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1. Introduction 

Perhaps the most important question in asset pricing is whether different average returns across 

assets are rewarded for risk.  Firm characteristics, such as size, book-to-market ratio, momentum, 

investment, and profitability, are related reliably to cross-sectional differences in asset returns 

(Fama and French (1993, 2016, 2018a); Hou, Xue, and Zhang (2015)). However, whether they 

proxy for risk exposures still needs to be determined (Pukthuanthong, Roll, and Subrahmanyam, 

(2019)).  

Theoretically, macroeconomics factors (e.g., Chen, Roll and Ross (1986)) and other non-traded 

factors (e.g., Adrian, Etula and Muir (2014)) capture the fundamental risks in the economy and 

thus should also explain the cross-sectional expected returns. However, observed changes in these 

factors contain measurement error and provide only weak prediction of asset returns. To reduce 

factor noise, previous literature (Huberman, Kandel, and Stambaugh (1987), Breeden, Gibbons 

and Litzenberger (1989), Ferson, Siegel and Xu (2006), Balduzzi and Robotti (2008), Giglio and 

Xiu (2018)) recommend factor-mimicking portfolios (FMPs), which contain traded assets that are 

representations of underlying non-traded factors. The extant literature often uses FMPs in testing 

asset pricing models (e.g., Cooper and Priestley (2011), Barillas et al. (2019), Pukthuanthong et 

al. (2019)).1 

Following Huberman, Kandel, and Stambaugh (1987) and Breeden, Gibbons, and Litzenberger 

(1989), an FMP is chosen to maximize the correlation with the underlying factor (i.e., a maximum 

correlation portfolio). In this paper, we provide a new theory of the FMP. Specifically, our FMP  

is constructed to jointly minimize the mispricing component of asset returns with respect to the 

underlying factors, when the covariance of any asset return with the underlying factor is the same 

as that with FMP return. In other words, among the FMPs that represent the risk of the underlying 

factor, the least mispriced portfolio is selected. Through the least mispriced portfolio, we link the 

FMP construction with the beta pricing model, while the maximum correlation portfolio is built 

                                                           
1 The other applications are pointed out by Roll and Srivastava (2018, p. 21), “mimicking portfolios have many 

potential uses, including (though not limited to): (1) Evaluating active manager performance, (2) Substituting for a 

desired investment in illiquid assets, (3) Determining the true potential for improved diversification, (4) 

Understanding the sources of past return volatility, (5) Predicting the likely level of future return volatility.”  
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on mean-variance efficiency. Thus, the connection between the two theories is based on the 

equivalence between the beta pricing model and the mean-variance efficiency.  

Least mispricing theory suggests several methods to construct FMPs. The first method is based on 

Lehmann and Modest (1988, henceforth LM) who apply the Weighted-Least-Square (WLS) Fama-

Macbeth (1973) cross-sectional regressions and then use the time series of estimated coefficients 

in the second-pass regression as FMPs. A simplified OLS cross-sectional method is also widely 

used. The second is the time-series approach where contemporaneous returns of basis assets are 

regressed on non-traded factors. Lamont (2001) is one of the leading papers using this approach; 

he constructs FMPs from 13 basis assets, which are portfolios formed by sorting individual firm 

characteristics. The third approach is the sorting-by-beta approach where stocks are sorted into 

portfolios by their factor loadings (betas). Then, a long-short portfolio between top and bottom 

deciles is used as an FMP.  

When the underlying factor contains measurement error and when there are multiple correlated 

risk factors, empirically constructed FMPs are subject to several methodological difficulties. The 

first issue is the factor contamination. Specifically, when there is a measurement error in the 

underlying factor, and the underlying factor is correlated with another risk factor, we can show 

that the constructed FMP is a linear combination of the underlying factor and the other risk factor. 

Hence, the FMP does not only represent the underlying target factor, but also the other factor. In 

the other word, the risk associated with the FMP is contaminated by the other factor. This is against 

intention to create FMP: we can reduce the measurement error by introducing a different source 

of error in the factor. We propose a methodology to avoid factor contamination.     

The cross-sectional method also suffers an Errors-in-Variables (EIV) issue. To correct it, our first 

enhanced approach relies on instrumental variable (IV) estimation with individual equities 

following Jegadeesh et al. (2019). We divide the entire sample into even and odd month 

subsamples and estimate betas in each subsample separately. Then, betas from the even-month 

subsample act as instrumental variables for the betas from odd months, or vice versa, in cross-

sectional IV regressions with individual stock returns as the dependent variable. Stein (1956) 

introduces a shrinkage method to reduce the root-mean-square error. We also examine these two 

alternative approaches for FMP construction.  
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We apply FMP in testing asset pricing models. Given that FMP itself is an excess return, Shanken 

(1992) show that its average value is the risk premium estimate. However, the second method is 

to reapply cross-sectional regression to estimate the risk premium using FMPs as factors. We call 

the second method two-stage method since we create FMP in first stage, and reapply cross-

sectional method in the second stage. The first method is called one-stage method since FMP 

creation and risk premium estimation are in the same cross-sectional regression. Since creating 

FMP by applying cross-sectional method can mitigate the measurement error in underlying factor, 

it is natural to believe that reapply the cross-sectional method can further reduce the effect of 

measurement error in risk premium estimation. This is indeed the case, as we show that in a finite 

sample, the one-stage method leads to noisier risk premium estimates for factors with large 

measurement error than the two-stage method. Therefore, two-stage approach is advocated. 

Basis asset selection can be important in FMP construction. However, different research papers 

create FMPs from various candidate assets.2 To avoid arbitrary basis asset selection, we propose 

to use a large number of test assets (preferable individual stocks/bonds). However, Gospodinov, 

Kan, and Robotti (2018) show that including uncorrelated assets can affect the inference of asset 

pricing test. To mitigate this issue, we further suggest variable selection criteria to exclude 

uncorrelated assets. 

Our simulations show that an FMP constructed following the approach proposed above (we call it 

IV approach) can correctly represent the underlying factor. We find that the correlation between 

the IV FMP and the return related component of the underlying factor is nearly one.3 However, 

the correlation between FMP constructed by the OLS approach with controlling factors 

(henceforth the “OLS approach”) and the underlying factor is close to 0.8, which is significantly 

smaller.  The correlation is similar or even smaller for other existing methods. Moreover, the IV 

                                                           
2  Lamont (2001) proposes economic tracking portfolios using 13 basis assets that include eight industry-sorted stock 

portfolios, four bond portfolios, and a stock market return. Vassalou (2003) uses six equity portfolios sorted by size 

and book-to-market, term spread and default spread. Aretz (2011) uses a market portfolio, long and intermediate-

term government bond portfolios, high-yield corporate bonds and gold. Kroencke et al. (2013) use equity portfolios 

sorted by size and book-to-market, and a momentum portfolio. Bianchi et al. (2017) use six size and book-to-market 

sorted portfolios, plus the default and term spreads. Barillas et al. (2017) use 15 traded factors as basis assets. Maio 

(2018) uses the excess market return, value spread, term spread and S&P 500 price-to-earnings ratio. With the cross-

sectional approach, Lehmann and Modest (1988) use size, dividend yield and variance sorted portfolios, and Cooper 

and Priestley (2011) use 40 portfolios sorted by size, book-to-market, momentum, and asset growth. Pukthuanthong 

et al. (2018) use 50 portfolios sorted by size, book-to-market, momentum, investment and operating profitability. 

Roll and Srivastava (2018) use eight ETF portfolios.  
3  We define a non-traded factor be 𝑓 as 𝑓 = 𝑓 + 𝜀𝑓. See Section 2.1 for our theory and definition  of variables. 
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FMP of an underlying factor is not correlated with other uncorrelated (orthogonalized) risk factors, 

while FMPs constructed by other methods are correlated with them, suggesting that only the IV 

FMP is not contaminated by other factors. 

We evaluate existing and newly introduced approaches to construct FMPs and test underlying 

factors. We propose that the examination should hinge on the following criteria: 

(1) FMPs should be correlated with the underlying factors,  

(2) FMPs should be correlated with the systematic risk of returns,  

(3) FMPs should explain the cross-section of mean returns.  

Intuitively, an FMP should be a proxy for the risk of the underlying factor; therefore, (1) should 

be satisfied. Besides, if the underlying factor is a true pricing factor that reflects asset risk, an FMP 

should represent systematic risk and price assets cross-sectionally ((2) and (3) should be satisfied).  

The criteria are examined in the real data. For criteria (1), we estimate the correlations between 

FMPs and underlying factors. We find that the correlation between the FMP return and the 

underlying factor using the IV approach is smaller than that using the OLS approach. However, 

we show that the higher correlation of the OLS approach can be driven by the Errors-in-Variables 

issues. Therefore, the neoclassical criteria for creating the empirical maximum correlation 

portfolio, which is the FMP created by OLS method, can be misleading, especially for weak 

macroeconomic factors in which the EIV bias is relatively large. We also find that the above 

correlation for the IV approach is larger than that for the time-series approaches. Across 

subperiods, the times-series approaches cannot produce significant correlation, while the cross-

sectional approaches can.  

We also examine criteria (2) following Pukthuanthong, Roll, and Subrahmanyam (2019), in which 

they propose that a genuine risk factor must be related to the systematic risks (proxied by the 

covariance matrix of returns). We find that for cross-sectional approaches, most of the FMPs 

represent the systematic risk of stocks. However, for the time-series approach, the FMPs fail to 

consistently deliver a systematic risk.  

For criteria (3), our empirical results reveal that IV-constructed FMPs yield more significant risk 

premiums. For example, the monthly risk premium for the FMP of consumption growth 
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constructed with the IV approach is 0.164%, while the risk premium of the OLS method is 0.066%. 

The significance level increases from 5% to 1%. We also find that FMPs for unemployment rate 

and CPI contain significant risk premia when they are constructed with IV, but not when obtained 

via other approaches. The Lehmann and Modest (1988), and Stein methods yield more significant 

risk premia than OLS, but not as significant as IV. Risk premiums estimated by the Lamont (2001) 

and sorting-by-beta approaches are in general insignificant. To study the robustness of 

consumption growth, we also include the CAY (the log of the consumption to wealth ratio) factor 

by Lettau and Ludvigson (2001) and the consumption volatility factor by Boguth and Kuehn 

(2013), but they deliver little incremental power to consumption growth.   

We also construct FMPs from various approaches for non-traded factors to price individual 

corporate bonds. The only cross-sectional approach of FMP construction that passes all three 

criteria is the IV approach. Using the IV, we find that consumption growth, industrial production, 

bond market factors, and the default spread are associated with significant and positive risk 

premiums.  

Our contribution is fourfold. First, we provide a new economic interpretation for the factor-

mimicking portfolio, in addition to maximal correlation portfolio proposed by Breeden, Gibbons, 

and Litzenberger (1979), and Huberman, Kandel, and Stambaugh (1987). We also examine the 

connection between the two theories. 

Second, we propose new methods for constructing FMPs. In simulations, we find that the IV one-

factor approach yields perfect proxy for the risk component of non-traded factors. In contrast, 

previous cross-sectional approaches such as OLS, Lehmann, and Modest (LM) (1988), Stein’s 

approach and Thiel’ approach, as well as sorting-by-beta and time-series approaches are subject 

to substantial factor contamination. 

Third, we propose three selection criteria for examining factor-mimicking portfolios. For example, 

instead of maximizing the correlation between the FMP and the underlying factor, our analogous 

but revised criterion is that an effective FMP should have significant, but not maximum, 

correlation with its underlying risk factor. This is to avoid inflated correlation in the presence of 

estimation error.   
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Fourth, we sponsor a horse race among the IV approach and other approaches in both the stock 

and bond markets. We find that IV is the winning horse for traded versions (FMPs) of 

macroeconomic factors, including consumption growth, the CPI, unemployment, and default 

spread. FMPs constructed with IV satisfy three criteria: they are correlated with the underlying 

factors, associated with the systematic risk in asset returns, and unlike the alternative approaches, 

have large and significant risk premiums in both equity and bond markets.  

Our paper is related to Balduzzi and Robotti (2008) who conclude that using time-series 

formulation of FMPs performs better in term of estimating risk premia than using the original 

factors with one-step cross-sectional approach. We provide a possible explanation for their 

findings since the finite sample error is much larger for one-step cross-sectional approach. 

Kleibergen and Zhan (2018) propose a test of the risk premia of FMPs constructed by a time-series 

approach that does not depend on the magnitude of betas. However, their approach focuses more 

on inference and suffers information lost through their portfolio construction. Rather than 

constructing mimicking portfolios for factors, Roll and Srivastava (2018) construct mimicking 

portfolios for individual stocks returns using a cross-sectional OLS approach. Fama and French 

(2018b) construct mimicking portfolios for characteristics using cross-sectional approach and find 

that these characteristic-mimicking portfolios have better explanatory power to average return than 

sorting-characteristic based factors (such as SMB, HML, etc.). We focus on non-traded factors, 

especially macroeconomic factors. Instead of using FMPs, Kleibergen, and Zhan (2019 

forthcoming) extend the Gibbons-Ross-Shanken statistic to identify the risk premia of macro-risk 

factors and uncover significant risk premium associated with consumption growth. 

 

2.  The least mispriced portfolio and its relation to the maximum correlation portfolio 

      This section proposes a new economic theory of a factor mimicking portfolio (FMP). We also 

connect this new theory to maximum correlation theory. Although the economic interpretations 

are different, the two theories lead to the same FMP formula. We discuss the economic reason for 

the equivalence between these two theories and derive three different methods to construct FMPs 

based on the new theory.  

2.1.  The least mispriced portfolio theory 
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      The FMP is constructed by minimizing the mispriced component of asset returns. Let N denote 

the number of test assets. Let 𝑹 = [𝑅1, ⋯ , 𝑅𝑁],4 an N by 1 vector, denote their excess returns. Let 

a non-traded factor be 𝑓.5 The factor can be decomposed as 𝑓 = 𝑓 + 𝜀𝑓, where 𝑓 is its projection 

into the excess return space (i.e., there is a linear combination of excess returns that is equal to 𝑓), 

and 𝜀𝑓 is the measurement error, with mean zero and 𝑐𝑜𝑣(𝜀𝑓 , 𝑹) = 0.  We assume that the excess 

returns depend linearly on the projected factor 𝑓,  

                                                       𝑹 = 𝜶 + 𝜷𝑓 + 𝜺 .                                                                           (1) 

      Here, 𝜷 (N by 1) is the factor loading, 𝜶 (N by 1) is the mispricing component, 𝜺 is the residual 

of the pricing model, and its variance is denoted 𝜴. Also, we assume that 𝑓 contains only one 

factor; therefore, it is possible that the residual, 𝜺, can be correlated with other factors.6 Our goal 

is to select a factor mimicking portfolio that can minimize the mispricing of the asset pricing model. 

The minimization problem can be written as follows:  

                                   min
𝒘

𝜶′𝜮𝜶 subject to 𝑐𝑜𝑣(𝒘′𝑹, 𝑹) = 𝑐𝑜𝑣(𝑓, 𝑹).                                               (2) 

Here 𝒘 (N by 1) represents the weight of the portfolio, and the weighting matrix, 𝜮 (N by N), is 

used to control the relative importance of the mispricing components across assets.  

       Note that the constraint in the minimization problem requires that for any asset, the covariance 

between the mimicking portfolio and the asset’s return is the same as the covariance between the 

factor and the asset’s return, i.e., the factor’s volatility is the same as that of the mimicking 

portfolio. Since 𝑓 is the projection of the non-traded factor, the constraint (2) also implies that the 

portfolio return is equal to 𝑓, i.e. 

                                                            𝒘′𝑹 = 𝑓.7      

                                                           
4 Note that each entry of 𝑹 is a random variable, representing the return of each asset. In latter section, we will use 𝕽, 

a T by N matrix, to represent the matrix of time-series realization of N assets. 
5 Note that 𝑓 is a random variable. In the latter sections, we use the notation 𝒇̃ = [𝑓1, ⋯ , 𝑓𝑇]′, a T by 1 vector, to 

represent the time-series realization of the non-traded factors. This convention is applied to all random variables 

defined in this paper.    
6 With this assumption, we extract the largest component of the return that is correlated with the factor, regardless of 

the existence of other factors. 
7  From 𝑐𝑜𝑣(𝒘′𝑹, 𝑹) = 𝑐𝑜𝑣(𝑓, 𝑹) = 𝑐𝑜𝑣(𝑓, 𝑹) , thus 𝑐𝑜𝑣(𝒘′𝑹 − 𝑓, 𝑹) = 𝑐𝑜𝑣(𝒘′𝑹, 𝑹) − 𝑐𝑜𝑣(𝑓, 𝑹) = 0 . Since 

𝒘′𝑹 − 𝑓 is in the excess return space, there is a linear combination of returns (denoted by 𝝅′𝑹 ) that is equal to 𝒘′𝑹 −
𝑓 . Thus, the equation 𝑐𝑜𝑣(𝒘′𝑹 − 𝑓, 𝑹) = 0 implies that 𝑣𝑎𝑟(𝒘′𝑹 − 𝑓) = 𝑐𝑜𝑣(𝒘′𝑹 − 𝑓, 𝒘′𝑹 − 𝑓) = 𝑐𝑜𝑣(𝒘′𝑹 −



8 

 

With the above equation, 𝜶 = 𝐸(𝑹) − 𝜷𝐸(𝑓) = 𝐸(𝑹) − 𝜷𝐸(𝒘′𝑹) . Therefore, the objective 

function can be written as follows: 

                               min
𝒘

𝜶′𝜮𝜶 = (𝐸(𝑹) − 𝜷𝐸(𝒘′𝑹))
′
𝜮(𝐸(𝑹) − 𝜷𝐸(𝒘′𝑹)).                                   (3) 

In the following proposition, we derive the solution to the above minimization problem. 

Proposition 1: Let the scaled weight 𝒘𝒔 =
𝒘

𝑣𝑎𝑟(𝒘′𝑹)
 . The optimum weight solution to the 

minimization problem (1) can be written as, 𝒘𝒔
∗ =

(𝑐𝑜𝑣(𝑓,𝑹))
′
𝜮𝐸(𝑹)

(𝑐𝑜𝑣(𝑓,𝑹))
′
𝜮(𝑐𝑜𝑣(𝑓,𝑹))

𝐸(𝑹)(𝐸(𝑹)′𝐸(𝑹))−1 . 

Hence, the expected portfolio return is  

                                                     𝐸(𝑹)′𝒘𝒔
∗ =

(𝑐𝑜𝑣(𝑓,𝑹))
′
𝜮𝐸(𝑹)

(𝑐𝑜𝑣(𝑓,𝑹))
′
𝜮(𝑐𝑜𝑣(𝑓,𝑹))

 .                                                    (4) 

      The proof is in the Appendix. Given that the portfolio can minimize the mispricing component 

of the test assets, we call it the least mispriced portfolio. Since 𝜷 =
𝑐𝑜𝑣(𝑓,𝑹)

𝑣𝑎𝑟(𝑓)
, Equation (4) is 

equivalent to  

                                                         𝐸(𝑹)′𝒘𝒔
∗ =

1

𝑣𝑎𝑟(𝑓) 

𝜷′𝜮𝐸(𝑹)

𝜷′𝜮𝜷
.                                                          (5) 

From Equation (5), if the cross-sectional expected returns are more correlated with their 𝜷, the 

numerator in equation (5) is larger. Thus, the optimum portfolio has higher expected returns. 

Intuitively, 𝜷 reflects the sensitivity of the asset to the factor risk. If a majority part of the cross-

sectional variation of asset returns can be explained by this factor, the mispriced component is 

smaller. Hence, the expected return of the pricing component, which is the left-hand side of the 

equation (5), should be larger. 

      Define unit weight as 𝒘𝒖 =
𝒘

𝑠𝑡𝑑(𝒘′𝑹)
, and unit factor as 𝑓𝑢 =

𝑓

𝑠𝑡𝑑(𝒘′𝑹)
. Equation (4) can also be 

rewritten as  

                                                           
𝑓, 𝝅′𝑹) = 0. Given that the only random variable in excess return space that has zero variance is zero (if there is 

another constant number in the excess return space, there will be two different risk-free rates, which is impossible), 

𝒘′𝑹 − 𝑓 = 0. 
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                                                  𝐸(𝑹)′𝒘𝒖
∗ =

(𝑐𝑜𝑣(𝑓𝑢,𝑹))
′
𝜮𝐸(𝑹)

(𝑐𝑜𝑣(𝑓𝑢,𝑹))
′
𝜮(𝑐𝑜𝑣(𝑓𝑢,𝑹))

.                                                    (6) 

It is easy to show that the standard deviation of the unit weight portfolio return,  𝑠𝑡𝑑(𝑹′𝒘𝒖
∗ ) =

𝑠𝑡𝑑(𝑹′𝒘)

𝑠𝑡𝑑(𝑹′𝒘)
= 1. Hence, Equation (6) represents the expected return of a portfolio with unit risk. 

Similarly, since the commeasurable component of the factor should be the same as the optimum 

portfolio, 

                                            𝑠𝑡𝑑(𝑓𝑢) =
𝑠𝑡𝑑(𝑓)

𝑠𝑡𝑑(𝑹′𝒘)
=

𝑠𝑡𝑑(𝑹′𝒘)

𝑠𝑡𝑑(𝑹′𝒘)
= 1. 

Given that the expected return for a factor mimicking portfolio is also the risk premium of the 

underlying non-traded factor, Equation (6) also represents the risk premium of the factor with unit 

risk. 

2.2 Relation with the maximum correlation portfolio 

      Classical factor mimicking portfolio is constructed through maximizing its correlation with the 

non-traded factor. Breeden, Gibbons, and Litzenberger (1989) and Roll and Srivastava (2018) 

provide the theoretical framework for maximum correlation portfolio construction. We follow 

their approach. For a given value of the loading of the risk factor on its mimicking portfolio, 𝛽𝑓𝑚𝑝 

(Normally, 𝛽𝑓𝑚𝑝 is set to be 1), the variance of the FMP (following the same notation, 𝒘′𝑹) is 

reciprocal to the correlation between FMP and 𝑓, because the variance for factor  (𝑣𝑎𝑟(𝑓)) is a 

constant. The relation can be illustrated by the following formula:  

                                                     𝛽𝑓𝑚𝑝 = 𝑐𝑜𝑟𝑟(𝑓, 𝒘′𝑹 )
√𝑉𝑎𝑟(𝒘′𝑹)

√𝑉𝑎𝑟(𝑓̃)
 .                                             (7) 

Therefore, maximizing the correlation between FMPs and their underlying factor is equivalent to 

minimize the variance of the FMPs themselves. Specifically, we want to select the weight for the 

following minimization problem: 

                                                   min
𝒘

𝒘′𝑽𝒘 + 2(𝛽𝑓𝑚𝑝 − 𝒘′𝜷) 𝜆.                                                  (8) 

where V is the covariance matrix of testing asset returns, and 𝜆 is the Lagrange multiplier. 

