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Abstract

We analyze a data-sales model in which investors acquire uncertain skills to interpret

purchased data, thereby changing the data seller’s behavior. When the seller owns ac-

curate data, she optimally adds noise to the sold data to dampen information leakage

via asset prices. If skill acquisition of investors is uncertain, the seller cannot fully

control this information leakage. As a result, price informativeness can increase with

skill-acquisition costs and decrease with the average level of investor skills. Our analy-

sis helps explain some empirical regularities and highlights fundamental interactions

between the asset management industry and the data industry.
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1 Introduction

Much data in financial markets is provided by professional data vendors (e.g., Bloomberg

L.P., Thomson Reuters, and alternative data providers such as DataMinr and Interactive

Data). The data covers all aspects of the economy, ranging from conventional variables (e.g.,

asset prices and macro data) to customer/investor sentiment, or even to as specific as crop

yields calculated by satellite images or survey data on construction permits. One recent Wall

Street Journal article makes a vivid description of the role of data in financial markets: “A

new species is prowling America’s most obscure industry conferences: the data hunter...Hedge

funds and other sophisticated investors are increasingly relying on intermediaries like Mr.

Haines, 35 years old, as they seek insights into a company’s sales and health that aren’t

readily available from conventional sources.” (“Wall Street’s insatiable lust: data, data,

data,”Wall Street Journal, September 12, 2016).

Data providers sell their data to asset management companies such as hedge funds who in

turn trade on the purchased data. However, interpreting and trading on data require skills.1

Data is often called the new oil (“Data is giving rise to a new economy,”The Economist, May

6, 2017), and like oil, data must go through a similar refinement process. Asset management

companies hire analysts and data-science staff to decode the data to make better trading

strategies. Only those institutions with high-powered skills can generate profits from the

purchased data. Thus, both data itself and the skill to analyze data are scarce resources and

so both should earn economic rents.2 In addition, modern data analysis is often likened as

gold rush in the sense that the process usually involves great uncertainty. This is particularly

1As Admati and Pfleiderer (1986, p.400—401) state, “(i)t is most convenient to envision information as a
signal, a random variable that is jointly distributed with the state of the world.”However, “(a) signal doesn’t
become a signal by chance. It takes an economist, scientist, or entrepreneur to unlock the value of an emerging
data source before it truly becomes as a source of signals. The commercial value of discovering new signals,
whether in business, science, or finance, has led to several instances of discovery for new and innovative data
source.”(Brown, 2010, p.167) Throughout the paper, we use the words “data”, “information”, and “signals”
interchangeably, all of which refer to the products sold by data providers. We use the term “skills”to refer
to the ability to convert the data to a signal that predicts the asset payoff.

2Echoing on this view, the recent empirical work by Berk and van Binsbergen (2015) shows that active
mutual fund managers add $3.2 million per year in Y2000 dollars. Meanwhile, according to a recent survey
(“Global market data demand,”Burton-Taylor International Consulting, 2016), with the fast-growing de-
mand for data among financial institutions, global spending on information/analysis has grown to USD27.5
billion in 2016, with an annual growth rate of 2.6%.
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true for the increasingly popular alternative data.3 For instance, as a chief investment offi cer

observes, “there’s a gold rush in (alternative) data mining; most people that went off to

prospect for gold came back penniless, but that doesn’t mean there wasn’t any gold.”(“Hedge

funds see a gold rush in data mining,”Financial Times, August 29, 2017).

Despite the expanding availability of commercial databases, as well as the development

of technology in processing the data, financial market prices have not necessarily become

more informative. Figure 1 plots the time trend of price informativeness using the measure

constructed by Bai, Philippon, and Savov (2016). Panel A presents price informativeness

for long-lived firms. Consistent with Figure 7 in Farboodi, Matray, and Veldkamp (2017),

price informativeness is almost stagnant in a relatively composition-bias-free sample. Panel

B plots price informativeness for all listed firms. As in Bai, Philippon, and Savov (2016) and

Farboodi, Matray, and Veldkamp (2017), price informativeness for the average listed firm is

declining over time.

[FIGURE 1 ABOUT HERE]

In this paper, we provide a theoretical model to conceptualize the aforementioned facts

regarding data sales and data processing, and to understand their implications for financial

markets. Specifically, we aim to address the following questions: How do the skill properties

of the buy side (e.g., the cost to acquire skills, skill levels) affect the sell side’s data-sales

decisions (e.g., the clarity and price of the sold data)? How do the interactions between the

buy side (e.g., hedge funds, mutual funds) and the sell side (e.g., data vendors) affect market

variables such as price informativeness, the cost of capital, and return volatility? What are

the implications of the “gold rush” feature of skill acquisition for financial markets? How

does skill acquisition affect the performance of the active asset management industry?

Our model extends the standard information-sales setting of Admati and Pfleiderer (1986)

to allow for skill acquisition. One data seller sells data that is subsequently used by investors

3Alternative data is information gathered from non-traditional information sources. It can be compiled
from various sources such as financial transactions, sensors, mobile devices, satellites, public records, and
the Internet. Alternative data is being used by institutional investors such as hedge funds and mutual funds
to generate alpha. For instance, in 2015, some hedge funds purchased satellite-imagery based traffi c data
from RS Metrics to successfully gauge JC Penney’s quarterly earnings. Because alternative data is raw or
unstructured, investors need to make large investments to acquire the necessary skills and infrastructure to
trade on alternative data. See Appendix B for a detailed description about the markets for alternative data.
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to speculate in a financial market. Investors spend resources to acquire skills that are use-

ful for interpreting the purchased data. Those investors who do not acquire skills cannot

understand the data and thus cannot trade on it. Skill-acquisition costs are heterogeneous

across investors, which reflects the fact that some investors are better talented than others.

To capture the gold rush feature of data analysis, we assume that after paying the costs

to acquire skills, investors may become high-skilled or low-skilled with some probabilities.4

The price of data is generated from bilateral Nash-bargaining games played by the seller and

skilled investors, and in equilibrium, the total trading gains are split between the two sides

(i.e., both data and skills earn economic rents).

Following the literature (e.g., Admati and Pfleiderer, 1986; García and Sangiorgi, 2011),

we consider a signal structure that allows the seller to add conditionally independent noise

(personalized noise) to the data being sold.5 The precision of the added noise is jointly

determined by data clarity (which is chosen by the seller) and investors’skills of decoding

the purchased data. As in Admati and Pfleiderer (1986), the seller uses data clarity to

control the information leakage effect via asset prices (that is, investors can free-ride on

the information possessed by others through observing the equilibrium asset price). When

the seller’s original data is accurate, the seller adds personalized noise into the sold data in

equilibrium to dampen the negative information-leakage effect on profits. By contrast, when

the seller’s original data is inaccurate, the seller does not introduce any noise and makes the

sold data very easy to digest in equilibrium.

We find that market variables– in particular, price informativeness (how much informa-

tion is revealed in the asset price), the cost of capital (the expected difference between the

asset cash flow and its price), and return volatility– often exhibit different properties in the

two types of economies. This is because when the seller adds noise in equilibrium, which

makes data clarity endogenous. Given that we are interested in the scenario in which the

seller plays a strategic role, we focus on economies in which the seller’s original data is ac-

curate, and leave to the Online Appendix the analysis of economies in which the seller is

4For example, although the buy side has invested a lot in new data sets and hiring data scientists, not
every fund involved can process the data well and reach the best insights fast (see Appendix B).

5Admati and Pfleiderer (1986) show that personalized allocations dominate a large class of allocations,
and conjecture that the monopolist cannot do better than in the personalized allocation.
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endowed with inaccurate data.

We further consider two cases, without and with skill-acquisition uncertainty (i.e., the

gold rush feature of skill acquisition). In the case without skill-acquisition uncertainty,

the seller will add noise in a way such that price informativeness, the cost of capital, and

return volatility all remain constant, which completely neutralizes the effect of changing

skill-acquisition costs on these variables.

However, in the case with skill-acquisition uncertainty, the seller is no longer able to fully

undo the information leakage effect. This is because investors ending up with different skills

will use data differently for the same level of data clarity. Specifically, now investors are faced

with uncertainty in skill acquisition and may end up being a low-skilled type (associated with

low utilities), thereby reducing their incentives to acquiring skills in the first place. As skill-

acquisition costs increase, in order to encourage investors to acquire skills and thus purchase

data, the seller sells clearer data. In consequence, quite surprisingly, price informativeness

can increase with skill-acquisition costs and both the cost of capital and return volatility

can decrease with skill-acquisition costs. We also conduct comparative statics with respect

to the average level of skills (skill mean) and the volatility of skills (skill volatility). Again,

counterintuitively, price informativeness can decrease with the skill mean, and the cost of

capital and return volatility can instead increase with it. Skill volatility has a non-monotonic

effect on these market variables.

Our model helps understand some puzzling asset pricing facts. For example, as the real-

time, granular data become easier to collect, the seller owns relatively accurate information

about firms. With the long history of mature firms, the investors face little uncertainty in

acquiring relevant skills to process the purchased data and thus, the seller is able to navigate

a constant price informativeness. This is consistent with the stagnant price informativeness

in Panel A of Figure 1, as well as that in Figure 7 of Farboodi, Matray, and Veldkamp

(2017). On the other hand, the decreasing price informativeness of the average listed firm

(especially small firms) in Panel B of Figure 1 can be understood as our data-sales economy

with skill-acquisition uncertainty: as the technology to crunch data improves over time (i.e.,

the skill-acquisition cost decreases, or the skill mean increases), price informativeness can

instead decrease.
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Additionally, the findings in Brandt, Brav, Graham, and Kumar (2009) suggest a U-

shaped relation between institutional ownership and return volatility. For instance, by con-

sidering a comparative statics with respect to skill volatility, our model generates a U-shaped

relation between the population of skilled investors and return volatility. To the extent that

skilled investors correspond to institutions, our result offers a potential explanation for the

findings in Brandt, Brav, Graham, and Kumar (2009).

Our analysis further investigates other important variables. We find that the equilibrium

population of investors acquiring skills and the seller’s profits tend to move together in

response to changes in virtually all exogenous primitive parameters. This finding points to

a basic tenet that the asset management industry and the data industry are fundamentally

connected via the financial market, so that both industries foster each other’s growth and

development. In the context of alternative data, a practical view is that the fast growth

of alternative data sets may shrink the funds industry in the future, because some asset

management firms cannot adapt to the radically changing landscape.6 Our analysis suggests

that the fast growth of alternative data may be accompanied with an expanding funds

industry that will rely more on alternative data to seek investment insights.

Finally, we show that the performance of skilled investors (relative to the unskilled in-

vestors) improves as the cost of acquiring skills increases, which follows from the fact that

skilled investors have to be compensated for the incurred skill-acquisition costs. This result

offers a potential explanation for the performance heterogeneity in the active asset man-

agement industry across different assets and markets (Gârleanu and Pedersen, 2018). For

example, given that skill-acquisition costs are larger for international financial markets than

domestic ones, and larger for private companies than public ones, the active funds focusing

on the former tend to deliver better performance.

Our paper contributes to two strands of literature. The first is the information-sales

literature, such as Admati and Pfleiderer (1986, 1988), Allen (1990), Fishman and Hagerty

6For instance, a recent opimas article wrote: “The explosion of alternative data will require hedge funds
and other asset managers to make large investments to acquire the necessary skills and infrastructure to
leverage these sources of information. We expect that alternative data will contribute significantly to a
further shrinkage in the hedge fund population, as firms unable to exploit the information needed to compete
effectively in the new world of intelligent investing will fall behind.” (“AI and alternative data: Moving to
trading’s next model,”Axel Pierron, July 24, 2017, http://www.opimas.com/research/267/detail/)
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(1995), Naik (1997), Cespa (2008), García and Sangiorgi (2011), Chen and Wilhelm (2012),

and Easley, O’Hara, and Yang (2016). In this literature, all investors have equal (full)

capacity to interpret and trade on information. We instead relax this assumption by allowing

investors to acquire skills to trade on the purchased information. Our paper is about “direct

sales of information,”where the data seller sells data to investors who in turn trade on the

data. Admati and Pfleiderer (1990) and García and Vanden (2009) have considered “indirect

sales of information,”where information sellers set up funds and sell fund shares. Gârleanu

and Pedersen (2018) explore how asset managers produce information and then interact with

clients. Their paper focuses more on the buy-side information, i.e., the information produced

by fund managers. By contrast, our paper is more on the sell-side information, i.e., the

information produced by data vendors. In our setting, fund managers (skilled investors) do

not acquire fundamental information directly; rather, they acquire the skills to analyze and

trade on the data purchased from the sell side.

A second stream of related research considers the possibility that investors have different

abilities for processing data, albeit in different settings. Indjejikian (1991) and Pagano

and Volpin (2012) analyze models in which investors have different sophistication levels in

understanding public disclosure– i.e., free data– made by firms or asset issuers. Vives and

Yang (2017) analyze a setting in which investors need to spend resources to acquire skills

in interpreting the asset price, which is again freely observable by investors. In our setting,

investors have different skills in understanding the data sold by a data vendor, and there are

important interactions between skill-acquisition activities of investors and information-sales

activities of the seller. Myatt and Wallace (2012) consider a “beauty-contest”coordination

game in which players choose how much costly attention to pay to various informative signals.

In their setting, each signal has an underlying accuracy (how precisely it identifies the state)

and a clarity (how easy it is understood). Our information structure closely follows Myatt

and Wallace (2012), but in our setting the clarity is endogenously chosen by the data vendor

and is affected by how investors acquire skills for interpreting the data.
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2 A Model of Skill Acquisition and Data Sales

We study a data-sales setting with one data seller and a continuum of investors. We extend

the classic information-sales literature, such as Admati and Pfleiderer (1986) and García

and Sangiorgi (2011), in two dimensions. First, interpreting and trading on data require

skills, and investors need to pay a cost to acquire these skills with uncertainty. Second, to

compensate skilled investors for the costly skill acquisition, we introduce Nash bargaining to

split the rents from trading on the purchased data between the seller and skilled investors.

Our economy has three dates, t = 0, 1, and 2. The order of events is described in Figure

2. At date 0, the data market opens and investors make skill-acquisition decisions. At date

1, the asset market opens and investors trade. At date 2, the assets pay off and all agents

consume. For ease of reference, the main model variables are tabulated and explained in

Appendix A.

[FIGURE 2 ABOUT HERE]

2.1 Assets and Asset Markets

There are two tradable assets in the date-1 financial market: a risk-free asset and a risky

asset. The payoff of the risk-free asset has a constant value of 1 for simplicity, and is in

unlimited supply. The risky asset is traded at an endogenous price p̃ per unit in the date-1

market, and its total supply is normalized as one share. The risky asset pays an uncertain

cash flow θ̃ at date 2, where θ̃ ∼ N
(
0, τ−1

θ

)
with τ θ ∈ (0,∞). There is noisy demand ũ for

the risky asset, where ũ ∼ N (0, τ−1
u ) with τu ∈ (0,∞). Therefore, the effective supply of

the risky asset is 1− ũ. Noisy trading ũ is independent of all other random variables in the

economy, and it serves the usual role of preventing private information from being perfectly

revealed by the price.

2.2 Information Structure

We follow Admati and Pfleiderer (1986) and assume that there is one data seller. This data

seller can be broadly interpreted as professional data vendors (e.g., Bloomberg L.P. and

7



alternative data providers such as DataMinr and Interactive Data) or brokerage analysts

who sell various reports and newsletters to buy-side clients. The seller is endowed with

information about the asset payoff θ̃, in the form of θ̃+ η̃, where η̃ ∼ N
(
0, τ−1

η

)
, τ η ∈ (0,∞),

and η̃ is independent of θ̃. Parameter τ η measures the accuracy level of the seller’s endowed

information.

Our analysis allows sales of data with personalized noises, as considered by Admati and

Pfleiderer (1986, 1988).7 That is, when selling data, the seller can add idiosyncratic noises

into her endowed signal θ̃+ η̃. One often-cited interpretation for personalized signals is that

data vendors intentionally pass on the data to investors in a vague way, so that investors

make independent interpretations of the data (see Admati and Pfleiderer (1986) and García

and Sangiorgi (2011) for more discussions). The innovation of our approach is that investors

have heterogeneous skills of interpreting the purchased data.

