unbiased private
signals sit about the vector of innovations to the payoffs, ηt, of the form

sit = ηt + εist, (15)

where εist, ∀i ∈ I, ∀t , are vectors of random variables with mean zero and finite second moments,
whose realizations are independent across investors and over time. Each period t, every investor i has
a vector of private trading needs nit, of the form

nit = nt + εint, (16)

where nt is a vector of random variables with mean µn and finite second moments, and where εint, ∀i ∈ I,
∀t , are vectors of random variables with mean zero and finite second moments, whose realizations are
independent across investors and over time.

Assumption 4. (Linear asset demands) Investors’ net asset demands satisfy

∆qit = Aiθθt +Aiss
i
t +Ainn

i
t −Aippt +Ai0, (17)

where Ais, Ain, Aip, and Ai0 are N × N matrices of individual demand coefficients, determined in
equilibrium.
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Given both Assumptions, market clearing for the risky asset implies that
´

∆qitdi = 0, ∀t, which,
exploiting a Law of Large Numbers, yields a pricing equation of the form

pt =
(
Ap
)−1

Asηt +
(
Ap
)−1

Aθθt +
(
Ap
)−1

Annt +
(
Ap
)−1

A0, (18)

where we denote the cross sectional averages of individual demand coefficients by As =
´
I A

i
sdi,

Ap =
´
I A

i
pdi, Aθ =

´
I A

i
θdi, An =

´
I A

i
ndi, and A0 =

´
Ai0di.

In a multi-asset environment, there are several notions of price informativeness. The vector of
prices p̂t contains information about the vector of fundamentals θt+1. At the same time, each price pj
contains information about the vector of fundamentals. Since we are interested in the precision of the
price pj,t as a signal of the fundamental θj,t+1, our notion of absolute price informativeness along asset
dimension j is given by

τ jp̂ = Var [p̂j |θj,t+1, θj,t]−1 ,

where p̂j is the unbiased signal about θj,t+1 contained in the price. τ jp̂ is the precision of the unbiased
signal contained about the fundamental of asset j from the perspective of an external observer who
sees the previous realization of the fundamental of asset j only. The price of asset j is given by

pj,t =
[(
Ap
)−1

A0

]
j
+
∑
h

(
πjh

[(
Ap
)−1

As

]
jh

)
θj,t+1 +

∑
h

(
πjh

[(
Ap
)−1 (

Aθ −AsC
)]

jh

)
θj,t+ Γjuj,t

where uj,t is the vector of all the trading motives of investors that are orthogonal to the fundamentals
of asset j and Γj is a function of aggregate equilibrium demand sensitivities. More specifically

uj,t =
[
ωj′t ,ω

j′
t−1,n

′
t

]′
,

where ωjt =
[
ωj1t, ...., ω

j
Nt

]
is orthogonal to θj,t+1 and ωjh,t is defined as the residual of a regression of

θh,t+1 on θj,t+1, i.e.,

ωjh,t = θh,t+1 −
Cov [θh,t+1, θj,t+1]

Var [θh,t+1] θj,t+1.

Hence, ωjj,t = 0. Moreover,

Γj =
[[(

Ap
)−1

As

]
j
,

[(
Ap
)−1 (

Aθ −AsC
)]

j
,

[[(
Ap
)−1

An

]
j

]]
.

If the realizations of θh,t+1 and θj,t+1 are uncorrelated, then the price will put weight 0 on ωjh,t.
From the perspective of an external observer who only observes the current fundamental of asset j,

the unbiased signal about the future fundamental of asset j contained in the price is

p̂j,t =
(∑

h

(
πjh

[(
Ap
)−1

As

]
jh

))−1(
pj,t −

[(
Ap
)−1

A0

]
j
−
∑
h

(
πjh

[(
Ap
)−1 (

Aθ −AsC
)]

jh

)
θj,t

)

= θj,t+1 +
(∑

h

(
πjh

[(
Ap
)−1

As

]
jh

))−1

Γjuj,t.

The precision of this signal is our measure of price informativeness and it is given by

τ jp̂ = Var [p̂j,t|θj,t+1, θj,t]−1 =
(∑

h

(
πjh

[(
Ap
)−1

As

]
jh

))2

Var [Γjuj,t]−1 .
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Proposition 6. (Identifying relative price informativeness through univariate regression)
Assume that the additive noise and the linear asset demands assumptions are satisfied. Let β0, β1, and
β2 denote the coefficients of the following regression of prices on fundamentals. This measure of price
informativeness can be recovered from the asset specific regression

pj,t = β0 + β1θj,t + β2θj,t+1 + εj,t

where pt denotes the ex-dividend price at the beginning of period t, θj,t+1 denotes the measure of
fundamentals for asset j realized over period t, and where we denote the variance of the error by
σ2
εj = Var [εj,t] . Then, absolute price informativeness, τ jp̂ , can be recovered as follows

τ jp̂ = β2
2

σ2
εj

.

The main difference between the single asset and the multi-asset version of our model is the
interpretation of the noise that prevents the price from being fully revealing. In the single asset case,
the noise is given purely by the aggregate trading motives, which is orthogonal to the innovation to
the fundamental. In the multi-asset case, the noise is a combination of the aggregate trading motives
for all assets in the economy and the components in the realizations of the fundamentals of other
assets that are orthogonal to the fundamental of the asset in which one is interested. These additional
sources of noise enter the pricing equation when the fundamentals are correlated across assets. In this
case, a signal about the innovation to the fundamental of one asset can also be used to learn about
the innovation to the fundamental of another asset. In our general approach in Section 2 we are not
restricting the source of the noise. Hence, the analysis in the previous sections accommodates correlated
asset payoffs in multi-asset environments.

4.3 Learnable and Unlearnable Payoff

Our results so far imply that if investors could fully aggregate their dispersed information, they would
be able to fully learn the asset payoff. In this subsection, we consider the possibility that part of the
asset payoff is simply unlearnable for investors at the trading stage. Formally, we assume that the
innovation to the asset payoff has learnable and unlearnable components, so the asset payoff can be
written as

θt+1 = ρθt + ηt where ηt = ηLt + ηUt ,

where the unlearnable component ηUt is random, has mean zero and finite variance, and its realization
are independently distributed from other random variables. Investors exclusively receive signals about
the learnable component of the asset payoff, so formally

sit = ηLt + εist.

Investors’ signals can be reformulated as follows

sit = ηt − ηUt + εist = ηt + εi′st,
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where εi′st = −ηUt + εist, which allows to derive the following expression for the equilibrium price

pt = ψ

αp
+ αθ
αp
θt + αs

αp
ηt + αn

αp
nt −

αs
αp
ηUt︸ ︷︷ ︸

εt

,

where the unbiased signal about the innovation to the fundamental corresponds to p̂t = αp
αs
pt − αθ

αs
θt −

ψ
αs

= ηt + αn
αs
nt − ηUt .

Proposition 7. (Identifying Price Informativeness with Learnable and Unlearnable
Payoffs) Assume that the additive noise and the linear asset demands assumptions are satisfied. Then,
absolute and relative price informativeness can be recovered from Regressions R1 and R2 as follows

τp̂ = β2
2
σ2
ε

and τRp̂ =
R2
|θt+1,θt

−R2
|θt

1−R2
|θt+1,θt

.