        By solving the first-order condition of equation (8), and set 𝛽𝑓𝑚𝑝 as 1, the optimal weight is 
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                                                   𝒘∗ =  𝑽−𝟏𝜷[𝜷′𝑽−𝟏𝜷]−𝟏 .                                                          (9) 

Then the expected return of maximum correlation portfolio can be computed as 

                                             𝐸(𝑹)′𝒘∗ = 𝐸(𝑹)′𝑽−𝟏𝜷[𝜷′𝑽−𝟏𝜷]−𝟏.                                             (10) 

      If we replace 𝜮 by 𝑽−𝟏 , equations (5) and (10) are identical, except for scaling in weight 

(
1

𝑣𝑎𝑟(𝑓) 
). The maximum correlation portfolio coincides with the least mispriced portfolio. The 

coincidence is not surprising given the equivalence between mean-variance minimization and the 

Beta-pricing model. If the maximum correlation portfolio of a factor lies on the mean-variance 

frontier of the test assets (hence the constraint in equation (8) is always binding), the covariance 

between FMP return (𝒘′𝑹) and any asset return is a linear function of its expected return (Cochrane 

(2005)), i.e. 

                                                       𝑐𝑜𝑣(𝒘′𝑹, 𝑹) = 𝛾0 + 𝛾1𝐸(𝑹). 

Here, 𝛾0  and 𝛾1  are constants. Since the 𝒘′𝑹  and zero beta rate 𝑅0  should also be priced, 

𝑣𝑎𝑟(𝒘′𝑹) = 𝛾0 + 𝛾1𝐸(𝒘′𝑹), and 0 = 𝛾0 + 𝛾1𝐸(𝑅0). Combining these equations, we obtain  

                      𝐸(𝑹) − 𝐸(𝑅0) =
𝑐𝑜𝑣(𝒘′𝑹,𝑹)

𝑣𝑎𝑟(𝒘′𝑹)
(𝐸(𝒘′𝑹) − 𝐸(𝑅0)) = 𝜷(𝐸(𝒘′𝑹) − 𝐸(𝑅0)).           (11) 

Equation (11) implies that the maximum correlation portfolio can correctly price all test assets. 

Hence, the portfolio is also the least mispriced portfolio (mispricing is zero). When factor 

misprices some of the assets, its maximum correlation portfolio is not on the mean-variance 

frontier. The equations (5) and (10) show that the mimicking portfolio that minimizes its variance 

(closest to the mean-variance frontier) is also the portfolio that minimizes the mispricing 

component of the beta-pricing model.   

2.3 Implied methodology for FMP construction 

       Both maximum correlation theory and least mispricing theory imply three construction 

methods for FMPs. In this section, we describe these methods from the latter theory. From equation 

(5), portfolio return is 𝐸(𝑹)′𝒘𝒔
∗ =

1

𝑣𝑎𝑟(𝑓) 

𝜷′𝜮𝐸(𝑹)

𝜷′𝜮𝜷
. The expected return (𝐸(𝑹)) and the factor 

loading (𝜷) are known. Therefore, the different methods depend on different choice of weighting 

matrix 𝜮. 
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       Case 1, time-series method. In this case, the weighting matrix is the inverse of the covariance 

matrix of testing asset returns, i.e., 𝜮 = 𝑽−𝟏 . Thus,  

                    (𝑣𝑎𝑟(𝑓))
2

𝜷′𝜮𝜷𝐸(𝑹)′𝒘𝒔
∗ = 𝑣𝑎𝑟(𝑓)𝜷′𝜮𝐸(𝑹) = 𝑐𝑜𝑣(𝑓, 𝑹)′𝑽−𝟏𝐸(𝑹) .                 (12) 

The left-hand side is a scaled expected return of the least mispricing portfolio. The right-hand side 

provides the estimation method to calculate the return. Specifically, it can be estimated by 

regressing the non-traded factor on returns of the test assets: 

                             𝑓 = 𝑎 + 𝑏𝑹 + 𝒖.                                                                                    (13) 

The fitted value of the above time-series regression is 𝑐𝑜𝑣(𝑓, 𝑹)′𝑽−𝟏𝑹. Take the expected value; 

it is the same as the right-hand side of the equation (12). 

          Case 2, cross-sectional method. The weighting matrix can be written as 𝜮 =

(𝑰 − 𝟏(𝟏′𝟏)−𝟏𝟏′)𝑽−𝟏(𝑰 − 𝟏(𝟏′𝟏)−𝟏𝟏′), where, 𝑰 is the N by N identity matrix, and 𝟏 is an N by 

1 vector, with each entry 1. Replacing 𝜮 in Equation (5), we obtain: 

                           𝑣𝑎𝑟(𝑓)𝐸(𝑹)′𝒘𝒔
∗ =

𝜷′(𝑰−𝟏(𝟏′𝟏)
−𝟏

𝟏′)𝑽−𝟏(𝑰−𝟏(𝟏′𝟏)
−𝟏

𝟏′)𝐸(𝑹)

𝜷′(𝑰−𝟏(𝟏′𝟏)−𝟏𝟏′)𝑽−𝟏(𝑰−𝟏(𝟏′𝟏)−𝟏𝟏′)𝜷
=

𝜷̅′𝑽−𝟏𝐸̅(𝑹)

𝜷̅′𝑽−𝟏𝜷̅
.         (14) 

Here, for any random variable 𝑿, the notation 𝑿̅ is the demeaned 𝑿, where the mean is taken across 

test assets. The left-hand side of equation (14) still represents the expected return of a scaled least 

mispricing portfolio. The right-hand side is the coefficient of regressing expected returns on its 

factor loadings across test assets. Specifically, in the following cross-sectional regression: 

                                                                        𝐸(𝑹) = 𝛼 + 𝛾𝜷 + 𝝊,                                     (15)       

when the estimated coefficient  𝛾 based on GLS with weighting matrix 𝑽−𝟏, takes the same form 

as the right-hand side of equation (14). 

         The weighting matrix, in this case, contains the covariance matrix of asset returns. This 

matrix is more difficult to estimate when the number of test assets is large. A special scenario, in 

this case, is to set 𝑽−𝟏 = 𝑰 . The right-hand side of the equation (14) becomes 
𝜷̅′𝐸̅(𝑹)

𝜷̅′𝜷̅
. This 

corresponds to the coefficient of regression (15) using OLS. On the other hand, Lehmann and 
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Modest (1988) suggest using the diagonal matrix, which consists of the residual variances 𝛀−𝟏 

from the regression (1) to replace 𝐕−𝟏. 

          Case 3, sorting-by-beta method. In this case, the weighting matrix is diagonal. For example, 

we divide the assets into five groups. For the assets in the group with the lowest factor 

loadings/beta, the corresponding diagonal element is the negative reciprocal of the beta. For the 

assets in the group with the highest factor loadings/beta, the corresponding diagonal element is the 

positive reciprocal of the beta. For assets of all the other three groups, the diagonal elements are 

zero. Specifically, assume that asset 1 through asset 𝑀 =
𝑁

5
 are in the group with the smallest beta, 

and asset 4𝑀 + 1 to asset  5𝑀 are in the group with the largest beta. Hence, the weighting matrix 

can be written as  𝜮 = (
𝜮𝟏𝟏 𝟎 𝟎

𝟎 𝜮𝟐𝟐 𝟎
𝟎 𝟎 𝜮𝟑𝟑

) , where 𝜮𝟏𝟏 = (

−
1

𝛽1
⋯ 0

⋯ ⋯ ⋯

0 ⋯ −
1

𝛽𝑀

) , 𝜮𝟐𝟐 =

(
0 ⋯ 0
⋯ ⋯ ⋯
0 ⋯ 0

), and 𝜮𝟑𝟑 = (

1

𝛽4𝑀+1
⋯ 0

⋯ ⋯ ⋯

0 ⋯
1

𝛽5𝑀

). Replace 𝜮 in equation (5),  

                                      
1

𝑀
𝑣𝑎𝑟(𝑓)𝜷′𝜮𝜷𝐸(𝑹)′𝒘𝒔

∗ =
1

𝑀
(∑ 𝐸(𝑅𝑖)5𝑀

𝑖=4𝑀+1 − ∑ 𝐸(𝑅𝑖)𝑀
𝑖=1 ).       (16) 

The right-hand side of the equation (16) is the difference between the average expected return of 

the high beta and low beta groups, which represents another method to calculate the scaled least 

mispriced portfolio on the left-hand side.  

3. Measurement error in factors and econometric issue for FMP construction 

        We provide methods to construct the least mispriced portfolio in the previous section. 

Empirically, the measurement error in the non-traded factor leads to issues for these methods. In 

this section, we discuss these issues and propose an adjustment approach. The focus is on the cross-

sectional method, but we will also discuss the bias in the time-series and the sorting-by-beta 

methods.  

3.1 One factor case  

        In this subsection, we examine the simple case when asset returns depend only a single factor, 

which is non-traded. Following the notation in the previous section, the non-traded factor including 
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measurement error is denoted by 𝑓 , 𝑓  is its component related to returns, and 𝜀𝑓  is the 

measurement error. The FMP is constructed by the two-pass cross-sectional method. For a sample 

period of length 𝑇 periods, let 𝑅𝑡
𝑖  be the return of asset i at time t, 𝑓𝑡 be the factor at time t. Define 

𝑹𝑖 = [𝑅𝑇
𝑖 , ⋯ , 𝑅𝑇

𝑖 ]′, and 𝒇̃ = [𝑓1, ⋯ , 𝑓𝑇]′. The first pass estimates betas by running a time-series 

regression for each asset: 

                                 𝑹𝑖 = 𝛼𝑖 + 𝛽𝑖𝒇̃ + 𝜺𝑖,                                                        (17) 

where 𝛼𝑖 and 𝛽𝑖 are regression coefficients, and 𝜺𝑖 = [𝜀𝑇
𝑖 , ⋯ , 𝜀𝑇

𝑖 ]′ is the regression residual. The 

second pass is a cross-sectional regression at each time point 𝑡 (for 𝑡 ∈ {1,2, ⋯ , 𝑇}). Define 𝑹𝒕 =

[𝑅𝑡
1, ⋯ , 𝑅𝑡

𝑁] and  𝜷 = [𝛽𝟏, ⋯ , 𝛽𝑵]. The regression can be written as: 

                               𝑹𝒕′ = 𝑎𝑡 + 𝜆𝑡𝜷̂′ + 𝜼𝒕.                                                           (18) 

Here, we use 𝜷̂  to represent the estimated value of the factor loading 𝛽𝑖 , and residual 𝜼𝒕 =

[𝜂𝑡
1, ⋯ , 𝜂𝑡

𝑁]. The estimated coefficient 𝜆𝑡, is the return for the FMP at time t. 

        The key difference between Equations (17) and (18) and the cross-sectional regression on 

traded factors is that 𝑓  contains measurement error. With some mild regularity conditions on 

measurement error 𝜀𝑓, as well as the factor and regression residuals, the next proposition shows 

that the FMP constructed by the two-pass method can adjust for the measurement error.  

Proposition 2: Assume that (1) measurement error 𝜀𝑓 are uncorrelated with 𝑅𝑖 for any asset i, 

uncorrelated with 𝑓  and uncorrelated with regression residual 𝜀𝑖 , (2) regression residuals are 

uncorrelated with factors 𝑓, (3) beta (𝜷) is uncorrelated with the cross-sectional regression errors 

(𝜼𝒕). As sample period T converges to infinity, the estimated coefficient 𝜆𝑡 converges to 𝑐(𝑓𝑡 −

𝐸(𝑓) + 𝛾) , where 𝛾  is the factor risk premium, and 𝑐 = (𝑣𝑎𝑟(𝑓) + 𝑣𝑎𝑟(𝜀𝑓))/𝑣𝑎𝑟(𝑓)   is a 

constant.  

         The proof is in the Appendix. This is also shown in Section 6.2 of Balduzzi and Robotti 

(2008). From the proposition, the estimated coefficient is a linear transformation of the factor 

without measurement error.8 In particular, the FMP is scaled by a constant 𝑐 . Intuitively, the 

                                                           
8 When there is no measurement error (𝜀𝑓 = 0), The factor at time t is 𝑓𝑡 .  Hence, the estimated coefficient in 

proposition 2 (𝑐(𝑓𝑡 − 𝐸(𝑓) + 𝛾)) is a linear transformation of the factor without measurement error. 
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measurement error in the non-traded factor leads to a scaling effect in the estimated beta coefficient 

in the first pass. But beta (which is the independent variable for the second pass regression) for all 

stocks are scaled by the same constant. Thus, the estimated coefficient in the second pass cross-

sectional regression is also scaled.  

          Moreover, from Proposition 2, the scaling effect on 𝜆𝑡 is homogeneous across time (by a 

constant number 𝑐). Thus, the scaled FMP can still represent the same factor in asset pricing test. 

To test for a significant risk premium, we can calculate the average value of the coefficients over 

time as the risk premium estimates and calculate the Fama-Macbeth standard deviation of the 

regression coefficients, i.e. the average value of coefficients is 
1

𝑇
∑ 𝑐(𝑓𝑡 − 𝐸(𝑓) + 𝛾)𝑇

𝑡=1 , and the 

Fama-Macbeth standard deviation of the coefficients is the sample standard deviation of 𝑐(𝑓𝑡 −

𝐸(𝑓) + 𝛾). Both the average and standard deviation are scaled by the same constant number. When 

the sample size is large and true risk premium is zero (Null hypothesis), the T-stats formed by the 

estimates and the standard deviation above are not affected by the constant number and converge 

to a standard normal distribution. In Section 3.5, we introduce the two-stage regression method 

(rerun Fama-Macbeth method on 𝜆𝑡 for another time) to estimate the risk premium. In both testing 

methods, T-stats are not affected by the constant 𝑐 because the estimated risk premium and its 

standard deviation are both multiplied by the number.9 

3.2 Bias in FMP when there is a correlated factor  

       Although the cross-sectional method for the one-factor model can remove the measurement 

error and create an FMP that represents the risk of a single factor, there could be several factors 

that could be correlated. Theoretically, to separate the effect of the interested factor (the non-traded 

factor) on asset returns and construct an FMP, it is natural to control other factors. However, with 

the measurement error in the non-traded factor, even after controlling for other factors, the 

proposition below shows that the FMP will still contain a component from these other factors, 

which is not a desirable quality in an FMP.  

        To simplify without loss of generality, we assume that there are two factors (the two-factor 

assumptions apply throughout the analysis in subsections 3.2-3.4), 𝑓1  and 𝑓2 . Factor 1 has 

                                                           
9 In finite sample, there is an EIV issue that comes from the error in the estimated beta. This EIV issue can lead to a 

bias T-stats. We will discuss this issue and corresponding method to mitigate it in Section 3.6. 
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measurement error denoted by 𝜀𝑓1
. 10  Moreover, assume that two factors are correlated, i.e., 

𝑐𝑜𝑣(𝑓1, 𝑓2) ≠ 0. With the same vector notation in Section 3.1, the true regression model can be 

written as  

                                                      𝑹𝒊 = 𝛼𝑖 + 𝛽1
𝑖𝒇1 + 𝛽2

𝑖 𝒇2 + 𝜺𝑖.                                                 (19) 

If factor 1 has a measurement error, we have to replace 𝒇1 by 𝒇̃1, its observed version before being 

able to run regression (19.)  Then with the resulting estimated beta coefficients, we compute the 

following cross-sectional regression:  

                                                   𝑹𝑡′ = 𝛼𝑡 + 𝜆1𝑡𝜷1′ + 𝜆2𝑡𝜷2′ + 𝜼𝒕.                                            (20) 

Proposition 3: In first pass regression (19), with observed factor 1, assume that measurement error 

is uncorrelated with asset returns, regression residuals, and both factors, the regression residuals 

are also uncorrelated with both factors, and the betas are uncorrelated with the cross-sectional 

regression errors. 

 

 

(A) When sample size T converges to infinity,                                                                                    

 𝛽̂1
𝑖 →

𝑣𝑎𝑟(𝑓1)𝑣𝑎𝑟(𝑓2)−𝑐𝑜𝑣(𝑓1,𝑓2)2

𝐷𝐸𝑇1
𝛽1

𝑖 ≡ 𝐵1
𝑖 ,  and 𝛽̂2

𝑖 → 𝛽2
𝑖 +

𝑣𝑎𝑟(𝜀𝑓1)(𝛽1
𝑖 𝑐𝑜𝑣(𝑓1,𝑓2)+𝛽2

𝑖 𝑣𝑎𝑟(𝑓2))

𝐷𝐸𝑇1
≡ 𝐵2

𝑖 ,  (21) 

where 𝐷𝐸𝑇1 = (𝑣𝑎𝑟(𝑓1) + 𝑣𝑎𝑟(𝜀𝑓1
)) 𝑣𝑎𝑟(𝑓2) − 𝑐𝑜𝑣(𝑓1, 𝑓2)2. 

In second pass regression (20),  

(B) when both T and N (the number of test assets) converge to infinity,       

                                                             𝜆̂1𝑡 → 𝑤1𝛾1𝑡 + 𝑤2𝛾2𝑡,                                                      ( 22) 

where                                         

                  𝑤1 =
1

𝐷𝐸𝑇2

𝑣𝑎𝑟(𝑓1)𝑣𝑎𝑟(𝑓2)−𝑐𝑜𝑣(𝑓1,𝑓2)2

𝐷𝐸𝑇1
(𝑣𝑎𝑟̅̅ ̅̅ ̅(𝐵2

𝑖 )𝑣𝑎𝑟̅̅ ̅̅ ̅(𝛽1
𝑖) − 𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽1

𝑖 , 𝐵2
𝑖 )) 

                                                           
10 We assume there is no measurement error for the second factor (i.e. they can be traded factors) to simplify the 

analysis. We obtain a similar format to equation (22) when measurement error is included. 
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                  𝑤2 =
1

𝐷𝐸𝑇2

𝑣𝑎𝑟(𝑓1)𝑣𝑎𝑟(𝑓2)−𝑐𝑜𝑣(𝑓1,𝑓2)2

𝐷𝐸𝑇1
(𝑣𝑎𝑟̅̅ ̅̅ ̅(𝐵2

𝑖 )𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽1
𝑖 , 𝛽2

𝑖 ) − 𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽1
𝑖 , 𝐵2

𝑖 )𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽2
𝑖 , 𝐵2

𝑖 )) 

                  𝐷𝐸𝑇2 = 𝑣𝑎𝑟̅̅ ̅̅ ̅(𝐵1
𝑖 )𝑣𝑎𝑟̅̅ ̅̅ ̅(𝐵2

𝑖 ) − 𝑐𝑜𝑣̅̅ ̅̅ ̅(𝐵1
𝑖 , 𝐵2

𝑖 )
2
 

                  𝛾1𝑡 = 𝑓1𝑡 − 𝐸(𝑓1) + 𝛾1 

                  𝛾2𝑡 = 𝑓2𝑡 − 𝐸(𝑓2) + 𝛾2. 

Here, 𝑣𝑎𝑟̅̅ ̅̅ ̅  and 𝑐𝑜𝑣̅̅ ̅̅ ̅  are the cross-sectional variance and covariance. We use the upper bar to 

distinguish it from their time-series companions. Moreover, 𝛾1 and 𝛾2 are the risk premium of 

factors 1 and 2. 

(C) If  𝑐𝑜𝑣(𝑓1, 𝑓2) = 0,  𝑤2 = 0. 

        The proof is in the Appendix. From Equation (21) in Proposition 3 (A), the estimated beta for 

factor 2 is related to the beta of factor 1. Moreover, when we employ the estimated betas in the 

cross-sectional regression, Equation (22) in Proposition 3(B) shows that the constructed factor 

mimicking portfolio for factor 1 is also affected by factor 2. In this case, the FMP contains an 

additional component from factor 2; thus, its risk premium reflects the excess returns associated 

with a combination of the two risk factors. We call it factor contamination. It is not a desirable 

property for an FMP. For example, suppose we want to construct the FMP for consumption growth. 

When there is a factor contamination, the FMP contain the risk from consumption growth as well 

as other factors. If we would like to test the risk premium of the consumption growth, we 

essentially test risk premium of a combination of several factors. If we would like to examine 

whether the consumption growth is correlated with the stock returns, the correlation can come 

from value or size factors. We create FMP with intention to mitigate the measurement error, but 

instead we introduce the errors from other factors. In conclusion, we cannot construct a pristine 

FMP using the cross-sectional method by controlling other correlated risk factors. In this paper, 

we propose a new way to construct FMP called, a single factor IV approach. 

        When the factors 1 and 2 are uncorrelated, from Proposition 3(C) and Equation (22), the FMP 

of factor 1 does not depend on factor 2. If one creates a modified factor 2 that that is uncorrelated 

with factor 1, and use it as a new factor 2 in FMP construction, the resulting FMP will have the 

desirable property and represent the risk only for the factor 2. A classical approach to construct 

two uncorrelated factors is to remove the effect of factor 1 from factor 2 and to use the remaining 
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component of factor 2 (which is uncorrelated with factor 1) as a control. Specifically, in a 

regression of factor 2 on factor 1, the regression residual, being orthogonal to factor 1, can become 

the new factor 2, to be used to as control in the cross-sectional method. When there is no 

measurement error in factor 1, this method works. However, given that factor 1 contains 

measurement error, the following proposition shows that the residual of factor 2 is still correlated 

with factor 1. Thus, controlling this residual leads to the same factor contamination problem as in 

Proposition 3. 

Proposition 4: Assume that factors 1 and 2 are correlated. Let 𝑢12 = 𝑓2 −
𝑐𝑜𝑣(𝑓̃1,𝑓2)

𝑣𝑎𝑟(𝑓̃1)
𝑓1, the residual 

value of regressing factor 2 on non-traded factor 1, the correlation between 𝑢12 and 𝑓1 is non-zero. 