Specifically, the seller offers investor i of type k a signal s̃k,i of the form

s̃k,i = θ̃ + η̃ + ε̃k,i, with ε̃k,i ∼ N

(
0,

1

xzk

)
, (1)

where (θ̃, η̃, {ε̃k,i}, ũ) are mutually independent. Specification (1) follows closely the infor-

mation structure described in Myatt and Wallace (2012): the term η̃ is “sender noise,”while

the personalized error term ε̃k,i represents “receiver noise.”Variable x ∈ [0,∞] is a constant

chosen by the seller, and it controls the “clarity”of the data passed to investors. We allow

x to take values of 0 and ∞. If x = 0, the seller is selling a completely uninformative signal

since she is adding an error with an infinite variance for any zk > 0. Instead, if x =∞, the

seller does not introduce any personalized noise into the sold data, as the variance of ε̃k,i

degenerates to zero.

Variable zk represents investors’skills of interpreting the data. We assume that zk can

take three values: 0, ZL, and ZH ; that is, zk ∈ {0, ZL, ZH}, where 0 ≤ ZL ≤ ZH < ∞.

When zk = 0, investors are unskilled, and they cannot process the data at all. These

investors can represent retail investors or passive funds. When zk > 0, investors are skilled

7We have also considered the possibility of the seller adding photocopied noises. Nonetheless, we find
that in equilibrium the seller optimally chooses not to add photocopied noises into the sold data. This is
because personalized signals always dominate photocopied ones in terms of the seller’s profits (Admati and
Pfleiderer, 1986).
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and can interpret the data, and they can represent active funds.8 Skilled investors admit

two types, High (zk = ZH) or Low (zk = ZL), so that we allow heterogeneity among active

fund managers, as documented in Berk and van Binsbergen (2015). This feature of data-

interpretation skills is particularly relevant in the context of alternative data, because most

alternative data sources are not in a format that lends itself directly to investing.

2.3 Investors

There exists a continuum of investors, indexed by i ∈ [0, 1]. Investors acquire skills and

purchase data at date 0, trade assets at date 1, and consume at date 2. All investors

derive expected utility over their date-2 wealth according to a constant absolute risk aversion

(CARA) utility with a common risk aversion coeffi cient γ.

At date 0, knowing the data clarity, investors first decide whether to acquire skills to

process the data. Acquiring skills incurs costs. For instance, if we interpret investors as

individuals, these costs can be resources spent on attending educational programs. If we

interpret investors as institutions, these costs can represent costs associated with hiring

data specialists and with building infrastructure to analyze data. We use λ to denote the

fraction of investors who decide to acquire skills. Skill-acquisition costs are specified to be

heterogeneous among investors. Let C (i) denote investor i’s skill-acquisition cost. Without

loss of generality, we assume that C (i) is increasing in i. In addition, we assume that C (i)

is continuous, C (0) = 0, and C (1) = +∞. This ensures that the equilibrium mass λ∗ of

skilled investors always admits an interior solution, that is, λ∗ ∈ (0, 1).

Skill acquisition is uncertain. After investor i decides to acquire skills, her skill level may

end up with ZL or ZH with equal probabilities, where 0 ≤ ZL ≤ ZH < ∞. We refer to

investors with skill level ZH as “high-type skilled investors,”and to those with skill level ZL

as “low-type skilled investors.”As a result, there are a mass λ
2
of high-type skilled investors

(e.g., star active fund managers), a mass λ
2
of low-type skilled investors (e.g., mediocre active

8In reality, fund managers may not only process information provided by the sell side (such as data
vendors or analysts), but also develop information on their own. This buy-side information can be simply
incorporated into our setting by assuming that skilled investor i develops a signal s̃b,i = θ̃ + ξ̃i, where
ξ̃i ∼ N(0, τ−1ξ ) with τ ξ ∈ (0,∞). Gârleanu and Pedersen (2018) have studied information production by
funds.
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fund managers), and a mass 1−λ of unskilled investors (e.g., retail investors or passive funds).

We define the mean and the volatility of skill levels as

Z̄ ≡ ZH + ZL
2

and ∆ ≡ ZH − ZL
2

, (2)

respectively. We introduce uncertainty into the skill-acquisition process to reflect the fact

that to decode data resembles “gold rushes,”as mentioned in the Introduction.

After making skill-acquisition decisions, investors decide whether to purchase the data.

Naturally, unskilled investors will not buy data since they lack the ability to process data.

Skilled investors will buy data even though they may end up with low skills. We assume

that skilled investors make data-purchase decisions before they uncover their types; that is,

only after investors exploit some data, can they understand whether they can successfully

decode and then trade on the data. This assumption is consistent with the fact that when

purchasing alternative data, active fund managers are not sure if they can unlock the data

successfully and timely. Similarly, in the context of machine learning, institutions can know

whether their algorithms work only after exploring a large amount of data.

At date 1, both skilled and unskilled investors trade in the financial market. As standard

in the rational-expectations equilibrium literature, all investors submit demand schedules and

they can condition their trades on prices. Skilled investors also observe the signals purchased

from the seller and uncover their skill levels. Formally, investor i chooses demand Di for the

risky asset to maximize E
[
−e−γDi(θ̃−p̃)

∣∣∣Fi], where Fi represents investor i’s information set
(including the asset price p̃).

2.4 Nash Bargaining and Data Price

Both data and skills are scarce resources and thus both factors should earn economic rents.

We use Nash bargaining as a modeling device to implement profit sharing. Our approach

is similar to Gârleanu and Pedersen (2018) who employ Nash bargaining to determine the

fee charged by mutual funds, and is also consistent with Anand and Galetovic (2000) who

argue that when the information seller has local monopoly power, information prices are

often determined through bilateral bargaining between the buyer and the seller. In reality,

the Nash bargaining captures the feature of modern markets for financial information; for
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example, the buy-side often hires teams of people to speak with data owners, and the two

sides bargain over the price directly (see Appendix B for a detailed description on how data

vendors and the buy-side negotiate the data price bilaterally). In our setting, each skilled

investor and the seller form a pair to engage in Nash bargaining. The bargaining outcome

yields the price q of the data sold by the seller.

We use β ∈ [0, 1] to denote the bargaining power of the data seller. When β = 1, the seller

has the full bargaining power and will extract all surplus resulting from the informed trading,

which corresponds to the settings analyzed in the literature.9 When β < 1, investors as data

buyers have non-negligible bargaining power and can keep some surplus in the bargaining

game. One may argue that β = 1 is more applicable in a setting with a single seller. But

note that in our setting, the single-seller assumption is just a simplification, and being the

only seller does not imply that she can extract all the rents. In fact, if the seller was able to

extract all rents, then no investors would acquire skills in our model economy and thus the

seller could not sell any data. In reality, the sell side typically consists of multiple sellers,

and we can treat these sellers as the representative seller in our setting (by ignoring the

competition effect). As Berk and van Binsbergen (2015) document, active fund managers do

add value to their companies (about $3.2 million per year) and this value is largely captured

by asset management companies, which suggests that skills earn rents in reality.

2.5 The Seller’s Problem

A mass λ of investors purchase data at price q. So, the profit of selling data is π = λq. At

the very beginning of the economy, the seller chooses data clarity x in data sales to maximize

the profit π. That is, the seller’s optimization problem is:

max
x

λ (x) q (x) . (3)

In the above problem, the seller is forward looking in the sense that she anticipates how the

choice of x affects the data demand λ and the data price q.

9When the skill-acquisition cost C is 0, our setting with β = 1 degenerates to Admati and Pfleiderer
(1986).

11



3 Equilibrium

The economy is defined by a tuple of seven exogenous parameters and one exogenous func-

tion, E ≡{τ θ, τ η, τu, γ, β, ZH , ZL, C (·)}. Note that parameters Z̄ and ∆ specified in (2) are

equivalent to {ZH , ZL} given that ZH = Z̄ + ∆ and ZL = Z̄ −∆. For a given economy E ,

we define an equilibrium in a subgame-perfect sense.

Definition 1 An equilibrium is characterized by a clarity level x∗ of the data sold by the

seller, a skill-acquisition decision function A (i;x) of investor i, a mass λ (x) of skilled in-

vestors, a data price q (x), a price function p(θ̃ + η̃, ũ), and a demand schedule D (Fi) of

investor i, such that:

(1) In the date-1 financial market, (i) demand schedule D (Fi) maximizes investor i’s ex-

pected utility conditional on her information set Fi; and (ii) the price function p(θ̃ + η̃, ũ)

clears the asset market almost surely.

(2) At date 0, (i) the data price q (x) is generated from Nash bargaining between the seller

and a typical skilled investor; (ii) the skill-acquisition decision function A (i;x) maximizes

investor i’s ex-ante expected utility (where A (i;x) = 1 or 0), and λ (x) =
∫ 1

0
A (i;x) di; and

(iii) x∗ maximizes the seller’s profit λ (x) q (x).

3.1 Financial Market Equilibrium

The equilibrium concept in the financial market is the standard noisy rational-expectations

equilibrium (noisy-REE). Constructing a noisy-REE boils down to solving a price function

that depends on skilled investors’private information s̃k,i and noise trading ũ. By the law

of large numbers, the noise terms ε̃k,i in the private signals s̃k,i will wash out and thus the

price p̃ becomes a function of (θ̃+ η̃, ũ). We follow the literature and consider a linear price

function as follows:

p̃ = a0 + aθ(θ̃ + η̃) + auũ, (4)

where the a-coeffi cients will be endogenously determined in equilibrium.

For any investor, the information contained in the price is equivalent to the following
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signal s̃p:

s̃p ≡
p̃− a0

aθ
= θ̃ + η̃ + α−1ũ, with α ≡ aθ

au
, (5)

where s̃p is normally distributed, with mean θ̃ + η̃ and precision α2τu. The CARA-normal

setup implies that investor i’s demand function is

D (Fi) =
E(θ̃|Fi)− p̃
γV ar(θ̃|Fi)

, (6)

where Fi is investor i’s information set (including the asset price p̃).

Investors differ in their data-processing abilities and hence information sets. In the date-1

financial market, there are three types of investors depending on their skill levels of processing

data: (i) high-type skilled investors, labeled by H, with data-processing ability ZH ; (ii) low-

type skilled investors, labeled by L, with data-processing ability ZL; and (iii) unskilled

investors, labeled by U , without any data-processing ability. The masses of the three types

of investors are λ
2
, λ

2
, and 1− λ, respectively.

An H-type skilled investor i has information set {p̃, s̃H,i}, which is equivalent to {s̃p, s̃H,i}.

Her demand function is DH (p̃, s̃H,i) =
E(θ̃|p̃,s̃H,i)−p̃
γV ar(θ̃|p̃,s̃H,i)

. By equation (1), private signal s̃H,i has

precision xZH in predicting θ̃ + η̃. Applying Bayes’rule, we can compute the conditional

moments of an H-type skilled investor i as follows:

E(θ̃|p̃, s̃H,i) =
τ η

τ θ + τ η

α2τus̃p + xZH s̃H,i
τθτη
τθ+τη

+ α2τu + xZH
, (7)

V ar(θ̃|p̃, s̃H,i) =
1

τ θ + τ η
+

(
τ η

τ θ + τ η

)2
1

τθτη
τθ+τη

+ α2τu + xZH
. (8)

An L-type skilled investor i has information set {p̃, s̃L,i}, equivalent to {s̃p, s̃L,i}, where

s̃L,i has lower precision xZL in predicting θ̃ + η̃. Her demand function is DL (p̃, s̃L,i) =

E(θ̃|p̃,s̃L,i)−p̃
γV ar(θ̃|p̃,s̃L,i)

. We can compute the conditional moments as follows:

E(θ̃|p̃, s̃L,i) =
τ η

τ θ + τ η

α2τus̃p + xZLs̃L,i
τθτη
τθ+τη

+ α2τu + xZL
, (9)

V ar(θ̃|p̃, s̃L,i) =
1

τ θ + τ η
+

(
τ η

τ θ + τ η

)2
1

τθτη
τθ+τη

+ α2τu + xZL
. (10)

An unskilled investor can forecast the asset fundamental only based on price p̃, and her
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demand function is DU (p̃) = E(θ̃|p̃)−p̃
γV ar(θ̃|p̃) . Using Bayes’rule, we have

E(θ̃|p̃) =
τ η

τ θ + τ η

α2τus̃p
τθτη
τθ+τη

+ α2τu
, (11)

V ar(θ̃|p̃) =
1

τ θ + τ η
+

(
τ η

τ θ + τ η

)2
1

τθτη
τθ+τη

+ α2τu
. (12)

The market-clearing condition is∫ λ/2

0

DH (p̃, s̃H,i) di+

∫ λ

λ/2

DL (p̃, s̃L,i) di+ (1− λ)DU (p̃) + ũ = 1. (13)

To derive the equilibrium price function, we insert the demand functions into the market-

clearing condition to solve the price in terms of θ̃ + η̃ and ũ, and then compare with the

conjectured price function in equation (4) to obtain and solve a system that characterizes

the unknown a-coeffi cients.

Proposition 1 (Financial market equilibrium) Given (λ, x; τ θ, τ η, τu, γ, ZH , ZL), there ex-

ists a unique linear equilibrium price function, given by equation (4), where a0, aθ,and au

are given in Appendix C. The equilibrium is characterized by the ratio α = aθ
au
, which is the

unique real positive root of the following equation:

γα
(
xZH + τuα

2 + τ η
)
− 1

2
xλτ η

(
ZH + ZL +

xZL (ZH − ZL)

xZL + τuα2 + τ η

)
= 0. (14)

The endogenous variable α defined by (5) is positively related to price informativeness,

which measures how much fundamental information is revealed by the price. Formally, we

can measure price informativeness by 1
V ar(θ̃|p̃) (e.g., Grossman and Stiglitz, 1980). According

to equation (12), price informativeness 1
V ar(θ̃|p̃) is determined by four variables: τ θ, τ η, τu,

and α. To the extent that parameters τ θ, τ η, and τu are exogenous, the endogenous variable

α indeed captures price informativeness.

Corollary 1 (Price informativeness) Given (x; τ θ, τ η, τu, γ, ZH , ZL), price informativeness
1

V ar(θ̃|p̃) increases with the mass λ of skilled investors.

3.2 Nash-Bargaining Equilibrium

At date 0, the data price is determined as an outcome of Nash bargaining between the seller

and one skilled investor who has not uncovered her skill type yet. Recall that the bargaining
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equilibrium depends on agents’ utilities in the events of agreement versus no agreement.

For the data seller, if an agreement is achieved, her additional profit will increase by the

data price q. For the investor, we follow Gârleanu and Pedersen (2018) and specify the

investor’s bargaining objective in terms of certainty-equivalent wealth. That is, the utility

when agreeing on a data price q is CES − q, where CES is the ex-ante certainty equivalent

of the skilled investor. If no agreement is reached, the investor’s outside option is to invest

as the unskilled, yielding a utility of CEU , where CEU is the ex-ante certainty equivalent of

an unskilled investor. Hence, the investor’s gain from agreement is CES − CEU − q.

The difference CES −CEU captures the total gain from interpreting and trading on the

data. We denote this gain by G, that is, G ≡ CES−CEU . Note that this trading gain G has

gross of the skill-acquisition cost C. That is, when we compute CES, we follow Gârleanu and

Pedersen (2018) and do not subtract the skill-acquisition cost C, because at the bargaining

stage, an investor has already invested to acquire skills and thus the cost C is sunk. In

Appendix C, we compute the trading gain G as follows:

G (x, α) =
1

γ
ln


√
V ar(θ̃|p̃)

1
2

√
V ar(θ̃|p̃, s̃H,i) + 1

2

√
V ar(θ̃|p̃, s̃L,i)

 , (15)

where V ar(θ̃|p̃, s̃H,i), V ar(θ̃|p̃, s̃L,i), and V ar(θ̃|p̃) are given by equations (8), (10), and (12),

respectively. In equation (15), we have explicitly expressed G as a function of the two

endogenous variables (x, α).

In the Nash-bargaining game, the seller’s gain from agreement is the data price q and

the investor’s gain from agreement is G − q. The seller has a bargaining power β ∈ [0, 1].

