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Rainy Day Liquidity

Abstract

Being the largest stakeholder in the corporate bond market with a cash flow largely in-

dependent of capital market conditions, insurance firms can provide liquidity in stressful

conditions. This paper models and presents evidence on this distinct role played by insur-

ers. We find that insurers’ corporate bond purchases improve bond liquidity while their

bond sales do not. Liquidity improvement is stronger in “rainy days”, e.g., during the fi-

nancial crisis, among low-rated and poor-liquidity bonds. Further, insurers’ funding and

holding horizon positively affect the liquidity of the bonds they purchase, highlighting the

link between funding ability and rainy day liquidity provision.

JEL Codes: G11; G22
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1 Introduction

Insurance companies are the largest institutional holders of corporate bonds. The U.S.

Flow of Funds Accounts report that life insurers alone held $2.6 trillion in corporate and

foreign bonds in 2018, which is significantly larger than either mutual funds or pension

funds did. Given the size of their holdings, insurance companies can conceivably have major

impacts on the dynamics of corporate bond liquidity. In particular, given that cash flow

in the insurance industry is largely independent of the macroeconomic conditions, insurers

arguably can provide liquidity to distressed corporate bonds and thereby play a conditional

role — which is referred to as rainy day liquidity provision hereafter.1

This argument can be based on insights from theoretical literature on financial intermedi-

ation. Brunnermeier and Pedersen (2008), for instance, show that bonds’ (market) liquidity

can be strongly correlated with traders’ capital constraints arising from time-varying mar-

gins, i.e., funding liquidity. Moreover, as Duffie (2010) notes, during periods of market stress,

it is difficult for dealers to offload inventory to potential buyers due to capital scarcity. Con-

sequently, when broker-dealers in the corporate bond market face tightening funding con-

straints, insurers with well-established relationships with dealers are more likely to provide

liquidity than their less established counterparties (Hendershott, Li, Livdan, and Schürhoff,

2017). Notably, the provision of liquidity to the illiquid and risky securities of insurers is

also supported by the asset insulator theory of Chodorow-Reich, Ghent, and Haddad (2019)

which suggest that insurers actively seek bonds with long-run value above market value.

We present a theoretical model to explain the role of insurers in the corporate bond

markets during stressful periods. In our setup, a monopolistic dealer aims to earn a spread by

trading with liquidity seekers while keeping his inventory costs at the minimum. Motivated

1Insurers’ role as active buyers of corporate bonds in stressful periods is consistent with the stylized fact
that insurance firms follow a “collect now, pay later” business model (Buffett, 2009). Premiums collected
by insurers are independent of capital market fluctuations. In addition, statutory reserve regulation affords
insurers the ability to record lower liabilities in a low interest environment (Koijen and Yogo, 2015), hide
their liabilities in captive insurance facilities (Koijen and Yogo, 2016), and report historical costs when asset
market values are low (Ellul, Jotikasthira, Lundblad, and Wang, 2015). See also Harrington, Niehaus, and Yu
(2013) and Berry-Stolzle, Nini, and Wende (2014) on the evidence regarding insurers’ operating profitability
and financing activities.
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by conventional wisdom (that is confirmed by our empirical findings), we assume that orders

from insurance companies are positively correlated across time and the magnitude of the

correlation is higher for buy orders. Under these market dynamics, buy transactions of

insurance firms can induce dealers to provide liquidity to distressed sellers as dealers have

lower inventory risk with the higher likelihood to sell these bonds to insurers in a short

period of time. Our model gives rise to three testable implications. First, insurers’ liquidity

provision mainly comes from their buy transactions, and insurers’ ability to offer liquidity

is stronger under rainy day conditions: financial crisis period, bonds with lower rating, and

relatively lower liquidity. Second, because purchases by insurers contain information about

their preferences for specific types of bonds, these bond purchases likely have an effect on

the liquidity of bonds with similar characteristics. Third, insurers with sufficient cash flow

are more likely to purchase distressed securities and provide rainy day liquidity.

Empirically, before examining the above three hypotheses, we analyze the dynamics of

the order flow from insurers to support the main assumptions made in our theoretical model.

We find that insurer transactions are positively correlated across time and compared to sell

orders, buy orders have higher persistence. These findings also hold during crisis periods,

supporting the assumptions of our theoretical model. Further, the persistence in buy orders

is more pronounced for insurers with stronger cash flow position.

We examine the effect of insurer transactions on the underlying bond’s liquidity, and

document that, on average, insurers’ bond purchases increase liquidity while insurers’ bond

sales either lower or have no effect on the bond liquidity. Using the Roll measure as an

example, on average, a 1 percent increase of insurers’ bond purchases reduces the median

illiquidity (i.e., trading costs) by 0.7 percent. Conversely, a 1 percent increase in insurer

bond sales leads to a 0.3 percent increase in the median trading cost measured by Roll.

Intuitively, this is because, on the buy side, insurers with persistent purchases can be easily

matched by market-makers with potential sellers. Insurers’ selling transactions, however, are

often induced by portfolio rebalancing needs, regulatory requirements, or liquidity concerns,

e.g., making unexpected claim payments (see e.g., Ellul, Jotikasthira, and Lundblad, 2011;
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Ellul, Jotikasthira, Lundblad, and Wang, 2015). In other words, heterogeneous motives for

buying and selling corporate bonds potentially drive asymmetric insurer buy and sell effects

on bond liquidity.