It should be evident that the identification results from Propositions 1 and 2 apply to this case,
provided that we reinterpret the noise component by including the uncertainty about the unlearnable
component of the asset payoff. Conceptually, the fact that the information received by investors as a
whole is not enough to recover the asset payoff means that prices have to be less informative.

4.4 Public Signals

In our results until now, we have considered private signals as the only source of information in the
economy. In this subsection, we consider the case in which investors also observe a public signal about
the fundamental. We extend the environment in the baseline model by allowing investors to observe a
public signal with the following structure

πt = ηt + επt

where επt ∼ N
(
0, τ−1

π

)
is iid across time and independent of the innovations ηt. In this case, we

augment the linear asset demands considered in Assumption 2 as follows.

Assumption 5. (Linear asset demands with public signals) Investors’ net asset demands satisfy

∆qit = αiθθt + αiss
i
t + αiππt + αinn

i
t − αippt + ψi,

where αis, αiθ, αin, αiπ, αip, and ψi are individual demand coefficients, determined in equilibrium.

Given our assumptions, market clearing in the risky asset market implies

pt = αθ
αp
θt + αs

αp
ηt + απ

αp
πt + αn

αp
nt + ψ

αp
,

where we denote the cross sectional averages of individual demand coefficients by αs =
´
I α

i
sdi,

αp =
´
I α

i
pdi, αθ =

´
I α

i
θdi, αn =

´
I α

i
ndi, απ =

´
I α

i
πdi, and ψ =

´
I ψ

idi.

21



The unbiased signal contained in the price from the perspective of an external investor depends
on his information set. If the external investor only observes the price and the past realization of the
fundamental but not the public signal, the unbiased signal contained in the price is given by

p̂t = αp
αs + απ

(
pt −

αθ
αp
θt −

αn
αp
µn −

ψ

αp

)

= ηt + απ
αs + απ

επt + αn
αs + απ

(nt − µn)

and absolute price informativeness is given by

τp̂ ≡ (Var [p̂t|θt+1, θt])−1 = (αs + απ)2

(απ)2 τ−1
π + (αn)2 τ−1

n

. (19)

Proposition 8. (Identifying price informativeness with public signals) Assume that the additive
noise and the linear asset demands assumptions are satisfied. Then, absolute and relative price
informativeness can be recovered from Regressions R1 and R2 as follows

τp̂ = β2
2
σ2
ε

and τRp̂ =
R2
|θt+1,θt

−R2
|θt

1−R2
|θt+1,θt

.

The first identification result when investors do not observe the public signal becomes evident
rewriting the equilibrium price as follows

pt = αθ
αp
θt + αs + απ

αp
ηt + αn

αp
nt + απ

αp
επt + ψ

αp

=
(
αθ
αp
− ραs + απ

αp

)
θt + αs + απ

αp︸ ︷︷ ︸
=β2

θt+1 + αn
αp
nt + απ

αp
επt︸ ︷︷ ︸

=εt

+ ψ

αp
. (20)

It is obvious from Eq. (20) that the coefficient β2 in regression R1 recovers

β2 = αs + απ
αp

and the error term maps to εt = αn
αp
nt + απ

αp
επt. This implies that our estimates of absolute price

informativeness derived in the baseline model would exactly recover price informativeness from the
perspective of an external observer who only observes the price and has no access to the private signal
π since

β2
2

Var [εt]
= (αs + απ)2

(αn)2 τ−1
n + (απ)2 τ−1

π

,

which is exactly price informativeness in Eq. (19). The second result identifying relative price
informativeness when the external observer does not observe the public signal available to the investors
follows exactly from the proof in the baseline model reinterpreting the loading on the fundamental and
the noise term to include the information and noise in the public signal. Proposition 8 implies that our
baseline estimates or absolute and relative price informativeness are valid when investors have access
to common information that the external observer does not see. Having omitted public signals in our
regressions is not a concern provided that we define price informativeness appropriately.
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So far, we have limited the information available to the external observer from whose perspective
we are defining price informativeness. However, there many situations in which the nature of the public
signal is such that even an external observer has access to it. In this case, the relevant concept of
informativeness should be modified to condition on the additional information that is available to the
external observer. More specifically, if the external observer has access to the public signal as well
as the price and the past realization of the asset payoff, the unbiased signal about the fundamental
contained in the price is given by

p̂t = αp
αs

(
pt −

αθ
αp
θt −

απ
αp
πt −

αn
αp
µn −

ψ

αp

)

= ηt + αn
αs

(nt − µn)

and the precision of this signal is given by

τ̃p̂ ≡ (Var [p̂t|θt+1, θt, πt])−1 =
(
αs
αn

)2
τn. (21)

We refer to the measure of informativeness in Eq. (21) as “informed” absolute price informativeness.
As in the baseline model, we define “informed” relative price informativeness as τ̃Rp̂ = τ̃p̂

τη
.

Proposition 9. (Identifying “informed” price informativeness with public signals) Assume
that the additive noise and the linear asset demands assumptions are satisfied. Then, “informed”
absolute and relative price informativeness can be recovered from regressions of prices on fundamentals
and the public signal

pt = χ0 + χ1θt + χ2θt+1 + χ3πt + ε̃t, (R6)

and

pt = χ̃0 + χ̃1θt + χ̃2θt+1 + εχt , (R7)

as

τ̃p̂ = χ2
2
σ2
ε̃

and τ̃Rp̂ =
R̃2
|θt+1,θt

− R̃2
|θt

1− R̃2
|θt+1,θt

,

where R̃2
|θt+1,θt

and R̃2
|θt are the R-squareds of Regression R6 and Regression R7, respectively.

The results in the proposition above follow directly by noting that χ2 = αs
αp

and ε̃t = αn
αp
nt and

using the definition of “informed” absolute price informativeness in Eq. (21). The intuition behind the
results for relative price informativeness follows exactly the same logic as in the baseline model.

5 Empirical Implementation

In this section, we empirically implement our identification strategy and recover stock-specific measures
of price informativeness. In the text, we provide a brief description of the data and the sample selection
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Table 1: Summary Statistics (All Observations)

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Market Cap. 88,356 3,336.34 17,681.97 0.72 81.45 352.77 1,532.62 682,084.00
Earnings 88,356 93.14 595.14 −15,181.20 0.71 7.78 39.43 33,304.45

Note: Table 1 presents summary statistics for the full sample of 88, 256 stock-year observations. It provides information
on the sample mean, median, and standard deviation, as well as the minimum, the maximum and the 25th and 75th
percentiles of the distribution of market capitalization and total earnings. All variables are expressed in millions of dollars
in 2008.

procedure, leaving a more detailed description to the companion R notebooks. Our theoretical results
show that running cross-sectional regressions to recover measures of price informativeness imposes
strong assumptions about primitives across stocks. In particular, it imposes that the fundamental has
the same volatility for all stocks in the sample at any point in time. Consistent with the identification
results presented in our theoretical analysis, we instead run time-series regressions at the stock level to
recover estimates of absolute price informativeness, relative price informativeness, and Kalman gains.