The bargaining outcome maximizes the product of the utility gains from agreement:

max
q
qβ (G− q)1−β ⇒ q∗ = βG, (16)

where q∗ denotes the equilibrium data price.

In equilibrium, the total gain G generated from a skilled investor (who interprets and

trades on data) is split between the seller and the investor as follows:

G = q + (G− q) = βG︸︷︷︸
seller’s rent

+ (1− β)G︸ ︷︷ ︸ .
skilled investor’s rent

(17)

Intuitively, if we interpret a skilled investor as an active fund, then part of the fund’s revenue
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goes to data providers (as compensation for data provision) and the remaining is left to the

fund (as compensation for trading skills). The gain division is determined by the bargaining

power (1− β) of the fund manager in negotiating prices with data providers.

3.3 Skill-Acquisition Decisions

An investor trades offbetween the benefit and cost of acquiring skills. If investor i decides to

acquire skills, she expects to receive a benefit of (1− β)G resulting from the Nash-bargaining

game, but acquiring skills incurs a cost of C (i). If (1− β)G > C (i), investor i decides to

acquire skills; otherwise, she decides not. Thus,

A (i) =

 1, if (1− β)G ≥ C (i) ,

0, otherwise,
(18)

where A (i) = 1 indicates that investor i chooses to acquire skills.

Since C (i) monotonically increases from 0 to +∞, there always exists an interior equi-

librium mass λ∗ ∈ (0, 1) of skilled investors. That is, A (i) = 1 as long as i ∈ [0, λ∗]. The

equilibrium mass λ∗ is determined by

(1− β)G (x, α) = C (λ∗) , (19)

where G (x, α) is given by equation (15).

3.4 The Seller’s Decision and the Overall Equilibrium

The seller chooses data clarity x to maximize profits: maxx λ (x) q (x) . In computing this

maximization problem, we need to figure out functions λ (x) and q (x) in two steps. First,

we use the financial market equilibrium condition (14) and the skill-acquisition equilibrium

condition (19) to jointly solve α and λ as functions of x. In Appendix C, we show that these

two functions are well defined: for a given x, there exists a unique pair (α, λ) that solves

(14) and (19). Second, we use the Nash-bargaining equilibrium condition (16) to express q

as a function of x: q (x) = βG (x, α (x)).

Proposition 2 (Overall equilibrium) There exists an overall equilibrium such that:

(1) Clarity level x∗ ∈ [0,+∞] solves the seller’s profit maximization problem (3), where
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the population of skilled investors λ (x∗) and the data price q (x∗) are jointly determined by

equations (14), (16), and (19);

(2) Demand schedules are given by equation (6), and the price function is characterized by

Proposition 1.

3.5 Two Types of Equilibria

Two types of data clarity x∗ arise in equilibrium, depending on the accuracy level τ η of the

seller’s original data. When data accuracy τ η is high, the seller sells data in a way with

limited clarity to control the information leakage via the asset price. On the other hand,

when data accuracy τ η is low, the seller sells data “as is.”

The data seller needs to balance two competing forces in choosing clarity x to maximize

profit π (x) = λ (x) q (x). On one hand, the data price q is negatively related to the amount of

information revealed by the price (information leakage) and thus, the seller has an incentive

to decrease the amount of information in the price by adding noise to the sold data (i.e.,

q (x) decreases with x). On the other hand, adding noise directly lowers the data value,

reducing investors’willingness to pay and hence the population λ of skilled investors (i.e.,

λ (x) increases with x). When the data accuracy is suffi ciently high, the seller is more

concerned with information leakage and thus adds noise to the sold data, leading to a finite

level x∗ of data clarity. By contrast, if the data accuracy is suffi ciently low, the seller cannot

afford to add noise and she simply sells the data “as is,”i.e., the optimal clarity level x∗ is

∞.

Proposition 3 (Data clarity x∗) In equilibrium, there exist two types of data clarity x∗:

(1) If λ∗τ η > α∗γ, the seller sells data with added noise, i.e., x∗ <∞;

(2) If λ∗τ η ≤ α∗γ, the seller sells data “as is,” i.e., x∗ =∞.

In the remaining of this paper, we focus on economies in which the seller’s data is suf-

ficiently accurate (i.e., high τ η) for the following reasons. First, only when the seller owns

accurate data does she engage in strategic sales of data; otherwise she just sells her data

“as is.”Given that we are interested in the effect of data markets on financial markets, we

emphasize the case in which the seller plays an active role. Second, as will be shown below,
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many novel theoretical results often emerge in economies with a high data-accuracy level,

in which the data seller can adjust her data clarity in response to changes in exogenous

parameters. We leave the complete analysis of the case in which the seller owns inaccurate

data to the Online Appendix.

4 Comparative Statics

In this section, we examine how skill-acquisition technology feeds back into data sales, finan-

cial markets, and the asset management industry, by conducting comparative statics with

respect to parameters governing the skill-acquisition cost function C (·) and parameters gov-

erning skill levels (Z̄ and ∆). We consider two economies. In the first economy, we shut

down the “gold rush”feature of data interpretation, so that a skilled investor knows for sure

her ability to interpret the purchased data (i.e., ∆ = 0, or equivalently, ZL = ZH). We find

that when the accuracy level τ η of the seller’s original data is suffi ciently high, the seller can

fully undo the price’s information leakage effect. In the second economy, a skilled investor

faces uncertainty about her ability to read the purchased data (i.e., ∆ > 0, or equivalently,

ZL < ZH). In the presence of skill uncertainty, the seller is no longer able to use data clarity

to fully neutralize the information leakage effect even when she owns very accurate data.

This leads to novel theoretical results such as that price informativeness can increase with

skill-acquisition costs and can decrease with the average skill level of investors.

4.1 Skill Acquisition without Uncertainty

Assume ZL = ZH . So, by paying a cost, an investor obtains for sure a prespecified skill level

of interpreting data. We conduct comparative statics with respect to skill-acquisition costs.

To facilitate analysis, we specify that the skill-acquisition cost function C (·) is governed by

parameter c > 0, so that an increase in c shifts the entire curve C (·) upward (i.e., ∂C
∂c

>

0). Skill-acquisition cost parameter c can be associated with market conditions, technology

changes, or development of professional educational programs. For instance, it may be more

costly for fund managers to develop skills in a more complex asset market. Also, it is more

costly for active funds to hire researchers if the wage rates in labor markets become higher.
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We use Figure 3 to graphically illustrate our results for C (i) = ci
1−i with c > 0. The parameter

values are as follows: τ θ = 1, τu = 5, τ η = 1000, γ = 1, β = 0.3, and ZL = ZH = 10.

[FIGURE 3 ABOUT HERE]

It is intuitive that as c increases, fewer investors choose to acquire skills (i.e., ∂λ
∗

∂c
< 0).

This feeds back to the supply side of data (data clarity x∗ and data price q∗). With very

accurate original data (i.e., high τ η), the seller optimally adds noise into the sold data.

Given that there are fewer skilled investors caused by the increase in skill-acquisition costs,

the information leakage effect is less of a concern and thus, the seller chooses to add less

noise and deliver cleaner data (i.e., ∂x
∗

∂c
> 0). In equilibrium, the improvement in data clarity

exactly cancels the adverse effect of the skill-acquisition cost on the mass of skilled investors,

thereby making price informativeness unchanged.10 This means that the seller completely

undoes the effect of the exogenous skill-acquisition costs on price informativeness, and “brings

the entire market to an information level that is only a function of her own information”

(Admati and Pfleiderer, 1986, p.426). Recall that data price q∗ is in proportion to the

trading gain, which is in turn determined by the extra precision brought about interpreting

the purchased data in addition to the information revealed by the price (see equations (15)

and (16)). Hence, given the constant price informativeness, better data clarity leads to

higher precision of interpreting the purchased data, which raises the equilibrium data price

(i.e., ∂q
∗

∂c
> 0).

In addition to price informativeness, we also examine two additional asset price variables:

the cost of capital E(θ̃− p̃) and return volatility σ(θ̃− p̃). The cost of capital is the expected

difference between the cash flow generated by the risky asset and its price. This difference

arises from the compensation required to induce investors to hold the risky asset. The return

on the risky asset is θ̃ − p̃, and thus its volatility can be measured by σ(θ̃ − p̃). Since the

seller adds noise to navigate a fixed level of price informativeness, the uncertainty faced

by investors does not change with the skill-acquisition cost, making the cost of capital and

return volatility constant.

Finally, we report the seller’s profit and skilled investors’performance. The seller’s profit

10Specifically, the equilibrium price informativeness is a function of τη and τθ only, i.e., 1
V ar(θ̃|p̃) =

2τθ(τη+τθ)
τη+2τθ

.
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is π∗ = λ∗q∗. As c increases, λ∗ decreases but q∗ increases. Nonetheless, the effect of λ∗

dominates, so that the seller’s profit π∗ decreases with c. We follow Gârleanu and Pedersen

(2018) and proxy the performance of skilled investors using the disparity between a skilled

investor’s certainty equivalent and an unskilled investor’s certainty equivalent. Specifically,

the performance of skilled investor i of type k is

Performancek,i =
1

2γ
ln

V ar(θ̃|p̃)
V ar(θ̃|p̃, s̃k,i)

, where i ∈ [0, 1], and k ∈ {H,L}, (20)

which captures the additional expected utility (outperformance) of a high- or low-skilled

investor relative to an unskilled (uninformed) one. As Gârleanu and Pedersen (2018) pointed

out, an investor’s expected utility is directly linked to her (squared) Sharpe ratio. We do

not subtract data price q or skill-acquisition costs C (i) from the performance because in

practice fund performance is examined without consideration of the expenses assumed by

the fund side. The performance of a typical skilled investor is the weighted average of the

performance of a high- and a low-skilled investor:

Performance =
1

2

(
1

2γ
ln

V ar(θ̃|p̃)
V ar(θ̃|p̃, s̃H,i)

+
1

2γ
ln

V ar(θ̃|p̃)
V ar(θ̃|p̃, s̃L,i)

)
. (21)

This roughly corresponds to the total revenue of an active fund in reality. Since trading

performance compensates investors’skill-acquisition costs, performance is higher in financial

markets with higher skill-acquisition costs. For example, to the extent the skill-acquisition

costs are higher for international financial markets than domestic ones, and higher for private

companies than public ones, our analysis helps to explain why active funds focusing on the

former may deliver better performance.

The following proposition formally summarizes the aforementioned results.

Proposition 4 (Implications of skill-acquisition costs without skill-acquisition uncertainty)

Suppose that there is no uncertainty involved in skill acquisition and the seller owns suffi -

ciently accurate data. When skill-acquisition cost parameter c increases (meaning that C (·)

shifts upward), the population λ∗ of skilled investors decreases, data clarity x∗ increases,

data price q∗ increases, and skilled investors’performance increases, but price informative-

ness 1
V ar(θ̃|p̃) , the cost of capital E(θ̃ − p̃), and return volatility σ(θ̃ − p̃) remain unchanged.

That is, if ∆ = 0, then for suffi ciently high τ η, ∂λ∗

∂c
< 0, ∂x

∗

∂c
> 0, ∂q

∗

∂c
> 0, ∂Performance

∂c
>
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0, ∂
∂c

1
V ar(θ̃|p̃) = 0, ∂E(θ̃−p̃)

∂c
= 0, and ∂σ(θ̃−p̃)

∂c
= 0.

4.2 Skill Acquisition with Uncertainty

Now we introduce the “gold rush”feature of skill acquisition by assuming skill acquisition

is uncertain (i.e., ∆ > 0, or equivalently, ZL < ZH). For instance, in the context of machine

learning, an institution needs to input data first to determine how useful its algorithm is.

We conduct comparative statics with respect to three skill-acquisition parameters: the cost

c of acquiring skills, the mean Z̄ of skill levels, and the volatility ∆ of skill levels.

4.2.1 Comparative Statics with Respect to c

With skill-acquisition uncertainty, price informativeness increases with skill-acquisition costs.

This surprising result arises because the data seller loses her full control of information

leakage in the presence of skill-acquisition uncertainty. When there is no uncertainty in the

skill-acquisition process, the data seller knows the skill level of the data buyer and so she can

adjust data clarity to completely neutralize the effect of skill acquisition cost on information

leakage. When skill acquisition becomes uncertain, the data seller is no longer certain about

the data buyer’s skill levels in the data transaction. Investors ending up with different skill

levels will use data differently for the same level of data clarity. Since the seller can only

set one clarity level for all investors, her ability to control information leakage is impaired.

To be specific, even after paying skill-acquisition costs, investors may end up with low skills

(and thus low utilities), which reduces their incentives to acquire skills in the first place.

To encourage investors to acquire skills and buy data, the data seller will provide clearer

data than she does in the economy without skill-acquisition uncertainty. In consequence, as

skill-acquisition costs increase, more information is leaked via the price, thereby increasing

price informativeness. In addition, both the cost of capital and return volatility decrease as

a result of the increased price informativeness and data clarity. The following proposition

summarizes the results.

Proposition 5 (Skill-acquisition cost) Suppose that skill acquisition is uncertain and the

seller owns suffi ciently accurate data. When skill-acquisition cost parameter c increases
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(meaning that C (·) shifts upward), the population λ∗ of skilled investors decreases, data

clarity x∗ increases, data price q∗ increases, price informativeness 1
V ar(θ̃|p̃) increases, the

cost of capital E(θ̃ − p̃) decreases, return volatility σ(θ̃ − p̃) decreases, and skilled investors’

performance increases. That is, if ∆ > 0, then for suffi ciently high τ η, ∂λ∗

∂c
< 0, ∂x

∗

∂c
>

0, ∂q
∗

∂c
> 0, ∂

∂c
1

V ar(θ̃|p̃) > 0, ∂E(θ̃−p̃)
∂c

< 0, ∂σ(θ̃−p̃)
∂c

< 0, and ∂Performance
∂c

> 0.

Figure 4 graphically illustrates Proposition 5 for the same parameter values as those in

Figure 3. We here also set skill volatility ∆ at 5. The patterns of variables are consistent

with Proposition 5.

[FIGURE 4 ABOUT HERE]

4.2.2 Comparative Statics with Respect to Z̄

The mean Z̄ of skill levels can be interpreted as the average ability of the active asset

management industry. We plot the implications of skill mean in Figure 5. The parameter

values are the same as those in Figure 4 with c = 0.2.

[FIGURE 5 ABOUT HERE]

As Z̄ increases, both the population λ∗ of skilled investors and data price q∗ increase (i.e.,
∂λ∗

∂Z̄
> 0 and ∂q∗

∂Z̄
> 0). The seller optimally adds more noise into the sold data to control

information leakage. That is, data clarity x∗ decreases with Z̄ in Figure 5. As a result, price

informativeness declines despite the fact that there are more skilled investors. The cost of

capital and return volatility in turn increase with Z̄ because investors face more uncertainty

when trading the risky asset.

By equation (21), the performance of skilled investors is determined by three factors: data

clarity, skill levels, and price informativeness. Data clarity and skill levels jointly reflect the

edge that skilled investors have over unskilled investors, and hence these two factors positively

affect the performance of skilled investors. Price informativeness represents the expected

utility of unskilled investors, which constitutes the outside option for skilled investors and

negatively influences the performance of skilled investors. As skill mean increases, both data

clarity and price informativeness decrease, but they affect skilled investor performance in

opposite ways. Overall, the price informativeness effect dominates so that the performance
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of skilled investors increases in skill mean.

Proposition 6 (Skill mean) Suppose that skill acquisition is uncertain and the seller owns

suffi ciently accurate data. When skill mean Z̄ increases, the population λ∗ of skilled investors

increases, data clarity x∗ decreases, data price q∗ increases, price informativeness 1
V ar(θ̃|p̃)

decreases, the cost of capital E(θ̃ − p̃) increases, return volatility σ(θ̃ − p̃) increases, and

skilled investors’ performance increases. That is, if ∆ > 0, then for suffi ciently high τ η,
∂λ∗

∂Z̄
> 0, ∂x

∗

∂Z̄
< 0, ∂q

∗

∂Z̄
> 0, ∂

∂Z̄
1

V ar(θ̃|p̃) < 0, ∂E(θ̃−p̃)
∂Z̄

> 0, ∂σ(θ̃−p̃)
∂Z̄

> 0, and ∂Performance
∂Z̄

> 0.