We then investigate whether bond liquidity improvement is mainly driven by insurers’

corporate bond purchases on “rainy days” — namely, during the financial crisis, among

poor-liquidity bonds, or among ”threshold bonds”.2 This is supported by our finding. Our

estimation shows that, a 1 percent increase in insurer bond purchases should give rise to a

1.6 percent decrease in median illiquidity for illiquid bonds group, a 1.5 percent decrease in

median illiquidity for threshold bonds, and a 3 percent decrease in median bond illiquidity

during the financial crisis using the Roll measure as an example. The magnitude is much

greater than the average liquidity effect from insurer bond purchases. Our results imply that

as long-horizon investors with relatively stable funding, insurance companies may quieten

market shocks. This finding is consistent with Cella, Ellul, and Giannetti (2013), who show

that stocks held by long-horizon investors are less susceptible to amplified market shocks

compared to stocks held by short-term investors.

Would insurers’ bond trading affect the liquidity of bonds not traded by insurers? Prior

works document that securities sharing similar characteristics tend to comove in liquidity

(e.g., Chordia, Roll, and Subrahmanyam, 2000; Koch, Ruenzi, and Starks, 2016). Applying

this to the corporate bond setting, we hypothesize a liquidity spillover effect that insurers’

bond purchase potentially contains information on insurers’ preference for bonds of that

particular type, increasing liquidity of such bonds. To test this hypothesis, we match bonds

with the same ratings, same remaining maturity in years, and same liquidity quintile group

as bonds purchased by insurers. We find that buy-side cross trading by insurers positively

affects bond liquidity on rainy days. Importantly, this finding strengthens our argument for

rainy day liquidity provision by insurance firms as it shows that the transactions of insurers

not only improve the liquidity of the traded bonds, but also influence the liquidity of other

2Threshold bonds are bonds rated around the threshold between investment-grade and high-yield ratings.
Studies show that insurers prefer such bonds for their higher yields (see, e.g., Becker and Ivashina, 2015;
Chodorow-Reich et al., 2019). Threshold bonds account for a third of corporate bonds while insurers’
investments in such bonds account for over 45% of their corporate bond holdings.
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bonds potentially appealing to insurers’ portfolios.

A primary ingredient for insurers to provide rainy day liquidity is the independence of

insurers’ cash flow to capital market conditions. We confirm this by showing that insurers’

cash flows are uncorrelated with S&P 500 index performance, and complement this finding

by showing that insurers with better funding ability are more persistent in their bond pur-

chases. Subsequently, we conduct cross-sectional analysis to test the link between insurers’

funding ability and rainy day liquidity provision. We break insurers down into subgroups

based on their cash flow or portfolio turnover. We find that insurers with robust cash flows

from operations and those with long investment horizons, such as life insurers, purchase

more threshold bonds than insurers with weak cash flows or short horizons. The liquidity

improvement in threshold bonds purchased by well-funded insurers is higher compared to

those purchased by insurers with poor funding ability.

Finally, we use the Dodd-Frank Act implementation as an experiment to test insurers’

role in rainy-day liquidity provision, given that the adoption of the Dodd-Frank Act report-

edly weakens bank-affiliated dealers’ ability to supply liquidity (Bessembinder, Jacobsen,

Maxwell, and Venkataraman, 2018). If insurers are able to offer liquidity in rainy conditions,

they ought to provide liquidity to bonds sold by bank-affiliated dealers. We perform the

analysis by differentiating the liquidity effects of insurer bond purchases around the event

between bonds transacted by bank- and nonbank-affiliated dealers. Consistent with our

expectation, we find that insurers bond purchase after the Dodd-Frank Act increases the

liquidity of bonds executed by bank-affiliated dealers more than those executed by nonbank

dealers.

This paper fits into the literature that explores the impact of insurance companies on

corporate bond liquidity. There are two related papers to our study in the context of studying

insurers’ corporate bond transactions. One related study is O’Hara, Wang, and Zhou (2018)

which investigate execution quality issues in corporate bond trading. Their key finding is

that an insurance company entering into a trade of similar size on the same side and day for

the same bond with the same dealer will receive a better price if it is an active investor i.e.,
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this insurer holds more corporate bonds than the median holdings of all insurance companies.

In other words, less active investors pay higher execution costs in the corporate bond market.

Our paper differs from this study in terms of its research objectives. Namely, we study the

active (positive) roles of insurance companies and bond dealers in supplying liquidity, while

they uncover cross-sectional differences in trading costs of insurance companies. Another

related study is Hendershott et al. (2017) who examine the implications of the network of

insurers and dealers in cases where insurers form optimal size dealer networks by trading

off increased search intensity against bargaining costs. Larger insurers with higher trading

intensity are more likely to form more relations with additional dealers to increase execution

speed and enhance their bargaining position to receive better prices. Our paper differs from

this study by focusing on insurers’ liquidity provision in rainy days.

The role of insurers on bond liquidity contrasts the traditional prior that passive investors

often reduce market liquidity. It is also quite different from the role played by other financial

intermediaries, such as broker-dealers and hedge funds as insurers offer liquidity when it

is really needed by the market. Brunnermeier and Pedersen (2008) theorize that bond

(market) liquidity is strongly correlated with traders’ capital constraints arising from time-

varying margins, i.e., a trader’s funding liquidity. While their model is not specific on the

funding liquidity of broker-dealers, they focus on the homogeneity of speculators’ funding

demand. In their framework, margins can lead to sudden liquidity dry-ups when speculators

realize small losses. Liquidity provision by such investors is pro-cyclical.3 Contrarily, we

show that insurers improve liquidity in bad times when other intermediaries scale back in

their liquidity provision activities. Without insurers’ participation, the bond market liquidity

could be much worse.