          The proof is in the Appendix. In sum, we have shown in this subsection that several classical 

cross-sectional methods to construct FMP for a non-traded factor are not desirable, as long as there 

is another risk factor that is correlated with the non-traded factor. In Section 3.3, we propose a 

solution to this problem. 

3.3 Proposed method 

        We propose to construct an FMP using a one-factor cross-sectional regression approach even 

if there are other correlated risk factors. For the cross-sectional approach, there are two passes. We 

will present the rationale for using only one factor in each pass.  

        From Equation (1), by running a single-factor regression, we extract the largest component 

of return that is correlated with the non-traded factor. Even if there is another risk factor, we should 

still run the one-factor model to obtain the factor loading. Specifically, with two factors 𝑓1 and 𝑓2, 

assume that the true regression model follows Equation (19). Rewrite the (19), we obtain: 

         𝑹𝒊 = 𝛼𝑖 + 𝛽1
𝑖𝒇1 + 𝛽2

𝑖 𝒇2 + 𝜺𝑖 = 𝛼𝑖 + (𝛽1
𝑖 + 𝛽2

𝑖 𝑐𝑜𝑣(𝑓1,𝑓2)

𝑣𝑎𝑟(𝑓1)
) 𝒇𝟏 + 𝛽2

𝑖 (𝒇𝟐 −
𝑐𝑜𝑣(𝑓1,𝑓2)

𝑣𝑎𝑟(𝑓1)
𝒇𝟏) + 𝜺𝑖. 

Redefine 𝒇𝟏
∗ = 𝒇𝟏, 𝒇𝟐

∗ = 𝒇𝟐 −
𝑐𝑜𝑣(𝑓1,𝑓2)

𝑣𝑎𝑟(𝑓1)
𝒇𝟏, 𝛽1

𝑖∗ = 𝛽1
𝑖 + 𝛽2

𝑖 𝑐𝑜𝑣(𝑓1,𝑓2)

𝑣𝑎𝑟(𝑓1)
 and 𝛽2

𝑖∗ = 𝛽2
𝑖 .11 The regression 

becomes  

                                                          𝑹𝒊 = 𝛼𝑖 + 𝛽1
𝑖∗𝒇𝟏

∗ + 𝛽2
𝑖∗𝒇𝟐

∗ + 𝜺𝑖                                    (23)                 

                                                           
11 Hence, 𝒇𝟏

∗  and 𝒇𝟐
∗  are uncorrelated. 
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From the construction, 
𝑐𝑜𝑣(𝑓1,𝑓2)

𝑣𝑎𝑟(𝑓1)
𝒇𝟏 is the largest component of factor 2 that is correlated with factor 

1, and 𝒇𝟐 −
𝑐𝑜𝑣(𝑓1,𝑓2)

𝑣𝑎𝑟(𝑓1)
𝒇𝟏 is the uncorrelated component. Hence, 𝛽1

𝑖∗𝒇𝟏
∗  (which is the same as 𝛽1

𝑖∗𝒇𝟏) 

is the largest component of return that is correlated with the factor 𝑓1, and remaining parts 𝛼𝑖 +

𝛽2
𝑖∗𝒇𝟐

∗ + 𝜺𝑖 characterizes the mispricing component and the error in equation (1). Besides, it is 

well-known that the loading of factor 1 in Equation (23) is equivalent to the slope coefficient of 

the single factor regression,  

                                                                   𝑹𝒊 = 𝛼𝑖 + 𝛽1
𝑖∗𝒇𝟏

∗ + 𝝇𝑖,                                        (24) 

with 𝝇𝑖 = 𝛽2
𝑖∗𝒇𝟐

∗ + 𝜺𝑖. Therefore, the factor loading 𝛽1
𝑖∗ should be estimated using the one-factor 

model even if there is a correlated factor. Note that factor 1 contains measurement errors. Thus, in 

Regression (24), we need to replace 𝒇𝟏
∗  by its observed version 𝒇̃𝟏

∗ . 

        We depend on the following assumption to show the validity of the second pass regression 

using the one-factor model. 

Assumption: When there are large enough number of assets, the factor loadings of two 

uncorrelated factors are also uncorrelated in cross-section, i.e., for factors 1 and 2 (𝒇𝟏
∗  and 𝒇𝟐

∗ ) in 

Equation (23),  

                                                                     𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽1
𝑖∗, 𝛽2

𝑖∗) → 0,                                            (25) 

when the number of test assets, N, converges to infinity.  

         In Equation (25), 𝛽1
𝑖∗  and 𝛽2

𝑖∗  represent the sensitivity of the asset i on factor 𝒇𝟏
∗  and 𝒇𝟐

∗ , 

respectively. The assumption implies that for any typical asset that is highly sensitive to factor 1, 

its sensitivity on factor 2 does not necessary to be high (𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽1
𝑖∗, 𝛽2

𝑖∗) > 0 in this case) or low 

(𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽1
𝑖∗, 𝛽2

𝑖∗) < 0 in this case). When number of assets is large, the group of assets with high 

factor 1 sensitivity could contain both high-factor-2 sensitive and low-factor-2 sensitive assets. For 

example, suppose consumption growth (𝒇𝟏
∗ ) and value (𝒇𝟐

∗ ) are uncorrelated risk factors for stocks. 

We should observe both value and growth firms no matter if the firm is cyclical or defensive i.e., 

if two factors represent uncorrelated risks, there should be firms that can represent any 

combinations of the risk factors, when number of firms are large. On the other hand, if 

consumption growth and market excess return are highly correlated risk factors, the firms with 
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high/low loading on market return should also have high/low loadings on consumption growth. In 

Section 5, we find that the average absolute correlation among factor loadings of orthogonalized 

(uncorrelated) factors across all individual stocks is only 8%, and the maximum absolute 

correlation is about 20%. This seems to be consistent with our assumption.    

         From Equations (23) and (24), when we run the first pass regression only using consumption 

growth alone, we produce the same factor loadings by controlling the component of the size factor 

that is uncorrelated with the consumption growth. In the second pass, the true model should be  

                                                      𝑹𝒕′ = 𝛼𝑡 + 𝜆1𝑡𝜷̂1
∗ ′ + 𝜆2𝑡𝜷̂𝟐

∗ ′ + 𝝂𝒕, 

where  𝜆1𝑡 = 𝑓1𝑡
∗ − 𝐸(𝑓1

∗) + 𝛾1
∗ = 𝑓1𝑡 − 𝐸(𝑓1) + 𝛾1  and 𝜆2𝑡 = 𝑓2𝑡

∗ − 𝐸(𝑓2
∗) + 𝛾2

∗.  

       When Equation (25) is imposed on uncorrelated factors 𝒇𝟏
∗  and 𝒇𝟐

∗ , and we run one-factor 

cross-sectional regression as follows: 

                                                                  𝑹𝒕′ = 𝛼𝑡 + 𝜆1𝑡𝜷̂1
∗ ′ + 𝜼𝒕,                                     (26) 

Proposition 5 shows that the estimated coefficient in this regression is a linear transformation of 

𝑓1. 

Proposition 5: Assume that Equation (25) holds. If the measurement error is uncorrelated with 

asset returns, regression residuals, and both factors, the regression residuals are also uncorrelated 

with both factors, and the betas are uncorrelated with the cross-sectional regression errors, the 

estimated coefficient from Model (26) is 

                                                              𝜆̂1𝑡 → 𝑐(𝑓1𝑡 − 𝐸(𝑓1) + 𝛾1),  

where 𝑐 = (𝑣𝑎𝑟(𝑓1) + 𝑣𝑎𝑟(𝜀𝑓1
))/𝑣𝑎𝑟(𝑓1) , as sample period T and number of test assets N 

converge to infinity.  

        The proof is in the Appendix. Following the same example above, the estimated parameter in 

the second pass regression is a good proxy for the consumption growth risk as long as the factor 

loadings of single factor regression (with consumption growth) is uncorrelated with the factor 

loading of the value factor, i.e., the FMP is not contaminated by other factors. 
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         Note that the method we propose is the feasible FMP construction approach that can exclude 

the effect from factor 2. If we intend to exclude the effect of factor 2 by controlling factor 2, as 

shown in Section 3.2, the FMP is still contaminated by factor 2.  

3.4 Issue with the time-series approach 

         Up to Section 3.3, we mainly discuss the cross-sectional method. We could also construct an 

FMP using the time-series approach. Following the Regression (13), the time-series method also 

constructs an FMP for each factor independently. However, this approach remains exposed to 

several issues.  

        The classical time-series method only requires a small number of assets. This can lead to a 

breakdown of the assumption in Equation (25) since it is only reasonable for a large number of 

assets. Suppose the number of test assets (denoted by N, which is also the number of independent 

variables in regression (13)) is large. In real data, the sample size (T) in regression (13) is finite 

(for macroeconomic factors, the highest frequency is monthly, leading to roughly 600 months over 

50 years. So T=500 in this case). Thus, there is an overfitting or an overidentification issue if N is 

close to or larger than T.  

        Even if we have a large enough sample size, we show in the proposition below that an FMP 

created by time-series method represents a combination of two risk factors.  

Proposition 6: Let the true model be Equation (23). The regularity assumptions about 

measurement error and regression residuals are also satisfied as those in Proposition 5. We estimate 

the coefficient in the following regression: 

                                                               𝒇̃𝟏 = 𝑎 + 𝒃𝕽 + 𝒖,                                                (27) 

where 𝕽 = [𝑹1, ⋯ , 𝑹𝑁] = [𝑹𝟏; ⋯ ; 𝑹𝑻] , with “;” the operator that stack row vectors, 12  and 

construct the FMP as 
1

𝑁
𝒃′̂𝑹𝑡. When sample size and number of test assets both converge to infinity, 

the FMP constructed by the time-series method converges to 
1

𝑁
𝜷1

∗𝑽−1(𝑎 + 𝜷1
∗𝒇1𝑡 +

𝜷2
∗ 𝒇2𝑡)𝑣𝑎𝑟(𝑓1). 

                                                           
12  Recall that 𝑹𝑖 is a T by 1 column vector, 𝑹𝒕 is a 1 by N row vector, and 𝕽 is a T by N matrix. With the definition 

of “;”, the two expressions of 𝑹  are equivalent.  
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        The proof is in the Appendix. As we can see from the Proposition, the FMP still contains the 

other factor unless 𝐸̅(
1

𝑁
𝜷1

∗𝑽−1𝜷2
∗ ) → 0 as N goes to infinity. In a simplified scenario, 𝑽−1 is an 

identity. The expected value becomes 𝐸̅(𝛽1
𝑖∗𝛽2

𝑖∗) → 0 . Since 𝐸̅(𝛽1
𝑖∗𝛽2

𝑖∗) = 𝐸̅(𝛽1
𝑖∗)𝐸̅(𝛽2

𝑖∗) +

𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽1
𝑖∗, 𝛽2

𝑖∗), even if the factor loadings are uncorrelated (Equation (25)), we still require the 

cross-sectional average of factor loadings have mean zero. This is unlikely to be satisfied for most 

of the factors.  

3.5 Two-stage method for risk premium estimation 

        A fundamental goal in constructing an FMP is to test whether the non-traded factor is 

associated with a risk premium. Since the FMP is an excess return, Shanken (1992) shows that its 

average value is the risk premium. Another method is to refit a cross-sectional regression to 

estimate the risk premium. In this section, we show that, although these two methods are 

asymptotically the same in a large sample, the finite sample error that stems from the measurement 

error becomes smaller when we reapply a cross-sectional regression to test for a risk premium. 

Given that we apply the cross-sectional regression in the first stage to construct FMP, and apply 

the cross-sectional method again to estimate risk premium in the second stage, we call this the 

two-stage method (following Conner, Korajczyk, and Uhlaner (2015)).  

Proposition 7: (1) As T converges to infinity, the average value of the coefficients in regression 

(26) converges to the true risk premium times a constant, i.e.    
1

𝑇
∑ 𝜆̂1𝑡

𝑇
𝑡=1 → 𝑐𝛾1.  (2) When T is 

finite, in the average value of the coefficients (
1

𝑇
∑ 𝜆̂1𝑡

𝑇
𝑡=1 ), the finite sample error that comes from 

factor measurement error is in order of 𝑂(
1

√𝑇
). (3) With the two-stage method, the finite sample 

error that comes from the factor measurement error in the estimated risk premium is in order of 

𝑂(
1

𝑇
). 

         The proof is in the Appendix. If the measurement error for some non-traded factor is very 

large,  it can lead to a large and noisy component in  
1

𝑇
∑ 𝜆̂1𝑡

𝑇
𝑡=1 , the estimated risk premium in one-

stage method. When we apply the two-stage method, the effect of measurement error becomes 

much smaller, which can lead to a smaller estimation error in a finite sample. Badduzi and Robbotti 

(2009) compare the average value method with the two-stage method (although the FMP is 
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constructed by the time-series approach in their paper), and find that the two-stage method is 

superior. We provide a possible explanation for this finding. Conner, Korajczyk, and Uhlaner 

(2015) propose a two-stage method to estimate the risk premium because the method can reduce 

the Error-in-Variance bias. In this section, we show that a similar two-stage method can also reduce 

the effect of the measurement error in the estimated risk premium.  

        Note that in the testing stage, we should incorporate all factors to mitigate the issue of model 

specification. In this proposition, we only examine the scenario with the single-factor model in 

testing, but it is easy to extend it to the multi-factors model. Also, note that two-stage method can 

only reduce the error from the measurement error. The error in the testing stage is still in order of 

𝑂(
1

√𝑇
). Thus, the method can be particularly useful for the factors with large measurement error, 

possibly including macroeconomic factors. 

3.6 Error-in-Variable (EIV) issues and the IV approach.  

        It is well known that cross-sectional regression analysis is subject to EIV bias in testing asset 

pricing models. EIV also affects the correlation between factor and FMP. To see this, suppose 𝜷 

is estimated with an error v, so 𝜷̂ = 𝜷 + 𝝂. Then the true variance of the optimal FMP is larger 

than its estimated variance, that is,  

                               𝒘′𝑽𝒘 = [𝜷′𝑽−𝟏𝜷]−𝟏 > [𝜷̂′𝑽−𝟏𝜷̂]
−𝟏

.                           (28) 

The first equality is established through plugging in Equation (9) into the objective function of 

Equation (8). Because the variance of the FMP is reciprocal to the correlation between 𝐹𝑀𝑃 and 

𝑓 (Equation (7)), the correlation between the estimated FMP and the factor is empirically higher 

than its true value. Therefore, a method (such as the OLS method) that delivers a maximally 

correlated portfolio may not be the optimal choice unless the EIV problem is corrected.  

        EIV is also presented in the sorting-by-beta method. To construct FMPs, we first estimate 

factor loadings (betas) for each asset, then sort assets by their betas, and group the assets into 

portfolios by the sorted beta. FMPs are the difference between average returns of assets in the 

highest and the lowest beta groups. Because estimated betas contain estimation error, the larger 

(smaller) betas are more likely to produce a positive (negative) estimation error. In an extreme 

case, where a major part of the estimated betas is an error, the sorting-by-beta approach is 
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tantamount to sorting by error. Thus, even if the factor does price assets in the cross-section, the 

difference in the average returns between the assets in the highest and the lowest estimated beta 

groups may not represent the difference of their risk exposures to the factor. The FMP created by 

this approach might not be well correlated with the original factor. Hence, the sorting-by-beta 

method, like the cross-sectional approach, suffers from an EIV bias. 

         IV approach can adjust for this issue. Assume that we want to test a K factor model or 

construct an FMP (in this case, 𝐾 = 1). We divide the total sample into odd and even month 

subsamples. We run time-series regressions for the subsamples of odd and even months separately, 

thereby estimating independent odd and even months betas for each asset. With odd months betas 

as IV betas and even months betas as EV (evaluation variable) betas, we construct the matrices for 

betas of all assets: 𝑩̂𝑰𝑽 and 𝑩̂𝑬𝑽, where B is the matrix of 𝑁 × (𝐾 + 1) containing all the betas 

augmented by a vector of 1, that is, B = [1, 𝜷], where 1 is N by 1 a vector of 1.  

        Then we calculate a second-pass cross-sectional IV regression. At each even month, we run 

a 2SLS (two-stage least squares) regression, and the estimated risk premium can be written as13 

                                       𝜸̂𝒕 = (𝑩̂𝑰𝑽
′
𝑩̂𝑬𝑽)−𝟏𝑩̂𝑰𝑽

′
𝒓𝒕.                                       (29) 

Here, 𝒓𝒕 is the excess return for even months and is an N×1 vector. Correspondingly, at each odd 

month, we take the betas in the even months' subsample as the IVs and estimate the equation to 

obtain the risk premium.  

        When error contains no factor structure (Section 3.1), Jegadeesh et al. (2019) shows that the 

IV approach can converge at the speed of √𝑁𝑇. When error contains a factor structure (Section 

3.2 and later), Jagedeesh and Noh (2013) shows that the IV approach can converge at the speed of 

𝑒𝑇, while classical OLS method can only converge at the speed of √𝑇. Hence, in both cases, the 

IV approach can adjust for the EIV issue.  

Asset selection.  

                                                           
13  We do not use the GLS-IV approach, because Roll and Ross (1994) find that only an OLS approach correctly 

economically interprets the coefficient. In addition, the covariance matrix of individual assets is not invertible when 

the number of assets is much larger than number of time periods. 
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       We propose to use a large number  of test assets (such as individual stocks/bonds) for a reason 

described in Section 3.3 (Equation (24)). However, including more assets along can create issues 

if they are not correlated with the underlying factor.14 For example, Gospodinov, Kan, and Robotti 

(2018) find that the estimated coefficients in a cross-sectional regression can be large and 

significant even if the factor is not priced. The IV approach can be used to select well-correlated 

assets because assets well correlated with the factor should have similarly estimated betas in the 

odd and the even samples. Thus, the sign of the IV and EV betas usually should be the same. On 

the other hand, assets that are not driven by the factors likely have very noisy returns, and, thus, 

the IV and EV betas would often have different signs. Therefore, we should select only assets that 

have β̂IV
′
β̂EV > 0, or retain only those assets with IV and EV betas having the same sign.  

      This selection criterion cannot escape the possibility that the IV and EV betas have the same 

signs due to the likelihood of random errors in the same direction. If this happens often, it will 

induce an attenuation bias in the estimated risk premium. However, our later simulation results 

show that the bias in the IV method is small (similar to that of the IV approach without this 

adjustment).15 

       For time-series method, when we apply it to many test assets, it is also useful to select the 

most correlated ones. In this paper, we incorporate a simple variable selection method—Lasso 

(least absolute shrinkage and selection operator) and examine its effect on FMP construction 

empirically.  

3.8 Horserace among methods 

        Based on the previous section, we propose our method as follows. First, we apply cross-

sectional regression on a single factor model to adjust for factor contamination. Second, we apply 

                                                           
14 This is particularly important for time-series approach, as basis assets are usually the characteristic sorted portfolio 

returns. If these characteristics are not correlated with the macroeconomic risk, the basis asset can be uncorrelated 

with the macro factor.  
15 For the FMPs constructed by time-series approach, Giglio and Xiu (2018) suggest the use of a large set of portfolio 

returns as test assets and apply regularization methods for mitigating the asset selection problem. In Internet 

Appendix B, we apply their approach to construct principal components and  a large number of  portfolios to 

construct FMPs, and we find that these FMPs underperform the FMPs constructed by cross-sectional approach. The 

reason is the large set of portfolios (and their PCs) does not span the return space as much as individual stock returns. 

Overall, the time-series FMPs has advantages to track (predict) macroeconomic cycles (as shown in Lamont (2001)), 

but may not be appropriate for testing asset pricing models.  
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IV method to mitigate the EIV issue. Third, we apply factor selection approach to select basis 

assets. Finally, we reapply cross-sectional regression method of all factors and FMPs to estimation 

risk premium. In simulation and empirical sections, we will compare the proposed approach with 

various other existing methods. These methods include the classical time-series approach, sorting 

by beta approach, and cross-sectional OLS approach,    

        Lehmann and Modest (1988) introduce a WLS method to construct FMP. Instead of using 

identity matrix as in OLS approach, they suggest using the diagonal matrix consisted by the 

residual variances 𝛀−𝟏 from the first-pass time-series regression as weighting matrix.  

        Stein (1956) and James and Stein (1961) propose the shrinkage method to minimize RMSEs 

when at least three parameters are being estimated. Their shrinkage beta can be written as  

                            𝜷̂𝑺𝒕𝒆𝒊𝒏 = (1 −
(𝑁−3)

‖𝜷̂𝜹
∗ ‖

) 𝜷̂𝒏𝒆𝒘 + 𝛽̅̂,                                    (30) 

where 𝜷̂𝜹
∗ = [𝛽̂𝜎

1, 𝛽̂𝜎
2 … 𝛽̂𝜎

𝑁], and 𝛽̂𝜎
𝑖 =

𝛽̂𝑖−𝛽̅̂

𝜎𝑖 , in which 𝜎𝑖 is the standard error of 𝛽̂𝑖. Also, ‖𝜷̂𝜹
∗ ‖ =

∑ (𝛽̂𝜎
𝑖 )2𝑁

𝑖=1 . 𝛽̅̂ =
1

𝑁
∑ 𝛽̂𝑖𝑁

𝑖=1 or the mean of 𝛽̂𝑖.  𝜷̂𝒏𝒆𝒘 = [𝛽̂1 − 𝛽̅̂, 𝛽̂2 − 𝛽̅̂, … , 𝛽̂𝑁 − 𝛽̅̂]. 

Then the Stein-adjusted risk premium estimate is  

                          𝝀𝒕 = (𝑩𝑺𝒕𝒆𝒊𝒏
′ 𝑩𝑺𝒕𝒆𝒊𝒏)−𝟏𝑩𝑺𝒕𝒆𝒊𝒏

′ 𝑹𝒕,                                       (31) 

where 𝑩𝑺𝒕𝒆𝒊𝒏  is the matrix of 𝑁 × (𝐾 + 1)  containing all the Stein shrinkage betas 𝜷̂𝒔𝒕𝒆𝒊𝒏 , 

augmented by a vector of 1. 

        Stein’s method can reduce the mean-squared error of the OLS estimator through the reduction 

of the standard error. Hence, the FMP constructed by this approach will be less volatile. 

        We will compare both LM and Stein’s approach with others in this paper. Note that for all 

these classical cross-sectional approaches, the convention is to run multifactor regression to create 

FMP, which will lead to factor contamination. 