4.2.3 Comparative Statics with Respect to ∆

The volatility ∆ of investor skills captures the uncertainty in the process of decoding the

purchased data. Especially for alternative data, whether an institution can timely transfer

the unstructured data to investment ideas remains uncertain, and many funds have to hire

top notch data scientists in the hope of increasing their success odds and speed. The range

of ∆ is
(
0, Z̄

)
, which is implied by the condition 0 < ZL < ZH . We use Figure 6 to examine

the implications of ∆, where the parameter values are the same as those in Figure 5 with

Z̄ = 10.

[FIGURE 6 ABOUT HERE]

As skill volatility increases, fewer investors acquire skills, and the seller adds less noise

into the sold data, but data price decreases. Interestingly, price informativeness is hump-

shaped in skill volatility. This is due to the competition between two effects. On one hand,

as ∆ increases, investors face larger uncertainty in acquiring skills and thus, fewer investors

choose to acquire skills. This tends to decrease price informativeness. On the other hand,

the data seller will sell clearer data since information leakage is of less a concern when fewer

investors acquire skills. This tends to increase price informativeness. When ∆ is small,

the mild uncertainty in the skill-acquisition process does not deter investors from acquiring

skills and the second positive effect dominates, so that price informativeness increases with

∆. The result is reversed when ∆ is large. Accordingly, both the cost of capital and return

volatility exhibit a U-shaped pattern.
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Proposition 7 (Skill volatility) Suppose that skill acquisition is uncertain and the seller

owns suffi ciently accurate data. When skill volatility ∆ increases, the population λ∗ of skilled

investors increases, data clarity x∗ increases, data price q∗ decreases, and skilled investors’

performance decreases. Moreover, price informativeness 1
V ar(θ̃|p̃) first decreases and then

increases; the cost of capital E(θ̃ − p̃) and return volatility σ(θ̃ − p̃) first decrease and then

increase.

5 Implications and Applications

5.1 Price Informativeness Over Time

As data-processing costs have plummeted and data availability has expanded, one natural

and fundamental question to ask is whether financial market prices become more informative.

Bai, Philippon, and Savov (2016) derive a theory-based measure of price informativeness and

find that it has risen for firms in the S&P 500 since 1960. Farboodi, Matray, and Veldkamp

(2017) show that most of this rise comes from a composition effect (i.e., the rise is mostly

the result of a change in composition toward older and larger firms). In their Figure 7,

Farboodi, Matray, and Veldkamp (2017) find that price informativeness is almost constant

in a relatively composition-bias-free sample that includes only those firms that remain listed

for at least 40 years, consistent with our Panel A of Figure 1. As Farboodi, Matray, and

Veldkamp (2017, p.15) argued, “since older firms should have more informative prices, that

makes the lack of a trend here all the more striking.”Our result in Section 4.1 provides a

potential explanation for this puzzling phenomenon by considering a strategic information

sell side in the financial market. Given the long history of those firms, investors may have

little uncertainty in developing costly skills of interpreting and trading on the traditional

data about mature firms (∆ ≈ 0). According to Proposition 4 (Figure 3), data vendors will

optimally adjust data clarity to target a fixed level of price informativeness in maximizing

profits. This clarity adjustment leads to virtually constant price informativeness for the

mature companies.

Meanwhile, as in our Panel B of Figure 1, Farboodi, Matray, and Veldkamp (2017)
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also document that the price informativeness of the average public firm (especially small

firms) is deteriorating. This finding appears surprising given that over the past decades,

more and more talents have been drawn to the financial sector (see discussions in Glode

and Lowery (2016)). Our analysis offers a complementary explanation for this phenomenon.

Although recent technological advancements have enabled data vendors to collect real-time,

granular indicators of firms’fundamentals, small firms suggest potential uncertainty involved

in securing and analyzing such data (∆ > 0). As the knowledge and infrastructure to leverage

these sources of data become more accessible (i.e., skill-acquisition costs decrease), the data

vendor optimally reduces the clarity of data, leading to lower price informativeness (see

Proposition 5 and Figure 4).

5.2 Institutional Investors and Return Volatility

Brandt, Brav, Graham, and Kumar (2009) find that among low-priced stocks, a higher level

of institutional ownership predicts lower idiosyncratic volatility and that among high-priced

stocks, the opposite is true. Since low-priced stocks are dominated by retail traders and high-

priced stocks are dominated by institutional investors, the finding of Brandt, Brav, Graham,

and Kumar (2009) suggests a U-shaped relation between return volatility and institutional

ownership. The non-monotone effects of skill volatility on return volatility in our data-sales

economy provide a potential explanation for this phenomenon by factoring a strategic data

seller into the picture. Specifically, in Figure 6, as the population λ∗ of skilled investors

increases (caused by a decrease in skill volatility), return volatility decreases in λ∗ when it is

small and increases in λ∗ when it is large. If we interpret skilled investors as institutions (and

unskilled as retail investors), this model-implied U-shape between λ∗ and return volatility is

consistent with the empirical regularity on return volatility and institutional ownership.

5.3 Data Industry and Funds Industry

Our setting illustrates a generic point that the asset management industry and the data

industry foster each other. We can interpret skilled investors as asset management firms and

thus, the population λ∗ of the skilled investors can be a measure for the size of the asset
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management industry. The data seller’s profit π∗ can be a proxy for the size of the data

industry. Examining Figures 3—6, we find that λ∗ and π∗ tend to move in the same direction

in response to changes in exogenous parameters, which suggests that the two industries tend

to foster each other. As we mentioned in the Introduction, some practitioners argue that the

rapidly growing alternative data will lead to a shrinkage in the funds industry. However, our

analysis predicts that the abundance of alternative data will instead spur the rapid growth

of active funds using this kind of data.

Our prediction is empirically consistent with the observation that both the asset manage-

ment industry and the data industry often prosper or stagnate simultaneously. For instance,

assets under management (AUM) of institutional investors (e.g., mutual funds, exchange-

traded funds, and institutional funds) and the global spending on information/analysis have

experienced an annual growth rate of 7.7% and 2.6% from 2011 to 2016, respectively (2017 In-

vestment Company Fact Book; “Global market data demand,”Burton-Taylor International

Consulting, 2016). In addition, as the leader in the financial data industry, Bloomberg L.P.

keeps enjoying yearly increases in its terminal subscriptions over the past decades except for

two only drops, both of which were accompanied by the shrinkage of the asset management

industry. Specifically, the first decline followed the financial crisis in 2009 when the company

lost 20,000 terminals, while the second decline– a mild loss of 3,145 terminals from 2015–

can be attributed to the cutbacks overall in financial institutions (“Bloomberg suffers rare

drop in terminal numbers as banks cut back,”Financial Times, March 28, 2017).

6 Conclusion

In modern financial markets, data providers (such as data vendors) sell valuable data to

sophisticated traders (such as hedge funds or active mutual funds). Interpreting and trading

on this type of data require skills, and developing such skills is costly and uncertain to

investors. We provide a data-sales model to capture these features. We model that both

data providers and skilled investors share the gains generated from trading on the data to

reflect the fact that both data and trading skills are limited resources. We focus on the

economy in which the seller’s data is very accurate so that the seller adds personalized noise
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to the sold data. We find that when there is uncertainty in skill-acquisition processes, the

seller loses her full control of price informativeness, and thus she can no longer fully undo

the information-leakage effect as she does when there is no skill-acquisition uncertainty. As

a result, price informativeness can deteriorate as skill-acquisition costs decrease or as the

average level of investor skills increases. These novel theoretical results help understand

certain regularities in real financial markets.
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Appendix A: List of Variables

Variables Description
Introduced in Section 2

Exogenous Variables
θ̃ Risky asset value with prior precision τ θ
ũ Noise-trader demand with prior precision τu
η̃ Uncertainty of the seller’s data, with precision of τ η
zk Investor’s skills of interpreting the data, zk ∈ {0, ZL, ZH}
Z̄ Skill mean, Z̄ = ZH+ZL

2

∆ Skill volatility, ∆ = ZH−ZL
2

β Data sellers’bargaining power, β ∈ [0, 1]
γ Investors’coeffi cient of risk aversion

Exogenous Functions
C(·) Skill-acquisition cost function

Endogenous Variables
p̃ Price of risky asset
x Clarity of the data passed to investors
ε̃k,i Personalized noise added by the seller
s̃k,i Signal sold to investor i: s̃k,i = θ̃ + η̃ + ε̃k,i
Di Investor i’s demand for the risky asset
λ Mass of skilled investors, λ ∈ [0, 1]
π Profit of selling data
q Price of data

Introduced in Section 3
a0, aθ, au Coeffi cients of price function
α α = aθ/au
Ai Investor i’s decision to acquire skills
CE Ex-ante certainty equivalent of an investor
G The gain from trading on the purchased data
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Appendix B: The Modern Markets for Financial Data

Here we briefly introduce the modern markets for financial data. We focus on the main real-

world issues related to acquiring skills to analyze the purchased data, which is the main point

we model theoretically. While the traditional data markets are featured with information

in the form of newsletters, advising services, etc. (Admati and Pfleiderer, 1986), here we

emphasize the alternative data that represents an accelerating trend of data markets.

There is no clear definition of alternative data, but it is generally considered to be any-

thing outside of traditional data like economic statistics and corporate reports, such as

satellite images, credit card sales, sentiment analysis, mobile geolocation data and website

scraping. The landscape of alternative data keeps evolving, and they used to be stock prices

and fundamental information decades ago. One natural consequence is that every dataset

has a life cycle. That is, as the data set becomes more and more standard, its value will

decay over time.

We next introduce the sell side and the buy side in information markets.

The Sell Side Any data owners can potentially sell their data. In addition to the pro-

fessional data vendors such as Bloomberg and Thomson Reuters, many tech companies

now generate data as a by-product of their core activity, and try to monetize these data.

For example, Twitter evolved its original firehose business into a full-blown enterprise data

platform, GNIP; Mastercard offers data indices and research products through MasterIn-

telligence (“The new gold rush? Wall Street wants your data,”Matt Turck, January 17,

2017). Moreover, banks used to crunch data on company earnings, price targets, and other

mundane metrics to inform investing and trading decisions, but now they are pulling data

from unorthodox sources such as social-media sentiment and geospatial mapping, and in-

creasingly making their data feeds available directly to clients, without surrounding research

notes (“Wall Street analysts are now selling more data, less analysis,”Wall Street Journal,

November 7, 2018).

Selling data involves a lot of aspects. First, the value of a data set depends heavily on

such details as accuracy, time series, release schedule, uniqueness, and compliance. The more

granular the data, the longer history that can be backtested, the more frequent the release,
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and the more unique the data, the more valuable the data set is. For compliance issues,

the sold data need to be strictly anonymized and avoid material, non-public information in

violation of securities laws, and the Terms of Service (TOS) should enable the data owner

to sell it.

Second, data owners should know their customers and their needs. Different types of

institutional investors often have different requirements for data. For quant funds, the data

should speak to a lot of companies and have a long time series. One example is a panel of con-

sumer transactions touching many public companies that has a correlation with share prices.

Alternatively, for fundamental investors, the data can be about specific public companies.

Third, to determine the prices of the data, since the buy-side organizations often employ

teams of people looking to speak with data owners, data owners can speak to these peo-

ple directly without working with a data broker or other intermediary, who can demand a

revenue share of 50% or more (“The ultimate guide to selling data to hedge funds,”Alter-

nativeData.org, August 16, 2017).

The Buy Side Hedge funds are at the forefront of the trend to leverage the new data to

gain an edge over their competitors (e.g., low-priced exchange traded funds) and generate

alpha, through accurate predictions. Since each data set has its life cycle, as some data sets

become widely available, hedge funds move on to other forms of data. However, the behavior

has also spread to many more mainstreammutual funds and across the world (“Asia investors

boost use of unorthodox data sources in battle to beat benchmarks,”Business News, April 25,

2017). According to a survey of investors, the buy side has spent $373 million on alternate

data sets and the number is expected to hit $1 billion by 2020 (“Asset managers double

spending on new data in hunt for edge,”Financial Times, May 8, 2018).

However, data alone is not enough. In February 2018, Battlefin organized a conference

about alternative data, bringing together 107 asset managers, 94 data providers, and around

100 other industry professionals. One common theme throughout the conference is that

access to certain data sources is no longer the main source of alpha, but rather the ability

to process the data well and reach the best insights the fastest. As put by Barry Hurewitz,

UBS’s global head of Evidence Lab, “People say data is the new oil, but there is a refiner
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needed.”

In fact, integrating data analysts and engineers in the investment process is a major

challenge for institutional investors looking to leverage alternative data. The estimated

cost for a full data team (comprised of one Data Engineer, three Data Analysts, one Data

Scientist, one Data Scout, and one Head of Data) would start at $1.5m —$2.5m at an entry

level. With consideration for insurance, benefits, overhead, etc., it is likely that the true

cost could be twice as much. Moreover, from the size of some teams and anecdotal research,

several top funds are already spending over $10m on alternative data teams (“Buy-side

alternative data employee analysis,”AlternativeData.org, February 7, 2018).

According to a report by AlternativeData.org (“Buy-side alternative data employee analy-

sis,”AlternativeData.org, February 7, 2018), the backgrounds of the alternative-data em-

ployees on the buy-side have relatively high concentration on science, technology, engineering,

and math (STEM). Given the technical sophistication of the role, over 40% of Data Scien-

tist positions hold a graduate degree. In addition, the buy side has substantially increased

their hiring from tech companies, academia, and data providers, rather than the traditional

sourcing from other funds or the sell side. In terms of work experience, the majority of the

buy-side hire individuals with 11 and more years of experience.

With those investments in the technologies and talents, over time it has gotten easier

and easier to process large amounts of unstructured data.
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Appendix C: Proofs

Proof of Proposition 1

Inserting equations (7)—(12) into the demand functions for different types of investors, we

can rearrange the market-clearing condition (13) and compute the price as follows:

p̃ =
As̃p +B(θ̃ + η̃) + ũ− 1

λ
2γV ar(θ̃|p̃,s̃H,i)

+ λ
2γV ar(θ̃|p̃,s̃L,i)

+ 1−λ
γV ar(θ̃|p̃)

, (C1)

where

A =
λ

2γV ar(θ̃|p̃, s̃H,i)
τ η

τ θ + τ η

α2τu
τθτη
τθ+τη

+ α2τu + xZH

+
λ

2γV ar(θ̃|p̃, s̃L,i)
τ η

τ θ + τ η

α2τu
τθτη
τθ+τη

+ α2τu + xZL

+
1− λ

γV ar(θ̃|p̃)
τ η

τ θ + τ η

α2τu
τθτη
τθ+τη

+ α2τu
,

B =
λ

2γV ar(θ̃|p̃, s̃H,i)
τ η

τ θ + τ η

xZH
τθτη
τθ+τη

+ α2τu + xZH

+
λ

2γV ar(θ̃|p̃, s̃L,i)
τ η

τ θ + τ η

xZL
τθτη
τθ+τη

+ α2τu + xZL
.

From equation (C1), we have α = B. Using the expression of B above, we can rearrange

equation α = B as (14) in Proposition 1. We use F (α) to denote the left-hand-side (LHS)

of equation (14). It is clear that F (α) is negative when α = 0, and F (α) is positive when

α is large enough. Thus, by the intermediate value theorem, there exists a positive root to

(14). In addition, F (α) is monotonically increasing in α and thus, the real root is unique.

After some algebra, we can compute the price coeffi cients as follows:

a0 = − 1
λ

2γV ar(ṽ|p̃,s̃H,i)
+ λ

2γV ar(ṽ|p̃,s̃L,i)
+ 1−λ

γV ar(ṽ|p̃)
, (C2)

aθ =
A+B

λ

2γV ar(ṽ|p̃,s̃H,i)
+ λ

2γV ar(ṽ|p̃,s̃L,i)
+ 1−λ

γV ar(ṽ|p̃)
, (C3)

au = B−1aθ. (C4)

QED.