The remainder of the paper is organized as follows. Sections 2 introduces our model

that characterizes the role of insurance companies in providing rainy day liquidity. Section

3 discusses testable hypotheses implied from the model. Section 4 describes the data and

3Consistent with this view, theoretical models and empirical evidence, e.g., He and Xiong (2012), Dick-
Nielsen et al. (2012), and He and Milbradt (2014), suggest that liquidity risk is strongly correlated with
credit risk, a phenomenon which could be attributed to the status of capital market.
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sample used. Section 5 presents the empirical findings. Section 6 concludes.

2 The Model

In this section, we present a simple theoretical model to introduce the role of insurance

companies during stressful periods. Since insurance companies are buy and hold investors,

they are typically expected to reduce security liquidity. We, however, formalize this trading

behavior of the insurers with persistent buying activity and illustrate that this correlated

order flow may incentivize dealers with inventory aversion to provide liquidity to distressed

sellers.

2.1 Inventory-averse dealer in the corporate bond market

Our model is inspired from the high-frequency market making model of Aı̈t-Sahalia and

Sağlam (2017), with a monopolistic dealer on a single corporate bond. We specifically aim

to examine the liquidity of the bond around a distressed state in which there is a net selling

trading interest. The dealer in this market acts exclusively as a market maker by maintaining

bid and ask prices of the bond. Investors wishing to trade the bond will contact the dealer

to transact at these prices. The quantity of each order is fixed at z dollars represented in

terms of the face value. For example, the average order size in the corporate bond market is

roughly $1 million.

We assume that the dealer can quote bid and ask prices around the fundamental value

of the asset, Xt, which is exogenously available. The minimum price at which the dealer is

willing to sell the asset is Xt + δ with δ > 0 while the minimum price at which he is willing

to buy the asset is Xt − δ. We will refer to these prices as the best ask and the best bid

prices. Formally, `at = 1 (`bt = 1) will imply that the dealer is quoting at the best ask (bid)

at time t, and similarly, `at = 0 (`bt = 0) means that the dealer does not want to engage in

a transaction at the ask (bid) side. The market will have the highest liquidity when `at = 1

and `bt = 1 simultaneously.
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There are two types of liquidity seekers in the market: non-insurance traders (NITs) and

insurance companies (ICs). Both types of the liquidity seekers trade with the dealer, if the

dealer has an active quote in the appropriate side of the market. NITs contact the dealer for

trade execution at a Poisson intensity of λ. We assume that y > 1
2

share of NITs would like

to sell the corporate bond to dealer whereas 1− y share of them would like to buy the bond.

This assumption is due to our interest in studying liquidity dynamics around a distressed

state in which the bond is under a strong selling pressure. Finally, we assume that there is

no serial dependence between successive order requests of the NITs.

ICs arrive to the market with Poisson intensity µ and the sign of their orders follows a

two-state Markov chain. Conditional on a buy order, the next IC order is a buy order with

probability p ≥ 1
2
. Similarly, conditional on a sell order, the next IC order is a sell order

with probability q ≥ 1
2
. We obtain the following transition probability matrix:

P =


Buy Sell

Buy p 1− p

Sell 1− q q


Note that this transition probability matrix determines the stationary probability of

buy and sell orders, πbuy and πsell. Letting π =
[
πbuy πsell

]
, the stationary probabilities are

obtained by solving for πP = π and πbuy+πsell = 1. These equations imply that πbuy = 1−q
2−p−q .

Therefore, in the long run, the probability of buy orders increases as p increases. We are

specifically interested in the parameterization where 1 > p > q > 1
2

as implied by our

empirical analysis in Section 5.1. In this setting, πbuy >
1
2
, i.e., buy orders from ICs are

more likely in the long run. These statistics suggest that in rainy day conditions, insurers’

persistent buying activity can induce the dealer to provide liquidity in both sides of the

market. Our model will formalize this economic insight in the remainder of this section.

We assume that the dealer’s profit is based on the frequency of trades he engages with

the liquidity seekers. In each trade, he earns the spread between the fundamental value

and the transaction price, δ. He discounts these profits at a rate of β > 0. The dealer’s

position in the bond is denoted by xt which will be an integer multiple of z dollars. This
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position can be positive or negative. We assume that the dealer penalizes himself for holding

excess inventory at a rate of Γ|xt| where Γ is a constant parameter of inventory aversion. In

practice, limiting or penalizing inventory is one of the primary sources of risk mitigation by

market makers.

The dealer’s objective is therefore to maximize his expected discounted rewards earned

from the bid-ask spread minus the penalty costs from holding an inventory in a continuous

time model. Let ` be any feasible policy that chooses `bt and `at . Formally, the dealer

maximizes

max
`

E`
[
δ
∞∑
i=1

e−βT
sell
i 11

(
`bT sell

i
= 1
)

+ δ

∞∑
j=1

e−βT
buy
j 11

(
`a
T buy
j

= 1
)
− Γ

∫ ∞
0

e−βt|xt|dt

]
(1)

where T sell
i is the ith sell order and T buy

j is the jth buy order from the liquidity seekers.

2.2 Discrete-time representation

The model is set-up in continuous time but there is a key advantage of our model’s Poisson-

based setup that allows us to represent the model in discrete-time. The reason is that we can

merge the two Poisson time clocks λ and µ into a single one arriving at the combined Poisson

rate of λ+ µ, and determine the dealer’s actions at the resulting discrete event times. That

is, the dealer’s maximization problem in continuous-time can be equivalently represented in

a discrete-time Markov Decision Process (MDP). We first discuss the state and the action

space of the MDP and the resulting value function.