4. Data 

In this section, we describe the data and variables used in this paper. The summary of the 

descriptive statistics of these variables is reported in Table 1.  

4.1 Stock Return Data 
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Monthly individual stock returns are from CRSP. The data starts from January 1964 to March 2016 

(627 months). Following the extant literature, we exclude stocks with prices less than 1 dollar or 

market capitalizations less than 6 million dollars. We also exclude stocks that have less than 60 

continuous monthly returns. After these exclusions, 10,833 stocks remain in our sample; there are 

2,850 stocks in an average month; the total observations are 1,784,351. The mean return of 

individual stocks over a risk-free rate (the one-month T-bill rate) is 1.012% per month, but the 

median is 0.44% per month, indicating that there are very large positive returns for individual 

stocks.  

4.2 Explanatory Variables 

Four macroeconomic variables obtained from the Federal Reserve Bank of St. Louis Research 

Website (FRED) serve as our non-traded factors; (1) the growth in per capita consumption 

(DPCERAM1M225NBEA in FRED code), (2) the percentage change in the consumer price index 

(CPIAUCSL), (3) the percentage change in industrial production (INDPRO) and (4) the percentage 

change in the unemployment rate (UNRATE). Following Chen, Roll, and Ross (1986), we use 

innovations in these macroeconomic variables as factors. To measure innovations, we use the 

residuals from a first-order vector autoregression (VAR). It is also possible to use first difference 

as innovations. But as discussed by Boguth and Kuehn (2013), the first difference method is a 

more conservative specification for risk exposures. Moreover, the results are robust to first 

differences (unreported). We also study factors for bonds, such as the default spread and term 

spread, downloaded from Robert Shiller’s website. For traded factors, we download from Kenneth 

R. French’s website (excess market return, small-minus-large market capitalization, and high-

minus-low book/market portfolio returns). To construct the time-series factor-mimicking 

portfolios, we obtain 25 portfolios formed on size and book/market, 10 industry portfolios from 

French’s website, and four bond returns, which include 1-year, 5-year, and 10-year treasury bond 

yields, and Moody’s seasoned Baa corporate bond yield from FRED.  

We also examine other consumption related factors including the CAY factor (the ratio of 

consumption to aggregate wealth proposed by Lettau and Ludvigson (2001)) and the consumption 

volatility factor proposed by Boguth and Kuehn (2013). These factors are available from Martin 

Lettau’s and Oliver Boguth’s websites, respectively. 

4.3 Corporate Bond Return Data 
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For corporate bonds, we use transaction records in the Trade Reporting and Compliance Engine 

(TRACE). TRACE provides corporate bond intraday trading price, trading volume, and sell and 

buy indicators, etc. Our sample period is from August 2002 to June 2017. We follow Bai, Bali, 

and Wen (2019)’s data screening procedure and return estimation approach. The monthly 

corporate bond returns are computed from the average quoted price at the end of the current month, 

accrued interest, and coupon payment for a month divided by the average quoted price at the end 

of the previous month or the beginning of the current month. A bond’s excess return is the 

difference between its computed total return and the risk-free rate, where the latter is proxied by 

the one-month Treasury bill rate. Our final sample consists of 331,728 observations, and the 

average cross-sectional excess return is 0.389%, which is comparable to Bai, Bali, and Wen 

(2019)’s sample. We include only bonds that have at least 30 continuous monthly returns;16 6,421 

bonds remain in our final sample.  

As to the explanatory variables, we first consider the four non-traded macroeconomic factors. We 

subsequently add the default spread, the term spread, and the corporate bond market return. The 

default spread is the return difference between Moody’s long-term corporate BAA-rated bonds 

and AAA-rated bonds. The term spread is the return difference between the ten-year and one-year 

treasury bonds. The monthly corporate bond market return is the equally-weighted average of 

corporate bond returns in our sample.  

5. Simulation 

5.1 Simulation Procedure 

In this section, we examine, in the finite sample, the magnitude of the factor contamination of 

FMPs constructed using the methodologies described in Section 3 through simulations 17 

Following the same notation in Sections 2 and 3, an observed factor (𝑓𝑡̃ = 𝑓𝑡 + 𝜀𝑓,𝑡 )  contains two 

parts. The first part, 𝑓𝑡, is the projection of the factor into space of excess return (we call it return 

related component of the underlying factor or return related factor), and the other part, 𝜀𝑓 , is the 

                                                           
16  The results are robust using different windows. 
17   In addition to factor contamination, the existing method also suffers EIV bias when there is an estimation error in 

factor loadings as well as the basis asset selection. These issues are evaluated extensively in the literature of asset 

pricing test. Since the issues are similar for FMP construction, we defer the simulation on measurement error of beta 

loadings in the Internet Appendix A. We find that the FMPs constructed by IV methods can yield risk premium with 

bias less than 5%, but FMPs constructed by other methods suffer severe biased estimation on risk premium. 
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measurement error term that is uncorrelated with excess return. The goal of the simulation is to 

examine the effectiveness of FMPs constructed by various methods on extracting the factor in 

excess return (𝑓𝑡) from an observed factor (𝑓𝑡̃). If it is effective, the FMP should be almost perfectly 

corrected with the underlying factor ( 𝑓𝑡) , and not correlated with another uncorrelated 

(orthogonalized) factor (𝑓𝑡
⊥). 

We use the four macro factors and Fama-French three factors in the return generating process. For 

the macro factors, we construct FMPs by the method described in Section 3, i.e., we use single 

factor cross-sectional approach to construct FMP, and apply the IV method with asset selection in 

cross-sectional regression. We call it IV approach for simplicity. We demonstrate in Section 3 (in 

the large sample theories) and show in this section (in the finite sample) that this method delivers 

an FMP that does not contain measurement error and suffer factor contamination. Thus, the FMPs 

for macro factors are considered as the return related component of the macro factor in simulation. 

Since Fama-French three factors are traded factors, they contain no measurement errors. Their 

original factors are the same as the return related factors. 

For return related component of each macro factor, we orthogonalize the other factors 18 to make 

them uncorrelated. For example, if we want to construct FMP for consumption growth, the other 

six factors are orthogonalized.19 Orthogonalized factors are used for data generating process and 

examining factor contamination. If the FMP of the consumption growth factor is correlated with 

orthogonalized control factors, there is factor contamination because the FMPs contain the risk 

component that is in the orthogonalized control factors but not in the consumption growth factor. 

The vector of all factors (the return related macro factor and other orthogonalized factors) is 

denoted as 𝑓𝑡
⊥. We calculate the mean, variance and covariance (zero in this case) of the factors in 

𝑓𝑡
⊥. These values are used for simulations. 

                                                           
18 Note that we orthogonalize only return related factors, i.e. FMP constructed by IV method for macro factors and 

original Fama-French three factors.  
19  We adopt “Gram-Schmidt's orthogonalization process”. Specifically, we regress the first control factor to 

consumption growth, and use the residual as the proxy for the orthogonalized first control factor. Then we regress the 

second control factor on the orthogonalized first control factor and the consumption growth factor, and use the residual 

term as the proxy for the orthogonalized second control factor. Following the same to other control factors, the 

resulting factor matrix have seven columns, and each column is orthogonal to other columns. 
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We run the time-series regression for returns of each asset (𝑅𝑡
𝑖) on the orthogonal risk factors (𝑓𝑡

⊥) 

to obtain beta loadings (𝐵𝑖) and residual 𝜀𝑖𝑡. Similar to orthogonalized factors, we orthogonalize 

the beta loadings of the seven factors, which is expressed as 𝐵𝑖
⊥. We orthogonalize the beta to 

satisfy the assumption in Section 3.3 (Equation (25)), in which we assume that the cross-sectional 

correlation between loadings of two factors converges to zero when N approaches to infinity, if 

the two factors are uncorrelated. In the real data, we find that for each macro factor, the cross-

sectional correlations between its factor loading and the loadings of other orthogonalized factors 

are small. On average, it is 0.08. Therefore, the assumption is close to be true in the real data.  We 

still orthogonalize loadings to make the correlations exactly zero. The mean, variance and 

covariance (zero in this case) of the loadings 𝐵𝑖
⊥ are calculated for simulations.  

With these orthogonalized factors and loadings, we proceed to the data generating process of asset 

returns in simulation. We first simulate orthogonalized factors using Monte Carlo simulations and 

keep the mean, variance and covariance of the factors the same as those from the data. For all 

simulated orthogonalized factors, we subtract the mean of these factors and then adding pre-

specified true premia 𝜆0 set equal to observed the average risk premia from Chen, Roll and Ross 

(1986) and Chen and Kan (2003). The resulting factor is 𝑓𝑡
𝑡𝑟𝑢𝑒 = 𝑓𝑡

⊥ − 𝑓⊥̅̅̅̅ + 𝜆0 (note that we 

create the ex-post factor following Shanken (1992) and Jegadeesh et al (2019)) We also generate 

the factor loadings of all stocks for each factor from a multinomial normal distribution by keeping 

the same mean, variance and covariance from the real data. The simulated return is computed as 

𝑅𝑖𝑡
𝑠 = 𝑓𝑡

𝑡𝑟𝑢𝑒𝐵𝑖
⊥ + 𝜀𝑖𝑡

𝑠 , where 𝜀𝑖𝑡
𝑠  is simulated from a normal distribution by keeping the same mean 

and variance of 𝜀𝑖𝑡 from the real data and i is stock i. We have simulated the returns for each 

individual stocks and the Fama-French 25 size and book-to-market portfolios. 

Note that the orthogonalized factors are only used for data generating process, but these factors 

are not observable. Instead, the four macro factors and three Fama-French factors are observed. 

The return related component of these factors are correlated, and there are measurement errors for 

macro factors. Given that only observed factors are used to construct FMP, we need to simulate 

them. Since Fama-French three factors have no measurement errors, they are observed factors. For 

the four macro factors, there contain measurement errors. Hence, the simulated observed factor is 

constructed by adding the simulated return related factor an error term in simulation: 𝑓𝑡
𝑠 = 𝑓𝑡 +

𝑣𝑡 , where  is extracted from a normal distribution with variance equals the variance of return 
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related factor. 20  The return related factors, 𝑓𝑡 , are simulated from a multinomial normal 

distribution with the same mean, variance and covariance as those from the return related factors 

in the real data.  

After simulating returns and observed factors with measurement errors, we apply various methods 

to construct FMPs for each macro factor. 

For the IV method (denoted FMP_IV), we firstly run single factor regression  The factor 

contamination occurs if the FMPs capture components that are not in its underlying factor but in 

other factors. We iterate the simulation by 1,000 times and report the summary statistics of these 

correlations in Table 2.  

5.2 Simulation results 

Panel A in Table 2 reports the correlation between FMPs with their corresponding return related 

factors (𝑓𝑡). We do not examine the correlation between FMP and the observed factor (𝑓𝑡̃) because 

their maximum correlation depends on the variance of the measurement error. Instead, the 

correlation between FMP and return related factor can have correlation equal to 1. Taking 

consumption growth as an example, the averaged correlation between FMP_IV and the true 

consumption growth factor is 0.999. Hence, FMPs constructed by the single-factor IV method 

have a nearly perfect correlation with return related component of the underlying factors, thereby 

suggesting IV approach has almost no factor contamination. The correlation between FMP_OLS 

and the return related component of consumption growth factor is 0.798. FMP_Stein has the same 

correlation with the return related factor as FMP_OLS because the Stein method only adds a 

scaling effect to the FMP_OLS. The averaged correlation between FMP_LM and the return related 

factor is 0.841, slightly higher than that for FMP_OLS. These cross-sectional methods (such as 

OLS, LM, and Stein) could not yield FMPs that have close-to-perfect correlations with return 

related factors because of the factor contamination from using multiple regression in the cross-

sectional approach. Using univariate regression with asset selection method, the IV method 

alleviates these problems. The correlation between FMPs constructed by the sorting-by-beta 

                                                           
20 From the real data, the correlation between FMP_IV and the observed factor is close to 0.5. If FMP_IV has no factor 

contamination, the correlation of 50% implies that the variance of return related factor and measurement error is 

equal. Moreover, the results are robust if variance of measurement error is 5 times larger than that of return related 

factor. 
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method and the return related component of the consumption growth factor is 0.704. Time-series 

approach with Fama-French 25 portfolios as basis assets also has low correlations with return 

related factors. These two methods suffer the same contamination issues as for the cross-sectional 

approach, thus the low correlations are expected. 

Panels B and Panel C of Table 2 present the correlations between FMPs for each macro factor and 

other orthogonalized factors.21 In the first column, we present the correlations for consumption 

growth factors. The results for other macro factors are shown in consecutive columns, and they 

are qualitatively similar. The FMPs of consumption growth (CG) have six correlations coefficients 

with other six orthogonalized factors. We report the maximum value and the average value across 

the six correlation coefficients in each simulation in Panels B and C, respectively. Panel B lists the 

average values of the maximum value across 1,000 simulations. Panel C lists the mean values of 

the recorded average value across 1,000 simulations. Consistent with analysis in Section 3, we find 

that the IV method (with univariate regression and asset selection) generates almost zero factor 

contamination. In comparison, all FMPs constructed by other methods lead to factor 

contamination. For example, the maximum correlation between FMP_SB for consumption growth 

and the other six control risk factors can be 0.441. 

Overall, these simulation results testify that the commonly used FMP construction methods 

(sorting-by-beta, time-series, and multivariate cross-sectional) suffer from factor contamination. 

The method we propose (the IV method in a univariate cross-sectional analysis with asset 

selection) yields almost perfect correlation with the return related component of the underlying 

factor and contains the minimal factor contamination.  

6. Examine the FMP in the data 

                                                           
21 The reason not to examine the correlation between FMP of one macro factor and the return related component of 

another macro factor (which is not orthogonalized) is shown below. Since the return related factors are correlated, for 

any macro factor, the correlation between its FMP and other return related factor is not zero. But the non-zero 

correlation is capturing component of another factor that is also part of the underlying macro factors. E.g., let 

consumption growth and market returns be correlated risk factors. If FMP of consumption growth factor is perfectly 

correlated with the return related component of the factor (implying that the FMP is not contaminated by other factors), 

it is still correlated with market return. However, this nonzero correlation does not indicate that the FMP contains the 

risk that is not correlated with consumption growth. Suppose that the FMP of consumption growth is correlated with 

the orthogonalized market return, then the FMP captures the risk not belonging to the consumption growth. In this 

case, the FMP is contaminated. 
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From this section, we evaluate whether FMPs constructed by various methods empirically satisfy 

the three FMP selection criteria. We focus on the FMPs for the four macro factors and augment 

this by examining the FMPs for traded factors (Fama and French three factors) for comparison22. 

To examine these FMPs, we explore several criteria:  

(1) FMPs are correlated with the underlying factors,  

(2) FMPs are correlated with the systematic risk of returns,  

(3) FMPs explain the cross-sectional of mean returns. 

Intuitively, an FMP should represent the risk of the underlying factor, as shown in the constraint 

of the least mispriced theory. Besides, if the underlying factor is a true risk factor, systematic risk 

should be correlated with FMP returns. If the factor can price assets in cross-section, the FMP 

should also price all assets. Our three criteria are studied sequentially in Sections 6.1 to 6.3. We 

provide some robustness checks by adding several other consumption-related factors in Section 

6.4.  

6.1 First Criterion: Correlation with Underlying Factors 

An effective FMP should correlate significantly with its underlying non-traded factor so that the 

FMP contains similar risk information. In unreported results where we estimate correlation for the 

whole sample period, all of the correlations between FMPs and their underlying factors are 

significant at 1% level, thereby suggesting that all the FMPs satisfy this criterion.23  However, the 

observed significance may be driven by the large sample size and possibly by non-stationarity. 

Correlations between FMPs and underlying risk factors could be spuriously inflated by time 

variation in the mean returns. To examine this possibility, we divide the full sample into five 

subsamples roughly by decades and compute subsample correlations. Table 3 lists the average 

                                                           
22 We also test the robustness by using alternative traded factors, such as Carhart 4 factors, Fama-French 5 factors, 

and Fama-French 6 factors. We find these results are robust to these specifications. In some cases, we have to drop 

the market factor to achieve robust results due to the strong correlation between the FMP of consumption growth and 

the market factors. Theoretically, consumption growth and market factor should present similar risk. 
23 Although there is no well-accepted threshold of correlations that an effective FMP should satisfy, the correlation 

should be significantly different from zero to avoid the “useless factor” problem (Barillas et al., 2017). The 

requirement of significant correlation avoids selecting the wrong model setting for the time-series approach. For 

example, if the R square from a time-series is very low (such as 0.05), the basis assets have virtually no relation 

with the factors.  
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value of the correlation coefficients in the five subsample and the number of significant correlation 

coefficients in the five subsample at 1% significance level.  

Although the correlations for cross-sectional and sorting-by-beta methods are all statistically 

significant, their magnitudes vary across FMPs. Notably, the correlation between FMPs 

constructed by the IV method (FMP_IV) and the underlying factors are smaller than those from 

the OLS method. The correlation between FMP_IV for consumption growth and the underlying 

consumption growth factor is 0.411, but the correlation between FMP_OLS for consumption 

growth and the underlying consumption growth factor is 0.636.  However, as discussed in Section 

3.6, OLS-based FMPs are subject to substantial EIV issue, overstating sample correlations with its 

factors.  

For the time-series approaches, we find that most of them are uncorrelated with the factors in most 

sub-periods. For instance, the correlation is only significant in one sub-period for consumption 

growth FMP constructed, which illustrate that the FMPs by time-series approaches are weakly 

related to their underlying factors. Since the different sets of basis assets are likely to be different 

in their correlation with underlying macro factors, the choice of the basis assets is essential. For 

example, unexpected inflation can be related to bond returns; therefore, basis assets that have bond 

as a component (Lamont approach) are likely to be correlated with this factor. Our result confirms 

this conjecture as for four out of five decades, the correlations between FMP_time-series and CPI 

are significant. Correlations between time-series FMPs and underlying factors is also lower than 

that for cross-sectional FMPs. For example, with the industrial production factor, the correlation 

of a time-series approach is 0.293 while it more than doubles to 0.789 for a cross-sectional 

approach (OLS). Such a striking difference emphasizes again how FMPs can be method 

dependent. Compared with FMPs for non-traded factors, FMPs for the Fama-French factors have 

strong correlations with their underlying risk factors in most cases. Due to similarities across 

various approaches, FMPs are likely less advantageous for traded factors.   

[Table 3 around here] 

6.2 Second Criterion: Correlation with the systematic risk of returns 

An FMP should be correlated with the systematic part of returns. Following Pukthuanthong et al. 

(2019), we apply the asymptotic approach of Connor and Korajczyk (1988) (CK) to extract ten 



34 

 

principal components from the equities return series. The principal components of covariance 

matrix of returns represent the systematic part of asset returns. We then compute canonical 

correlations between the ten CK principal components and the factor candidates and test the 

significance of these canonical correlations by the chi-squared statistic.  

We examine this criterion for FMPs that are constructed by various methods, and also for their 

corresponding original factors as a comparison. The four original macroeconomic factors are those 

we have already considered above, CG, CPI, IP, and UE.  The original traded factors are the three 

Fama-French factors (MKT, SMB, HML). To examine this criterion, two conditions have to be 

satisfied. We assume that a FMP strongly satisfies this criterion if it significantly related to any 

canonical variate in all decades or has a mean t-statistics in the second row of each panel in Table 

4 exceeding the one-tailed, 2.5% cutoff based on the chi-squared value and also has an average 

number of significant decade t-statistics exceeding 1.75 (bottom row of each panel.)24  

[Table 4 about here] 

Notably, the four original macro factors do not pass whereas the thee FF factors pass this criteria. 

FMPs constructed by all of the cross-sectional methods and the sorted beta method satisfy the 

second criterion. For FMP_time-series, none of the macro factors satisfies and thus the time series 

approach does not pass the second criteria.  

6.3 Third Criterion: Risk Premium Estimation Using FMPs 

This section compares the extent to which various construction methods for FMPs produce 

different risk premium estimates.  

Cross-Sectional Approaches  

Table 5 reports risk premium estimates using instrumental variables and other cross-sectional 

methods for obtaining FMPs. We select stocks whose betas in odd and even months have the same 

signs in order to select assets that are well correlated. Only 463 (about 4.6%) of more than 10,000 

stocks are not used to construct any FMPs, with each factor using about 6,000 stocks.  

                                                           
24 Pukthuanthong et al. (2018) require an average number of significant decade t-stat exceed 2.5 from 10 factor 

candidates. We have seven factor candidates, thus 1.75 is from using the same proportion as theirs. The reason is as 

follows: “This is a conservative threshold to ensure we do not miss a true factor at our necessary condition stage. 

We focus on the significant canonical correlations, rather than all canonical correlations, because insignificant CCs 

imply that none of the factors matter, so using them would be over-fitting.”   
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The results show that risk premium estimated by different methods often have dramatic 

disagreements, in both magnitude and significance. For example, the risk premium for 

consumption growth is 0.066 (T-value=2.202) using OLS while it is 0.164 (T-value=3.238) using 

IV. Despite the fact that LM and Stein partly resolve the OLS downward bias, the risk premium 

for consumption growth with these two methods are still much smaller than those in IV. With OLS, 

LM, and Stein, the risk premium estimates for industrial production and unemployment are 

negative and positive, respectively, which are opposite to theoretical prediction25 and contrast 

markedly with the IV estimates. The risk premium for the unemployment rate should be negative 

because stocks with a positive unemployment beta can be viewed as hedging to economic 

downturns. Stocks with a negative unemployment beta are riskier because the returns for these 

stocks decrease during periods of high unemployment.  

For comparison, we estimate risk premium for the three Fama-French (FF) traded factors. The 

signs and significance levels for risk premium estimates do not vary much across methods. Hence, 

EIV seems to be less of a problem for traded factors. 

As revealed in the bottom five lines of Table 5, the IV-based risk premium of macro factors are 

still significant, even after including the three FF factors; this is not true for the other FMP 

construction methods.26 Moreover, the risk premiums for the FF factors are virtually the same with 

any of the FMPs added into the estimation. This is somewhat curious because it suggests that the 

FF factors do not contain the same information as the macroeconomic factors. One might very 

well wonder what risks the FF factors do represent. 