32



Proof of Corollary 1

It suffi ces to prove that α is increasing in λ, where α is determined by equation (14). Note

that the LHS of equation (14) is increasing in α and decreasing in λ. Thus, when λ increases,

α must increase to maintain equation (14). So, ∂α
∂λ

> 0. Meanwhile, because V ar(θ̃|p̃) is

decreasing with α (see equation (12)), we have ∂
∂λ

1
V ar(θ̃|p̃) > 0 . QED.

Proof of Equation (15)

Following Grossman and Stiglitz (1980), we can compute the ex-ante expected utility of a

high-type and a low-type skilled investor respectively as follows:

VH = −

√
V ar(θ̃|p̃, s̃H,i)
V ar(θ̃ − p̃)

exp

−
[
E(θ̃ − p̃)

]2

2V ar(θ̃ − p̃)

 ,

VL = −

√
V ar(θ̃|p̃, s̃L,i)
V ar(θ̃ − p̃)

exp

−
[
E(θ̃ − p̃)

]2

2V ar(θ̃ − p̃)

 ,

where we have ignored the skill-acquisition cost, since this cost is sunk at the stage of Nash

bargaining as we have discussed in the text. Given that a skilled investor can be of a high

type with probability 1
2
and a low type with probability 1

2
, the ex-ante expected utility of a

skilled investor is VS = 1
2
VH + 1

2
VL. The certainty equivalent of a skilled investor is

CES ≡ −1

γ
log (−VS)

= −1

γ
ln

 1
2

√
V ar(θ̃|p̃, s̃H,i) + 1

2

√
V ar(θ̃|p̃, s̃L,i)√

V ar(θ̃ − p̃)

+

[
E(θ̃ − p̃)

]2

2γV ar(θ̃ − p̃)
.

Similarly, we can compute the certainty equivalent of an unskilled investor as follows:

CEU = −1

γ
ln


√
V ar(θ̃|p̃)√
V ar(θ̃ − p̃)

+

[
E(θ̃ − p̃)

]2

2γV ar(θ̃ − p̃)
.

QED.

Proof of Proposition 2

To prove the existence of an overall equilibrium, it suffi ces to show that given the data seller’s

choice x, there is a unique solution (λ, α) to the system of equations (14) and (19). This
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implies that the data seller can use x to effectively control the demand for data and the price

of data.

We use equation (14) to first determine λ as a function of α, which is in turn inserted

into equation (19). We then characterize the property of equation (19) in terms of the single

unknown α.

Specifically, equation (14) determines λ as a function of α, denoted by λ = λ (α):

λ (α) =
2αγ (xZH + τuα

2 + τ η) (xZL + τuα
2 + τ η)

xτ η ((τuα2 + τ η) (ZH + ZL) + 2xZHZL)
.

From the proof of Corollary 1, we know that λ (α) is an increasing function of α. Thus, the

right-hand-side (RHS) of equation (19), C (λ(α)) (which is expressed as a function α), is

increasing in α, since C (·) is an increasing function.

We next prove that the LHS of equation (19) is decreasing in α. By equation (15), we

can express G as

G = −1

γ
ln

[
1

2

√
V ar(θ̃|p̃, s̃H,i)
V ar(θ̃|p̃)

+
1

2

√
V ar(θ̃|p̃, s̃L,i)
V ar(θ̃|p̃)

]
.

Using the expressions of V ar(θ̃|p̃), V ar(θ̃|p̃, s̃H,i), and V ar(θ̃|p̃, s̃L,i), we have

V ar(θ̃|p̃, s̃H,i)
V ar(θ̃|p̃)

=

1
τθ+τη

+
(

τη
τθ+τη

)2
1

τθτη
τθ+τη

+α2τu+xZH

1
τθ+τη

+
(

τη
τθ+τη

)2
1

τθτη
τθ+τη

+α2τu

,

V ar(θ̃|p̃, s̃L,i)
V ar(θ̃|p̃)

=

1
τθ+τη

+
(

τη
τθ+τη

)2
1

τθτη
τθ+τη

+α2τu+xZL

1
τθ+τη

+
(

τη
τθ+τη

)2
1

τθτη
τθ+τη

+α2τu

.

Direct computation shows that both V ar(θ̃|p̃,s̃H,i)
V ar(θ̃|p̃) and V ar(θ̃|p̃,s̃L,i)

V ar(θ̃|p̃) are increasing in α, and

thus G is decreasing in α. That is, the LHS of equation (19) decreases with α. Given that

the RHS increases with α, if there is a solution α to equation (19), it must be unique.

We establish the existence using the intermediate value theorem. Suppose α = 0, the

LHS minus RHS of equation (19) is positive given that the RHS C(0) = 0 but the LHS is

still positive. By contrast, suppose that α takes the value which is determined by equation

(14) with λ = 1. Given that C(1) = +∞, the LHS minus RHS of equation (19) is negative

given that the RHS is infinite and the LHS is finite. According to the intermediate value

theory, there is a solution of the equation (19). In addition, the LHS minus RHS of equation

(19) is decreasing with α, and thus the solution is unique.
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Once α (x) is well defined, the fraction λ (x) of active investors is determined by equation

(14). By the Nash-bargaining equilibrium condition (16), q (x) = βG (x, α (x)). Thus, the

product of λ (x) and q (x) yields the total profit of the seller. Then the seller can simply

choose x∗ to maximize λ (x) q (x). Note that we allow x to take the value of∞ (i.e., the seller

sells her data “as is”) and λ (x) q (x) is a continuous function of x, and hence there always

exist solutions to the seller’s maximization problem according to the Weierstrass Theorem.

QED.

Proof of Proposition 3

We use the method of Lagrangian multipliers to solve for the seller’s profit-maximization

problem (3) subject to the constraints (14) and (19). By equation (19), for β < 1, the

seller’s net profit can be written as

π (x) =
βλC (λ)

1− β . (C5)

We only focus on the case with β < 1 because it is more relevant. If β = 1, then the

information market will break down since no investors will incur costs to acquire skills and

purchase data.

The Lagrangian function is

L = βλC(λ)
1−β − υ1

 γα (xZH + τuα
2 + τ η) (xZL + τuα

2 + τ η)

−1
2
xλτ η ((τuα

2 + τ η) (ZH + ZL) + 2xZHZL)

− υ2 [(1− β)G− C (λ)],

where υ1, υ2 ≥ 0 are the Lagrangian multipliers. The first-order conditions (FOC) with

respect to x and υ1 are respectively:

−1

2
υ1

 4ZLZH (αγ − λτη)x

+ (ZH + ZL)
(
τη + α2τu

)
(2αγ − λτη)

− υ2 (1− β)
∂G

∂x
= 0, (C6)

ZHZL (αγ − λτη)x2 +
1

2
(ZH + ZL)

(
τη + α2τu

)
(2αγ − λτη)x+ αγ

(
τη + α2τu

)2
= 0.(C7)

Equation (C7) is a quadratic function of x. If λτ η > αγ, there is a unique positive solution:

x∗ =

(
τη + α2τu

) (ZH + ZL) (2αγ − λτη)

+
√

4α2γ2 (ZH − ZL)2 − 4αγλτη (ZH − ZL) 2 + λ2τ2
η (ZH + ZL)2


4ZHZL (λτη − αγ)

. (C8)
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Note that the numerator is positive if λτ η > αγ because[
4α2γ2 (ZH − ZL)2 − 4αγλτ η (ZH − ZL) 2 + λ2τ 2

η (ZH + ZL)2]− [(ZH + ZL) (2αγ − λτ η)]2 =

16αγZHZL (λτ η − αγ).

If λτ η ≤ αγ, the LHS of equation (C7) is always positive, which yields υ1 = 0. Plugging

υ1 = 0 into equation (C6), we have ∂G
∂x

= 0 (note that υ2 6= 0 since (19) always holds). When

taking derivative of G with respect to x, we obtain

∂G

∂x
=

τ2
η


ZH(

τητθ
τη+τθ

+xZH+α2τu
)2
√

τη+xZH+α2τu

τητθ+xZH(τη+τθ)+α2τu(τη+τθ)

+ ZL(
τητθ
τη+τθ

+xZL+α2τu
)2
√

τη+xZL+α2τu

τητθ+xZL(τη+τθ)+α2τu(τη+τθ)


2γ (τη + τ θ)

2
(√

τη+xZH+α2τu
τητθ+xZH(τη+τθ)+α2τu(τη+τθ)

+
√

τη+xZL+α2τu
τητθ+xZL(τη+τθ)+α2τu(τη+τθ)

) > 0.

Thus, in equilibrium, the optimal choice x∗ = +∞ when λτ η ≤ αγ. With an infinite data

clarity x∗, we can solve α∗ from equation (14): α∗ = λ∗τη
γ
. Taken together, if λ∗τ η > α∗γ,

x∗ < +∞, and if λ∗τ η ≤ α∗γ, x∗ = +∞. QED.

Proof of Proposition 4

Suppose τ η → +∞. When ZL = ZH , equation (14) can be simplified to

(xZH + τuα
2 + τ η) [γα (xZH + τuα

2 + τ η)− xλτ ηZH ] = 0, which yields

x∗ =
αγ (τuα

2 + τ η)

ZH (λτ η − αγ)
. (C9)

Plugging x∗ into equation (19) and imposing ZL = ZH yields

exp

(
γC(λ)

1− β

)√
1− αγτ η

α2λτuτ θ + τ η (αγ + α2λτu + λτ θ)
= 1. (C10)

So, the seller’s problem is equivalent to choosing α to maximize profits given by (C5) subject

to equation (C10). Because both equations (C5) and C(λ) are increasing with λ, the data

seller could choose α to minimize
√

1− αγτη
α2λτuτθ+τη(αγ+α2λτu+λτθ)

to get the maximum profit.

Taking derivative of
√

1− αγτη
α2λτuτθ+τη(αγ+α2λτu+λτθ)

with respect to α and setting it to zero
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yields

α∗ =

√
τ ητ θ

τu (τ η + τ θ)
, (C11)

which does not depend on skill-acquisition costs. Thus, ∂α
∗

∂c
= 0 and ∂

∂c
1

V ar(θ̃|p̃)
= 0. Plugging

x∗, α∗, and ZL = ZH into equation (19) yields

exp

(
γC(λ)

1− β

)
1√

1 + γ
2λ

√
τη

τuτθ(τη+τθ)

= 1.

The LHS of the above equation is increasing in λ and increasing in c. Thus, when c increases,

λ should decrease to maintain the equation: ∂λ∗

∂c
< 0. Further, plugging α∗ into x∗ yields

x∗ =
γτη

(
τθ

τη+τθ
+1
)√

τητθ
τu(τη+τθ)

ZH

(
λτη−γ

√
τητθ

τu(τη+τθ)

) and it is easy to get that ∂x∗

∂c
= ∂x∗

∂λ
∂λ
∂c
> 0.

Further, as τ η → +∞, based on (C9) and (C11), we obtain that x∗ → αγ
ZHλ

and α∗ →√
τθ
τu
, which yields G→ 1

γ
ln

√
2λτθ+γ

√
τθ
τu√

2λτθ
when inserting the expressions of x∗ and α∗ into G.

Thus ∂G
∂λ
→ −

√
τθ
τu

4λ2τθ+2λγ
√

τθ
τu

< 0. Based on equation (16), ∂q
∗

∂c
= β

1−β
∂G
∂λ

∂λ
∂c
> 0. Also, given

finite λ∗, α∗ and infinite τ η, we know λ∗τ η > α∗γ. So, based on Proposition 3, x∗ takes a

finite value, which is indeed the case.

Next, based on equation (4), the cost of capital E(θ̃ − p̃) can be simplified to

E(θ̃ − p̃) = −a0. (C12)

Inserting ZL = ZH and x∗ into equation (C12) yields

E(θ̃ − p̃) =
γ (τuα

2 + τ η)

τ θ (τuα2 + τ η) + τ ηα (γ + τuα)
,

which depends only on the endogenous variable α. So, ∂E(θ̃−p̃)
∂c

= ∂E(θ̃−p̃)
∂α

∂α
∂c

= 0.

By (4), return volatility σ(θ̃ − p̃) can be simplified as follows:

σ(θ̃ − p̃) =

√
(1− aθ)2 1

τ θ
+ a2

θ

1

τ η
+ a2

u

1

τu
. (C13)
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Plugging ZL = ZH and x∗ into equation (C13) yields

σ(θ̃ − p̃) =

√
(τ η + α2τu)

(
τ θτu (τ η + α2τu) + τ η (γ + ατu)

2)
τu (α2τ θτu + τ η (τ θ + α (γ + ατu)))

2 ,

which depends only on the endogenous variable α. So, ∂σ(θ̃−p̃)
∂c

= ∂σ(θ̃−p̃)
∂α

∂α
∂c

= 0.

Finally, as τ η → ∞, with ZL = ZH , performance (21) can be simplified to Performance

→ 1
2γ

ln
(

1 + γ
2λ
√
τuτθ

)
. So, ∂Performance

∂c
> 0. QED.

Proof of Proposition 5

Denote τ η ≡ 1
w
. Let us consider the process of w → 0 (which is equivalent to the process of

τ η →∞). The idea of the proof is to obtain x (α, λ;w) around w = 0 from equation (14), plug

x (α, λ;w) into equation (19), solve α (λ;w) from its FOC, and finally insert α (λ;w) back

into equation (19) to obtain the effect of the parameter change on λ∗ and other endogenous

variables.

When w = 0, we have x (α, λ; 0) = 2αγ
λ(ZH+ZL)

by equation (14). Applying the im-

plicit function theorem to equation (14) and imposing w = 0, we have ∂x
∂w

(α, λ; 0) =
2α2γ(2αλZHZLτu+(Z2

H+Z2
L)(2γ+αλτu))

λ2(ZH+ZL)3 . Now the Taylor series of x (α, λ;w) around w = 0 is

x (α, λ;w) = x (α, λ; 0) +
∂x

∂w
(α, λ; 0) (w − 0)

=

2αγ

 2λZHZL (α2wτu + 1)

+Z2
H (λ+ α2λwτu + 2αγw) + Z2

L (λ+ α2λwτu + 2αγw)


λ2 (ZH + ZL) 3

.(C14)

Next when τ η = +∞, equation (19) becomes

1

2
e
γC
1−β

(√
τ θ + α2τu

τ θ + xZH + α2τu
+

√
τ θ + α2τu

τ θ + xZL + α2τu

)
= 1. (C15)

Taking derivative of the LHS of equation (C15) with respect to α (note that x is a function
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of α) yields 1
4
e
γC
1−β


− ZH√

τθ+α2τu

τθ+xZH+α2τu
(τθ+xZH+α2τu)2

− ZL√
τθ+α2τu

τθ+xZL+α2τu
(τθ+xZL+α2τu)2

Ω = 0, where

Ω (α, λ;w) = ατu
(
α ∂x
∂α
− 2x

)
+ τ θ

∂x
∂α
. Plugging x and the expression of ∂x

∂α
in equation (C14)

into Ω and the FOC of the LHS of equation (C15) is equivalent to

Ω (α, λ;w) =

2γ

 2λZHZL (τ θ + α4wτ 2
u + α2τu (3wτ θ − 1))

+ (Z2
H + Z2

L) (α4λwτ 2
u + α2λτu (3wτ θ − 1) + τ θ(λ+ 4αγw))


λ2 (ZH + ZL)3 = 0.