The state space in our model can be represented by the pair of (x, s) where x denotes

the current holdings of the dealer with x ∈ {. . . ,−2,−1, 0, 1, 2, . . .} and s is the most recent

insurance order received by the dealer, with s ∈ {B, S}. Here B denotes the buy order and

S denotes the sell order submitted buy an IC. The corresponding action taken by the dealer

at each state is whether to quote at the best bid and/or best ask, i.e., `bt(x, s) ∈ {0, 1} and

`at (x, s) ∈ {0, 1}. To focus on the main hypotheses derived from the model, we relegate the

detailed construction of the MDP to the Internet Appendix, where we also provide the proofs

of the results stated in the remainder of this section. Specifically, we compute the transition
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probabilities of the system, and the dealer’s reward function, as a function of his actions.

2.3 Optimal market making policy

The optimal policy of the dealer internalizes the classical trade-off in inventory-based market

making problems, i.e., quoting to capture the spread as often as possible versus the risk

of quoting too much and having non-zero inventory. In addition to this, due to the IC’s

correlated order flow, the dealer should also differentiate his quoting pattern based on the

direction of the last order submitted by an IC. We first state the Hamilton-Jacobi-Bellman

optimality equations:

Proposition 1. The dealer’s value function v(x, s) derived from holding inventory x when

the last insurance order is s satisfies the equations

v(x,B) = −γ|x|+ α

λ+ µ

(
max

{
δ(yλ+ (1− p)µ) + v(x+ 1, B)yλ+ v(x+ 1, S)(1− p)µ,

v(x,B)yλ+ v(x, S)(1− p)µ
}

+ max
{
δ((1− y)λ+ pµ) + v(x− 1, B) ((1− y)λ+ pµ) ,

v(x,B)((1− y)λ+ pµ)
})

v(x, S) = −γ|x|+ α

λ+ µ

(
max

{
δ(yλ+ qµ) + v(x+ 1, S)(yλ+ qµ), v(x, S)(yλ+ qµ)

}
+ max

{
δ((1− y)λ+ (1− q)µ) + v(x− 1, S)(1− y)λ+ v(x− 1, B)(1− q)µ,

v(x, S)(1− y)λ+ v(x,B)(1− q)µ
}

where

α ≡ λ+ µ

λ+ µ+ β
, and γ ≡ Γ

λ+ µ+ β
. (2)

This proposition illustrates that the dealer optimally chooses to quote at a particular side

of the market by computing the corresponding value functions associated with each action.

We solve these value functions using the policy iteration algorithm (see e.g., Puterman, 2014).

Further, the following theorem, which we prove in the Internet Appendix, states that the

optimal quoting policy of the dealer is based on inventory limits depending on the direction

of the last order from an IC:
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Theorem 1. The optimal quoting policy π∗ of the dealer aims to quote at the best bid and

the best ask according to a threshold policy:

`b∗(x,B) =

1 when x < L∗bB,

0 when x ≥ L∗bB,

`∗a(x,B) =

1 x > L∗aB,

0 x ≤ L∗aB.

`b∗(x, S) =

1 when x < L∗bS,

0 when x ≥ L∗bS,

`∗a(x, S) =

1 x > L∗aS,

0 x ≤ L∗aS.

Theorem 1 provides the structure of the quoting policy based on inventory limits. The

policy iteration algorithm allows us to compute these inventory limits. Intuitively, the dealer

does not quote to buy (sell) if his inventory is already too large in the long (short) side. Here,

one interesting feature is that the inventory limits depend on the most recent order of the

ICs. Given the selling pressure in the market with y > 1
2
, the dealer may not quote at the

bid side at an inventory level x, when the state s were S, but he may want to quote to buy at

the same inventory level if s = B. Further, the inventory limits will not be symmetric across

the bid and the ask side due to larger share of sell orders from NITs and the asymmetric

correlation of ICs’ consecutive buy and sell orders.

2.4 Empirical Predictions of the Model

We analyze the predictions of the model using a realistic calibration. We are specifically

interested in the regime where sell orders from NITs are much more likely than buy orders

from ICs, i.e., λy > µπbuy. We consider that the dealer makes quoting decisions at the daily

level. We assume that the dealer receives 20 orders from NITs and 5 orders from ICs on

each trading day, each for $1 million of the par value. If a transaction occurs, the dealer

makes δ = $20,000 which amounts to 2% of the par value. We assume that inventory costs

of the dealer is Γ = $50,000 per $1 million inventory which amounts to 5% of the par value.

We set y = 0.75 implying that 75% of the orders from NITs are sell orders. Our empirical

analysis in Section 5.1 finds that p > q, thus we use p = 0.8 and q = 0.55 in our base

calibration. Finally, β is taken to be 0.04% which corresponds to an annual rate of 10%. In
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the Internet Appendix, we show with different calibrations that the main predictions of the

model remains the same.

We solve for the optimal limits using this calibration: L∗bB = 1, L∗bS = 0, L∗aB = −6 and

L∗aS = −6. These limits illustrate that in the presence of selling pressure, the auto-correlation

of insurance buy orders are helpful to the dealer in quoting the tightest spread. When the

dealer has zero inventory and the last insurance order is a buy order, the dealer is willing

to buy from NICs. This willingness disappears if the last insurance order is a sell. If there

were no imbalance in the order requests of the NITs, the autocorrelation in the insurance

orders would disincentivize the dealer to quote to buy or sell but in the presence of selling

pressure, the autocorrelation in the buy orders can induce the dealer to provide liquidity

to the distressed sellers if they have recently interacted with an insurance buy order. The

persistence in the insurance buy orders can improve the liquidity of the bond in a stressful

state.

We also quantify the fraction of observing the tightest spread market in which the dealer

is quoting at both sides of the market as a function of p. This probability can be used as

a liquidity proxy. Under the dealer’s optimal policy, the model is governed by a finite-state

Markov Chain. Let Popt be the probability transition matrix defined on this finite state space

under the optimal policy. Since the Markov Chain is aperiodic and irreducible, a stationary

distribution ν exists for this Markov Chain, which solves νPopt = ν. Using the stationary

distribution, we can compute the fraction of the time, the dealer is quoting at both sides of

the market.