5.1 Data Description

We now describe the data sources and variables used to implement the methodology we develop in the
previous sections to obtain measures of price informativeness. We conduct our analysis using data from
1963 to 2017. We obtain stock price data from the Center for Research in Security Prices (CRSP) to
calculate stocks market values, data on reported earnings, to use as a measure of fundamentals, from
CRSP/Compustat Merged (CCM), and a personal consumption deflator index from FRED.

In this section, we use a sample with all CRSP common stocks at a quarterly frequency. In the
Appendix, we report the results of our analysis at an annual frequency. Without loss of generality, to
avoid dealing with float issues, we use market value, which we denote by M , as the relevant measure
for the value/price of a firm. We use firms’ total earnings, as measured by EBIT, which we denote
by E, as the relevant measure of firms’ payoffs.13 To match the timing of our model and ensure that
the realized earnings are observed at the time at which the price is determined, we match the date t
EBIT, Et, with the price one quarter forward.14 For example, EBIT on March 1986 corresponds to
θt in our model and the stock price on June 1986 corresponds to pt. Similarly, the realization of the
fundamental at the end of period t is given by the reported EBIT a quarter later. The realized payoff
on March 1986 is given by EBIT on June 1986, which corresponds to θt+1 in our model. Finally, we

13The choice of payoff measures may be objectionable. Dividend measures at the stock level are noisy. As it is customary
in the literature that studies individual stocks, e.g. Vuolteenaho (2002), we map payoffs in the model to measures of
earnings.

14For our analysis at a quarterly frequency, we use the price one month forward. Using contemporary variables yields
similar results, which are available in the R code provided online.
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Table 2: Summary Statistics (Mean and Standard Deviation of Earnings)

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Mean Earnings 839 77.04 344.25 −104.39 1.21 11.76 43.69 5,731.18
St. Dev. Earnings 839 81.06 371.29 0.18 3.41 12.23 39.49 5,693.84

Note: Table 2 presents summary statistics for the full sample of 839 stocks. It provides information on the sample
mean, median, and standard deviation, as well as the minimum, the maximum and the 25th and 75th percentiles of the
distribution of the variance of earnings. All variables are expressed in millions of dollars in 2008.

run our regressions at the stock level and include only firms for which we have at least 80 observations
available.

Table 1 shows summary statistics for our full sample of 88, 356 stock-quarter observations. Our
sample exhibits considerable variation in terms of market capitalization and total earnings. The
distribution of market capitalization across firms and periods has a mean of $3, 336 million, a median
of $352 million and a standard deviation of $17, 681 million. The minimum market capitalization in a
given quarter is $0.72 million and the maximum is $682, 962 million. The distribution of total earnings
across firms and periods has a mean of $93 million, a median of $7.8 million, and a standard deviation
of $595 million.

Table 2 shows summary statistics at the stock level for the 839 stocks with more than 80 observations.
In particular, this table summarizes the differences in the distribution of earnings across stocks. The
mean earnings across stocks have a mean of $77 million, a median of $11.8 million and a standard
deviation of $344 million. The median standard deviation in earnings is $81 million and it exhibits a
standard deviation of $371 million. These summary statistics show that there is significant heterogeneity
in the earnings process in the cross-section of firms as the mean and, more importantly, the volatility
of the fundamental vary considerable across stocks. This finding questions the validity of using cross-
sectional regressions. Figure 2 shows the distribution of standard deviations for earnings across stocks.

5.2 Empirical Specification

We implement Proposition 1 by running time-series regression for each individual stock. On the right-
hand side, we have measures of market value, M j

t . On the left-hand side, we use current earnings,
Ej,t and earnings one period ahead, Ej,t+1. Formally, for each stock, which we index by j, we run a
time-series regression of the form

M j
t = βj0 + βj1Ej,t + βj2Ej,t+1 + εjt ⇒ R2j

|θt+1,θt
(22)

M j
t = ζj0 + ζj1Ej,t + ε̂jt ⇒ R2j

|θt , (23)

where t corresponds to the time index. Variables βj0, β
j
1, and βj2 are the coefficients for each of the

regressions, whereas εj,t are the error terms. We respectively denote the R-squareds of the regressions
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Figure 2: Distribution of standard deviation of total earnings
Note: Figure 2 depicts the distribution of the standard distribution of earnings across the 839 stocks in our sample.

(22) and (23) by R2j
|θt+1,θt

and the R2j
|θt . Hence, Regression R1 in the paper maps to Equation (22),

while Regression R2 maps to Equation (23). Using the results in Propositions (1) and (2) we recover
absolute and relative price informativeness as follows

τ jp̂ =

(
βj2

)2

Var
[
εjt

] and τRjp̂ =
R2j
|θt+1,θt

−R2j
|θt

1−R2j
|θt+1,θt

. (24)

One of the main assumptions behind the validity of our methodology running our linear regressions
in levels, is the stationarity of the process for earnings. To evaluate the plausibility of this assumption in
our data, we run Dickey-Fuller (DF) tests for each stock. For 309 out of 839 stocks in our sample, there
is not enough evidence to reject the null hypothesis that a unit root is present in the autoregressive
process for earnings.15 For these stocks, we estimate our measures of price informativeness using the
results derived in Section 4.1. We run the following specification in differences

∆M j
t = βj0 + βj1∆Ej,t + βj2∆Ej,t+1 + εj∆t ⇒ R2j

|∆θt+1,∆θt (25)

∆M j
t = ζj0 + ζj1∆Ej,t + ε̂j∆t ⇒ R2j

|θt , (26)

where, analogous to Equation (22) and (23), t and j correspond to the time and stock index,
respectively. Equations (25) and (26) respectively map to the regressions in Equations (R4) and (R5),
and R2j

|∆θt+1,∆θtand R2j
|∆θt are their corresponding R-squareds. Hence, using the results in Equations

(12) and (13) we recover absolute and relative price informativeness for each stock j as follows

τ jp̂ = 2

(
βj2

)2

Var
[
εj∆t

] and τRjp̂ = 2
R2j
|∆θt+1,∆θt −R

2j
|∆θt

1−R2j
|∆θt+1,∆θt

. (27)

15The 839 stocks in our sample are the remaining stocks after removing the stocks with unit roots in the process for
∆Et.
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Finally, we exclude outliers from our sample. We remove all stocks for which the maximum leverage
score of any observation is above 0.4 when estimating either Equation (22) or Equation (23), or for
their counterparts in differences for those stocks that fail our stationarity tests.

5.3 Empirical Findings

After removing outliers, we have 666 individual stocks with more than 80 quarterly observations. For
all stocks that pass our stationarity tests, we recover stock specific measures of absolute and relative
price informativeness from Equation (24). For those stocks that fail our stationarity tests, we estimate
our measures of price informativeness from Equation (27), after running the difference specifications
in Equations (25) and (26). Table 3 shows summary statistics for the distribution of our estimates of
stock-specific measures of price informativeness. In the Appendix, we report estimates of our measures
of price informativeness assuming the earnings process is non-stationary for all stocks.

We find that, in our sample, the mean absolute price informativeness is 0.04 and the median is 0.001.
More importantly, there is significant variation in our estimates of absolute price informativeness in the
data. The standard deviation of absolute price informativeness is 0.11, which reinforces our prior about
the importance of providing stock-specific measures of informativeness. However, looking at absolute
price informativeness may not be the most adequate measure to understand the informational content
of prices in the cross section since there are differences in the uncertainty about the fundamental across
stocks.