(C16)

When w = 0, Ω (α, λ; 0) =
2γ(τθ−τuα2)
λ(ZH+ZL)

, and Ω (α, λ; 0) = 0 yields α (λ; 0) =
√

τθ
τu
. Applying

the implicit function theorem to equation (C16) and imposing the extreme condition (w = 0)

delivers
∂α
∂w

(λ; 0) =
2τθ(2λZHZL

√
τθτu+(Z2

H+Z2
L)(γ+λ

√
τθτu))

λτu(ZH+ZL)2 . Thus, the Taylor series of α (λ;w) around

w = 0 is

α (λ;w) = α (λ; 0) +
∂α

∂w
(λ; 0) (w − 0) =

2γwτ θ (Z2
H + Z2

L)

λτu (ZH + ZL)2 +

√
τ θ (2wτ θ + 1)
√
τu

. (C17)

Now plugging equations (C14) and (C17) into equation (C15) yields

1

2
e
γC
1−β

√ 1
γZH

λ(ZH+ZL)
√
τθτu

+ 1
+

√
1

γZL
λ(ZH+ZL)

√
τθτu

+ 1

 = 1. (C18)

The LHS of equation (C18) is increasing in λ and c. Thus, when c increases, λ should

decrease to maintain the equation, which implies that ∂λ∗

∂c
< 0. By equation (C17), we

have ∂α∗

∂c
= ∂α∗

∂λ
∂λ
∂c

> 0 and thus, ∂
∂c

(
1

V ar(θ̃|p̃)

)
> 0. Based on x (α; 0) = 2αγ

λ(ZH+ZL)
, ∂x
∂c

=

∂x
∂α

∂α
∂c

+ ∂x
∂λ

∂λ
∂c
> 0. Further, with x (α, λ; 0) and α (λ; 0) information gain G can be simplified

to G = 1
γ

ln
2√
τθ

1√√√√√τθ+
γZH

√
τθ
τu

λ(ZH+ZL)

+ 1√√√√√τθ+
γZL

√
τθ
τu

λ(ZH+ZL)

. Thus,
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∂G
∂λ

= −

√
τθ
τu

ZH
 λ(ZH+ZL)

λZLτθ+ZH

(
λτθ+γ
√

τθ
τu

)
 3

2

+ZL

 λ(ZH+ZL)

λZHτθ+ZL

(
λτθ+γ
√

τθ
τu

)
 3

2


2λ2(ZH+ZL)

 1√√√√√τθ+
γZH

√
τθ
τu

λ(ZH+ZL)

+ 1√√√√√τθ+
γZL

√
τθ
τu

λ(ZH+ZL)


< 0. So, ∂G∗

∂c
=

∂G∗

∂λ
∂λ
∂c
> 0. Thus, ∂q

∗

∂c
> 0 according to equation (16).

Next, we examine market quality. Plugging τ η = +∞ and x (α, λ; 0) = 2αγ
λ(ZH+ZL)

into

equation (C12), the cost of capital E(θ̃ − p̃) can be simplified as follows:

E(θ̃ − p̃) =
γ

αγ + τuα2 + τ θ
.

Hence, ∂E(θ̃−p̃)
∂c

= ∂E(θ̃−p̃)
∂α

∂α
∂c
< 0. Further, with τ η = +∞ and x (α, λ; 0) = 2αγ

λ(ZH+ZL)
, return

variance V ar(θ̃ − p̃) can be simplified as

V ar(θ̃ − p̃) =
(γ + ατu)

2 + τ θτu

τu (τ θ + α (γ + ατu))
2 .

Taking derivative of it with respect to α yields

∂V ar(θ̃ − p̃)
∂α

= −2 (γ3 + α3τ 3
u + 3αγ2τu + ατ 2

u (3αγ + τ θ))

τu (αγ + τ θ + α2τu)
3 < 0.

So, ∂σ(θ̃−p̃)
∂c

= ∂σ(θ̃−p̃)
∂α

∂α
∂c
< 0.

With x (α, λ; 0) = αγ
λZ̄
and α (λ; 0) =

√
τθ
τu
, performance (21) can be simplified as follows

Performance =
1

4γ

(
ln

(
1 +

γ
(
Z̄ −∆

)
2Z̄λ
√
τuτ θ

)
+ ln

(
1 +

γ
(
Z̄ + ∆

)
2Z̄λ
√
τuτ θ

))
.

Thus, ∂Performance
∂c

= ∂Performance
∂λ

∂λ
∂c

= − 1
4γ

(
1

γ+
2Z̄λ
√
τuτθ

Z̄−∆

+ 1

γ+
2Z̄λ
√
τuτθ

Z̄+∆

)
∂λ
∂c
> 0. QED.
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Proof of Proposition 6

The proof follows the proof of Proposition 5. Replacing ZH = Z̄+∆ and ZL = Z̄−∆ in

equation (C18) yields

1√
2
e
γC
1−β

(√
λZ̄
√
τ θτu

γ(Z̄ −∆) + 2λZ̄
√
τ θτu

+

√
λZ̄
√
τ θτu

γ(Z̄ + ∆) + 2λZ̄
√
τ θτu

)
= 1. (C19)

Taking derivative of
√

λZ̄
√
τθτu

γ(Z̄−∆)+2λZ̄
√
τθτu

+
√

λZ̄
√
τθτu

γ(Z̄+∆)+2λZ̄
√
τθτu

with respect to λ yields

γ

((
Z̄ −∆

)( λZ̄
√
τθ
√
τu

Z̄(γ+2λ
√
τθ
√
τu)−γ∆

)3/2

+
(
Z̄ + ∆

)( λZ̄
√
τθ
√
τu

Z̄(γ+2λ
√
τθ
√
τu)+γ∆

)3/2
)

2λ2Z̄
√
τ θ
√
τu

> 0.

Together with ∂C(·)
∂λ

> 0, we know that the LHS of equation (C19) is increasing in λ. Taking

derivative of the LHS of equation (C19) with respect to Z̄ generates

γ∆e
γC
1−β

2
√

2λZ̄2√τθ
√
τu

((
λZ̄
√
τθ
√
τu

Z̄(γ+2λ
√
τθ
√
τu)+γ∆

)3/2

−
(

λZ̄
√
τθ
√
τu

Z̄(γ+2λ
√
τθ
√
τu)−γ∆

)3/2
)
< 0, where the inequality

follows because(
λZ̄
√
τθ
√
τu

Z̄(γ+2λ
√
τθ
√
τu)+γ∆

)
−
(

λZ̄
√
τθ
√
τu

Z̄(γ+2λ
√
τθ
√
τu)−γ∆

)
= − 2γ∆λZ̄

√
τθ
√
τu

Z̄2(γ+2λ
√
τθ
√
τu)

2−γ2∆2
< 0. So the LHS of

equation (C19) is decreasing in Z̄. Therefore, when Z̄ increases, λ should increase to maintain

the equation, which implies that ∂λ∗

∂Z̄
> 0. Next, replacing ZH = Z̄+∆ and ZL = Z̄−∆ in

equation (C17) and taking derivative with respect to Z̄ yield

∂α

∂Z̄
(λ; 0) = −

γwτ θ
(
2λ∆2 + Z̄

(
Z̄2 + ∆2

)
λ′(Z̄)

)
λ2Z̄3τu

< 0.

With x (α, λ; 0) = αγ
λZ̄
, we have ∂x∗

∂Z̄
= ∂x∗

∂α
∂α
∂Z̄

+ ∂x∗

∂λ
∂λ
∂Z̄

+ ∂x∗

∂Z̄
< 0. Further, by (19), we have

∂G∗

∂Z̄
= 1

1−β
∂C(λ)
∂λ

∂λ
Z̄
> 0. Thus, ∂q

∗

∂Z̄
> 0 according to equation (16). And similar to the proof of

∂E(θ̃−p̃)
∂c

< 0 and ∂σ(θ̃−p̃)
∂c

< 0 in the proof of Proposition 4, we can show ∂E(θ̃−p̃)
∂Z̄

= ∂E(θ̃−p̃)
∂α

∂α
∂Z̄

>

0 and ∂σ(θ̃−p̃)
∂Z̄

= ∂σ(θ̃−p̃)
∂α

∂α
∂Z̄

> 0.

For the proof of ∂Performance
∂Z̄

> 0, we rely on the indifference condition for skill-acquisition

decision of the marginal investor. When τ η = +∞, equation (19) can be simplified as

−1− β
γ

ln

1

2

 1√
1 +

x(Z̄+∆)
α2τu+τθ

+
1√

1 +
x(Z̄−∆)
α2τu+τθ


 = C (λ∗) . (C20)
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We have shown that when τ η = +∞, ∂λ∗
∂Z̄

> 0. Together with equation (C20), we know that

∂

 1√
1+

x(Z̄+∆)
α2τu+τθ

+ 1√
1+

x(Z̄−∆)
α2τu+τθ


∂Z̄

= −1

2

∂
∂Z̄

x(Z̄+∆)
α2τu+τθ(

1 +
x(Z̄+∆)
α2τu+τθ

) 3
2

− 1

2

∂
∂Z̄

x(Z̄+∆)
α2τu+τθ(

1 +
x(Z̄+∆)
α2τu+τθ

) 3
2

< 0. (C21)

Further, when τ η = +∞, performance (21) can be simplified as

Performance =
1

4γ

(
ln

[
1 +

x
(
Z̄ + ∆

)
α2τu + τ θ

]
+ ln

[
1 +

x
(
Z̄ −∆

)
α2τu + τ θ

])
.

Thus,

∂Performance
∂Z̄

=
1

4γ


∂

(
x(Z̄+∆)
α2τu+τθ

)
∂Z̄

1 +
x(Z̄+∆)
α2τu+τθ

+

∂

(
x(Z̄−∆)
α2τu+τθ

)
∂Z̄

1 +
x(Z̄−∆)
α2τu+τθ

 > 0,

where the inequality is based on (C21). QED.

Proof of Proposition 7

Denote τ η ≡ 1
w
. Equation (14) is equivalent to

0 = 2αγ
(
wxZH + α2wτu + 1

) (
wxZL + α2wτu + 1

)
−λx

(
ZH

(
2wxZL + α2wτu + 1

)
+ ZL

(
α2wτu + 1

))
, (C22)

and equation (19) is equivalent to

1

2
e
γC
1−β

 √
(τθ+α2τu(wτθ+1))(wxZH+α2wτu+1)

(α2wτu+1)(τθ+ZH(wxτθ+x)+α2τu(wτθ+1))

+
√

(τθ+α2τu(wτθ+1))(wxZL+α2wτu+1)
(α2wτu+1)(τθ+ZL(wxτθ+x)+α2τu(wτθ+1))

 = 1. (C23)

Suppose w → 0. Conditions ∆ = Z̄ and ∆ = 0 are equivalent to ZL = 0 and ZL = ZH ,

respectively. The idea of the proof is to obtain x (α, λ;w,ZL) around w = 0 and ∆ = Z̄ (or

w = 0 and ∆ = 0) from (C22), plug x (α, λ;w,ZL) into (C23) and solve α (λ;w,ZL) from
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the FOC, and finally insert α (λ;w,ZL) back into equation (C23) to obtain the effect of the

parameter change on λ∗ and other endogenous variables.

First, assume τ η = +∞ (i.e., w = 0) and ∆ = Z̄ (i.e., ZL = 0). When w = 0 and ZL = 0,

x (α, λ; 0, 0) = 2αγ
λZH

by equation (C22). Applying the implicit function theorem to equation

(C22) and imposing the extreme conditions (w = 0 and ZL = 0), we have
∂x
∂ZL

(α, λ; 0, 0) =
x(2wxZH(λ−αγw)−(α2wτu+1)(2αγw−λ))

ZH(4wxZL(αγw−λ)+(α2wτu+1)(2αγw−λ))+ZL(α2wτu+1)(2αγw−λ)
= − 2αγ

λZ2
H
, where the

second equation follows by inserting w = 0, ZL = 0, and x = 2αγ
λZH

. Similarly, when w = 0

and ZL = 0, ∂x
∂w

(α, λ; 0, 0) = 2α2γ(2γ+αγτu)

λ2ZH
. Now the Taylor series of x (α, λ;w,ZL) around

ZL = 0 and w = 0 is

x (α;w,ZL) = x (α; 0, 0) +
∂x

∂ZL
(α; 0, 0) (ZL − 0) +

∂x

∂w
(α; 0, 0) (w − 0)

=
2αγ

(
ZH

(
λ+ α2λwτu + 2αγw

)
− λZL

)
λ2Z2

H

. (C24)

Next, we solve α (λ;w,ZL). Inserting equation (C24) into equation (C23) and taking

derivative of its LHS with respect to α (note x is a function of α) yield

1

2
e
γC
1−β


− ZH(ατu(−2wx2ZH(wτθ+1)+α(2wτθ+1) ∂x

∂α
−2x(2wτθ+1))+α3wτ2

u(wτθ+1)(α ∂x∂α−4x)+τθ
∂x
∂α)

2(α2wτu+1)2

√
(τθ+α2τu(wτθ+1))(wxZH+α2wτu+1)

(α2wτu+1)(τθ(wxZH+1)+xZH+α2τu(wτθ+1))
(τθ(wxZH+1)+xZH+α2τu(wτθ+1))2

− ZL(ατu(−2wx2ZL(wτθ+1)+α(2wτθ+1) ∂x
∂α
−2x(2wτθ+1))+α3wτ2

u(wτθ+1)(α ∂x∂α−4x)+τθ
∂x
∂α)

2(α2wτu+1)2

√
(τθ+α2τu(wτθ+1))(wxZL+α2wτu+1)

(α2wτu+1)(τθ(wxZL+1)+xZL+α2τu(wτθ+1))
(τθ(wxZL+1)+xZL+α2τu(wτθ+1))2

 = 0.

(C25)

Denote the LHS of equation (C25) as Ψ1 (α, λ;ZL, w). When w = 0 and ZL = 0,

Ψ1 (α, λ; 0, 0) =
γλe

γC
1−β (α2τu−τθ)

2

√
λ(τθ+α2τu)

2αγ+λτθ+α2λτu
(2αγ+λτθ+α2λτu)2

= 0, which yields α (λ; 0, 0) =
√

τθ
τu
. Applying

the implicit function theorem to equation (C25) and imposing extreme conditions (w = 0

and ZL = 0), we know that ∂α
∂ZL

(λ; 0, 0) = 0, ∂α∂w (λ; 0, 0) = − τθ
2

√
τθ
τu
, ∂

2α
∂Z2

L
(λ; 0, 0) = 0,

∂2α
∂w2 (λ; 0, 0) =

2γ3√τθ
√

λ
√
τθτu

γ+λ
√
τθτu

+6γ2λτθ
√
τu

√
λ
√
τθτu

γ+λ
√
τθτu

+2λ3τ2
θτ

3/2
u

(√
λ
√
τθτu

γ+λ
√
τθτu

−1

)
+γλ2τ

3/2
θ τu

(
6

√
λ
√
τθτu

γ+λ
√
τθτu

+1

)
4λ2ZHτ

3/2
u (γ+λ

√
τθτu)

,

and ∂2α
∂w∂ZL

(λ; 0, 0) =
2λτ3

θ+
5γτ

5/2
θ√
τu

8γ+8λ
√
τθτu

. The Taylor series of α (λ;w,ZL) around w = 0 and ZL = 0
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becomes

α (λ;w,ZL) = α (λ; 0, 0) +
∂α

∂ZL
(λ; 0, 0) (ZL − 0) +

∂α

∂w
(λ; 0, 0) (w − 0)

+
1

2

∂2α

∂Z2
L

(λ; 0, 0) (ZL − 0)2 +
1

2

∂2α

∂w2
(λ; 0, 0) (w − 0)2 +

∂2α

∂w∂ZL
(λ; 0, 0) (ZL − 0) (w − 0)

=

√
τ θ



λ2ZHτu
(
2λ
√
τ θτu (wτ θ (wτ θ − 4) + 8) + γ (wτ θ (5wτ θ − 8) + 16)

)

+4wZL


2γ3
√

1− γ
γ+λ
√
τθτu

+ 6γ2λ
√
τ θτu

√
1− γ

γ+λ
√
τθτu

+2λ3τ
3/2
θ τ

3/2
u

(√
1− γ

γ+λ
√
τθτu

− 1

)
+γλ2τ θτu

(
6
√

1− γ
γ+λ
√
τθτu

+ 1

)



16λ2ZHτ

3/2
u

(
γ + λ

√
τ θτu

) . (C26)

Inserting equations (C24) and (C26) into equation (C23) and imposing w = 0, we have

1

2
e
γC
1−β

(√
λ(Z̄ + ∆)

√
τ θτu

2γ∆ + λ(Z̄ + ∆)
√
τ θτu

+

√
λ(Z̄ + ∆)2√τ θτu

2γ∆(Z̄ −∆) + λ(Z̄ + ∆)2√τ θτu

)
= 1. (C27)

Taking derivative of
√

λ(Z̄+∆)
√
τθτu

2γ∆+λ(Z̄+∆)
√
τθτu

+
√

λ(Z̄+∆)2√τθτu
2γ∆(Z̄−∆)+λ(Z̄+∆)2√τθτu

with respect to λ yields

γ
(

λ
√
τθτu

γ+λ
√
τθτu

)3/2

2λ2√τθτu
> 0. Together with ∂C(·)

∂λ
> 0, the LHS of equation (C27) is increasing in λ.