The left panel in Figure 1 illustrates that as p increases, the fraction of the time the

dealer quotes in both directions increases. As p increases, the dealer is more incentivized

to provide liquidity to distressed sellers when s = B. Further, the long run probability of

observing s = B increases as p increases, and the overall liquidity, measured by the fraction

of the time the dealer is quoting at both sides, improves in the long run.

We investigate how the dealer responds to an increasing intensity in the arrival of in-

surance orders. The right panel in Figure 1 illustrates that as µ increases, the fraction of
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the time the dealer quotes in both directions increases. The increase in the arrival rate

of the insurance companies lead the dealer to lower his inventory cost expectations and he

ultimately quotes more frequently at the both side of the market, all else equal.

Finally, we study how the improvement in liquidity varies as a function of the persistence

in ICs’ buy orders and the arrival rate of IC orders when the dealer faces higher selling

pressure or higher inventory costs. In both cases of distress, the absolute level of liquidity

would drop due to the higher order imbalance and inventory costs. However, in these cases, a

small increase in the persistence of IC buy orders or the arrival rate of IC orders can improve

the liquidity more compared to the increase in the benchmark case. Figure 2 illustrates this

insight numerically. We observe that although the fraction of quoting in both sides drops

when the dealer faces higher selling pressure or inventory costs in all four cases, the slope

of the liquidity curve is steeper in markets with higher selling pressure and higher inventory

costs. Overall, this finding implies that the improvement in liquidity can be much higher in

adverse market conditions, such as higher selling pressure or higher inventory costs.

3 Hypotheses

In this section, we introduce three main testable hypotheses that arise from our theoretical

model.

First, viewed as buy-and-hold investors, insurers’ buy transactions are more persistent

than their sell transactions. This results in the following hypothesis:

Hypothesis 1 (Rainy day liquidity). Insurers’ buy (sell) transactions improve (deteriorate)

future bond liquidity in times of selling pressure.

This hypothesis emerges directly from the impact of the state variable s on the optimal

quoting policy. In the context of the model, buy transactions can be interpreted as being in

state B. In this case, since there is higher likelihood of observing buy orders from insurers

in the subsequent periods, the dealers will be incentivized to provide more liquidity to the

distressed sellers. Figure 1 illustrates this intuition graphically. When the insurance buy
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orders have higher auto-correlation in the presence of selling pressure, the dealer can quote

in both sides of the market more frequently.

Note that this hypothesis is also supported by two streams of the prior literature. First,

Brunnermeier and Pedersen (2008) relate the (market) liquidity of an asset to dealers’ fund-

ing liquidity and show that bond market liquidity is affected by traders’ funding capital

and margin constraints. In a distressed market where investors are eager to sell their posi-

tion, the persistence in insurers’ bond purchases eases dealers’ capital constraints, making

them more likely to post narrower bid-ask spreads. Consistent with Choi and Huh (2017)

introducing the notion of customer provided liquidity, our hypothesis focuses on the mech-

anism for the liquidity provided by insurers. Second, it is also related to the search theory

(Duffie, Gârleanu, and Pedersen, 2005, 2007) under which insurers and dealers maintain tight

relationships in repeated business, which can minimize search costs under severe market con-

ditions. Aggregate buy transactions of insurance companies signal the dealers their future

search costs to identify potential buyers will be lower. Given that insurance companies look

for bonds with certain characteristics (e.g., long-term, investment grade), the dealers may

be more incentivized to facilitate trading in these types of bonds even under market stress,

as they are confident that they can sell these bonds to insurance companies with existing

trading relationship.

Next, we conceive that insurers’ bond purchases could affect the liquidity of assets not

purchased by insurers. As insurers’ purchases of a bond potentially reveals their preference

of bonds of certain characteristics, we expect that the purchase of a specific bond improves

the liquidity of other bonds with similar characteristics under adverse conditions and among

unpopular bonds. In other words, there are potential positive cross correlations among bonds

purchased by insurers and those with matching characteristics. This hypothesis would be

supported directly from our model, if the model were extended to multiple corporate bonds,

which are under selling pressure by NITs and there is cross correlation between ICs’ buy

purchases on these multiple bonds. This extension leads to our second hypothesis on liquidity

spillover effect across bonds.
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Hypothesis 2 (Cross bond liquidity spillover). Under rainy conditions, insurers’ bond pur-

chases could favorably influence the liquidity of similar bonds that are not directly purchased

by insurers.

This hypothesis is consistent with the literature on commonality in liquidity emanat-

ing from Chordia, Roll, and Subrahmanyam (2000)’s finding that liquidity covaries strongly

across securities. Brunnermeier and Pedersen (2008) provide a theoretical support by illus-

trating market liquidity has commonality across securities.

The third hypothesis is related to insurers’ funding. An important factor driving insurers’

bond purchases is their funding ability. In the context of our model, higher funding ability

could be attributed to higher µ. This higher funding ability can also signal larger propensity

to purchase corporate bonds in the next period, i.e., higher autocorrelation in ICs’ bond

purchases, and higher long run probability of buy orders. In both cases, we expect the

rainy day liquidity effect to be stronger for insurers with higher cash flows. Thus, our final

hypothesis is directly based on the predictions of our model.

Hypothesis 3 (Funding liquidity at the micro level). Better funded insurers are more likely

to supply rainy day liquidity.

This hypothesis is aligned with the asset insulator theory proposed by Chodorow-Reich

et al. (2019) emphasizing insurers’ ability, as a group, to target specific assets which have

temporarily dropped in value while institutions engaging in such activities benefit from stable

sources of funds. It is consistent with the main finding of Ge and Weisbach (2019) that less

financially constrained insurers hold riskier and less liquid securities.