Time-series approach 

Under the time-series approach, we perform risk premium estimation with FMP constructed by 

Lamont (2001) method. Compared with the IV and OLS approaches, the estimated risk premium 

for consumption growth is negative and insignificant, while the risk premium for industrial 

production is significantly negative. However, the time-series method works well for the Fama-

                                                           
25 A similar result is obtained by Giglio and Xiu (2018). As a robustness check, we drop the FMP for industrial 

production factor since it is not significant, and we find that the results for the other FMPs are virtually unaltered. 
26

  We note that a negative risk premium for unexpected inflation is to be expected (see Boudoukh and Richardson, 

1993); high unexpected inflation has a downward impact on stock prices. Stocks with a positive inflation beta hedge 

inflation risk; they have higher returns in periods of high inflation while stocks with a negative inflation beta are 

riskier because their decrease during periods of high inflation. 
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French three factors. Specifically, it produces a similar statistical significance for the risk premium 

estimates of three factors. 

As discussed earlier, a time series construction method for FMPs can be effective if the basis assets 

are correlated with the factors (Lewellen, Nagel, and Shanken, 2010). The basis portfolios in 

Lamont (2001) includes a market return, which is one of the three Fama-French factors.  Lamont’s 

industry-sorted portfolio returns might very well be correlated with the FF SMB and HML factors. 

Thus, the Lamont method can be an effective FMP for estimating Fama-French risk premium, 

although FMP is not normally applied to traded factors. Correlations between macro factors and 

Lamont basis assets are low; thus the Lamont method is probably not very effective for FMP 

construction of macro factors.  

Sorting-by-Beta Approaches  

For sorting-by-beta method, we estimate betas from time-series multivariate regressions and then 

sort the betas for each factor into ten equally-weighted deciles. We then construct FMPs as the 

average return in the highest decile minus the average return in the lowest percentile (High-minus-

Low). The FMPs are used as factors to estimate risk premium, which is reported in the table. For 

macro factors, the estimated risk premiums are insignificant, especially when Fama French three 

factors are included. This is consistent with our conjecture that the FMP constructed by sorting-

by-beta method can attenuate the variation in returns among stocks with different sensitivities to 

the factor when measurement error in beta is large. 

[Table 5 about here] 

6.4 Robustness with Respect to Other Consumption-related Factors 

Previous literature finds little relation between asset returns and consumption-based factors, 

probably because of the large noise of consumption growth.27 However, we find that the risk 

premium for consumption growth is significant when using its associated FMP. Rather than 

focusing on the measurement problem of consumption growth, Lettau and Ludvigson (2001) 

                                                           
27

 Indeed, we also find that the risk premium for consumption growth is insignificant if we use raw consumption 

growth rather than its FMP (unreported). 
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derive a conditional consumption CAPM, which can explain average stock returns in the cross-

section, using the consumption-wealth ratio (CAY) as a conditioning variable. 

Table 6 reports estimated risk premia when adding the CAY factor.28 In all but one specification, 

CAY factor is associated with a negative risk premium and is always insignificant. Consumption 

growth factor has a significantly positive risk premium for the IV FMP, the OLS FMP, and weakly 

significant at 10% for sorting beta. This is consistent with our earlier results that use four 

macroeconomic factors. Following Lettau and Ludvigson (2001), we include an interaction term 

between CAY and consumption growth; its risk premium is insignificant. CG remains significant 

at 5% for IV and 10% for OLS and sorting beta. When we include three FF factors, CG is 

significant at 5% for IV but not significant for other approaches. 

[Table 6 about here] 

Boguth and Kuehn (2013) find that consumption volatility, supposedly a proxy for macroeconomic 

uncertainty, is also a source of risk and has a negative risk premium. In unreported results, we also 

add consumption volatility as a control variable. We find that the risk premium of the consumption 

volatility factor is negative but insignificant in all specifications across all FMP construction 

methods. In contrast, the risk premium for consumption growth is still significant.  Therefore, 

using FMPs of consumption growth, our results confirm that consumption growth is a robust risk 

factor that can explain the cross-sectional stock returns conditional on other consumption related 

factors.  

Our overall conclusion for US equities is that FMPs constructed by the IV approach satisfy all our 

criteria. Moreover, the IV-based FMPs dominates FMPs constructed by other methods in 

producing larger and more significant risk premium estimates. With the IV method, consumption 

growth, inflation, unemployment rate, and three Fama-French factors can explain cross-sectional 

stock returns. 

7. Test Risk Premium in Corporate Bonds Market by Using FMPs 

                                                           
28

 In Appendix Table 1, we report analogous results using all four macro factors (CG, CPI, IP, and UE). The IV results 

are robust to this alternate specification. As shown there, results for time-series based approaches are not robust. 

Correlations with underlying non-traded factors differ dramatically and so do their risk premium estimates.  
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Bond returns are associated with macroeconomic factors since bonds are related to firms’ 

fundamentals that are affected by business cycle (Ludvigson and Ng, 2009). Fama and French 

(1993) propose two non-traded bond factors, the default and term spread. Gebhardt, Hvidkjaer, 

and Swaminathan (2005) find that the default spread significantly explains cross-sectional bond 

returns even after controlling for bond characteristics such as duration and rating. In contrast, Bai, 

Bali, and Wen (2019) find that attributes such as value-at-risk and rating dominate default and 

term. Bessembinder et al. (2008) suggest that a broad bond market return, unexpected GDP 

growth, and unexpected inflation explain excess abnormal bond returns. Following these papers, 

we evaluate the FMPs for four macroeconomic factors, a broad bond market return (MKT_B), and 

the default spread (DS) and term spread (TS).  

We use various FMP construction methods: IV, OLS, LM, Stein, time-series, and sorting-by-beta. 

Following the criteria, we first analyze correlations between FMPs with their underlying factors 

(1st criterion) and with the principal components of covariance matrix of individual corporate bond 

returns (2nd criterion). The results are similar to those for equities. Panel A of Table 7 shows that 

all the FMPs have strong correlations with their underlying factors; thus, all approaches satisfy the 

first criterion. Unlike the previous test of the first criteria where we present correlations for each 

decade, we present the correlation of FMPs and underlying factors for the whole sample period 

due to shorter time series (from 2002 to 2017). Our sample period is consistent with that in Bai, 

Bali, and Wen (2019).  Panel B examines whether the FMP is correlated to the systematic risk of 

bond returns. FMPs constructed by all approaches except time-series approach pass this criteria. 

We focus only on one criteria (the t-stat of significant canonical correlation) because our sample 

period for bond is only a decade. For the time-series approach, only consumption growth and shock 

in CPI pass.  

Panel C presents the results of estimating the risk premium for corporate bond return in a similar 

vein as that for equity returns. The time-series method (Lamont approach) produce significant risk 

premiums. For IV-based FMPs, consumption growth, industrial production, bond market return, 

and default spread pass, and have the signs of risk premium consistent with the theory. Risk 

premium associated with Stein, LM, or OLS FMPs are insignificant. Interestingly, the time-series 

method (Lamont approach) produce significant risk premiums, but with counterintuitive signs for 

consumption growth, industrial production, and unemployment. The first two should be positive 
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while the last should be negative. Theoretically, positive consumption growth and industry 

production shocks are associated with strong firm fundamentals, suggesting a positive bond 

returns. Since Lamont (2001) uses stock portfolio returns as basis assets to create time-series 

FMPs, the negative sign might reflect the negative correlation between stock returns and bond 

returns. In an untabulated result, we use portfolios constructed by bond returns as the basis assets 

with time-series approach. The risk premiums of macro factors above are positive but insignificant, 

when we control for other traded factors.  

                                                     [Table 10 about here] 

 

8. Conclusion  

A voluminous literature applies factor-mimicking portfolios to convert non-traded factors into 

their traded versions, and then to estimate risk premium. However, no studies summarize and 

demonstrate that indeed, there are quite a few ways to construct FMPs, and each methodology has 

pros and cons for testing underlying factor. The performance of FMPs depends on the way we 

construct FMPs and the basis assets we use to construct them. Our paper proposes a new economic 

explanation of FMP, delves into the issues for existing method and offers a new method for FMP 

construction. We also examine FMPs using three necessary conditions.  

Simulation results show that all other existing methods suffer factor contamination, while our 

method has almost no factor contamination.  Empirically, we apply our IV method to estimate risk 

premiums for a series of non-traded factors. We firstly construct factor-mimicking portfolios from 

four classical macroeconomic factors using the IV approach and find that the non-traded versions 

of consumption growth, CPI, and unemployment rate have significant risk premiums in stock 

market. The conclusion cannot be obtained from the same factors constructed by the extant 

mimicking portfolios approaches. We also find that the factor-mimicking portfolios for the three 

factors correlate to their corresponding factors and covariance of asset returns, thereby passing the 

FMP criteria we propose. We also apply our method to estimate risk premium in the corporate 

bond market and find that consumption growth and industrial production price corporate bond 

returns with positive risk premiums.   
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Table 1. Descriptive Statistics 

This table reports the summary of statistics on the main variables, in which we list the number of 

observations, mean, median, standard deviation, and percentiles (1st, 5th, 25th, 75th, 95th, and 99th).  Panel A 

reports the statistics for excess stock returns and its explanatory variables. For the stock return, we have 

10,833 stocks in total and 626 months data. The stock returns are over a risk-free rate (one-month T-bill 

rate). The explanatory variables includes, consumption growth rate (CG), consumer price index (CPI), 

industrial production (IP), unemployment rate (UE), excess stock market return (MKT), small-minus-big 

size portfolio (SMB), high-minus-low book/market portfolio (HML) and the consumption to wealth ratio 

(CAY). Panel B lists the statistic for corporate bond returns and its explanatory variables. For corporate 

bond returns, we have 6,421 bonds and 179 months data. The bond returns are over a risk-free rate (one-

month T-bill rate). In addition to the four macro variables (CG, CPI, IP, UE), bond market excess return 

(MKT_Bond), default spread (DS) and term spread (TS) are taken as explanatory variables as well. MKT_B 

is the equally weighted return of all corporate bond return in our sample in excess to risk-free rate. DS is a 

default spread, measured by the return difference between Moody’s long-term corporate BAA-rated bonds 

and AAA-rated bonds. TS is a term spread, measured by the return difference between ten-year treasury 

bond and one-year treasury bond. The sources of these data are described in detail in Section 3. 

Panel A: Statistics for stock returns and its explanatory variables 

 N  Mean  Median SD 1st 25th 75th 99th 

Stock return 1,784,351 1.012 0.440 13.341 -31.764 -5.194 6.209 42.179 

CG 626 0.018 0.006 0.528 -1.557 -0.303 0.305 1.344 

CPI 626 0.007 -0.006 0.248 -0.695 -0.124 0.145 0.594 

IP 626 0.004 0.018 0.699 -1.985 -0.374 0.373 1.932 

UE 626 0.003 0.001 0.161 -0.408 -0.097 0.107 0.403 

MKT 626 0.490 0.785 4.466 -11.804 -2.100 3.450 11.178 

SMB 626 0.229 0.130 3.108 -6.695 -1.520 2.050 8.435 

HML 626 0.349 0.310 2.819 -8.097 -1.160 1.710 7.930 

CAY 626 -0.002 -0.002 0.021 -0.046 -0.015 0.015 0.034 

 

Panel B: Statistics for bond returns and its explanatory variables 

 N  Mean  Median SD 1st 25th 75th 99th 

Bond return 331,728 0.389 0.236 2.544 -5.764 -0.349 1.089 7.248 

CG 179 0.021 0.021 0.362 -1.248 -0.164 0.238 0.880 

CPI 179 0.004 0.020 0.278 -0.875 -0.127 0.132 0.678 

IP 179 -0.027 -0.003 0.648 -1.909 -0.359 0.330 1.355 

UE 179 0.002 -0.003 0.154 -0.378 -0.098 0.105 0.376 

MKT_Bond 179 0.380 0.390 1.875 -6.031 -0.367 1.094 7.276 

DS 179 1.093 0.960 0.469 0.579 0.853 1.218 3.090 

TS 179 1.805 1.870 1.003 -0.374 1.235 2.590 3.368 
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Table 2. Simulation 

This table shows the simulation results of the effectiveness of FMPs constructed by various approaches as 

a proxy of true risk factors. We generate simulated factors using return related factor added by a normally 

distributed measurement error. We generate simulated returns using orthogonalized true risk factor 

multiplied by orthogonalized true beta loadings. With the simulated return and simulated risk factors, we 

construct FMPs using six methods described in Section 5. The detail on the simulation is in Section 5. Panel 

A shows the correlations between FMPs and return related component of the underlying factors. Panel B 

presents the maximum correlations between FMPs for a macro factor with other factors. Panel C presents 

the averaged correlations between FMPs for a macro factor with other factors. The values in each table are 

mean values across 1,000 simulations. The sample period is January 1964 to March 2016. To be included, 

individual stocks must have at least 60 continuous monthly returns on CRSP. The macro factors include 

unexpected consumption growth (CG), unexpected changes in the CPI (CPI), unexpected changes in 

industrial production (IP), and unexpected changes in the unemployment rate (UE). 

Panel A: Correlation between FMPs and their corresponding true risk factors 

 CG CPI IP UE 

FMP_IV 0.999 0.996 0.986 0.988 

FMP_OLS 0.798 0.792 0.801 0.811 

FMP_Stein 0.798 0.792 0.801 0.822 

FMP_LM 0.841 0.894 0.827 0.831 

FMP_SB 0.704 0.795 0.614 0.782 

FMP_TS 0.264 0.186 0.173 0.197 

 

Panel B: Maximal correlation between FMPs of a target factor and other true risk factors 

 CG CPI IP UE 

FMP_IV 0.007 0.008 0.013 0.013 

FMP_OLS 0.119 0.097 0.099 0.077 

FMP_Stein 0.119 0.097 0.099 0.077 

FMP_LM 0.118 0.094 0.098 0.075 

FMP_SB 0.441 0.555 0.360 0.131 

FMP_TS 0.087 0.075 0.079 0.092 

 

Panel C: Average correlation between FMPs for a target factor and other true risk factors 

 CG CPI IP UE 

FMP_IV 0.003 0.004 0.006 0.006 

FMP_OLS 0.051 0.045 0.050 0.038 

FMP_Stein 0.051 0.045 0.050 0.038 

FMP_LM 0.052 0.045 0.048 0.037 

FMP_SB 0.106 0.126 0.158 0.059 

FMP_TS 0.040 0.035 0.040 0.043 

  



45 

 

Table 3:   Summary Statistics of FMPs and their Correlations with the Underlying Factors 

This table presents the mean, standard deviations of FMPs constructed by different approaches, as well as 

their correlations with the underlying factors. Panel A reports correlations between FMPs and their 

underlying factors across five subsamples, one of which spans a decade. The first row in Panel B is the 

mean correlation and the second row  (# Sig) contains the number of subsample correlation that is 

significant at the 1% level (maximum of 5.) Panel B shows the means of the FMPs, and Panel C shows 

their standard deviation. We compare FMPs constructed by different methods: the FMP constructed by the 

IV approach in cross-sectional regression (FMP_IV), the FMP constructed by the OLS approach in cross-

sectional regression (FMP_OLS), the FMP constructed by Lehmann and Modest’s method (FMP_LM), the 

FMP constructed by Stein’s method (FMP_Stein), the FMP constructed by time-series regression with 

Lamont portfolios as basis assets (FMP_Time-series), and the FMPs constructed with the sorting by beta 

approach (FMP_SB).   

Correlation with Original Factors across Five Decades 

 CG CPI IP UE MKT SMB HML 

 Cross-sectional approach 

FMP_IV 0.4105 0.4853 0.6627 0.5652 0.7413 0.8038 0.7097 

                   # Sig 5 5 5 5 5 5 5 

FMP_OLS 0.6356 0.7401 0.7889 0.7233 0.9033 0.9176 0.8749 

                  # Sig 5 5 5 5 5 5 5 

FMP_LM 0.4975 0.6897 0.7166 0.7254 0.9095 0.9565 0.886 

                  # Sig 5 5 5 5 5 5 5 

FMP_Stein 0.6356 0.7401 0.7889 0.7233 0.9033 0.9176 0.8749 

                  # Sig 5 5 5 5 5 5 5 

                                     Time-series approach 

FMP_Time-series 0.2129 0.3416 0.2932 0.2218 1 0.4195 0.3012 

# Sig 1 4 3 2 5 5 3 

                                  Sorting-by-beta approach 

FMP_SB 0.7283 0.7671 0.725 0.6907 0.877 0.9142 0.8557 

# Sig 5 5 5 5 5 5 5 
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Table 4. Correlations with the Systematic Risk of Returns  

This table reports canonical correlations between FMPs and Principal Components of the covariance matrix 

of individual stocks. The factor candidates include FMPs constructed using the methods of IV, OLS, 

Lehman, and Modest (1999), Stein, and Lamont (2001). As comparison, we also include the canonical 

correlation results for the original risk factors.  The principal components (PCs) are extracted as explained 

in Pukthuanthong et al. (2018) using the Connor and Korajczyk (henceforth CK, 1988)’s cross-sectional 

method.  We summarize significance levels for factor candidates. The following procedure is implemented 

to derive the significance levels of each factor candidate: First, for each canonical pair, the eigenvector 

weights for the 10 PCs are taken and the weighted average PC, (which is the canonical variate for the 10 

PCs that produced the canonical correlation for this particular pair) is constructed.  Then, a regression using 

each CK PC canonical variate as the dependent variable and the candidate factor realizations as 7 

independent variables is run over the sample months. The t-statistics from the regression then give the 

significance level of each candidate factor. There are 10 pairs of canonical variates in each decade and a 

canonical correlation for each one; thus, there is a total of 50 such regressions (10 regression per 

decade).  The 1st row presents the mean t-statistic over all canonical correlations. The 2nd row reports the 

mean t-statistic when the canonical correlation itself is statistically significant. Rows #3 reports the average 

number of significant canonical correlation over the five decades. Critical rejection levels for the T-Statistic 

are 1.65 (10%), 1.96 (5%), and 2.59 (1%).  We assume that an FMP satisfies this criterion if (1) it is 

significantly related to any canonical variate in all decades or that has a mean t-statistic in the second row 

that exceeds the one-tailed, 2.5% cutoff based on the chi-squared value, and (2) has an average number of 

significant t-statistics exceeding 1.75 (the 3rd row of each panel). t-statistics breaching the 5% (1%) critical 

level are in boldface (boldface and italics). The factors that pass necessary condition are in grey highlight. 
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 FMP Equity factors 

 CG CPI IP UE  Rm.Rf SMB HML 

Original 

Avg t 1.14 1.15 1.10 1.01 10.66 6.70 3.31 

Avg t  (Sig. CC) 1.25 1.37 1.04 1.14 22.80 14.19 6.87 

# decades 1.40 1.40 1.40 0.60 2.80 2.80 2.60 

FMP_IV 

Avg t 2.43 2.57 1.89 2.22 9.71 5.00 3.30 

Avg t  (Sig. CC) 3.00 3.27 2.10 2.57 13.41 6.49 4.25 

# decades 3.00 3.20 2.20 2.80 3.40 3.80 3.20 

FMP_OLS 

Avg t 2.50 2.53 2.05 2.66 10.07 5.45 3.42 

Avg t  (Sig. CC) 3.01 3.12 2.41 3.39 13.80 7.18 4.46 

# decades 2.80 3.00 2.80 3.20 3.20 4.00 4.20 

FMP_LM 

Avg t 2.28 2.52 2.07 1.93 3.35 3.77 3.03 

Avg t  (Sig. CC) 2.72 3.13 2.28 2.30 4.21 4.79 3.97 

# decades 3.20 3.20 3.20 1.80 3.00 4.40 3.20 

FMP_Stein 

Avg t 2.50 2.53 2.05 2.66 10.07 5.45 3.42 

Avg t  (Sig. CC) 3.01 3.12 2.41 3.39 13.80 7.18 4.46 

# decades 3.40 3.40 3.60 3.00 3.00 4.00 3.00 

FMP_Time-series 

Avg t 1.39 1.57 1.37 1.40 9.79 6.74 3.25 

Avg t  (Sig. CC) 2.01 2.09 1.63 1.70 19.45 13.17 6.09 

# decades 2.00 1.80 1.80 1.80 3.40 3.20 3.60 

FMP_SB 

Avg t 2.01 2.80 2.16 2.15 6.54 5.42 5.23 

Avg t  (Sig. CC) 2.21 3.20 2.38 2.36 8.07 6.68 6.46 

# decades 2.40 4.00 3.20 3.20 3.40 3.60 3.40 
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Table 5. Risk Premia in Equity Market by using Factor-Mimicking Portfolios  

This table reports risk premia estimates using Fama-MacBeth regression. For cross-sectional methods, we 

assume betas are constant. For the IV method, we use betas in even month as instruments for betas in odd 

month and apply the IV method with sample adjustment (IV*) to obtain FMPs. Then, we apply IV method 

for a second time to test risk premium of these FMPs (IV). For other methods, such as OLS, Lehmann, and 

Modest (LM), and Stein, we apply the corresponding approach (OLS, LM, Stein) to obtain factor-

mimicking portfolios, and use these methods to run Fama-MacBeth regression again to test risk premium. 