Relative price informativeness normalizes the precision of the signal contained in the price by the
volatility of the fundamental for each stock. This normalization makes the comparison across stocks
meaningful and more natural to interpret. In our sample, the mean relative price informativeness is
around 0.07 which implies that, on average, the precision of the price as a signal of the fundamental
is 7% of the precision of the prior. In terms of variances, this translates to the signal contained
in the price being 14 times more uncertain than the fundamental. As one would expect, there is a
significant variation in relative price informativeness across stocks. The distribution of relative price
informativeness is right skewed, with 75% of stocks featuring relative prices informativeness to be less
than 8% of the precision of the innovation to earnings.

Though relative price informativeness provides a better context than absolute price informativeness
to interpret the magnitudes of the informational content of prices, it is still somewhat difficult to
give these numbers an economic interpretation. The best measure of price informativeness to do so
is the Kalman gain.16 There is a one-to-one mapping between the Kalman gain and relative price
informativeness given by

Kj =
τRjp̂

1 + τRjp̂
. (28)

This expression is bounded between 0 and 1, and it measures the weight that a Bayesian investor puts
on the new information revealed by the price when updating his beliefs about the fundamental. For

16The economic interpretation of the expression of the Kalman gain in Equation assumes Bayesian updating and
Gaussian uncertainty.
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example, a Kalman gain of 0.4 implies that a Bayesian investor will put 40% weight on the information
contained in the price and 60% on his prior in forming his beliefs. In the limit, when prices are fully
revealing, the Kalman gain is equal to 1, and it is 0 when prices contain no information. We focus the
rest of our analysis using the Kalman gain as a measure of informativeness.

Table 3: Summary Statistics (Recovered Informativeness Measures)

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Absolute Price Informativeness 666 0.04 0.19 0.00 0.0001 0.001 0.01 2.26
Relative Price Informativeness 666 0.07 0.11 0.00 0.01 0.02 0.08 1.00
Kalman Gain 666 0.05 0.08 0.00 0.01 0.02 0.08 0.50

Note: Table 3 presents summary statistics on the informative measures recovered. It provides information on the sample
mean, median, and standard deviation, as well as the 25th and 75th percentiles of the distribution.

The mean Kalman gain in our sample is 0.05 and the median is 0.08. As with our measures
of absolute and relative price informativeness, Table 3 shows there is a substantial dispersion in the
distribution of Kalman gains across stocks. Prices contain little to no information for 75% of the stocks
in our sample, which is reflected by a Kalman gain of less than 0.08. Figure 3 shows the distribution
of Kalman gains for all stocks in our sample.

Our approach does not allow us to identify the source of noise impounded in the price. However,
our estimates shed light on the amount of noise in financial markets. Given the small magnitude of
our estimates of price informativeness, our empirical results suggest that although prices contain some
information about the fundamental, they also reflect a considerable amount of noise.

To better understand of the distribution of Kalman gains across stocks, we look at different
stock characteristics and their correlation with relative price informativeness. We compare price
informativeness in different exchanges, across market capitalization, across the level of volume traded.

An important takeaway from our empirical analysis is the ubiquitous heterogeneity in price
informativeness across stocks. This heterogeneity in our estimates across stock characteristics challenges
the interpretation of results from cross-sectional regressions as measures of price informativeness, even
when controlling for firm-specific characteristics.

Note that our empirical approach uses time series regressions to identify asset-specific measures of
price informativeness. This approach contrasts with some of the recent literature that seeks to measure
price informativeness from the cross-section of securities, which implicitly imposes that all primitives
are constant across asset classes. An advantage of running time-series regressions is that they sidestep
potential composition issues, although they introduce potential concerns regarding time variation in the
model parameters, for instance, associated with time-varying risk premia or time-varying characteristics.
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Figure 3: Distribution of Kalman gains
Note: Figure 3 shows the histogram of Kalman gains for the final sample of 666 stocks. The estimates are computed
using quarterly data.

5.3.1 Informativeness across exchanges

Prices aggregate the information dispersed in the market. The quality of this aggregation depends
on how much information is held by investors and on how much noise is present in individual
demands. Markets in which investors have very precise private information about the fundamental
and trade mostly on this information will have prices with high price informativeness. Markets in
which investors trade primarily on trading motives that are orthogonal to the fundamental will have
low price informativeness. Therefore, an important determinant of how much information is contained
in asset prices is the set of market participants.

In our sample, stocks are listed in three different exchanges: NYSE, AMEX, and NASDAQ. Figure
4 shows the distribution of Kalman gains for stocks listed in each of these exchanges. We find that,
on average, stocks listed in the NYSE have the highest price informativeness. Stocks listed in the
NASDAQ and in the AMEX have a similar average price informativenes. Finally, the dispersion of
Kalman gains is lowest among the stocks listed in the AMEX.

5.3.2 Informativeness and market capitalization

We look at the relation between price informativeness and market capitalization. A priori, it is not clear
what the sign of this correlation should be. For example, on the one hand, one could argue that investors
acquire more information about stocks with higher market capitalization because it increases the scale
of the trades through which the investor can benefit from his private information. This would imply a
positive correlation between price informativeness and market capitalization. On the other hand, bigger
firms can also attract more speculative trades and, hence, its stocks can trade at prices that incorporate
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Figure 4: Distribution of Kalman gains across exchanges in which the asset is traded
Note: Figure 4 shows the distribution Kalman gains for the final sample of 666 stocks sorted by the exchange in which
they are listed. The estimates are computed using quarterly data.

a lot of noise and have little informational content. Not surprisingly, whether price informativeness is
positively or negatively correlated with market capitalization depends on how the ratio of information
to noise impounded in the price varies with this variable. In our sample, we find that the relative price
informativeness increases with market capitalization. Figure 5 shows the Kalman gains across stocks
with different average market capitalization by twentile. This figure presents a positive relation between
our estimated Kalman gains and the average market capitalization of a stock. At the same time, this
figure exhibits considerable variation in Kalman gains for a given level of market capitalization.

5.3.3 Informativeness and turnover

Next, we explore how price informativeness correlates with a stock’s turnover, defined as the total
volume over a given period (in number of shares), relative to the total amount of shares outstanding. As
in the case of market capitalization, it is not clear what the correlation between asset turnover and price
informativeness should be. One could argue that high turnover reflects a large amount of speculative
trades and, hence, expect price informativeness and the Kalman gain to be low. Alternatively, high
turnover can reflect large trades by investors with precise information, which would lead to high price
informativeness and a high Kalman gain.

Figure 6 shows our estimates of Kalman gains as a function of the stock’s turnover by twentile. The
figure shows a positive correlation between price informativeness and turnover. This figure also shows
that there is substantial dispersion in Kalman gains after conditioning for the average turnover.