4 Data

We use the data from the National Association of Insurance Commissioners (NAIC), the

Mergent Fixed Investment Securities Database (FISD), and the enhanced version of Trade

Reporting and Compliance Engine (Enhanced TRACE). While the NAIC and FISD data go
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back to the 1990s, July 2002 is the starting point of the Enhanced TRACE dataset. Our

sample period is from July 2002 to December 2014.

State regulations require insurance companies to disclose their annual portfolio holdings

and transactions on stocks, bonds and other securities. Such information is included in

insurers’ Schedule D filings to state insurance departments. We list 15 insurers with the

highest corporate bond purchases and sales (in terms of bond par values) during the sample

period in the Internet Appendix. Most insurers actively buying or selling corporate bonds

are life insurance companies.

Insurers are required to report counterparties involved in their transactions in the Sched-

ule D. In the bond transaction section, the supermajority of reported counterparties are bond

dealers. We manually clean-up this data by removing non-trading related observations such

as coupon payments, payments to maturing bonds and called bonds, and eliminating direct

transactions among insurers (accounting for less than 0.3% of transactions). This results in

a total of 896 bond dealers.

4.1 Sample

As summarized in Table 1, we construct the sample in three steps. In the first step, we get

insurer daily transactions of corporate bonds from Schedule D of the NAIC database. To

do so, we first get the “universe” of insurers’ bond transactions; non-trading events (e.g.,

maturity, redemption, call, sinked fund, and conversion) are excluded. When an insurer

has multiple transactions for the same bond in one day, we aggregate par values of these

transactions to obtain the insurer’s daily transaction amount of that bond. Panel A of Table 1

reports 3,401,354 daily insurer buy transactions and 2,610,027 daily insurer sell observations.

As such, insurers engage in buy-side transactions more often than in sell-side transactions.

Next, we obtain the full list of corporate bonds from the FISD database, including asset

backed securities, convertible bonds, debentures, letter of credit backed bonds, medium-

term notes, papers, pass-through trusts, payment-in-kind bonds, strip bonds, zero-coupon
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bonds, insured debentures, and bank notes for the US corporations.4 Combining the NAIC

bond transactions and the FISD corporate bonds, we have insurer corporate transactions at

the daily level.

Subsequently, we apply filters to ensure the quality of the combined data – if for a given

bond, an insurer’s inferred year-end par value is below 90% or above 110% of the reported

year-end par value, we exclude that year’s observations on the bond for that insurer from

the sample. If more than 10% of observations are excluded for an insurer during a given year

for this reason, we exclude all observations in that year for the insurer.5 As reported in the

last row of Panel A, there are 1,588,998 insurer-bond-day observations, including 958,798

insurer-bond purchases and 630,200 insurer-bond sales at the end of the first step.

The second step is to obtain a sample of insurer holding and trading at the bond-insurer

level in the monthly frequency. We sum up daily observations in the same month for each

insurer to obtain monthly insurer-bond transactions (924,895 buys vs. 603,178 sells as re-

ported in Panel B). The similar numbers of observations in daily and monthly observations

provide us information about the frequency of insurer trades. That is, insurers typically do

not repeatedly buy or sell the same bond within a month. We merge insurer-bond monthly

trades with the TRACE-based bond illiquidity data.6 We set 0 for an insurer’s transaction

amount of a bond in a month where bond illiquidity is available but insurer bond transaction

data is not available. Alternatively, we drop an insurer-bond-month observation if illiquidity

measures are unavailable. Finally, we remove trades within 60 days after initial offerings

4Bonds with missing data on key characteristics such as coupon rate, par value, and credit ratings are
excluded. We do not consider variable coupon rate bonds, denominated in a foreign currency bonds, or
preferred securities. Bonds with less than one year maturity are also not considered because of high pricing
errors according to Lin, Wang, and Wu (2011).

5To measure inferred insurer’s year-end holding on a bond, similar to Chen, Huang, Sun, Yao, and Yu
(2018), we start with the par value of its holding of the bond at the beginning of the year, and then add the
par value of the insurer’s net purchases on this bond from the beginning of the year to the end of the year.
The insurer’s net purchase of a bond is the aggregate buying amount minus the aggregate selling amount.

6Given that our liquidity measures, discussed in Section 4.2, are TRACE based, we follow Dick-Nielsen
(2009, 2014) to clean Enhanced TRACE dataset by deleting known errors and double-counted interdealer
transactions. We further use the median and the reversal filters from Edwards, Harris, and Piwowar (2007)
to smooth extreme observations. Transactions with unreasonable prices and defaulted bond transactions are
excluded. In total, these filters remove roughly 38% of transactions originally included in TRACE.
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(to focus on trades in the secondary market) and trades for bonds within 1-year remaining

maturity (to focus on relatively long-term bonds). There are 1,614,284 insurer-bond-month

observations, including 829,967 purchases and 784,317 sales.7

Insurers’ NAIC data include dates of individual bond transactions, allowing us to aggre-

gate daily transactions to estimate monthly holding and trading for every insurer. We use

monthly data instead of daily data for two reasons. First, insurers are low frequency traders.

Over 96% of trading days have no trading records from insurers; if daily data were to be used,

regression results would be less reliable. By contrast, over 70% of monthly observations are

non-zero. Second, daily liquidity measures are highly correlated, especially for the Roll mea-

sure because it is developed based on historical data, often using the information in the past

months or quarters. On the other hand, if we aggregate daily data in a quarterly frequency,

the resulting trading measure is potentially contaminated by obsolete information.