For time-series approach, we use time-series to create FMPs and then estimate the risk premia for these 

FMPs using OLS method in the second pass regression. For sorting-by-beta method, we estimate betas from 

time-series multivariate regressions and then sort the betas for each factor into ten deciles. We then 

construct  FMPs as the arithmetic average returns in the highest decile minus the average in the lowest 

percentile (High-minus-Low). The FMPs are used as factors to estimate risk premium, which is reported in 

the table. The sample period is January 1964 to March 2016. We use individual stocks that have at least 60 

continuous month returns in CRSP. The risk factors include four macroeconomics variables, the 

consumption growth rate (CG), unexpected CPI changes (CPI), unexpected changes in industrial production 

(IP), and unexpected changes in the unemployment rate (UE). MKT is the excess market return (proxy by 

the value-weighted return of all CRSP firms in the US), SMB is the FF small-minus-big size factor, and 

HML is the FF high-minus-low book-to-market factor. The values in parentheses are T-statistics. *, **, and 

*** indicate significance at the 10%, 5%, and 1% level, respectively.  

 Intercept CG CPI IP UE MKT SMB  HML 

 Cross-sectional Approach 

IV 0.464*** 0.164*** -0.017 0.009 -0.022** 
   

 
(3.980) (3.238) (-0.920) (0.192) (-2.000) 

   

OLS 0.549*** 0.066** -0.004 -0.067** 0.006 
   

 
(4.180) (2.202) (-0.366) (-2.117) (0.791) 

   

LM 0.306*** 0.095** -0.017 -0.079** 0.005 
   

 
(3.140) (2.506) (-1.291) (-2.312) (0.544) 

   

Stein  0.527*** 0.083** -0.008 -0.094** 0.026 
   

 
(4.009) (2.202) (-0.366) (-2.117) (0.791) 

   

IV 0.515*** 
    

0.553** 0.281* -0.474***  
(4.805) 

    
(2.281) (1.816) (-3.411) 

OLS 0.495*** 
    

0.485** 0.194 -0.296**  
(5.177) 

    
(2.516) (1.423) (-2.278) 

LM 0.277*** 
    

0.590*** 0.216* -0.208  
(3.163) 

    
(3.124) (1.655) (-1.583) 

Stein  0.494*** 
    

0.492** 0.206 -0.394**  
(5.153) 

    
(2.516) (1.423) (-2.278) 

IV 0.653*** 0.136** -0.048** 0.094 -0.028** 0.545** 0.262* -0.487***  
(5.985) (2.070) (-2.132) (1.606) (-2.134) (2.269) (1.835) (-3.766) 

OLS 0.457*** -0.015 -0.007 -0.046 0.003 0.490*** 0.228* -0.282**  
(5.132) (-0.618) (-0.619) (-1.357) (0.303) (2.599) (1.703) (-2.241) 

LM 0.259*** -0.012 -0.019 -0.044 0.004 0.584*** 0.233* -0.223*  
(3.237) (-0.496) (-1.487) (-1.339) (0.478) (3.133) (1.797) (-1.745) 

Stein  0.452*** -0.139 -0.025 -0.252 0.009 0.497*** 0.241* -0.367**  
(5.054) (-0.618) (-0.619) (-1.357) (0.303) (2.599) (1.703) (-2.241) 
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 Intercept CG CPI IP UE MKT SMB  HML 

 Time-series approach 

 0.544*** -0.003 -0.003 -0.039*** 0.005***    

 (4.864) (-0.496) (-0.763) (-3.974) (2.664)    

 0.326***     0.582*** 0.126** -0.129*** 

 (3.065)     (2.833) (2.077) (-2.910) 

 0.352*** -0.004 -0.001 -0.030*** 0.005*** 0.527*** 0.107* -0.138*** 

 (3.510) (-0.605) (-0.295) (-3.211) (2.725) (2.617) (1.798) (-3.274) 

  

Sorting-by beta (SB) approach 

 0.688*** 0.738* 0.096 -0.595** 0.184    

 (4.039) (1.772) (0.296) (-2.032) (0.618)    

 0.516***     0.922** 0.569 -0.704* 

 (5.122)     (2.266) (1.415) (-1.677) 

 0.491*** 0.054 -0.103 -0.235 -0.039 0.928** 0.594 -0.742* 

 (4.929) (0.209) (-0.328) (-0.950) (-0.128) (2.335) (1.511) (-1.837) 
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Table 6. Estimated Risk Premia with FMPs for Consumption Growth and an Alternative 

Consumption-Related Factor (CAY) 

Here are estimated risk premia for consumption growth and the CAY factor of Lettau and Ludvigson (2001) 

and with and without three Fama-French (FF) factors. CAY is the log ratio of consumption to aggregate 

wealth.  FMPs are constructed for each factor using three methods (IV, OLS, and sorting-by-beta (OLS-

SB)). CG is the unexpected consumption growth rate. MKT is the excess market return, SMB is the FF 

small-minus-big size factor, and HML is the FF high-minus-low book-to-market factor. We obtain the 

monthly CAY from Martin Lettau’s websites. The monthly sample is from January 1964 to March 2016. 

The t-values in parentheses are based on Newey-West standard errors. *, **, and *** indicate significance 

at the 10%, 5%, and 1% level, respectively. 

 

 intercept CAY CG CG*CAY MKT SMB HML 

IV 0.751*** -0.171*      

  (4.002) (-1.757)      

OLS 0.781*** -0.123      

  (3.974) (-1.616)      

Time-series 0.928*** -0.035      

  (4.610) (-0.948)      

SB 0.858*** -0.313      

  (4.424) (-1.586)      

IV 0.566***  0.125** -0.003    

  (3.761)  (2.017) (-0.022)    

OLS 0.600***  0.074** -0.008    

  (3.772)  (2.077) (-0.110)    

Time-series 0.818***  0.007 -0.010    

  (5.601)  (0.909) (-1.235)    

SB 0.722***  0.613* 0.129    

  (4.145)  (1.938) (0.559)    

IV 0.498*** -0.08 0.150** -0.03    

  (3.384) (-0.920) (2.391) (-0.229)    

OLS 0.592*** -0.094 0.061* -0.014    

  (4.090) (-1.351) (1.808) (-0.190)    

Time-series 0.811*** -0.023 0.006 -0.011    

  (5.652) (-0.774) (0.787) (-1.496)    

SB 0.739*** -0.155 0.533* 0.127    

  (4.502) (-0.670) (1.833) (0.567)    

IV 0.584*** 0.135 0.238*** -0.197 0.635** 0.361** -0.504*** 

  (5.452) (1.145) (2.692) (-1.165) (2.494) (2.166) (-3.169) 

OLS 0.463*** -0.032 -0.016 -0.006 0.520** 0.187 -0.296** 

  (5.017) (-0.381) (-0.614) (-0.084) (2.574) (1.419) (-2.061) 

Times-series 0.322*** 0.044 -0.002 -0.011 0.588*** 0.105* -0.134*** 

  (3.117) (1.421) (-0.390) (-1.448) (2.881) (1.767) (-3.102) 

SB 0.602*** -0.047 0.129 0.005 0.673** 0.531 -0.632* 

  (5.869) (-0.183) (0.691) (0.020) (1.978) (1.567) (-1.669) 
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Table 7. Testing FMPs to Explain Individual Corporate Bonds Returns 

This table shows the four criterion tests to FMPs constructed by various approaches and with individual 

corporate bond returns as basis assets. Panel A reports correlations between FMPs and underlying factors 

for explaining corporate bonds. Panel B presents canonical correlations of FMPs with systematic risks using 

the same approach as that reported in Table 4 for equities. Panel C shows risk premia for corporate bond 

returns estimated with FMPs as factors. Panel D examines the fourth criteria of time-series approach where 

the FMPs are constructed from 10 randomly chosen FF portfolios (FF_random) and 10 portfolios formed 

from randomly chosen individual stocks (individual_random). The factors as described in Table 1. The 

sample period is August 2002 to June 2017. The numbers in parentheses are T-statistics. *, **, and *** 

indicate significance at the 10%, 5%, and 1% level, respectively.  

Panel A: Correlations with Underlying Factors 

 CG CPI IP UE MKT_B DS TS 

 Cross-sectional approach 

IV 0.466 0.438 0.560 0.278 0.867 0.619 0.211 

OLS 0.633 0.674 0.703 0.630 0.949 0.849 0.358 

Stein 0.716 0.724 0.762 0.742 0.978 0.875 0.451 

LM 0.633 0.674 0.703 0.630 0.949 0.849 0.358 

 Time-series approach 

Time-series 0.423 0.417 0.461 0.473 0.693 0.973 1.000 

 Sorting-by-beta approach 

Sorting by beta 0.426 0.584 0.534 0.259 0.934 0.468 0.137 

        

 

Panel B: Canonical Correlations with Asymptotic PCs and Significance Levels of Factor Candidates 

  

 CG CPI IP UE MKT DS TS 

                                         Original 

Avg t 1.18 1.04 1.96 1.03 4.98 1.55 1.09 

Avg t  (Sig. CC) 1.51 0.98 4.90 0.72 16.09 2.34 0.98 

                             Cross-sectional approach 

                                    FMP_IV 

Avg t 5.35 5.02 4.75 2.12 4.54 4.51 3.52 

Avg t  (Sig. CC) 5.35 5.02 4.75 2.12 4.54 4.51 3.52 

                                        FMP_OLS 

Avg t 4.48 4.43 6.90 3.54 10.12 3.10 3.14 

Avg t  (Sig. CC) 5.07 5.01 8.03 3.98 11.67 3.23 3.63 

                                        FMP_Stein 

Avg t 4.48 4.43 6.90 3.54 10.12 3.10 3.14 

Avg t  (Sig. CC) 5.07 5.01 8.03 3.98 11.67 3.23 3.63 

                                        FMP_LM 

Avg t 3.41 3.55 5.44 2.02 7.00 3.27 2.26 

Avg t  (Sig. CC) 4.42 4.63 7.38 2.30 9.54 3.96 2.54 

 Time-series approach 

Avg. T 1.99 1.88 1.33 0.98 2.60 2.26 1.55 

Avg t (Sig. CC) 2.39 2.53 1.75 0.69 3.53 2.77 1.79 
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# of sig 2 2 2 1 4 5 3 

 Sorting-by-beta approach 

Avg. T 5.25 4.64 4.56 4.88 6.99 5.10 3.84 

Avg t (Sig. CC) 6.00 5.04 5.07 5.68 8.05 5.94 4.33 

# of sig 4 6 4 6 4 6 3 

 

 

Panel C: Estimated Risk Premium Using FMPs  

 

 Intercept CG CPI IP UE MKT_B DS TS 

 Cross-sectional approach 

IV 0.892*** 0.291*** -0.049 0.586*** -0.090 0.376* 0.176** -0.355 
 (3.838) (3.082) (-0.589) (2.838) (-1.174) (1.870) (2.275) (-1.389) 

OLS 0.095** -0.003 -0.028 -0.023 0.009 0.305* 0.115*** 0.036 
 (2.310) (-0.088) (-1.092) (-0.370) (0.558) (1.723) (3.317) (0.770) 

LM 0.01 -0.004 -0.017 -0.009 0.013 -0.477 0.106*** 0.051 
 (0.445) (-0.113) (-0.665) (-0.150) (0.908) (-1.140) (2.695) (1.136) 

Stein 0.121** -0.003 0.012 -0.03 0.022 0.215 0.035 0.152 
 (2.161) (-0.067) (0.405) (-0.315) (1.171) (1.431) (1.125) (1.441) 

 Time-series approach 

Time-series 0.129** -0.020* -0.019* -0.049** 0.019*** 0.299** 0.119*** -0.007 

 (2.303) (-1.790) (-1.759) (-2.059) (3.345) (2.411) (3.692) (-0.213) 

 Sorting by beta approach 

Sorting by beta 0.115*** 0.048 -0.137 0.016 -0.04 0.401 0.277* 0.014 

 (2.766) (0.244) (-0.801) (0.082) (-0.220) (1.329) (1.775) (0.087) 
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Appendix Table 1:  Combing Macro Factors and CAY  

This table shows the FMP identification when combing the four macro factors with the CAY factor, which 

supplements the analysis in Table 10. Panel A shows the average correlations in five subsamples between 

FMPs and their underlying factors, and the number of significant correlations (# Sig) at 1%  significance 

level in five subsamples similar to Panel A in Table 3 (first criteria). Panel B shows the canonical 

correlations between FMPs and the principal component of the covariance matrix of asset returns (the 

second criteria). The detail is described in Table 4. Panel C shows the estimated risk premia by using FMPs 

(the third criteria). The details of each method are described in Table 1.  

 

Panel A: Subsample Correlations between FMPs and Underlying Factors 

 CG CPI IP UE CAY CG*CAY  MKT SMB  HML 

 Cross-sectional approach 

FMP_IV 0.411 0.485 0.663 0.565 0.505 0.518 0.741 0.804 0.710 

# Sig 5 5 5 5 4 5 5 5 5 

FMP_OLS 0.880 0.846 0.860 0.816 0.746 0.846 0.914 0.932 0.887 

# Sig 5 5 5 5 5 5 5 5 5 

FMP_LM 0.879 0.822 0.879 0.813 0.733 0.844 0.918 0.960 0.897 

# Sig 5 5 5 5 5 5 5 5 5 

FMP_Stein 0.880 0.846 0.860 0.816 0.746 0.846 0.914 0.932 0.887 

# Sig 5 5 5 5 5 5 5 5 5 

 Time-series approach 

FMP_Time-series 0.213 0.342 0.293 0.222 0.213 0.140 1.000 0.420 0.301 

# Sig 1 4 3 2 4 1 5 5 3 

 Sorting-by-beta approach 

FMP_SB 0.546 0.740 0.733 0.697 0.617 0.529 0.877 0.916 0.854 

# Sig 5 5 5 5 5 5 5 5 5 
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Panel B: Canonical Correlations with Asymptotic PCs and Significance Levels of Factor Candidates 

 FMP  

 CG CPI IP UE CAY MKT SMB HML 

                                                     Original  

Avg t 1.06 1.05 0.97 0.86 1.08 9.03 5.54 3.23 

Avg t  (Sig. CC) 1.21 1.29 0.97 1.00 1.34 22.03 13.36 7.62 

# of sig t-stat 1.20  1.20  1.00  0.60  1.20  2.80  2.80  2.60  

                                 Cross-sectional approach  

                                    FMP_IV  

Avg t 1.57 2.21 1.64 1.76 1.63 2.85 2.86 2.98 

Avg t  (Sig. CC) 1.80 2.90 2.02 2.13 1.92 3.95 3.92 4.21 

# of sig t-stat 3.00  3.40  2.20  2.20  2.20  3.40  3.20  4.40  

                                        FMP_OLS  

Avg t 2.00 2.64 1.72 2.05 1.81 6.81 6.14 5.03 

Avg t  (Sig. CC) 2.39 3.26 2.00 2.46 2.16 8.97 8.07 6.65 

# of sig t-stat 3.60  4.20  3.20  2.80  3.00  3.80  3.60  3.20  

                                        FMP_Stein  

Avg t 2.00 2.64 1.72 2.05 1.81 6.81 6.14 5.03 

Avg t  (Sig. CC) 2.39 3.26 2.00 2.46 2.16 8.97 8.07 6.65 

# of sig t-stat 3.60  4.20  3.20  2.80  3.00  3.80  3.60  3.20  

                                        FMP_LM  

Avg t 1.93 2.71 1.71 2.05 1.85 6.47 5.70 4.43 

Avg t  (Sig. CC) 2.32 3.40 2.01 2.53 2.33 8.79 7.71 6.01 

# of sig t-stat 3.60  4.40  3.40  2.40  2.80  3.20  3.40  3.40  

 Time-series approach  

Avg. T 1.15 1.05 1.18 1.10 0.93 2.88 1.30 1.25 

Avg t (Sig. CC) 1.41 1.43 1.32 1.32 0.94 7.25 1.99 2.04 

# of sig t-stat 1.40  1.20  1.60  1.40  0.40  1.80  2.00  1.60  

 Sorting-by-beta approach  

Avg. T 1.45 1.35 1.03 1.31 1.59 5.97 2.02 1.64 

Avg t (Sig. CC) 1.91 2.00 1.21 1.69 2.27 11.79 3.39 2.32 

# of sig t-stat 2.60  1.40  0.80  2.00  2.80  3.20  2.80  2.60  
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Panel C: Test Risk Premium by using FMPs 

 

 
Intercept CG CPI IP UE CAY CG*CAY  MKT SMB  HML 

 Cross-sectional approach 

IV 0.624*** 0.227*** -0.078** -0.016 0.005 -0.197 0.349 0.533* 0.130 -0.550*** 

 
(4.282) (2.849) (-2.057) (-0.180) (0.114) (-0.934) (1.521) (1.911) (0.724) (-3.609) 

OLS 0.459*** -0.010 -0.011 -0.034 0.001 -0.025 -0.006 0.492*** 0.219 -0.276** 

 
(5.193) (-0.441) (-0.918) (-1.033) (0.106) (-0.487) (-0.118) (2.602) (1.639) (-2.219) 

LM 0.167** -0.005 -0.015 -0.05 0.004 0.005 -0.023 0.600*** 0.222* -0.194 

 
(2.202) (-0.242) (-1.247) (-1.604) (0.517) (0.104) (-0.502) (3.208) (1.717) (-1.565) 

Stein 0.371*** -0.02 -0.023 -0.173 0.004 -0.177 0.019 0.538*** 0.227 -0.324** 

 
(4.238) (-0.260) (-0.776) (-1.571) (0.195) (-0.771) (0.194) (2.813) (1.524) (-2.255) 

 Time-series approach 

Time-series 0.327*** -0.003 -0.003 -0.024*** 0.004** 0.027 -0.011 0.548*** 0.100* -0.127*** 

 
(3.290) (-0.435) (-0.793) (-2.702) (2.551) (0.951) (-1.497) (2.739) (1.700) (-3.050) 

 Sorting-by-beta approach 

SB 0.588*** 0.192 -0.229 -0.147 -0.083 -0.038 -0.053 0.671** 0.568* -0.637** 

 
(6.155) (1.043) (-1.123) (-0.849) (-0.420) (-0.239) (-0.263) (2.096) (1.698) (-2.019) 
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Appendix A: Simulation on the risk premium estimation by using FMPs 

1.1 Simulation Procedure  

This Internet Appendix A presents the simulations that compare various FMP construction 

methods.  The purpose is to study the magnitude of biases on risk premium estimation due to the 

measurement error of beta loadings, as well as other statistical properties in finite samples. The 

finite sample properties of risk premium estimation for traded factors are studied by Jegadeesh et 

al. (2019). However, the non-traded factors are possibly associated with higher estimation error in 

factor loadings, which elicit larger finite sample errors-in-variables bias (Kleibergen (2009)). 

Therefore, it is necessary to reexamine these properties for non-traded factors.  

Our simulation parameters match attributes of real data. We use individual stock returns 

data from February 1964 to March 2016 covering 626 months and 10,833 stocks. For instance, 

most stocks do not have data spanning the entire sample period; hence, our simulated stocks have 

data only in the same periods as their corresponding stocks in the real data.1  

The simulation procedure is described below:  

Step 1: Regress excess stock returns on factors and obtain estimated betas (β) and residuals 

(𝛆) for each stock. β is a N×K matrix and 𝛆  is a N×T matrix, where N is the number of stocks, and 

T is the number of time periods. Since the existing periods for most stocks are less than T, the 

matrix 𝛆 is not a balanced panel, in which we assign the value to be missing if one stock does not 

have return data on this corresponding period. 

Step 2: In each simulation, create a T × 1  vector S by random selecting T numbers with 

replacement from 1 to T, where T is the maximum month number. Then create simulated factors 

by rearranging observed factors the match the randomly chosen observation number in the vector 

S. Finally, we augment the simulated factors by adding pre-specified true premia 𝜆0 set equal to 

observed the average risk premia from Chen, Roll and Ross (1986) and Chen and Kan (2003). 

                                           
1  We also conduct simulations in which all simulated stocks have data in every period (unreported.) This leads to less 

overall bias because the number of months in first-pass time-series regressions and the number of stocks in second-

pass cross-sectional regressions are much larger. However, the overall conclusions comparing FMP methods remain 

the same. 
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Step 3: Generate simulated residuals that are randomly selected and normally distributed, 

in which its mean and variance equal to the sample mean and variance of the observed actual 

residuals for the stock. 

Step 4: Construct simulated returns for each stock in each month as estimated betas 

multiplied by simulated factors plus simulated residuals. 

Step 5: Apply the methods in Section 2 to construct FMPs using simulated returns and 

simulated factors.  

Step 6: After construction of FMP, we re-apply various Fama-Macbeth two-pass methods 

(OLS, IV, and Stein with individual stocks) to estimate risk premia using simulated returns and 

the FMPs, thereby obtaining simulated estimates of FMP-based risk premia.  

Replicate steps 1 to 6 for 1,000 times. Then we calculate the mean difference between 

simulated estimates of FMP-based risk premia and true simulated risk premia (which is the ex-

ante bias).  This mean difference is the predicted bias of each FMP method.2 

1.2 Simulation Results: Bias  

Table A1 presents the simulation results. Following Chen, Roll and Ross (1986), we use 

four macro factors as risk factors: changes in the consumption growth rate (CG), changes in the 

CPI (CPI), changes in industrial production (IP), and changes in the unemployment rates (UE). 

We assume beta is constant for each stock. In the first stage, we apply univariate method to 

construct each FMP and then in the second stage, we apply multivariate approach to estimate risk 

premium. 

Consistent with our expectation, the IV approach resolves the EIV bias in two-pass 

regression and produces nearly unbiased risk premia. The alpha in IV estimation is 0.0055%, 

which is close to zero. The differences between estimated risk premia and true risk premia are 

minimal. For instance, the estimated risk premium for consumption growth is just 0.2% larger than 

its true risk premium.  

                                           
2 In unreported results, we also compute an ex-post bias as the differences between estimated risk premia and the 

sample mean of the corresponding factor realizations in that particular simulation. We find the difference between 

ex-post bias and ex-ante bias is minimal, thus we just provide ex-ante bias in Table 2. 
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[Table A1 around here] 

The OLS method produces the estimated risk premia that are much smaller than the true 

risk premia, which is consistent with our conjecture that the OLS is subject to downward bias 

caused by measurement errors in estimated betas. The bias ranges from 28.7% for consumption 

growth to 50% for the unemployment rate. The mispricing part (intercept term) is 0.1412%, which 

is much larger than for IV. The alpha from the sorting-by-beta method (OLS_SB) is even larger 

than OLS, and the risk premia bias is large as well. For example, the bias for consumption growth 

is 31%. The biases for the Lehmann and Modest (LM) method is as large as that for OLS. 

Furthermore, the mispricing in LM method is 0.20%, even larger than the mispricing of OLS. 

Stein’s method yields less bias than then the OLS and LM methods, but the biases in Stein’s 

method are still large, over 20%.  

We also consider the time series approach. Specifically, we present the time series 

approach using Lamont’s (2001) portfolios as basis assets, which is constructed by regressing risk 

factors on a series of basis portfolio returns, and then calculating predicted values as FMPs. Then 

we estimate the risk premia for the FMPs constructed by time-series approach (TS_FMPs).  The 

time-series works well only when the correlations between risk factors and basis assets are high. 

Our simulation in Panel B of Table A1 shows that the average bias for time-series approach is 

larger than 40%. This is because the correlations between macro factors and basis assets are low.  

Panel C in Table A1 reports risk premia estimated using FMPs as factors. As reported in 

this panel, risk premia of FMPs are nearly unbiased using the IV approach, but OLS-based risk 

premia have large biases. Risk premium bias for the sorting-by-beta method is relatively large, but 

smaller than that of OLS. More importantly, the results in Panel B indicates that IV constructed 

FMPs as proxies for risk factors can lead to the same risk premium estimate as using risk factors 

themselves. This is consistent with Shanken (1992), who shows that the mean of traded factors (a 

FMP is a traded factor) is the risk premium.  