Taking derivative of the LHS of equation (C27) with respect to∆ yields
γe

γC
1−β

(
2−2

(
λ
√
τθτu

γ+λ
√
τθτu

)3/2
)

16λZ̄
√
τθτu

>

0 and thus, the LHS of equation (C27) is increasing in ∆. Therefore, when ∆ increases, λ

should decrease to maintain the equation: ∂λ∗

∂∆
< 0.

Next, we solve ∂α∗

∂∆
. In equation (C26), replacing ZH = Z̄+∆ and ZL = Z̄−∆, taking

derivative with respect to ∆ (note λ is a function of ∆), and imposing ∆ = Z̄ (ZL = 0), we
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can show

∂α

∂∆
(λ;w, 0) = −

wτ θ

 4γ3 + γλτ θτu

(
3Z̄wτ θλ

′(∆)
√

λ
√
τθτu

γ+λ
√
τθτu

− 2λ
(√

λ
√
τθτu

γ+λ
√
τθτu

− 6
))

+2γ2λ
√
τ θτu

(√
λ
√
τθτu

γ+λ
√
τθτu

+ 6
)
− 4λ3τ

3/2
θ τ

3/2
u

(√
λ
√
τθτu

γ+λ
√
τθτu

− 1
)


16λZ̄τu
√

1− γ
γ+λ
√
τθτu

(
γ + λ

√
τ θτu

)2

' −

wτ θ

 4γ3 + γλτ θτu

(
−2λ

(√
λ
√
τθτu

γ+λ
√
τθτu

− 6
))

+2γ2λ
√
τ θτu

(√
λ
√
τθτu

γ+λ
√
τθτu

+ 6
)
− 4λ3τ

3/2
θ τ

3/2
u

(√
λ
√
τθτu

γ+λ
√
τθτu

− 1
)


16λZ̄τu
√

1− γ
γ+λ
√
τθτu

(
γ + λ

√
τ θτu

)2

=

w
√
τ θ

√
λ
√
τθτu

γ+λ
√
τθτu

 −2γ2 + 2λ2τ θτu

(√
λ
√
τθτu

γ+λ
√
τθτu

− 1
)

−γλ√τ θτu
(√

λ
√
τθτu

γ+λ
√
τθτu

+ 4
)


8λ2Z̄τ

3/2
u

< 0.

The approximation follows because by applying the implicit function theorem to equation

(C27), we have λ′(∆) = −
2−2

(
λ
√
τθτu

γ+λ
√
τθτu

)3/2

8Z̄λ
√
τθτu


(

λ
√
τθτu

γ+λ
√
τθτu

)3/2

2λ2√τθτu
+

1+
λ
√
τθτu

γ+λ
√
τθτu

1−β C′(λ)


and thus, 3Z̄wτ θλ

′(∆)
√

λ
√
τθτu

γ+λ
√
τθτu

=

0 as w = 0. Also, inserting α (λ; 0, 0) into x (α, λ; 0), taking derivative with respect to ∆ and

imposing ∆ = Z̄ and w = 0 yield ∂x∗

∂∆
= − γ

Z̄λ2

√
τθ
τu
λ′ (∆) > 0. Further, by equation (19),

we have ∂G∗

∂∆
= 1

1−β
∂C(λ)
∂λ

∂λ
∂∆

< 0. Thus, ∂q
∗

∂∆
< 0 by equation (16). And similar to the proof

of ∂E(θ̃−p̃)
∂c

< 0 and ∂σ(θ̃−p̃)
∂c

< 0 for suffi ciently high τ η in the proof of Proposition 5, we can

show ∂E(θ̃−p̃)
∂∆

= ∂E(θ̃−p̃)
∂α

∂α
∂∆

> 0 and ∂σ(θ̃−p̃)
∂∆

= ∂σ(θ̃−p̃)
∂α

∂α
∂∆

> 0.

When w = 0 and ZL = ZH , x (α, λ; 0, ZH) = αγ
λZH

based on equation (C22). Applying the

implicit function theorem to equation (C22) and imposing the extreme conditions (w = 0

and ZL = ZH), we have
∂x
∂ZL

(α; 0, ZH) =
x(2wxZH(λ−αγw)−(α2wτu+1)(2αγw−λ))

ZH(4wxZL(αγw−λ)+(α2wτu+1)(2αγw−λ))+ZL(α2wτu+1)(2αγw−λ)
= − αγ

2λZ2
H
, where the

second equation follows by inserting w = 0, ZL = ZH and x = αγ
λZH

. Similarly, as w = 0 and

ZL = ZH , ∂x
∂w

(α; 0, ZH) = α2γ(γ+αγτu)

λ2ZH
. Now the Taylor series of x (α;w,ZL) around w = 0

and ZL = ZH is

x (α;w,ZL) = x (α; 0, ZH) +
∂x

∂ZL
(α; 0, ZH) (ZL − ZH) +

∂x

∂w
(α; 0, ZH) (w − 0)

=
αγ
(
ZH

(
3λ+ 2α2λwτu + 2αγw

)
− λZL

)
2λ2Z2

H

. (C28)
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Next, we solve α (λ;w,ZL). Inserting equation (C28) into equation (C23), and taking
derivative of its LHS with respect to α (note that x is a function of α), we have

e
Cγ
1−β γ



wγλ2Z2
Lτu (wτθ + 1)α3

−λZHZL

 wλ(4wαγ + 3λ)τ2
u (wτθ + 1)α4

+τu
(
4w2α2γ2 + 6wαλγ + λ2 + 2w

(
2w2α2γ2 + 3wαλγ + λ2

)
τθ
)
α2 − λ2τθ



+Z2
H


2w2λ2(2wαγ + λ)τ3

u (wτθ + 1)α6 + wλτ2
u

 8w2α2γ2 + 16wαλγ + 7λ2

+w
(
8w2α2γ2 + 16wαλγ + 5λ2

)
τθ

α4

+τu
(
4w3α3γ3 + 12w2α2λγ2 + 9wαλ2γ + w2α(2wαγ + 3λ)2τθγ + 3λ3

)
α2

−λ2(4wαγ + 3λ)τθ


αγλZL (wτθ + 1)− ZH

 2λ(wαγ + λ)τu (wτθ + 1)α2 + γ(2wαγ + 3λ)α

+
(
2w2α2γ2 + 3wαλγ + 2λ2

)
τθ

2

×
√

(ZH(2w2γ2α2+2wλ(wαγ+λ)τuα2+3wγλα+2λ2)−wαγλZL)(τu(wτθ+1)α2+τθ)
(wτuα2+1)(ZH(2λ(wαγ+λ)τu(wτθ+1)α2+γ(2wαγ+3λ)α+(2w2α2γ2+3wαλγ+2λ2)τθ)−αγλZL(wτθ+1))

+

ZL



wγλ2Z3
Lτu (wτθ + 1)α3 − 2wγλZHZ

2
Lτu

(
2wλτuα2 + 2wγα+ 3λ

)
(wτθ + 1)α3

+λ2Z3
H

(
2w2λτ3

u (wτθ + 1)α6 + wτ2
u (4wαγ + 7λ+ w(4wαγ + 5λ)τθ)α4 + 3λτuα2 − (4wαγ + 3λ)τθ

)
+Z2

HZL


4w3γλ2τ3

u (wτθ + 1)α7 + wλ
(
8w2α2γ2 + 12wαλγ − 3λ2

)
τ2
u (wτθ + 1)α4

+τu

 4w3α3γ3 + 12w2α2λγ2 + 9wαλ2γ − λ3

+w
(
4w3α3γ3 + 12w2α2λγ2 + 9wαλ2γ − 2λ3

)
τθ

α2 + λ3τθ



√
(2λ2(wτuα2+1)Z2H+wαγZL(2wλτuα2+2wγα+3λ)ZH−wαγλZ2L)(τu(wτθ+1)α2+τθ)

(wτuα2+1)(2λ2(τu(wτθ+1)α2+τθ)Z2H+αγZL(2wλτuα2+2wγα+3λ)(wτθ+1)ZH−αγλZ2L(wτθ+1))

×
(
2λ2

(
τu (wτθ + 1)α2 + τθ

)
Z2
H + αγZL

(
2wλτuα2 + 2wγα+ 3λ

)
(wτθ + 1)ZH − αγλZ2

L (wτθ + 1)
)

2


2 (wτuα2 + 1)2

= 0.

(C29)

Denote the LHS of equation (C29) as Ψ2 (α, λ;ZL, w). When w = 0 and ZL = ZH ,

Ψ2 (α, λ; 0, ZH) =
γλe

γC
1−β (α2τu−τθ)

2

√
λ(τθ+α2τu)

αγ+λτθ+α2λτu
(αγ+λτθ+α2λτu)2

= 0, which yields α (λ; 0, ZH) =
√

τθ
τu
. Ap-

plying the implicit function theorem to equation (C29) and imposing extreme conditions

(w = 0 and ZL = ZH), ∂α
∂ZL

(λ; 0, ZH) = 0, ∂α
∂w

(λ; 0, ZH) = − τθ
2

√
τθ
τu
, ∂2α
∂Z2

L
(λ; 0, ZH) = 0,

∂2α
∂w2 (λ; 0, ZH) =

20λτ3
θ+

13γτ
5/2
θ√
τu

8γ+16λ
√
τθ
√
τu
, and ∂2α

∂w∂ZL
(λ; 0, 0) = 0. The Taylor series of α (λ;w,ZL)

around w = 0 and ZL = ZH is

α (λ;w,ZL) = α (λ; 0, ZH) +
∂α

∂ZL
(λ; 0, ZH) (ZL − ZH) +

∂α

∂w
(λ; 0, ZH) (w − 0)

+
1

2

∂2α

∂Z2
L

(λ; 0, ZH) (ZL − ZH)2 +
1

2

∂2α

∂w2
(λ; 0, ZH) (w − 0)2

+
∂2α

∂w∂ZL
(λ; 0, ZH) (ZL − ZH) (w − 0)

=

√
τ θ
τu

+

w2

(
20λτ3

θ +
13γτ

5/2
θ√
τu

)
16
(
γ + 2λ

√
τ θτu

) −
wτ

3/2
θ

2
√
τu
. (C30)
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Now inserting equations (C28) and (C30) into equation (C23) and imposing w = 0, we

have

1√
2
e
γC
1−β


√

λ(Z̄+∆)
√
τθτu

γ(Z̄+2∆)+2λ(Z̄+∆)
√
τθτu

+

√
λ(Z̄+∆)2√τθτu

γ(Z̄2+Z̄∆−2∆2)+2λ(Z̄+∆)2√τθτu

 = 1. (C31)

Taking derivative of

√
λ(Z̄+∆)

√
τθτu

γ(Z̄+2∆)+2λ(Z̄+∆)
√
τθτu

+

√
λ(Z̄+∆)2√τθτu

γ(Z̄2+Z̄∆−2∆2)+2λ(Z̄+∆)2√τθτu
with respect to λ

and imposing ∆ = 0 yield
γ
(

λ
√
τθτu

γ+2λ
√
τθτu

)3/2

λ2√2τθτu
> 0. Together with ∂C(·)

∂λ
> 0, the LHS of equation

(C31) is increasing in λ. Taking derivative of the LHS of equation (C31) with respect to ∆

yields (note that λ is a function of ∆), we have

γZ̄e
γC
1−β

(
(Z̄ + 5∆)

(
λ(Z̄+∆)2√τθτu

γ(Z̄2+Z̄∆−2∆2)+2λ(Z̄+∆)2√τθτu

)3/2

− (Z̄ + ∆)
(

λ(Z̄+∆)
√
τθτu

γ(Z̄+2∆)+2λ(Z̄+∆)
√
τθτu

)3/2
)

2λ(Z̄ + ∆)3
√

2τ θτu

>

γZ̄e
γC
1−β

(
(Z̄ + ∆)

(
λ(Z̄+∆)2√τθτu

γ(Z̄2+Z̄∆−2∆2)+2λ(Z̄+∆)2√τθτu

)3/2

− (Z̄ + ∆)
(

λ(Z̄+∆)
√
τθτu

γ(Z̄+2∆)+2λ(Z̄+∆)
√
τθτu

)3/2
)

2λ(Z̄ + ∆)3
√

2τ θτu

> 0,

where the last inequality follows because λ(Z̄+∆)2√τθτu
γ(Z̄2+Z̄∆−2∆2)+2λ(Z̄+∆)2√τθτu

− λ(Z̄+∆)
√
τθτu

γ(Z̄+2∆)+2λ(Z̄+∆)
√
τθτu

=
2γλ∆(Z̄+∆)(Z̄+2∆)

√
τθτu

(γ(Z̄+2∆)+2λ(Z̄+∆)
√
τθτu)(γ(Z̄2+Z̄∆−2∆2)+2λ(Z̄+∆)2√τθτu)

> 0. The LHS of equation (C31) is

increasing in ∆. Therefore, when ∆ increases, λ should decrease to maintain the equation.

Hence, ∂λ
∗

∂∆
< 0.

Finally, we compute ∂α∗

∂∆
. In equation (C30), taking derivative with respect to ∆ (note

that λ is a function of ∆), and imposing ∆ = 0 (ZL = ZH), we have

∂α

∂∆
(λ;w,ZH) = − 3γw2τ3

θλ
′(∆)

8
(
γ + 2λ

√
τ θτu

)2 > 0.

Given that x (α, λ; 0) = αγ
λZ̄
, we have ∂x∗

∂∆
= ∂x

∂α
∂α
∂∆

+ ∂x
∂λ

∂λ
∂∆

> 0. Further, similar to the proof of
∂E(θ̃−p̃)

∂c
< 0 and ∂σ(θ̃−p̃)

∂c
< 0 in the proof of Proposition 5, we can show ∂E(θ̃−p̃)

∂∆
= ∂E(θ̃−p̃)

∂α
∂α
∂∆

>

0 and ∂σ(θ̃−p̃)
∂∆

= ∂σ(θ̃−p̃)
∂α

∂α
∂∆

> 0. QED.
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50 

 

Figure 1: Time trend of price informativeness 
 

Panel A. Stagnant price informativeness for the long-lived firms 

 

Panel B. Decreasing price informativeness for the average firms 

 

This figure plots the time trend of price informativeness. Panel A plots price informativeness over time at a 
3-year horizon for firms that exist for at least 45 year from 1964 to 2018: the blue dashed line indicates 
firms that were at some point in S&P500 and the red solid line indicates firms that were never in S&P500 
firms. The blue and red dotted lines are linear trends that fit the blue and red time trends, respectively. 
Panel B plots price informativeness over time at a 3-year horizon for all listed firms from 1964 to 2018. 
Price informativeness is calculated based on Bai, Philippon, and Savov (2016).    
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Figure 2: Timeline 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 time 

𝑡𝑡 = 0 (Information) 𝑡𝑡 = 1 (Trading) 𝑡𝑡 = 2 (Consumption) 

1. Data seller chooses clarity x;  
2. Investors make skill-acquisition 

decisions and skilled investors 
purchase data;  

3. Data price q is determined 
through Nash bargaining. 

1. Skilled investors uncover their 
skill types and observe their 
purchased data; 

2. Investors submit demand 
schedules, noise traders trade, and 
the asset price 𝑝𝑝� is formed.  

1. Asset payoffs are 
realized; 

2. All agents consume. 
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Figure 3: Implications of skill-acquisition costs without skill-acquisition 
uncertainty 

 

 

This figure plots the effects of skill-acquisition costs in the economy without skill-acquisition 
uncertainty. The skill-acquisition cost function is specified as 𝐶𝐶(i) = 𝑐𝑐𝑖𝑖/(1 − 𝑖𝑖) with 𝑐𝑐 > 0. 
The other parameters are: 𝜏𝜏𝜃𝜃 = 1, 𝜏𝜏𝑢𝑢 = 5, 𝜏𝜏𝜂𝜂 = 1000,𝛽𝛽 = 0.3,𝛾𝛾 = 1, 𝑍̅𝑍 = 10, and ∆= 0. 
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Figure 4: Implications of skill-acquisition costs with skill-acquisition 
uncertainty 

 

 

This figure plots the effects of skill-acquisition costs. The skill-acquisition cost function and the 
parameters are the same as those in Figure 3 with ∆= 5. 
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Figure 5: Implications of skill mean (𝒁𝒁�) with skill-acquisition 
uncertainty 

 

 

This figure plots the effects of skill mean 𝑍̅𝑍. The skill-acquisition cost function and the 
parameters are the same as those in Figure 4 with 𝑐𝑐 = 0.2. 
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Figure 6: Implications of skill volatility (∆) with skill-acquisition 
uncertainty 

 

 

 

This figure plots the effects of skill volatility ∆. The skill-acquisition cost function and the 
parameters are the same as those in Figure 5 with 𝑍̅𝑍 = 10. 