In the third step, we aggregate across all insurers to obtain bond level monthly holding

and transactions of individual bonds. We only include bonds with coupon, bond age, positive

par value, maturity, and available ratings. Shown in Panel C, there are 487,601 observations

for all sample bonds from 2002Q3 to 2014Q4. This is the main sample used in our empirical

analysis.

4.2 Liquidity Measures

Three widely used corporate bond illiquidity measures are applied in our paper – the Roll

(1984) effective spread measure, the Amihud (2002) illiquidity ratio, and the Corwin and

Schultz (2012) Highlow proxy. Conceptually, Roll and Highlow are measures of bid-offer

spread (considered as the best measure of bond liquidity in Schestag, Schuster, and Uhrig-

Homburg (2016), a comprehensive comparative analysis of bond market liquidity measures),

whereas Amihud is a price impact measure. We estimate liquidity measures in a month when

a bond has been traded in 8 different trading days in the month, and to eliminate outliers

7Note that we have more monthly insurer-bond observations than daily insurer-bond observations because
the monthly dataset additionally include observations that insurers do not trade.
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and erroneous entries, the included illiquidity measures are winsorized at 1% and 99% level.

Details on constructing these liquidity measures are covered in the Internet Appendix.

We depict the average bond illiquidities over time in Figure 3. All reported numbers are

weighted by individual bonds’ aggregate par value. Three illiquidity measures share a similar

trend though differ in terms of magnitude – Roll and Highlow are greater than Amihud,

consistent with the means of respective illiquidity measures reported in Table 2. Illiquidity

decreased from July 2002 to June 2007 in the course of before-crisis period. During the

credit crunch, they increased sharply and peaked around October 2008, and then dropped

to a relatively low level.

4.3 Bond Holding and Trading of Insurers

The fractional holding of insurers on a specific bond i at time t, Holdi,t, is defined as:

Holdi,t =

∑
j Holdingi,j,t

Pari,t−1

(3)

where Holdingi,j,t is the par value of bond i (or the aggregate par value of bond group i)

held by insurer j at period t, and Pari,t−1 is the aggregate par value of bond i (or a bond

group i) at the beginning of time t.

Figure 4, the plot for insurer bond holding across different credit ratings, depicts that

insurers concentrate their bond investments in relatively risky bonds, i.e., insurers hold a

high percentage of investments in low-rated investment grade bonds and high-rated non-

investment grade bonds. The peak of their holding occurs at the S&P BBB (holding 34% of

these bonds’ outstanding value), which far exceeds insurers’ holding in AAA bonds (roughly

15%). This indicates that insurers have incentives to invest in risky bonds to achieve high

portfolio performance. In Figure 5, we also plot insurer aggregate holding across bond

maturities where we put bonds with the same years to maturity to different “year” maturity

groups, though there is evidence that insurers’ preference leans towards relatively long term

bonds.

We further define Buyi,t, for an individual bond i in month t, as the sum of the par value
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of buy transactions from individual insurer j, Buyi,j,t, across all insurers in our sample scaled

by the bond’s aggregate par value at the beginning of that month:

Buyi,t =

∑
j Buyi,j,t

Pari,t−1

, (4)

Similarly, Selli,t is defined as:

Selli,t =

∑
j Selli,j,t

Pari,t−1

, (5)

Figure 4 is a plot of insurers’ buys and sales across bond rating groups. The pattern is

largely consistent with insurers’ holding. BBB is the most preferred rating among all bonds

purchased by insurers and BBB-, the lowest investment grade rating assigned by S&P, is the

rating of bonds most aggressively sold by insurers. BB appears to be an important rating

group since it is the turning point in terms of insurers’ bond purchases and sales: insurers’

aggregate buy transactions exceed their sell transactions for BB and higher-rated bonds, and

their sell transactions exceed buy transactions for bonds with BB- rating and below. We

thus choose BB as the lower bound for the group of “threshold” bonds.

In Figure 5, we plot insurers’ buys and sales across different maturity groups. We find in-

surers’ sales are evenly distributed in maturities, but they particularly prefer to buy 10-year

bonds and 30-year bonds. In an unreported analysis, we find 10-year bonds are mainly pur-

chased by property and casualty insurers, while 30-year bonds are predominately purchased

by life insurers.

To understand the insurance trading activities at the broad level, we also examine the

determinants of insurers’ buy and sell transactions, which is covered in Table A2 of the

Internet Appendix and briefly summarize the results here. First, insurers prefer bonds

of higher coupon rates, younger age, and longer maturity.8 Second, compared to highly-

rated bonds (A- and above) and liquid bonds, insurers purchase more threshold-rated bonds

(between BB and BBB+) and low-liquidity bonds. Third, insurers show less interest in

8According to Table A2, insurers appear to buy more small-sized bonds because the dependent variables
are scaled by the outstanding par value. After using buy (sell) dummy as dependent variables, we find
insurers buy more large-sized bonds.
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poorly-rated bonds (BB- and below). The findings are similar across three liquidity measures

and robust to different sub-periods of the data such as the financial crisis period.

4.4 Summary Statistics

Panel A of Table 2 provides summary statistics on the sample of plain-vanilla corporate

bonds used in our analysis. Bond credit ratings are primarily from S&P. If the S&P rating

is missing, we use the rating from Moody’s or Fitch, in this order; and bonds without credit

ratings are excluded. We assign number 1 to 22 to bond ratings based on their credit ratings,

22 for AAA (best) rated bonds and 1 for D (worst) rated bonds. Bond remaining maturity

and bond age are in years. Bond size is the logarithm of bond par value. The distributions

include the number of observations, 5th, 25th, 50th, 75th, and 95th percentiles, as well as

the mean, and standard deviation. We obtain each statistic in each month and then take

the average over time. The means of the three illiquidity measures (Roll, Amihud, and

Highlow) are 1.99%, 0.40 (per million), and 0.95% respectively. They are comparable with

other studies (e.g., Schestag et al., 2016). The standard deviations of these three measures

are 1.73%, 0.57 (per million) and 0.83%, which indicate meaningful illiquidity dispersion.