1.3 Simulation Results: Root Mean Square Error 

We also calculate the root mean square errors (RMSE) for the simulations. The error is 

simply the difference between the true risk premium and the risk premium estimated for each 

simulated replication, of which there are 1,000.  We call this the “ex ante” RMSE.  We also 
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calculate the difference between the estimated risk premium in each replication and the sample 

mean of the corresponding risk factor realizations and then compute its root mean square across 

1,000 replications. This is the “ex post” RMSE.  These RMSEs are reported in the Panel A of 

Table A2. Since the ex-ante and ex-post RMSEs are quite similar, we focus on the former.  

The ex-ante RMSEs with IV are uniformly smaller than with OLS; i.e., IV is considerably 

more accurate. For example, the CPI ex-ante RMSE is 0.082 for OLS, but just 0.026 for IV. Stein 

has smaller RMSE than OLS, but it is still larger than that of IV. OLS has the largest RMSE. LM 

has marginally smaller RMSE than OLS. Overall, the IV method dominates all other methods by 

the RMSE criterion.  

[Table A2 about here] 

1.4. The Size and Power of T-tests 

To estimate the size and power of T-tests for risk premia with the IV approach, we first 

consider the probability of rejecting the null hypotheses falsely, or the type I error. In simulation, 

we set the true risk premium equal to zero for all factors. Then we follow the simulation procedure 

to estimate risk premia and their corresponding T-statistic; i.e., the mean estimated risk premium 

divided by its corresponding standard error. We use a 5% level significance level (the critical value 

is 1.96) and calculate the frequency of the absolute value of T-statistic that is larger than 1.96 in 

1,000 replications. Panel B of Table A2 reports that the “size” of each macro factor is around five 

percent or slightly below.  

To examine the T-test power (the probability of rejecting the null hypothesis when the 

alternative hypothesis is true), we set the true premium to the mean risk premium estimated from 

a Fama-MacBeth two-pass regression with OLS. This is a relatively small risk premium (e.g., 

compared to that obtained with IV), thus implying a more conservative threshold for power. Panel 

B in Table A2 presents the results. The frequency of rejecting an incorrect null hypothesis that the 

risk premium is 70.9% for consumption growth and a bit higher for the other three macro factors. 

Overall, size and power tests indicate that a normal T-statistic delivers effective inferences about 

macro factor premiums.   
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Notably, all simulations are multivariate, except IV*. For the IV*, we use univariate 

regression to create FMP due to the condition of  β̂IV
′
β̂EV > 0. To estimate risk premia, like Panel 

C in Table 1, we use multivariate regression. That is, we create FMP for each factor independently. 

The second step is to test risk premia for FMP, where we use multivariate regression to estimate 

risk premia of all FMPs. 
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Table A1: Simulation on Biases of Mispricing and Risk Premia of Factor-Mimicking Portfolios 

This table reports biases in estimated risk premium from Monte Carlo simulations for factor-mimicking 

portfolios (FMPs). We simulate the stock returns and factors following the description in Appendix A. We 

create FMPs following the methods described Section 3. With these FMPs, we run cross-sectional 

regression again to estimate risk premia. The first lines shows the true risk premia for four macro variables 

when “Alpha” (mispricing) is set to be zero. The table reports estimated risk premia along with their mean 

biases across 1,000 replications, expressed as a percentage of the true value. Panel A presents risk premiums 

and biases on the instrumental variables (IV_unadjusted) method, IV method that only retains stocks whose 

betas in even and odd subsamples have same signs in IV method, OLS, sorting-by-beta (OLS-SB), 

Lehmann and Modest (1988)’s (LM), and Stein (1956). In Panel B, we present the time-series factor-

mimicking portfolios methods by using Lamont (2006)’s basis assets. Panel C presents the risk premia of 

FMPs computed from the estimated time-series coefficients in Panel A as a proxy for FMPs. We list IV, 

OLS and sorting-by-beta as example for cross-sectional approaches. The sample period is January 1964 to 

March 2016. To be included, individual stocks must have at least 60 continuous monthly returns on CRSP. 

The macro factors include unexpected consumption growth (CG), unexpected changes in the CPI (CPI), 

unexpected changes in industrial production (IP), and unexpected changes in the unemployment rate (UE).  

   
Alpha CG CPI IP UE 

True Risk Premium 0 0.2 -0.2 1.2 0.3 

 

Panel A: Cross-Sectional Methods 

IV 0.0055 0.2004 -0.2009 1.2043 0.3039   
0.2% 0.4% 0.4% 1.3% 

IV* -0.0003 0.2072 -0.2011 1.1732 0.3035 

  3.60% 0.55% -2.23% 1.17% 

OLS 0.1412 0.1426 -0.1147 0.6124 0.1499   
-28.7% -42.7% -49.0% -50.0% 

OLS-SB -0.0569 0.1379 -0.1774 1.1362 0.2685   
-31.05% -11.30% -5.32% -10.50% 

LM 0.2000 0.1367 -0.1150 0.6738 0.1555 

  -31.7% -42.5% -43.9% -48.2% 

Stein 0.0533 0.153 -0.1506 0.7485 0.2441 

  -23.5% -24.7% -37.6% -18.6% 

 

Panel B: Time-Series Method 

Time-series -5.0599 0.0861 -0.0803 0.7098 0.1624 

  -56.95% -59.85% -40.85% -45.87% 

 

Panel C: Use FMPs as Factors to estimate risk premia 

 

IV 0.0002 0.2068 -0.1942 1.1896 0.2948 
  3.40% -2.90% -0.87% -1.73% 

OLS 0.0010 0.1351 -0.1353 0.9272 0.2429 
  -32.45% -32.35% -22.73% -19.03% 

Time-series -5.0599 0.0861 -0.0803 0.7098 0.1624 
  -56.95% -59.85% -40.85% -45.87% 

OLS-SB -0.0128 0.1852 -0.1516 1.1448 0.2781 
  -7.40% -24.20% -4.60% -7.30% 
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Table A2: Simulation on RMSE, Size and Power T-Test 

Panel A reports the root mean square error (RMSE.) The ex-ante RMSE measures the mean difference 

between the estimated risk premium and the true risk premium. The ex-post RMSE measures the difference 

between the estimated risk premium and the risk factor’s realization.  The RMSEs are computed across 

1,000 replications in each simulation. Panel B shows the size and power of T-statistics for the IV method. 

Size is based on the 1.96 critical value (a 5% significance level.). It measures the probability of improperly 

rejecting a true null hypothesis (simulated here as truly zero risk premia.) Power is the probability of 

rejecting a false null hypotheses; in this case, the alternative (true) hypothesis consists of risk premia 

obtained from the OLS method, which are generally smaller than that of the other methods. 

 

Panel A: RMSE 

 

 
  CG CPI IP UE 

OLS Ex-ante 0.0700 0.0820 0.5906 0.1509 
 Ex-post 0.0690 0.0821 0.5901 0.1509 

IV Ex-ante 0.0549 0.0260 0.1318 0.0224 
 Ex-post 0.0520 0.0239 0.1287 0.0217 

LM Ex-ante 0.0850 0.0793 0.5312 0.1480 

 Ex-post 0.0812 0.0791 0.5400 0.1474 

Stein Ex-ante 0.0622 0.0473 0.4577 0.0585 
 Ex-post 0.0592 0.0456 0.4553 0.0581 

 

 

 

Panel B: Size and Power of T-test in IV approach 

  
CG CPI IP UE 

Size 4.9% 5.2% 4.3% 3.8% 

Power 70.9% 86.0% 83.1% 71.2% 
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Appendix B:  FMPs Constructed by Time-Series Approach with Different Set of Predictors  

         In this section, we evaluate the FMPs constructed by time-series approach with different set 

of predictors. In addition to constructing the time-series FMP (TS_FMP) and following Lamont 

(2001) in our main text, we examine three more methods. Giglio and Xu (2018) create FMPs with 

time-series approach using principal components (PCs) of a large set of portfolios as predictors. 

First, we apply their method and use the first 10 PCs  (The 10 PCs are constructed by 202 

portfolios3) as predictors, and construct TS_FMPs by using the fitted value from the regression. 

The FMPs are denoted by FMP_GX10PC. Second, we use 202 portfolios from Giglio and Xiu 

(2018) (these portfolios capture most of the cross-section anomalies) as the predictor to construct 

FMP (denoted by FMP_GX202). Time-series approach has a limitation because a large set of 

predictors in OLS regression suffers curse of dimensionality and overfitting problem. We mitigate 

this problem by applying the time-series approach with variable selection method to a large set of 

portfolios. We then adopt LASSO method to solve the overfitting problem and select predictors 

from the 202 portfolios, which is the third method, denoted by “FMP_GX202_LASSO”.   

        Table B1 summarizes the empirical results of the FMPs constructed by three methods above. 

Panel A lists the FMP correlation with original factors. FMPs created by FMP_GX202 have larger 

correlations with original factors than the other methods; however, FMP_GX202 suffers an 

overfitting problem, which boosts the correlation. Except for FMP_GX202, the other methods 

yield correlations lower than that by Lamont (2001) in Table 3.  

        Panel B shows the correlations between FMPs and the systematic risk of stock returns 

(covariance matrix).  All the factors from FMP_GX10PC and FMP_GX202_LASSO have 

significant correlation with systematic risk, indicating the methods can effectively extract risk 

components from noisy non-traded factors. However, CG and IP factors from FMP_GX202 are 

not significantly correlated with systematic risks.  

        Panel C shows the risk premia of these FMPs. Among three methods, the 

FMP_GX202_LASSO dominates the other two in terms of the magnitude and significance of risk 

                                           
3 These portfolios include 25 portfolios sorted by size and book-to-market ratio, 17 industry portfolios, 25 portfolios 

sorted by operating profitability and investment, 25 portfolios sorted by size and variance, 35 portfolios sorted by 

size and net issuance, 25 portfolios sorted by size and accruals, 25 portfolios sorted by size and beta, and 25 portfolio 

sorted by size and momentum. 
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premium, in which consumption growth and industrial production have significant risk premiums 

and robust when controlling the FMPs of Fama-French three factors. However, the magnitude and 

significance of the consumption growth of FMP_GX202_LASSO are still smaller that of FMP_IV 

in Table 3.  FMP_GX202 method leads to the smallest risk premium. It is noteworthy, although 

IP is significant, it has an opposite sign of what is predicted theoretically. Overall, these results 

show that FMPs constructed by time-series approach with using a large set of portfolios and their 

principal components do not outperform the FMPs constructed by cross-sectional approach.  
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Table B1: FMPs Constructed by Time-Series Approach with Different Set of Predictors  

This table presents the FMP examination when using different sets of predictors in time-series approach to 

construct FMPs. FMP_GX10PC is the FMPs that constructed by time-series approach using 10 principal 

components (from 202 Giglio and Xiu (2019) portfolios) as predictors. FMP_GX202 is the FMPs that 

constructed by time-series approach with 202 portfolios as predictors. FMP_GX202_LASSO is the FMPs 

that constructed by time-series approach with LASSO method to select predictors from 202 portfolios.  

Panel A displays the average correlations in five subsamples between FMPs and their underlying factors 

and the number of significant correlations (# Sig) at 1%  significance level in five subsamples similar to 

Panel A in Table 3 (first criteria). Panel B shows the correlations between FMPs and the systematic risk 

factors extracted from individual stock returns (the second criteria). Panel C presents the estimated risk 

premia (the third criteria).  

 

Panel A: FMP correlation with original factors 

 CG CPI IP UE MKT SMB HML 

FMP_GX10PC 0.213 0.256 0.093 0.092 0.997 0.986 0.926 

#Sig 2 4 1 1 5 5 5 

FMP_GX202 0.636 0.600 0.588 0.552 0.999 0.997 0.993 

#Sig 5 5 5 5 5 5 5 

FMP_GX202_LASSO 0.241 0.291 0.266 0.037 0.999 0.996 0.991 

#Sig 3 4 3 1 5 5 5 

 

Panel B: FMP correlation with covariance matrix  

 FMP Equity factors 

 CG CPI IP UE  MKT SMB HML 
FMP_GX10PC 

Avg t 3.71 3.57 3.63 2.81 9.62 2.65 5.55 

Avg t  (Sig. CC) 4.44 4.2 4.36 3.13 11.31 3.16 6.32 

# decades 4.40 4.00 4.80 3.60 4.60 3.20 4.40 
FMP_GX202 

Avg t 1 1.41 1.24 1.30 11.15 6.65 3.75 

Avg t  (Sig. CC) 1.08 1.68 1.26 1.44 20.93 12.48 6.76 

# decades 1.40 2.20 1.40 1.80 3.00 2.80 3.00 
FMP_GX202_LASSO 

Avg t 1.38 2.96 2.18 1.68 11.49 6.25 4.47 

Avg t  (Sig. CC) 1.56 3.98 2.66 1.81 17.07 9.23 6.40 

# decades 1.80 3.60 3.20 2.20 3.80 2.80 3.80 
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Panel C: Risk premium estimation of FMPs 

 

 Intercept CG CPI IP UE MKT SMB HML 

FMP_GX10PC 0.541*** 0.010* -0.001 -0.005* 0.001    

 (4.572) (1.934) (-0.370) (-1.696) (1.273)    

FMP_GX202 0.742*** 0.022 0.001 -0.03 0.007    

 (4.790) (1.130) (0.082) (-1.600) (1.607)    

FMP_GX202_LASSO 0.409*** 0.009** -0.002 -0.008** 0.007    

 (3.590) (2.378) (-1.056) (-2.369) (0.898)    

FMP_GX10PC 0.356*** 0.004 -0.003 -0.008** 0.000 0.575*** 0.227* -0.336*** 

 (5.253) (0.785) (-1.076) (-2.525) (0.638) (3.051) (1.779) (-2.931) 

FMP_GX202 0.357*** -0.011 -0.004 -0.026 0.003 0.558*** 0.193 -0.288** 

 (4.680) (-0.691) (-0.502) (-1.365) (0.661) (2.956) (1.462) (-2.344) 

FMP_GX202_LASSO 0.337*** 0.007* -0.003 -0.008** 0.006 0.559*** 0.219* -0.308** 

 (4.502) (1.835) (-1.538) (-2.221) (0.784) (2.954) (1.680) (-2.537) 
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Appendix C: Proof of Propositions 

Proof of Proposition 1: The objective function can be written as 

                                   (𝐸(𝑹) − 𝜷𝐸(𝒘′𝑹))
′
𝜮(𝐸(𝑹) − 𝜷𝐸(𝒘′𝑹))

= (𝐸(𝑹) −
𝑐𝑜𝑣(𝑓, 𝑹)

𝑣𝑎𝑟(𝒘′𝑹)
𝐸(𝒘′𝑹))

′

𝜮 (𝐸(𝑹) −
𝑐𝑜𝑣(𝑓, 𝑹)

𝑣𝑎𝑟(𝒘′𝑹)
𝐸(𝒘′𝑹)) 

Here, 𝜷 =
𝑐𝑜𝑣(𝑓,𝑹)

𝑣𝑎𝑟(𝑓)
=

𝑐𝑜𝑣(𝑓,𝑹)

𝑣𝑎𝑟(𝒘′𝑹)
. Recall that 𝒘𝒔 =

𝒘

𝑣𝑎𝑟(𝒘′𝑹)
. The above equation can be expanded to  

(𝐸(𝑹) −
𝑐𝑜𝑣(𝑓, 𝑹)

𝑣𝑎𝑟(𝒘′𝑹)
𝐸(𝒘′𝑹))

′

𝜮 (𝐸(𝑹) −
𝑐𝑜𝑣(𝑓, 𝑹)

𝑣𝑎𝑟(𝒘′𝑹)
𝐸(𝒘′𝑹))

= 𝐸(𝑹)′𝜮𝐸(𝑹) − 2(𝑐𝑜𝑣(𝑓, 𝑹)𝐸(𝒘𝒔
′𝑹))′𝜮𝐸(𝑹)

+ (𝑐𝑜𝑣(𝑓, 𝑹)𝐸(𝒘𝒔
′𝑹))′𝜮(𝑐𝑜𝑣(𝑓, 𝑹)𝐸(𝒘𝒔

′𝑹)) 

Take the first-order condition with respect to 𝒘𝒔, note that 𝐸(𝒘𝒔
′𝑹) is a scalar, we obtain:  

                 0 = −2𝑐𝑜𝑣(𝑓, 𝑹)′𝜮𝐸(𝑹)𝐸(𝑹) + 2(𝑐𝑜𝑣(𝑓, 𝑹))
′
𝜮(𝑐𝑜𝑣(𝑓, 𝑹))𝐸(𝑹)𝐸(𝑹)′𝒘𝒔. 

Rearrange the above equation; we obtain the equation (4).  

 

Proof of Proposition 2: From equation (17) (the first pass regression), with the assumption in the 

proposition, the estimated coefficient is 

                                                              𝛽̂𝑖 →
𝑐𝑜𝑣(𝑓̃,𝑅𝑖)

𝑣𝑎𝑟(𝑓̃)
=

𝑐𝑜𝑣(𝑓̃,𝑅𝑖)

𝑣𝑎𝑟(𝑓)𝑐
=

𝛽

𝑐
. 

The second equation is satisfied because commeasurable component 𝑓 and the measurement error 𝜀𝑓 are 

uncorrelated. 

        In the second pass, following Shanken (1992), the true model becomes 

                                                     𝑹𝑡
′ = (𝑓𝑡 − 𝐸(𝑓) + 𝛾)𝜷′ + 𝜼𝒕. 

The estimated coefficient in equation (18), therefore, becomes  
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                                     𝜆̂𝑡 →
𝑐𝑜𝑣(𝛽,̂𝑅𝑡)

𝑣𝑎𝑟(𝛽̂)
→

𝑐𝑜𝑣(
𝛽

𝑐
,𝑅𝑡)

𝑣𝑎𝑟(
𝛽

𝑐
)

= 𝑐(𝑓𝑡 − 𝐸(𝑓) + 𝛾). 

 

Proof of proposition 3: (1) In first pass regression, when T converges to infinity,  

                                               𝛽̂1
𝑖 →

1

𝐷𝐸𝑇1
(𝑣𝑎𝑟(𝑓2)𝑐𝑜𝑣(𝑓1, 𝑅𝑖) − 𝑐𝑜𝑣(𝑓1, 𝑓2)𝑐𝑜𝑣(𝑓2, 𝑅𝑖)). 

Replace 𝑹𝒊 = 𝜶𝒊 + 𝜷𝟏
𝒊 𝒇𝟏 + 𝜷𝟐

𝒊 𝒇𝟐 + 𝜺𝒊, and note that 𝜀𝑓1
is uncorrelated with factors and returns,  

                                               𝛽̂1
𝑖 →

1

𝐷𝐸𝑇1
𝛽1

𝑖(𝑣𝑎𝑟(𝑓1)𝑣𝑎𝑟(𝑓2) − 𝑐𝑜𝑣(𝑓1, 𝑓2)2). 

Similarly,  

𝛽̂2
𝑖 →

1

𝐷𝐸𝑇1
((𝑣𝑎𝑟(𝑓1) + 𝑣𝑎𝑟(𝜀𝑓1

))𝑐𝑜𝑣(𝑓2, 𝑅𝑖) − 𝑐𝑜𝑣(𝑓1, 𝑓2)𝑐𝑜𝑣(𝑓1, 𝑅𝑖)) 

                               → 𝛽2
𝑖 +

1

𝐷𝐸𝑇1
(𝑣𝑎𝑟(𝜀𝑓1

)(𝛽2
1𝑐𝑜𝑣(𝑓1, 𝑓2) + 𝛽2

𝑖 𝑣𝑎𝑟(𝑓2)). 

       (2) In the second pass, regress returns on 𝐵1
𝑖  and 𝐵2

𝑖 . Following Shanken (1992), the true model 

becomes 

                                  𝑹𝑡
′ = (𝑓1𝑡 − 𝐸(𝑓1) + 𝛾1)𝜷𝟏

′ + (𝑓2𝑡 − 𝐸(𝑓2) + 𝛾2)𝜷𝟐
′ + 𝜼𝒕. 

 the estimated coefficient for the factor 1 when both N and T go to infinity converges to: 

 𝜆̂1𝑡 →
1

𝐷𝐸𝑇2

𝑣𝑎𝑟(𝑓1)𝑣𝑎𝑟(𝑓2)−𝑐𝑜𝑣(𝑓1,𝑓2)2

𝐷𝐸𝑇1
(𝑣𝑎𝑟̅̅ ̅̅ ̅(𝐵2

𝑖 )𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽1
𝑖 , 𝑅𝑖) − 𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽1

𝑖 , 𝐵2
𝑖 )𝑐𝑜𝑣̅̅ ̅̅ ̅(𝐵2

𝑖 , 𝑅𝑖)) 

→
1

𝐷𝐸𝑇2

𝑣𝑎𝑟(𝑓1)𝑣𝑎𝑟(𝑓2)−𝑐𝑜𝑣(𝑓1,𝑓2)2

𝐷𝐸𝑇1
((𝑣𝑎𝑟̅̅ ̅̅ ̅(𝐵2

𝑖 )𝑣𝑎𝑟̅̅ ̅̅ ̅(𝛽1
𝑖) − 𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽1

𝑖 , 𝐵2
𝑖 )

2
) 𝛾1𝑡 + (𝑣𝑎𝑟̅̅ ̅̅ ̅(𝐵2

𝑖 )𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽1
𝑖 , 𝛽2

𝑖 ) −

𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽1
𝑖 , 𝐵2

𝑖 )𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽2
𝑖 , 𝐵2

𝑖 ))𝛾2𝑡).    