5.3.4 Informativeness across industries

Figure 7 shows the distribution of Kalman gains in different industries. Our results show heterogeneity
in price informativeness across industries and within industry. We find that on average, price
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Figure 5: Distribution of Kalman gains across market capitalization
Note: Figure 5 shows the average Kalman gains for the twentiles of the final sample of 666 stocks sorted by their
average market capitalization. The estimates are computed using quarterly data. The blue solid line represents the linear
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Figure 6: Distribution of Kalman gains across turnover
Note: Figure 6 shows average Kalman gains for the twentiles of the final sample of 666 stocks sorted by their turnover.
The estimates are computed using quarterly data. The blue solid line represents the linear regression line.
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Figure 7: Distribution of Kalman gains by industry
Note: Figure 7 shows the distributions of Kalman gains for the final sample of 666 stocks sorted by industry using
one-digit standard industry codes. The estimates are computed using quarterly data.

informativeness is highest in the wholesale/retail and transportation sectors, and lowest in the
agriculture, mining, and construction, and services sectors. As Figure 7 illustrates, there is considerable
dispersion in price informativeness within each sector. Without a specific conjecture of why one sector
would have higher informativeness than other, the main conclusion of this analysis is that there is not
a strong relation between industry and price informativeness.

5.3.5 Informativeness over time

Finally, we look at how price informativeness evolves over time. To do so, we split the sample in two
subsamples, from 1963 to 1990 and from 1990 to 2017 and estimate the Kalman gains for each stock
during these two periods. Figure 8 shows these Kalman gains. On the x-axis, we plot the Kalman gain
before 1990 and on the y-axis the one after 1990. The dotted line represents the 45 degree line. Points
above (below) the dotted line imply an increase (decrease) in relative price informativeness. In our
sample, informativeness increased for 58% of stocks.

6 Conclusion

We have shown that the outcomes of linear regressions of prices on fundamentals are sufficient to
recover exact measures of the ability of asset prices to aggregate dispersed information under minimal
assumptions about the environment and exclusively using aggregate market information. In our
empirical exercise, we find that the amount of information that can be found by an external observer
by conditioning on the price is on average small, although there is a substantial cross sectional
dispersion. We find that price informativeness is higher for stocks traded in the NYSE, with higher
market capitalization, and traded more frequently. Given that our empirical implementation delivers
stock-specific measures of informativeness, there is scope to further explore the relation between
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Figure 8: Kalman gains for individual stocks pre- and post- 1990
Note: Figure 8 shows the Kalman gains estimated using two subsamples, from 1963 to 1990 and from 1990 to 2017. The
estimates are computed using quarterly data.

informativeness and other outcomes in the cross-section of stocks.
Looking forward, identifying model primitives when there is feedback between financial markets

and investment is a challenging but fascinating area for future research, since the nature of production
introduces unavoidable non-linearities when there is two-way feedback between financial and real
markets.
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Appendix

A Proofs: Section 2

Assumptions 2 (linear demands) and market clearing imply that
ˆ

∆qitdi = θt

ˆ
αiθdi+

ˆ
αiss

i
tdi+

ˆ
αinn

i
tdi− pt

ˆ
αipdi+

ˆ
ψidi = 0,

so the equilibrium price must satisfy

pt =
´
αiss

i
tdi

αp
+ αθ
αp
θt +

´
αinn

i
tdi

αp
+ ψ

αp
,

where we define cross sectional averages αθ =
´
αiθdi, αp =

´
αipdi, and ψ =

´
ψidi. Under Assumption

1, which implies the additive structure of signals in Equations. (1) and (2), we can further write

pt = αs
αp
ηt + αθ

αp
θt + αn

αp
nt +

´
αisε

i
stdi

αp
+
´
αinε

i
ntdi

αp
+ ψ

αp
,

where we define cross sectional averages αs =
´
αisdi and αn =

´
αindi. Under a Strong Law of Large

Numbers, see, e.g. Vives (2008), the terms
´
αisε

i
stdi

αp
and

´
αinε

i
ntdi

αp
vanish when there is a continuum of

investors, which allows us to derive Equation (3) in the text.

Proof of Proposition 1. (Identifying absolute price informativeness)

Comparing Equations (7) and (R1) allows us to structurally interpret the coefficients β0 and β2 and
the residual term as β0 = ψ

αp
, β2 = αs

αp
, and εt = αn

αp
nt. Consequently, Var [εt] =

(
αn
αp

)2
τ−1
n . It then

follows that

τp̂ = β2
2
σ2
ε

=

(
αs
αp

)2

(
αn
αp

)2
τ−1
n

=
(
αs
αn

)2
τn.

Proof of Proposition 2. (Identifying relative price informativeness)

We reproduce here Regressions R1 and R2:

pt = β0 + β1θt + β2θt+1 + εt (R1)

pt = ζ0 + ζ1θt + εζt . (R2)

Note that Regression R1 can also be written as

pt = β0 + (β1 + ρβ2) θt + β2ηt + εt,

which allows us to interpret the coefficient ζ1 in Regression R2 as follows

ζ1 = β1 + ρβ2,

since θt is orthogonal to εζt = β2ηt + εt.
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Consequently, we can find the following variance decomposition

Var (pt) = (β1 + ρβ2)2︸ ︷︷ ︸
ζ2
1

Var (θt) + β2
2Var (ηt) + Var (εt) ,

which implies that

1 = ζ2
1Var (θt)
Var (pt)

+ β2
2Var (ηt)
Var (pt)

+ Var (εt)
Var (pt)

⇐⇒ 1 = ζ2
1Var (θt)
Var (pt)︸ ︷︷ ︸
R2
|θt

+ Var (εt)
Var (pt)︸ ︷︷ ︸

1−R2
|θt+1,θt

1 + β2
1Var (ηt)
Var (εt)︸ ︷︷ ︸

τRp̂

 .

Therefore,

1−R2
|θt =

(
1−R2

|θt+1,θt

) (
1 + τRp̂

)
⇒

1−R2
|θt

1−R2
|θt+1,θt

= 1 + τRp̂ ,

which implies that

τRp̂ =
R2
|θt+1,θt

−R2
|θt

1−R2
|θt+1,θt

.

Moreover, the Kalman gain can be recovered by

K ≡ τp̂
τp̂ + τη

=
τRp̂

1 + τRp̂
=
R2
|θt+1,θt

−R2
|θt

1−R2
|θt

.

Correlated noise and fundamental

In the baseline model we have assumed that the innovation to the asset payoff ηt is uncorrelated with
the aggregate source of noise nt. In this section, we allow for the aggregate source of noise to be
correlated with the fundamental. Formally, we consider the following signal structure for the aggregate
noise

nt = ωηt + εnt,

where εnt ∼ N
(
µn, τ

−1
n

)
. Then, under Assumptions 1 and 2, market clearing in the risky asset market

implies

pt = αθ
αp
θt + αs

αp
ηt + αn

αp
nt + ψ

αp

= αθ
αp
θt + αs + ωαn

αp
ηt + αn

αp
εnt + ψ

αp
. (29)

From the perspective of an external observer who only sees the price and the current payoff of the asset,
the unbiased signal of the fundamental contained in the price is given by

p̂ = αp
αs

(
p− αθ

αp
θt −

αn
αp
µn −

ψ

αp

)

and absolute price informativeness is given by

τp̂ ≡ (Var [p̂t|θt+1, θt])−1 =
(
αs + ωαn

αn

)2
τn.
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Note that mapping the coefficients in Regression R1 to the equilibrium price in Eq. 29 implies that
β2 = αs+ωαn

αp
and εt = αn

αp
εnt. Then, we can recover absolute and relative price informativeness in the

same way as in the baseline model as follows

τp̂ = β2
2
σ2
ε

and τRp̂ =
R2
|θt+1,θt

−R2
|θt

1−R2
|θt+1,θt

,

where the steps to recover relative price informativeness are exactly the same as those in the baseline
model. Therefore, we can assume that the private trading motives are orthogonal to the asset payoff
without loss of generality.