Online Appendix to “Skill Acquisition and Data Sales”

In the main paper, we focus on the economy where the seller is endowed with accurate

data. Now we study the economy in which the seller owns inaccurate data by examining

how skill-acquisition technology affects information sales, financial markets, and the asset

management industry. We find that market variables, such as price informativeness, the

cost of capital, and return volatility, tend to exhibit different patterns in the two economies,

which differ in the accuracy τ η of the seller’s original data.

First, as in Section 4.1 and Section 4.2.1, we study the effect of skill-acquisition cost.

When the seller’s data is relatively inaccurate (i.e., low τ η) and there is no skill-acquisition

uncertainty, the seller will choose not to add any noise into the sold data in order to preserve

the information value (i.e., x∗ = ∞). In this case, as skill-acquisition costs increase, still

fewer investors acquire skills and hence purchase data (i.e., ∂λ
∗

∂c
< 0), and less information is

injected into the price. As a result, price informativeness declines (i.e., ∂
∂c

1
V ar(θ̃|p̃) < 0). Since

less information is leaked by the price, the data is valued more by investors, and its price q∗

increases (i.e., ∂q
∗

∂c
> 0). Hence, both for high and low values of τ η, data price q∗ increases

with c, but for different reasons: for high value of τ η, price informativeness is constant, and

q∗ increases because of the improved data clarity; for low value of τ η, data clarity x∗ is

constant (at ∞), and q∗ increases due to the worse price informativeness. In contrast, when

τ η is low, the seller sells data “as is”and both price informativeness and the mass of skilled

investors decrease with c, which raises the uncertainty faced by investors and hence the cost

of capital and return volatility.

The results for the case with skill-acquisition uncertainty are the same. The seller sells

data “as is”(x∗ = ∞). When skill-acquisition costs increase: fewer investors acquire skills

and the price of data increases; price informativeness decreases, and both the cost of capital

and return volatility increase; the seller’s profit decreases and skilled investors’performance

increases.

Proposition OA1 (Implications of skill-acquisition costs with low τ η) Assume the seller

owns very inaccurate data (i.e., τ η → 0). Whether there is uncertainty involved in skill ac-

quisition or not, when skill-acquisition cost parameter c increases (meaning that C (·) shifts

1



upward), when skill-acquisition cost parameter c increases (meaning that C (·) shifts upward),

the fraction λ∗ of skilled investors decreases, data price q∗ increases, skilled investors’perfor-

mance increases, data clarity x∗ remains at ∞, price informativeness 1
V ar(θ̃|p̃) decreases, the

cost of capital E(θ̃ − p̃) increases, and return volatility σ(θ̃ − p̃) increases. That is, whether

∆ > 0 or not, for suffi ciently low τ η, x∗ =∞, ∂λ∗
∂c

< 0, ∂q
∗

∂c
> 0, ∂Performance

∂c
> 0, ∂

∂c
1

V ar(θ̃|p̃) < 0,

∂E(θ̃−p̃)
∂c

> 0, and ∂σ(θ̃−p̃)
∂c

> 0.

Second, we examine the effect of the mean of skill levels in the economy with skill un-

certainty (i.e., ∆ > 0, or ZL < ZH) as in Section 4.2.2. Again, if the seller’s data is very

inaccurate (i.e., if τ η is low), she optimally sells the data “as is.”That is, data clarity x∗

is set at ∞. In consequence, price informativeness increases, and both the cost of capital

and return volatility decrease, since more investors choose to acquire skills and become in-

formed when Z̄ becomes higher. Further, given the constant data clarity and increasing price

informativeness, the performance of skilled investors declines with skill mean Z̄.

Proposition OA2 (Implications of skill mean with low τ η) Assume that the seller owns very

inaccurate data (i.e., τ η → 0). When skill mean Z̄ increases, data clarity x∗ remains at ∞,

the fraction λ∗ of skilled investors increases, data price q∗ increases, price informativeness
1

V ar(θ̃|p̃) increases, the cost of capital E(θ̃− p̃) decreases, return volatility σ(θ̃− p̃) decreases,

and skilled investors’performance decreases. That is, for suffi ciently low τ η, ∂λ
∗

∂Z̄
> 0, ∂q

∗

∂Z̄
>

0, ∂
∂Z̄

1
V ar(θ̃|p̃) > 0, ∂E(θ̃−p̃)

∂Z̄
< 0, ∂σ(θ̃−p̃)

∂Z̄
< 0, and ∂Performance

∂Z̄
< 0.

Last, unlike the results in Section 4.2.3, when the data seller owns very inaccurate data

(low τ η), as skill volatility ∆ increases, price informativeness unambiguously decreases due

to the presence of fewer skilled investors, and both the cost of capital and return volatility

increase accordingly. This is because now the seller sells data “as is” so market quality

is affected only by the change in the mass of skilled investors. Further, skilled investors’

performance exhibits different patterns depending on the accuracy level τ η: when τ η is high,

performance decreases with ∆; but when τ η is low, performance increases with ∆.

Proposition OA3 (Implications of skill volatility with low τ η) Assume that the seller

owns very inaccurate data (i.e., τ η → 0). When skill volatility ∆ increases, data clarity x∗

2



remains at ∞, the fraction λ∗ of skilled investors increases, data price q∗ increases, price

informativeness 1
V ar(θ̃|p̃) decreases, the cost of capital E(θ̃ − p̃) increases, return volatility

σ(θ̃ − p̃) increases, and skilled investors’performance increases.

Proofs of Proposition OA1-OA3

1. Proof of Proposition OA1 1.1. The case without skill-acquisition uncertainty.

When τ η is suffi ciently low and ZL = ZH , by Proposition 3, we have x∗ = +∞ and

α∗ = λ∗τη
γ
. Now, inserting x = +∞ and α = λτη

γ
into equation (19) generates

exp

(
γC(λ)

1− β

)√
1− γ2τ η

(τ η + τ θ)
(
γ2 + λ2τuτ η

) = 1. (OA1)

The LHS of equation (OA1) is increasing in λ and increasing in c. Thus, when c increases,

λ should decrease to maintain the equation: ∂λ∗

∂c
< 0. Given α∗ = λ∗τη

γ
and equation (12),

we know ∂α∗

∂c
< 0, and ∂

∂c
1

V ar(θ̃|p̃)
< 0.

With x∗ = +∞, the information gainG can be simplified asG = 1
2γ

log
[

τη+α2τu
[τητθ+α2τu(τη+τθ)](τη+τθ)

]
.

Taking derivative of G with respect to α yields ∂G
∂α

= − ατuτη
γ(τη+α2τu)[τητθ+α2τu(τη+τθ)]

< 0. So,
∂G∗

∂c
= ∂G∗

∂α
∂α
∂c
> 0. Thus, ∂q

∗

∂c
> 0 by equation (16).

Next, we examine market-quality variables. Inserting x = +∞ and α = λ∗τη
γ
into equation

(C12), the cost of capital E(θ̃ − p̃) can be simplified as follows:

E(θ̃ − p̃) =
γ3 + γλ2τ ητu

τ θ
(
γ2 + λ2τ ητu

)
+ λτ η (γ2 + λτ ητu)

, (OA2)

which is a function of λ only. Thus, ∂E(θ̃−p̃)
∂c

= ∂E(θ̃−p̃)
∂λ

∂λ
∂c

= − γ3τη((2−λ)λτητu+γ2)
(τθ(γ2+λ2τητu)+λτη(γ2+λτητu))

2
∂λ
∂c
>

0.

With x = +∞ and α = λτη
γ
, return variance V ar(θ̃ − p̃) can be simplified to

V ar(θ̃ − p̃) =

(
γ2 + λ2τ ητu

) (
τ θτu

(
γ2 + λ2τ ητu

)
+ (γ2 + λτ ητu)

2
)

τu
(
τ θ
(
γ2 + λ2τ ητu

)
+ λτ η (γ2 + λτ ητu)

)2 ,

3



which is a function of λ only. Taking derivative of it with respect to λ yields

∂V ar(θ̃ − p̃)
∂λ

= −

2γ2τ η

 γ6 + γ4λτu (3τ η + τ θ)

+γ2λτ ητ
2
u

(
3λτ η +

(
λ2 + 1

)
τ θ
)

+ λ3τ 2
ητ

3
u (τ η + τ θ)


τu
(
γ2τ θ + λτ η (γ2 + λτ θτu) + λ2τ 2

ητu
)3 < 0.

Thus, ∂σ(θ̃−p̃)
∂c

= ∂σ(θ̃−p̃)
∂λ

∂λ
∂c
> 0.

Finally, for suffi ciently low τ η, performance (21) can be simplified as Performance =

1
2γ

log
(

1 +
τ2
η

τητθ+α2τu(τη+τθ)

)
, which is a function of α only. Since we have shown that ∂α

∗

∂c
< 0,

it must be the case that ∂Performance
∂c

> 0.

1.2. The case with skill-acquisition uncertainty.

When τ η is suffi ciently low, based on the above proof, x∗ = +∞ and λ∗τ η = α∗γ.

Now, inserting x∗ = +∞ and α∗ = λ∗τη
γ
into equation (19) leads to (OA1). Note that with

x∗ = +∞, the skill levels ZH and ZL play no role and thus, we obtain the same simplification

of equation (19) as in the case with x∗ = +∞, α∗ = λ∗τη
γ
, and ZL = ZH . So, similar to the

above proof, with x∗ = +∞ and α∗ = λ∗τη
γ
, we can show ∂λ∗

∂c
< 0, ∂α

∗

∂c
< 0, ∂

∂c
1

V ar(θ̃|p̃)
< 0,

∂q∗

∂c
> 0, ∂π

∗

∂c
< 0, ∂E(θ̃−p̃)

∂c
> 0, and ∂σ(θ̃−p̃)

∂c
> 0.

For performance, with x∗ = +∞, performance (21) can be simplified as Performance

= 1
2γ

log
(

1 +
τ2
η

τητθ+α2τu(τη+τθ)

)
, which is a function of α only. Taking derivative of it with

respect to α yields ∂Performance
∂α

= − ατ2
ητu

γ(τη+α2τu)(τητθ+α2τu(τη+τθ))
< 0. Therefore, for suffi ciently

low τ η,
∂Performance

∂c
= ∂Performance

∂α
∂α
∂c
> 0. QED.

2. Proof of Proposition OA2 By the proof of Proposition OA1, replacing ZH =

Z̄+∆ and ZL = Z̄−∆ in (OA1) yields

1

2
exp

(
γC(λ)

1− β

)
√

1− γ4xτη(Z̄−∆)

(γ2+λ2τητu)(γ2τη(τθ+x(Z̄−∆))+γ2xτθ(Z̄−∆)+λ2τ2
ητθτu+λ2τ3

ητu)

+

√
1− γ4xτη(Z̄+∆)

(γ2+λ2τητu)(γ2τη(τθ+x(Z̄+∆))+γ2xτθ(Z̄+∆)+λ2τ2
ητθτu+λ2τ3

ητu)

 = 1.

(OA3)
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The LHS of equation(OA3) is increasing in λ. Taking derivative of the LHS of equation

(OA3) with respect to Z̄ yields −γ4xτ2
ηe

γC
1−β (γ2τθ+λ2τητu(τη+τθ))(H(ZH)+H(ZL))

4(γ2+λ2τητu)
< 0, where

H (Z) =
1√

(γ2τθ+λ2τητu(τη+τθ))(γ2xZ+τη(γ2+λ2τητu))
(γ2+λ2τητu)(γ2xZ(τη+τθ)+τη(γ2τθ+λ2τητu(τη+τθ)))

(
γ2xZ (τη + τθ) + τη

(
γ2τθ + λ2τητu (τη + τθ)

))2 .

The LHS of equation (OA3) is decreasing in Z̄. Thus, when Z̄ increases, λ should increase

to maintain the equation. Hence, ∂λ
∗

∂Z̄
> 0. Given α∗ = λ∗τη

γ
and equation (12), ∂α

∗

∂Z̄
> 0, and

∂
∂Z̄

1

V ar(θ̃|p̃)
> 0. The data price is q = βG = β

1−βC (λ), where the second equation follows

from equation (19). Thus, ∂q∗

∂Z̄
= β

1−β
∂C
∂λ

∂λ
∂Z̄

> 0. Also, the seller’s profit is π = βλ
1−βC (λ)

and ∂π∗

∂Z̄
= β

1−β
(
∂λ
∂Z̄
C (λ) + λ∂C

∂λ
∂λ
∂Z̄

)
> 0. Finally, similar to the proof of ∂E(θ̃−p̃)

∂c
> 0 and

∂σ(θ̃−p̃)
∂c

> 0 for suffi ciently low τ η in the proof of Proposition 4, with x∗ = +∞ and α∗ = λ∗τη
γ
,

we can show ∂E(θ̃−p̃)
∂Z̄

= ∂E(θ̃−p̃)
∂λ

∂λ
∂Z̄

< 0 and ∂σ(θ̃−p̃)
∂Z̄

= ∂σ(θ̃−p̃)
∂λ

∂λ
∂Z̄

< 0.

Finally, similar to the proof in part (2) of Proposition OA1, we can show that ∂Performance
∂Z̄

=

∂Performance
∂α

∂α
∂Z̄

< 0. QED.

3. Proof of Proposition OA3 The proof is based on the proof of Proposition OA2.

Taking derivative of the LHS of equation (OA3) with respect to ∆ yields
γ4xτ2

ηe
γC
1−β (γ2τθ+λ2τητu(τη+τθ))(H(ZL)−H(ZH))

4(γ2+λ2τητu)
> 0. The inequality follows because

∂H
∂Z = − γ2x(4γ2xZ(τη+τθ)+τη(4γ2τθ+τη(3γ2+4λ2τθτu)+4λ2τ2

ητu))

2
(
γ2xZ + τη

(
γ2 + λ2τητu

))√ (γ2τθ+λ2τητu(τη+τθ))(γ2xZ+τη(γ2+λ2τητu))
(γ2+λ2τητu)(γ2xZ(τη+τθ)+τη(γ2τθ+λ2τητu(τη+τθ)))

×
(
γ2xZ (τη + τ θ) + τη

(
γ2τ θ + λ2τητu (τη + τ θ)

))3
< 0,

and thus H (ZL) > H (ZH). The LHS of equation (OA3) is increasing in ∆ and increasing in

λ. So, when ∆ increases, λ should decrease to maintain the equation. Hence, ∂λ
∗

∂∆
< 0. Given

α∗ = λ∗τη
γ
and equation (12), ∂α∗

∂∆
< 0, and ∂

∂∆
1

V ar(θ̃|p̃)
< 0. The data price is q = βG =

β
1−βC (λ), where the second equation follows from equation (19). Thus, ∂q

∗

∂∆
= β

1−β
∂C
∂λ

∂λ
∂∆

< 0.

Next, similar to the proof of ∂E(θ̃−p̃)
∂c

> 0 and ∂σ(θ̃−p̃)
∂c

> 0 for suffi ciently low τ η in the proof

of Proposition 4, with x∗ → +∞ and α∗ = λ∗τη
γ
, we can show ∂E(θ̃−p̃)

∂∆
= ∂E(θ̃−p̃)

∂λ
∂λ
∂∆

> 0 and
∂σ(θ̃−p̃)
∂∆

= ∂σ(θ̃−p̃)
∂λ

∂λ
∂∆

> 0.

Similar to the proof in part (2) of Proposition OA1, we can show that ∂Performance
∂∆

=

∂Performance
∂α

∂α
∂∆

> 0. QED.
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