  (3) When 𝑐𝑜𝑣(𝑓1, 𝑓2) = 0, 𝐵2
𝑖 = 𝛽2

𝑖 (1 +
𝑣𝑎𝑟(𝜀𝑓1)𝑣𝑎𝑟(𝑓2)

𝐷𝐸𝑇1
). Then  

𝑣𝑎𝑟̅̅ ̅̅ ̅(𝐵2
𝑖 )𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽1

𝑖 , 𝛽2
𝑖 ) − 𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽1

𝑖 , 𝐵2
𝑖 )𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽2

𝑖 , 𝐵2
𝑖 ) = (1 +

𝑣𝑎𝑟(𝜀𝑓1)𝑣𝑎𝑟(𝑓2)

𝐷𝐸𝑇1
)

2

(𝑣𝑎𝑟̅̅ ̅̅ ̅(𝛽2
𝑖 )𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽1

𝑖 , 𝛽2
𝑖 ) −

𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽1
𝑖 , 𝛽2

𝑖 )𝑣𝑎𝑟̅̅ ̅̅ ̅(𝛽2
𝑖 )) = 0 . Hence,  𝑤2 = 0.  
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Proof of proposition 4:  𝑐𝑜𝑣(𝑢12, 𝑓1) = 𝑐𝑜𝑣 (𝑓2 −
𝑐𝑜𝑣(𝑓̃1,𝑓2)

𝑣𝑎𝑟(𝑓̃1)
𝑓1, 𝑓1) = 𝑐𝑜𝑣(𝑓2, 𝑓1)(1 −

𝑣𝑎𝑟(𝑓1)

𝑣𝑎𝑟(𝑓1)+𝑣𝑎𝑟(𝜀𝑓1)
) ≠

0. 

 

Proof of proposition 5: In the first pass, we regress return only on factor 1 with regression (24), even if the 

true model follows regression (23). Hence, as T converges to infinity, 

                                                   𝛽̂1
𝑖∗ →

𝑐𝑜𝑣(𝑓̃1,𝑅𝑖)

𝑣𝑎𝑟(𝑓̃1)
=

𝑐𝑜𝑣(𝑓̃1,𝛼𝑖+𝛽1
𝑖∗𝑓1

∗+𝛽2
𝑖∗𝑓2

∗+𝜀𝑖)

𝑣𝑎𝑟(𝑓1)+𝑣𝑎𝑟(𝜀𝑓1)
. 

By definition, 𝑓1
∗ = 𝑓1, 𝑐𝑜𝑣(𝑓1

∗, 𝑓2
∗) = 0. With regularity assumptions of measurement error and regression 

residuals,  

                                                 
𝑐𝑜𝑣(𝑓̃1,𝛼𝑖+𝛽1

𝑖∗𝑓1
∗+𝛽2

𝑖∗𝑓2
∗+𝜀𝑖)

𝑣𝑎𝑟(𝑓1)+𝑣𝑎𝑟(𝜀𝑓1)
→

𝑣𝑎𝑟(𝑓1)

𝑣𝑎𝑟(𝑓1)+𝑣𝑎𝑟(𝜀𝑓1)
𝛽1

𝑖∗ =
𝛽1

𝑖∗

𝑐
. 

In the second pass, we run regression (26), but the true model is  

                                                      𝑹𝒕′ = 𝛼𝑡 + 𝜆1𝑡𝜷̂1
∗ ′ + 𝜆2𝑡𝜷̂𝟐

∗ ′ + 𝝂𝒕, 

where  𝜆1𝑡 = 𝑓1𝑡
∗ − 𝐸(𝑓1

∗) + 𝛾1
∗ = 𝑓1𝑡 − 𝐸(𝑓1) + 𝛾1  and 𝜆2𝑡 = 𝑓2𝑡

∗ − 𝐸(𝑓2
∗) + 𝛾2

∗. 

          With the regularity assumptions, as both N and T go to infinity, the estimated coefficient for factor 1 

in regression (26)  

                                             𝜆̂1𝑡 →
𝑐𝑜𝑣̅̅ ̅̅ ̅(

𝛽1
𝑖∗

𝑐
,𝑅𝑖)

𝑣𝑎𝑟̅̅ ̅̅ ̅(
𝛽1

𝑖∗

𝑐
)

= 𝑐
𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽1

𝑖∗,𝛼𝑡+𝜆1𝑡𝛽̂1
𝑖∗′+𝜆2𝑡𝛽̂2

𝑖∗′+𝜈𝑡)

𝑣𝑎𝑟̅̅ ̅̅ ̅(𝛽1
𝑖∗)

. 

Since 𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽1
𝑖∗, 𝛽2

𝑖∗) → 0 as N goes to infinity, 𝜈𝑡 is uncorrelated with 𝛽1
𝑖∗, 

                                                    
𝑐𝑜𝑣̅̅ ̅̅ ̅(𝛽1

𝑖∗,𝛼𝑡+𝜆1𝑡𝛽̂1
𝑖∗′+𝜆2𝑡𝛽̂2

𝑖∗′+𝜈𝑡)

𝑣𝑎𝑟̅̅ ̅̅ ̅(𝛽1
𝑖∗)

→ 𝜆1𝑡. 

 

Proof of proposition 6: From regression (27) and the regularity assumptions, when T converges to infinity, 

                           𝒃̂ → 𝑽−1𝑐𝑜𝑣(𝑓1, 𝑹) = 𝑽−1𝜷1
∗ 𝑣𝑎𝑟(𝑓1). 

Therefore, when N converges to infinity since beta and regression residuals are uncorrelated, 

                                        
1

𝑁
𝒃′̂𝑹𝑡 →

1

𝑁
𝜷1

∗𝑽−1(𝑎 + 𝜷1
∗𝒇1𝑡 + 𝜷2

∗ 𝒇2𝑡)𝑣𝑎𝑟(𝑓1). 
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Proof of proposition 7: (1) When T converges to infinity, following proposition 5, 

                              
1

𝑇
∑ 𝜆̂1𝑡

𝑇
𝑡=1 → 𝑐

1

𝑇
∑ (𝑓1𝑡 − 𝐸(𝑓1) + 𝛾1) → 𝑐𝛾1

𝑇
𝑡=1 . 

(2) When T is finite, in the first pass regression (24), for any asset i, 

                                              𝛽̂1
𝑖 =

1

𝑇
∑ ((𝑓̃1𝑡−

1

𝑇
∑ 𝑓̃1𝑠

𝑇
𝑠=1 )(𝑅𝑡

𝑖−
1

𝑇
∑ 𝑅𝑠

𝑖𝑇
𝑠=1 ))𝑇

𝑡=1

1

𝑇
∑ ((𝑓̃1𝑡−

1

𝑇
∑ 𝑓̃1𝑠

𝑇
𝑠=1 )2)𝑇

𝑡=1

. 

Recall that 𝑓1𝑡 = 𝑓1𝑡 + 𝜀𝑓1
, the denominator can be written as  

    
1

𝑇
∑ ((𝑓1𝑡 −

1

𝑇
∑ 𝑓1𝑠

𝑇
𝑠=1 )2)𝑇

𝑡=1 =
1

𝑇
∑ ((𝑓1𝑡 −

1

𝑇
∑ 𝑓1𝑠

𝑇
𝑠=1 )2)𝑇

𝑡=1 +
1

𝑇
∑ ((𝜀𝑓1𝑡 −

1

𝑇
∑ 𝜀𝑓1𝑠

𝑇
𝑠=1 )2)𝑇

𝑡=1 +  

 2
1

𝑇
∑ ((𝑓1𝑡 −

1

𝑇
∑ 𝑓1𝑠

𝑇
𝑠=1 )(𝜀𝑓1𝑡 −

1

𝑇
∑ 𝜀𝑓1𝑠

𝑇
𝑠=1 ))𝑇

𝑡=1 = 𝑣𝑎𝑟(𝑓1) + 𝑣𝑎𝑟(𝜀𝑓1
) + (

1

𝑇
∑ ((𝑓1𝑡 − 𝐸(𝑓1))2)𝑇

𝑡=1 −

𝑣𝑎𝑟(𝑓1)) + (
1

𝑇
∑ ((𝜀𝑓1𝑡)2)𝑇

𝑡=1 − 𝑣𝑎𝑟(𝜀𝑓1
)) + 2

1

𝑇
∑ ((𝑓1𝑡 − 𝐸(𝑓1))(𝜀𝑓1𝑡))𝑇

𝑡=1 + 𝑜(
1

√𝑇
),  

where, (
1

𝑇
∑ ((𝑓1𝑡 − 𝐸(𝑓1))2)𝑇

𝑡=1 − 𝑣𝑎𝑟(𝑓1)) + (
1

𝑇
∑ ((𝜀𝑓1𝑡)2)𝑇

𝑡=1 − 𝑣𝑎𝑟(𝜀𝑓1
)) + 2

1

𝑇
∑ ((𝑓1𝑡 −𝑇

𝑡=1

𝐸(𝑓1))(𝜀𝑓1𝑡)) = 𝑂(
1

√𝑇
).  

The numerator can be written as  

1

𝑇
∑ ((𝑓1𝑡 −

1

𝑇
∑ 𝑓1𝑠

𝑇
𝑠=1 )(𝑅𝑡

𝑖 −
1

𝑇
∑ 𝑅𝑠

𝑖𝑇
𝑠=1 ))𝑇

𝑡=1 =
1

𝑇
∑ ((𝑓1𝑡 −

1

𝑇
∑ 𝑓1𝑠

𝑇
𝑠=1 + 𝜀𝑓1𝑡 −

1

𝑇
∑ 𝜀𝑓1𝑠

𝑇
𝑠=1 )(𝛼𝑖 +𝑇

𝑡=1

𝛽1
𝑖∗𝑓1𝑡

∗ + 𝜍𝑡
𝑖 −

1

𝑇
∑ (𝛼𝑖 + 𝛽1

𝑖∗𝑓1𝑡
∗ + 𝜍𝑡

𝑖)𝑇
𝑠=1 )). 

Since 𝑓1𝑡
∗ = 𝑓1𝑡, the above equation can be written as 

 𝛽1
𝑖∗𝑣𝑎𝑟(𝑓1) + 𝛽1

𝑖∗ (
1

𝑇
∑ ((𝑓1𝑡 − 𝐸(𝑓1))2)𝑇

𝑡=1 − 𝑣𝑎𝑟(𝑓1)) + 𝛽1
𝑖∗ (

1

𝑇
∑ ((𝑓1𝑡 − 𝐸(𝑓1))(𝜀𝑓1𝑡))𝑇

𝑡=1 ) +

1

𝑇
∑ ((𝑓1𝑡 − 𝐸(𝑓1))𝜍𝑡

𝑖)𝑇
𝑡=1 +

1

𝑇
∑ (𝜀𝑓1𝑡𝜍𝑡

𝑖)𝑇
𝑡=1 + 𝑜(

1

√𝑇
). 

Here 𝛽1
𝑖∗ (

1

𝑇
∑ ((𝑓1𝑡 − 𝐸(𝑓1))2)𝑇

𝑡=1 − 𝑣𝑎𝑟(𝑓1)) + 𝛽1
𝑖∗ (

1

𝑇
∑ ((𝑓1𝑡 − 𝐸(𝑓1))(𝜀𝑓1𝑡))𝑇

𝑡=1 ) +
1

𝑇
∑ ((𝑓1𝑡 −𝑇

𝑡=1

𝐸(𝑓1))𝜍𝑡
𝑖) +

1

𝑇
∑ (𝜀𝑓1𝑡𝜍𝑡

𝑖)𝑇
𝑡=1 = 𝑂(

1

√𝑇
). 

We define 𝑂(
1

√𝑇
, 𝜀𝑓1𝑡) as the error that comes from the measurement error in an order 𝑂(

1

√𝑇
).  Therefore, in 

the numerator, 𝑂 (
1

√𝑇
, 𝜀𝑓1𝑡) can be 𝛽1

𝑖∗ (
1

𝑇
∑ ((𝑓1𝑡 − 𝐸(𝑓1))(𝜀𝑓1𝑡))𝑇

𝑡=1 ) or 
1

𝑇
∑ (𝜀𝑓1𝑡𝜍𝑡

𝑖)𝑇
𝑡=1  or 
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𝛽1
𝑖∗ (

1

𝑇
∑ ((𝑓1𝑡 − 𝐸(𝑓1))(𝜀𝑓1𝑡))𝑇

𝑡=1 ) +
1

𝑇
∑ (𝜀𝑓1𝑡𝜍𝑡

𝑖)𝑇
𝑡=1 . In the denominator, 𝑂 (

1

√𝑇
, 𝜀𝑓1𝑡) can be any 

components in (
1

𝑇
∑ ((𝜀𝑓1𝑡)2)𝑇

𝑡=1 − 𝑣𝑎𝑟(𝜀𝑓1
)) + 2

1

𝑇
∑ ((𝑓1𝑡 − 𝐸(𝑓1))(𝜀𝑓1𝑡))𝑇

𝑡=1 . We also define 

𝑂 (
1

√𝑇
, 𝑂𝑡ℎ𝑒𝑟) as the error that does not come from the measurement error in an order 𝑂(

1

√𝑇
).     

With the equations above, the estimated coefficient 𝛽̂1
𝑖 = 𝛽1

𝑖 + 𝑂(
1

√𝑇
, 𝜀𝑓1𝑡) + 𝑂(

1

√𝑇
, 𝑂𝑡ℎ𝑒𝑟). 

        In the second pass regression (26), the estimated coefficient 

                                      𝜆̂1𝑡 =
1

𝑁
(∑ (𝛽̂1

𝑖 −
1

𝑁
∑ 𝛽̂1

𝑗𝑁
𝑗=1 )(𝑅𝑡

𝑖−
1

𝑁
∑ 𝑅𝑡

𝑗𝑁
𝑗=1 )𝑁

𝑖=1 )

1

𝑁
(∑ (𝛽̂1

𝑖 −
1

𝑁
∑ 𝛽̂1

𝑗𝑁
𝑗=1 )2𝑁

𝑖=1 )
. 

Replace 𝛽̂1
𝑖 = 𝛽1

𝑖 + 𝑂(
1

√𝑇
, 𝜀𝑓1𝑡) + 𝑂(

1

√𝑇
, 𝑂𝑡ℎ𝑒𝑟) in both numerator and denominators, following the similar 

derivation as in the first pass, we can show that  

                 𝜆̂1𝑡 = 𝑐(𝑓1𝑡 − 𝐸(𝑓1) + 𝛾1)(1 + 𝑂(
1

√𝑇
, 𝜀𝑓1𝑡)) + 𝑂(

1

√𝑇
) + 𝑜(

1

√𝑇
).  

Since the 𝑂 (
1

√𝑇
, 𝜀𝑓1𝑡) in the first pass is determined by 𝛽1

𝑖∗ (
1

𝑇
∑ ((𝑓1𝑡 − 𝐸(𝑓1))(𝜀𝑓1𝑡))𝑇

𝑡=1 ) +
1

𝑇
∑ (𝜀𝑓1𝑡𝜍𝑡

𝑖)𝑇
𝑡=1  

and (
1

𝑇
∑ ((𝜀𝑓1𝑡)2)𝑇

𝑡=1 − 𝑣𝑎𝑟(𝜀𝑓1
)) + 2

1

𝑇
∑ ((𝑓1𝑡 − 𝐸(𝑓1))(𝜀𝑓1𝑡))𝑇

𝑡=1 , which implies that 𝑐𝛾1 (1 +

𝑂 (
1

√𝑇
, 𝜀𝑓1𝑡)) will be the same over time. Hence, 

1

𝑇
∑ 𝜆̂1𝑡

𝑇
𝑡=1 = 𝑐𝛾1 (1 + 𝑂 (

1

√𝑇
, 𝜀𝑓1𝑡)) +

1

𝑇
∑ (𝑂(

1

√𝑇
, 𝜀𝑓1𝑡) + 𝑂(

1

√𝑇
, 𝑂𝑡ℎ𝑒𝑟)𝑇

𝑡=1 ) + 𝑜(
1

√𝑇
). The error that comes from the measurement error of the 

average estimator contains  𝑐𝛾1 (1 + 𝑂 (
1

√𝑇
, 𝜀𝑓1𝑡)), which is in the order of  𝑂(

1

√𝑇
). 

(3) When we use 𝜆̂1𝑡 as the FMP to repeat the analysis, in the first pass regression (24), 

                                         𝛽̂1
𝑖 =

1

𝑇
∑ ((𝜆̂1𝑡−

1

𝑇
∑ 𝜆̂1𝑠

𝑇
𝑠=1 )(𝑅𝑡

𝑖−
1

𝑇
∑ 𝑅𝑠

𝑖𝑇
𝑠=1 ))𝑇

𝑡=1

1

𝑇
∑ ((𝜆̂1𝑡−

1

𝑇
∑ 𝜆̂1𝑠

𝑇
𝑠=1 )2)𝑇

𝑡=1

. 

Following the similar derivation before, we can show that the denominator 

1

𝑇
∑ ((𝜆̂1𝑡 −

1

𝑇
∑ 𝜆̂1𝑠

𝑇
𝑠=1 )2)𝑇

𝑡=1 =
1

𝑇
∑ ((𝑐𝑓1𝑡 −

1

𝑇
∑ 𝑐𝑓1𝑠

𝑇
𝑠=1 )2)𝑇

𝑡=1 + 𝑂 (
1

√𝑇
, 𝑂𝑡ℎ𝑒𝑟) + 𝑂 (

1

𝑇
, , 𝜀𝑓1𝑡) + 𝑜(

1

√𝑇
). 

Similarly, the numerator  

1

𝑇
∑ ((𝜆̂1𝑡 −

1

𝑇
∑ 𝜆̂1𝑠

𝑇
𝑠=1 )(𝑅𝑡

𝑖 −
1

𝑇
∑ 𝑅𝑠

𝑖𝑇
𝑠=1 ))𝑇

𝑡=1 = 𝛽1
𝑖 1

𝑇
∑ ((𝑐𝑓1𝑡 −

1

𝑇
∑ 𝑐𝑓1𝑠

𝑇
𝑠=1 )2)𝑇

𝑡=1 + 𝑂 (
1

√𝑇
, 𝑂𝑡ℎ𝑒𝑟) +

𝑂 (
1

𝑇
, , 𝜀𝑓1𝑡) + 𝑜(

1

√𝑇
). 
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Thus, the estimated error that comes from the measurement error is only in the order of 𝑂(
1

𝑇
).  

        In the second pass regression (26), when we use the estimated beta above as the independent variable, 

the error of the coefficient that comes from the measurement error is also in the order of 𝑂(
1

𝑇
). The estimated 

risk premium is the time-series average of the coefficients. Thus, the measurement error component in the 

estimation risk premium in the repeated approach is also in the order of 𝑂(
1

𝑇
). 

 

Appendix D: Rationale for three criteria 

First criterion can be derived directly following the calculation of covariance between FMP return 

from Equation (10) 5 and corresponding factor: 

 cov(𝑓, 𝑹𝑽−𝟏𝜷[𝜷′𝑽−𝟏𝜷]−𝟏)                                                                                   

= cov(𝑓, (𝜶 + 𝜷𝑓 + 𝜺 )𝑽−𝟏𝜷[𝜷′𝑽−𝟏𝜷]−𝟏) = cov(𝑓, 𝑓)             

The second equation follows the decomposition of returns from Equation (1). The above 

covariance is not zero as long as the factor has nonzero variance. Therefore, the first criterion 

is: a FMP should be significantly correlated with its underlying factor.  

Second, a FMP should be correlated to the systematic risk in returns; i.e., to the principal 

component of covariance matrix of returns. To implement this criterion empirically, we apply 

the same necessary condition as that proposed by Pukthuanthong et al. (2019). This avoids the 

construction of FMPs that are driven only by idiosyncratic but not by systematic risk.  

To examine why the above criteria is necessary, assume that there is a systematic risk factor 𝐅𝐬, 

the returns can be written as 𝑹 = 𝒂𝒔 + 𝜷𝒔𝑭𝒔 + 𝜻, where 𝜷𝒔 is the loading of the returns on the 

systematic factor, 𝒂𝒔 is the missing pricing and 𝜻 is the idiosyncratic risk. Replace returns 

representation above in the Equation (10), we obtain: 

 𝑹𝑽−𝟏𝜷[𝜷′𝑽−𝟏𝜷]−𝟏 = (𝒂𝒔 + 𝜷𝒔𝑭𝒔 + 𝜻)𝑽−𝟏𝜷[𝜷′𝑽−𝟏𝜷]−𝟏                              

=𝒂𝒔𝑽−𝟏𝜷[𝜷′𝑽−𝟏𝜷]−𝟏 + 𝜷𝒔𝑭𝒔𝑽−𝟏𝜷[𝜷′𝑽−𝟏𝜷]−𝟏 + 𝜻𝑽−𝟏𝜷[𝜷′𝑽−𝟏𝜷]−𝟏 

                                           
5 Equation (10) represent expected value of the FMP return. In this appendix, we instead use the FMP return, which 

is 𝑽−𝟏𝜷[𝜷′𝑽−𝟏𝜷]−𝟏. 
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From the above equation, the first term is a constant. The third term is a linear combination of 

idiosyncratic errors, which is the idiosyncratic risk of the FMP. The second term represents the 

correlated part of FMP on the systematic risk. Since this term is a linear combination of systematic 

risk factors 𝑭𝒔, if FMP is not correlated with the systematic risk of stock returns, the second term 

is a constant. Assume that the idiosyncratic risks can be diversified,  𝜻𝑽−𝟏𝜷[𝜷′𝑽−𝟏𝜷]−𝟏 → 𝟎 if 

basis assets are individual stocks or if the basis asset is portfolios and the idiosyncratic risk for 

portfolios converges to zero. Hence, the above FMP degenerates to a constant number if the second 

term is zero, and it cannot represent the risk of the underlying factor. Therefore, only if second 

term is correlated with the risk factors 𝑭𝒔, FMP can present a genuine risk factor. 

The third criterion is that factor-mimicking portfolios must price individual assets; i.e., 

associated with risk premium.  

To illustrate this criterion, regress returns (R) on FMP return, the slope coefficient is, 

cov(𝑹′,𝑹𝑽−𝟏𝜷[𝜷′𝑽−𝟏𝜷]
−𝟏

)

var(𝑹𝑽−𝟏𝜷[𝜷′𝑽−𝟏𝜷]
−𝟏

)
=

cov(𝑹′,𝑹)𝑹𝑽−𝟏𝜷[𝜷′𝑽−𝟏𝜷]
−𝟏

(𝑹𝑽−𝟏𝜷[𝜷′𝑽−𝟏𝜷]
−𝟏

)
′
cov(𝑹′,𝑹)𝑹𝑽−𝟏𝜷[𝜷′𝑽−𝟏𝜷]

−𝟏
= 𝜷    

which is the beta coefficient of returns on the factor.  Hence, with the non-arbitrage assumption of 

the APT model, there is a linear relationship between expected returns and beta coefficient. i.e. 

E(𝑹) = 𝜇0 + 𝜇1𝜷. 

 

      

 

 

 

 

 

 

 

 