B Proofs: Section 3

Equilibrium Characterization

An investor i born in period t chooses a quantity of the risky asset to solve

max
qit

(
E
[
θt+1 +R−1pt+1|Iit

]
− pt

)
qit −

γ

2Var
[
θt+1 +R−1pt+1|Itt

] (
qit

)2
,

where Iit =
{
θt, s

i
t, η

i
t, pt

}
is the information set of investor i at time t.

The first order condition for an investor at time t is

qit = E
[
θt+1 +R−1pt+1|Iit

]
− pt

γVar
[
θt+1 +R−1pt+1|Iit

] .
In an equilibrium in linear strategies, we conjecture and verify that the demand of an investor i can be
written as

∆qit = αiθθt + αissit + αiηη
i
t − αippt + ψi.

Market clearing and the Strong Law of Large Numbers imply

pt = αθ
αp
θt + αs

αp
ηt + αη

αp
nt + ψ

αp
.

The unbiased signal of the innovation in the dividend contained in the price is

p̂t = αp
αs

(
pt −

αη
αs
µn −

αθ
αp
θt −

ψ

αp

)
= ηt + αη

αs
(nt − µn) ,

where
p̂t|θt+1, θt ∼ N

(
ηt, τ

−1
p̂

)
,

with price informativeness given by

τp̂ = (Var [p̂t|θt+1, θt])−1 =
(
αs
αη

)2

τη.

Given our guesses for the demand functions and the linear structure of prices we have

θt+1 +R−1pt+1 = θt+1 +R−1αθ
αp
θt+1 +R−1αs

αp
ηt+1 +R−1αη

αp
nt+1 +R−1 ψ

αp
,
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E
[
θt+1 +R−1pt+1|Iit

]
=
(

1 +R−1αθ
αp

)
E
[
θt+1|Iit

]
+R−1 αs

αp
E [ηt+1] +R−1αη

αp
E [nt+1] +R−1 ψ

αp

=
(

1 +R−1αθ
αp

)(
ρθt + E

[
ηt|Iit

])
+R−1 αs

αp
E [ηt+1] +R−1αη

αp
nt +R−1 ψ

αp
,

and

Var
[
θt+1 +R−1pt+1|Iit

]
=
(

1 +R−1αθ
αp

)2

Var
[
θt+1|Iit

]
+
(
R−1 αs

αp

)2

Var [ηt+1] +
(
R−1αη

αp

)2

Var [nt+1]

=
(

1 +R−1αθ
αp

)2

Var
[
ηt|Iit

]
+
(
R−1 αs

αp

)2

Var [ηt+1] +
(
R−1αη

αp

)2

τ−1
nt+1.

Moreover, given the Gaussian structure of the signals in the information set, Bayesian updating implies

E
[
ηt|sti , η

i
t, pt
]

= τss
i
t + τηη

i
t + τp̂p̂t

τs + τη + τp̂
=
τss

i
t + τηη

i
t + +τp̂ αpαs

(
pt − αη

αs
µn − αθ

αp
θt − ψ

αp

)
τs + τη + τp̂

,

and
Var

[
ηt|Iit

]
= Var

[
ηt|sit, ηit, pt

]
= (τs + τη + τp̂)−1 .

Then, the first order condition is the given by is

qit = 1
γ

(
1 +R−1 αθ

αp

)(
ρθt + Var

[
ηt|Iit

] (
τss

i
t + τηη

i
t + τp̂

αp
αs

(
pt − αη

αs
µn − αθ

αp
θt − ψ

αp

)))
+R−1 αs

αp
E [ηt+1] +R−1 αη

αp
µn +R−1 ψ

αp
− pt(

1 +R−1 αθ
αp

)2
Var [ηt|Iit] +

(
R−1 αs

αp

)2
Var [ηt+1] +

(
R−1 αη

αp

)2
τ−1
n

.

Matching coefficients we have

αis =

(
1 +R−1 αθ

αp

)
κ

Var
[
ηt|Iit

]
τs (30)

αiη =

(
1 +R−1 αθ

αp

)
κ

Var
[
ηt|Iit

]
τη

αiθ =

(
1 +R−1 αθ

αp

)
κ

(
ρ− Var

[
ηt|Iit

]
τp̂
αθ
αs

)
αip = 1

κ

(
1−

(
1 +R−1αθ

αp

)
Var

[
ηt|Iit

]
τp̂
αp
αs

)

ψi = −1
κ

((
1 +R−1αθ

αp

)
Var

[
ηt|Iit

]
τp̂

(
αη
αs
µn + ψ

αs

)
−R−1

(
αη
αp
µn + ψ

αp

))
,

where

κ ≡ γ

(1 +R−1αθ
αp

)2

Var
[
ηt|Iit

]
+
(
R−1αs

αp

)2

Var [ηt+1] +
(
R−1αη

αp

)2

τ−1
n

 ,
since Var

[
ηt|Iit

]
= (τs + τη + τp̂)−1 for all i.

Then, an equilibrium in linear strategies always exists if the system above has a solution. Note that
the demand sensitivities are the same for all i. Then, there exists a unique solution to the system in
Equations (30), that is given by

αis = 1
κ

1
1−R−1ρ

τs
τη + τs + τp̂

, αiη = 1
κ

1
1−R−1ρ

τη
τη + τs + τp̂

αiθ = 1
κ

ρ

1−R−1ρ

τs
τs + τp̂

, αip = 1
κ

τs
τs + τp̂

, and

ψi = −
1
κ

1
1−R−1ρ

((
1−R−1) τp̂ −R−1τs

) τη
τη+τs+τp̂µn

(1 + (1−R−1) τp̂ −R−1τs)
,
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where

τp̂ =
(
τs
τη

)2

τη

and

κ = γ

((
1

1−R−1ρ

)2 1
τη + τs + τp̂

+
(
R−1 1

1−R−1ρ

τs + τp̂
τη + τs + τp̂

)2

τ−1
η +

(
R−1

1−R−1ρ

τs + τp̂
τη + τs + τp̂

τη
τs

)2

τ−1
η

)
.

Proof of Proposition 3. (Identifying signal and trading needs precisions)

We reproduce here Regressions R1 and R2:

pt = β0 + β1θt + β2θt+1 + εt (R1)
pt = ζ0 + ζ1θt + εζt . (R2)

Note that Regression R1 can be written as

pt = β0 + (β1 + ρβ2) θt + β2ηt + εt,

and that the following equilibrium equation is valid in this model

pt = αθ
αp
θt + αs

αp
ηt + αη

αp
nt + ψ

αp
.

From the characterization of the equilibrium described above, we can express αs
αp

and αs
αη

as follows:

αs
αp

=
(

1 +R−1αθ
αp

)
τs + τp̂

τη + τs + τp̂
=
(

1 +R−1αθ
αp

) τs
τη

+ τRp̂

1 + τs
τη

+ τRp̂
(31)

αs
αη

= τs
τη
.

Under the stated assumptions, we can therefore interpret the coefficients β1 and ζ1as follows

β2 = αs
αp

and ζ1 = αθ
αp
. (32)

Therefore, Equations (31) and Equation (32) imply that τs
τη

+ τRp̂ can be recovered as follows

β2 =
(
1 +R−1ζ1

) τs
τη

+ τRp̂

1 + τs
τη

+ τRp̂
⇒ τs

τη
+ τRp̂ = β2

1 +R−1ζ1 − β2
,

which allows to express τs:

τs = β2
1 +R−1ζ1 − β2

τη − τp̂ = τp̂

(
β2

1 +R−1ζ1 − β2

1
τRp̂
− 1

)
,

using the fact that τη can be recovered from τη = τp̂
τRp̂
. Finally, exploiting the relation τp̂ =

(
τs
τη

)2
τn, τn

can be recovered as follows

τp̂ =
(
τs
τη

)2

τn =
(

β2
1 +R−1ζ1 − β2

− τRp̂
)2
τn ⇒ τn =

(
β2

1 +R−1ζ1 − β2
− τRp̂

)−2
τp̂,

where R can be mapped to the risk-free rate.
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C Proofs: Section 4

Proof of Proposition 4. (Identifying absolute price informativeness: random walk)

We reproduce here Regression R4 and the equilibrium condition in Equation (11):

∆pt = β1∆θt + β2∆θt+1 + εt, (R4)

∆pt =
(
αθ
αp
− αs
αp

)
∆θt + αs

αp
∆θt+1 + αn

αp
∆nt. (11)

Consequently, we can express Var [εt] as follows

Var [εt] =
(
αn
αp

)2

Var [∆nt] =
(
αn
αp

)2

2τ−1
n ,

where the last equality follows from the i.i.d. assumption of nt shocks. We can therefore find τp̂ as

τp̂ = 2β
2
2
σ2
ε

=
2
(
αs
αp

)2

(
αn
αp

)2
2τ−1
n

=
(
αs
αn

)2
τn.

Proof of Proposition 5. (Identifying relative price informativeness: random walk)

In this model, the equilibrium pricing equation can be written as

pt = αθ
αp
θt + αs

αp
ηt + αn

αp
nt + ψ

αp

=
(
αθ
αp
− αs
αp

)
θt + αs

αp
θt+1 + αn

αp
nt + ψ

αp
+ µθ.

Taking first differences, this Equation yields Equation (11) in the text, which yields consistent estimates
when estimated by OLS, since ∆θt = ηt−1 and ∆θt+1 = ηt are orthogonal to the error term. We exploit
Regressions R4 and R5, reproduced here.

∆pt = β1∆θt + β2∆θt+1 + εt, (R4)
∆pt = ζ0 + ζ1∆θt + εζt . (R5)

Note that ζ1 = β1, given that ηt−1 is orthogonal to εζt .
Exploiting Regression R4, we can write the following variance decomposition

Var [∆pt] = β2
1Var [∆θt] + β2

2Var [∆θt+1] + Var [εt] ,

which when divided by Var [∆pt] yields

1 = β2
1Var [∆θt]
Var [∆pt]︸ ︷︷ ︸
R2
|∆θt

+ Var [εt]
Var [∆pt]︸ ︷︷ ︸

1−R2
|∆θt+1,∆θt


β2

2Var [∆θt+1]
Var [εt]︸ ︷︷ ︸

1
2 τ
R
p̂

+1

 .
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This expression can be rearranged to solve for τRp̂ as follows:

1−R2
|∆θt

1−R2
|∆θt+1,∆θt

= 1 + 1
2τ

R
p̂ ⇒ τRp̂ = 2

R2
|∆θt+1,∆θt −R

2
|∆θt

1−R2
|∆θt+1,∆θt

,

which corresponds to Equation (13) in the text. The Kalman Gain for an external observer can be
calculated as K = τRp̂

1+τRp̂
.

Multiple Risky Assets

The price of asset j is given by

pj,t =
[(
Ap
)−1 (

Aθ −AsC
)]
j
θt +

[(
Ap
)−1

As

]
j
θt+1 +

[(
Ap
)−1

An

]
j
nt +

[(
Ap
)−1

A0

]
j

=
N∑
h=1

([(
Ap
)−1 (

Aθ −AsC
)]
jh
θh,t +

[(
Ap
)−1

As

]
jh
θh,t+1 +

[(
Ap
)−1

An

]
jh
nh,t

)
+
[(
Ap
)−1

A0

]
j

=
∑
h

πjh

([(
Ap
)−1 (

Aθ −AsC
)]
jh
θj,t +

[(
Ap
)−1

As

]
jh
θj,t+1

)
+
∑
h 6=j

([(
Ap
)−1 (

Aθ −AsC
)]
jh
ωjh,t−1 +

[(
Ap
)−1

As

]
jh
ωh,t

)
+
∑
h

[(
Ap
)−1

An

]
jh
nh,t +

[(
Ap
)−1

A0

]
j
,

where θh,t+1 = πjhθj,t+1 + ωjh,t with πjj = 1 and ωjj,t = 0. Hence, the estimates in the regression

pj,t = β0 + β1θj,t + β2θj,t+1 + εj,t

imply

εjt =
∑
h 6=j

([(
Ap
)−1 (

Aθ −AsC
)]
jh
ωjh,t−1 +

[(
Ap
)−1

As

]
jh
ωh,t

)
+

N∑
h=1

[(
Ap
)−1

An

]
jh
nh,t

β2 =
N∑
h=1

[(
Ap
)−1

As

]
jh
πjh.

Therefore, price informativeness can be recovered as

τ̂ jp̂ = β2
2

Var [εj,t]
.
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D Additional Results

In this Section, we report additional results mentioned in the text. Table A1 reports the distribution
of our estimates for absolute price informativeness, relative price informativeness and Kalman gains
assuming all stocks have non-stationary earning processes using quarterly data. Table A2 provides
summary statistics of our data at an annual frequency. Finally, Table and the corresponding estimates
of our measures of price informativeness.

Table A1: Results assuming non-stationary earnings

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Absolute Price Informativeness 666 0.04 0.25 0.00 0.0001 0.001 0.01 4.51
Relative Price Informativeness 666 0.08 0.12 0.00 0.01 0.03 0.10 1.00
Kalman Gain 666 0.06 0.08 0.00 0.01 0.03 0.09 0.50

Note: Table A1 presents summary statistics on the informative measures recovered assuming the earnings process for
all stocks is non stationary using quarterly data. It provides information on the sample mean, median, and standard
deviation, as well as the 25th and 75th percentiles of the A3 for the sample without outliers.

Table A2: Summary statistics for annual data

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Mean Earnings 466 778.08 2,038.33 −7.04 41.41 170.12 567.11 21,649.80
St. Dev. Earnings 466 662.11 1,771.28 1.73 32.05 136.22 531.08 15,434.57

Table A2 presents summary statistics for the full sample of 466 stocks at an annual frequency. It provides information
on the sample mean, median, and standard deviation, as well as the minimum, the maximum and the 25th and 75th
percentiles of the distribution of the variance of earnings. All variables are expressed in millions of dollars in 2008.

Table A3: Estimates of Price Informativeness at an Annual Frequency

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Absolute Price Informativeness 272 0.004 0.02 0.00 0.0000 0.0001 0.001 0.29
Relative Price Informativeness 272 0.44 0.49 0.0000 0.10 0.28 0.62 3.07
Kalman Gain 272 0.25 0.19 0.0000 0.09 0.22 0.38 0.75

Note: Table A3 presents summary statistics on the informative measures recovered assuming the earnings process for all
stocks is non stationary using annual data. It provides information on the sample mean, median, and standard deviation,
as well as the 25th and 75th percentiles of the distribution for the sample without outliers.
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Online Appendix

A Relation to Bai, Philippon, Savov (2015)

In this section, we explicitly re-derive the model in Bai, Philippon and Savov (2015) (BPS) as a special
case of our general framework. Consistent with our approach, we abstract from investment decisions,
and exclusively focus on the role of financial markets aggregating information.

There are two major differences between our approach and the one developed in BPS. The first and
most important difference concerns how price informativeness is measured. The second difference lies
in the assumptions behind the empirical implementation.

As we describe in the text, BPS use forecasting price efficiency (FPE), i.e., the unconditional variance
of the expected value of the fundamental conditional on the price, as a proxy for price informativeness.
While higher price informativeness will lead to higher FPE, higher FPE may not reflect an increase in
price informativeness. More specifically, we show that FPE confounds changes in the volatility of the
fundamental with changes in the ability of markets to aggregate dispersed information. Hence, FPE
can increase because price informativeness increases or because the fundamental becomes more volatile
and harder to predict. Alternatively, absolute price informativeness is the precision of the unbiased
signal about the fundamental contained in the price. This precision is a direct measure of the ability
of financial markets to aggregate dispersed information and it is independent of the volatility of the
fundamental.

Regarding the empirical implementation, the regressions run in BPS and the regressions that we
run in this paper to recover price informativeness are different. BPS run cross-sectional regressions of
fundamentals on prices and report the time-series evolution of their cross-sectional estimates of FPE.
BPS provide estimates of FPE at the market level (or for a subset of the market) over time. In contrast,
we use time series regressions to provide firm-specific measures of price informativeness. Moreover, we
run regressions of prices on fundamentals, which we show to be more adequate to obtain consistent
estimates of price informativeness. The main difference between these two approaches concerns the
underlying assumptions regarding the nature of firm-specific primitives and investors’ characteristics
(e.g., volatility of the fundamental, precision of private signals, or volatility of private trading needs)
across time and firms. By running cross-sectional regressions, BPS assume that all firms’ fundamentals
(among others, the volatility of the fundamental and noise, as well as the precision of investors’ private
signals) are identical in a given period. This assumption is unlikely to hold in practice and clearly
rejected by the data (see Table 2). Our approach assumes instead that firm-specific parameters are
time-invariant, but allows for firm specific parameters to vary freely in the cross-section of firms.

Measures of price informativeness

In the remained of this section, our approach to the approach in BPS in more detail. To compare
FPE to absolute and relative price informativeness we first describe the environment in BPS using our
notation to show how it is nested in our general specification. Then, we show that while FPE is relevant
for welfare, it does not disentangle the ability of markets to aggregate information from how easy it is
to forecast the fundamental.

Environment There are two periods, t = 0, 1. There is one asset with a payoff θ ∼ N
(
θ, τ−1

θ

)
. There

are i = 1, ..., I informed traders who choose their demand q1i to maximize mean variance preferences
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with imperfect information about θ. The asset payoff θ is not observable. However, investors observe
a private signal

s = θ + εs

and a public signal
π = θ + επ,

where εs ∼ N
(
0, τ−1

s

)
, επ ∼ N

(
0, τ−1

π

)
, and εs ⊥ επ. Note that all informed investors observe the same

set of signals. There are N noise traders whose total demand is random and given by n ∼ N
(
0, τ−1

n

)
.

The informed traders’ problem is

max
q1i

(E [θ|s, π]− p) q1i −
γ

2Var [θ|s, π] q2
1i + pq0i

which leads to the following demand curve

q1i = E [θ|s, π]− p
γVar [θ|s, π] ,

where
E [θ|s, η] = τθθ + τss+ τππ

τθ + τs + τπ
and Var [θ|s, η] = 1

τθ + τs + τπ
.

Since all informed investors share the same information set, there is no learning from the price.
In an equilibrium in linear strategies net demands for informed traders are given by

∆qI1i = αIss+ αIππ + αInn− αIpp+ ψI ,

and for uninformed traders

∆qU1i = αUs s+ αUπ π + αUn n− αUp p+ ψU .

Matching coefficients we have that

αIs = τs
γ
, αIπ = τπ

γ
, αIn = 0,

αIp = 1
γ

(τθ + τs + τπ)

ψI = τθ
γ
θ − q0i,

and αUs = αUπ = αUp = ψU = 0, and αUn = 1
N .

Market clearing implies
I∑
i=1

∆qIsi + n = 0,

which is the same as

p = αs
αp
s+ απ

αp
π + ψ

αp
+ αn
αp
n,

where αs = IαIs +NαNs . απ = IαIπ +NαNπ , αp = IαIp +NαNp , αn = IαIn +NαNn , and ψ = IψI +NψN .
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Price informativeness and forecasting price efficiency Observing the price is equivalent to
observing

p̂ = αp
αs + απ

(
p− ψ

αp

)
= θ + αs

αs + απ
εs + απ

αs + απ
επ + αn

αs + απ
n,

where
p̂|θ ∼ N

(
θ, τ−1

p̂

)
with

τp̂ =
(

αs
αs + απ

)2
τ−1
s +

(
απ

αs + απ

)2
τ−1
π +

(
αn

αs + απ

)2
τ−1
n . (33)

τp̂ in Equation (33) corresponds to our measure of absolute price informativeness when there is a finite
number of investors. There are two differences with respect to the baseline model presented in the main
text. First, there are multiple sources of aggregate noise: the error of the private signal, εs; the error of
he public signal, επ; and the demand of noise traders, n. Second, price informativeness is modulated by
αs + απ instead of by αs because there are two sources of external information about the fundamental
θ.

A Bayesian external observer who only observes the price, learns from the price in the following
way

E [θ|p̂] = τθθ + τp̂p̂

τθ + τp̂
.

Forecasting price efficiency (FPE) is then given by

VFPE = Var (E [θ|p̂]) =
(

τp̂
τθ + τp̂

)2 (
τ−1
θ + τ−1

p̂

)

=
(

τp̂
τθ + τp̂

)2(
τθ + τp̂
τθτp̂

)
= τp̂
τθ + τp̂

τ−1
θ . (34)

The expression for FPE in Equation (34) is the predicted variance of cash flows θ from prices. From
this equation, it is easy to see that FPE confounds two effects. FPE can increase due to changes in
the ability of prices to aggregate information,τp̂, or due to changes in the ease of forecastability of the
fundamental, τθ. Hence, conditional on the variance of the fundamental remaining constant, FPE and
price informativeness will co-move. However, without controlling for changes in fundamental volatility,
one cannot make any inferences about price informativeness by looking at FPE.
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