The table further reports the statistics for the aggregate buy and sell transactions by sample

insurers, both in terms of the fraction to individual bond par value and unscaled dollar

amount. We see that the mean and median insurer buy transactions are slightly higher than

those of insurer sell transactions.

Subsequently, in Panel B of Table 2 we report the correlation matrix of key variables. We

compute the correlations in each month and then take the averages over time. Correlations

among all three illiquidity measures are all positive, ranging from 0.39 to 0.55. The highest

correlation is between Roll and Amihud, and the lowest is between Amihud and Highlow

measure. The reported correlations are consistent with Schestag et al. (2016). Further,

bonds with better ratings and larger in size are more liquid; conversely bonds with longer

maturity, more aged, and higher coupon rates are less liquid.
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5 Results

In this section, we first document the asymmetric persistence in insurers’ buy and sell trans-

actions and empirically test the impact of buy and sell transactions on bond liquidity. We

examine our hypothesis on rainy day liquidity provision by quantifying the liquidity improve-

ment of buy side transactions under stressful conditions. We then test whether insurers’ bond

purchases could favorably influence the liquidity of similar bonds under rainy conditions. Fi-

nally, we investigate the link between funding ability and rainy day liquidity provision and

verify whether insurers provide more liquidity to bank-affiliated dealers after the Dodd-Frank

Act which has restricted the banks’ proprietary trading activities.

5.1 Persistence in Insurers’ Buy and Sell Transactions

In the model section, we postulate a specific form of auto-correlation structure for consecutive

buy and sell orders from insurers which ultimately leads to our rainy day liquidity hypothesis.

Here, we verify this assumption by computing the degree of persistence in buy and sell

transactions of insurers in a panel regression setting:

Buyi,t+τ = αb + βbBuyi,t + µbt + εbi,t+τ

Selli,t+τ = αs + βsSelli,t + µst + εsi,t+τ (6)

Regressions are performed independently for insurers buy and sell transactions. The

dependent variables are the fractional buy and sell amount of an individual bond by all

insurers in our sample in a given month defined in Equations (4) and (5). µt represents

the month fixed effects in both regressions. To account for potential correlations in error

terms across time and assets, we estimate two-way clustered standard errors along time and

individual bond dimensions throughout the paper.

Ranging from one month to one year, we consider various values of τ defined as the

interval from the most recent buy (sell) transaction to the current buy (sell) transaction.

Panel A of Table 3 shows the estimates of the regression for the full sample period. We find
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that buy transactions are highly persistent and the level of persistence is much stronger for

higher values of τ . βb is estimated to be 0.16 (t-stat=6.96) when τ is set to one month,

and the coefficients increase to 0.31 and 0.70, both significant at the 1% level, when τ is

extended to a quarterly and annual horizons, respectively. By contrast, the persistence in

sell transactions is much weaker. The coefficients on Sell, β̂s, are respectively 0.05, 0.12,

and 0.26 when the dependent variable leads Selli,t by a month, a quarter, and a year. The

strikingly different persistence levels between buy and sell transactions clearly support our

main assumption that the long run probability of observing buy orders is higher than that

of sell orders, i.e., p > q, in the model.

Next, we separate insurers into firms with a robust and a weak cash flow position and

separately measure Buyi,t (Selli,t) of these two cash flow groups. We expect the persistence

in buy orders to be stronger for insurers with a robust cash flow position. Our model would

then imply that rainy day liquidity provision by this group of insurers is also higher, which

complements the view that funding sufficiency of dealers and financial intermediaries is criti-

cal to securities’ market liquidity (Brunnermeier and Pedersen, 2008; He and Krishnamurthy,

2013; He, Kelly, and Manela, 2017).

Specifically, we evaluate an insurer’s cash flow relatively using its operations cash flow

scaled by its assets,9 and divide insurers into two groups: the “robust” (R) cash flow group

consisting of firms whose cash flow ratios are above the median of the cash flow measure

and the “weak” (W) cash flow group consisting of firms whose cash flow ratios are below the

median of the cash flow measure in a given year. We run the following panel regressions:

9An insurer’s cash flow consists of i) operations cash flow, including underwriting cash flow and invest-
ment income (stock dividends and bond coupon payments), ii) investment cash flow, mainly the cash flow
associated with realized capital gains minus the cash flow of new investments, and iii) financing cash flow. We
solely include operations cash flow because operations cash flow is independent of capital market conditions
and it is the main component of an insurer’s aggregate cash flow. Nevertheless, we also perform the analysis
using an all-in measure and obtain consistent results.

22



Buyi,t+τ = αb + βb1
∑
j∈R

Buyi,j,t + βb2
∑
j∈W

Buyi,j,t + µbt + εbi,t+τ

Selli,t+τ = αs + βs1
∑
j∈R

Selli,j,t + βs2
∑
j∈W

Selli,j,t + µst + εsi,t+τ (7)

In Equation (7), the dependent variable Buyi,t+τ (Selli,t+τ ) represent insurers’ aggregate

purchases (sales) of an individual bond i in a subsequent month. Buyi,j,t represents insurer

j’s buy transactions on bond i. βb1 (βs1) quantifies the persistence of robust insurers’ buy

(sell) transactions; βb2 (βs2) quantifies the persistence of weak insurers’ buy (sell) transactions.

As reported in Panel B of Table 3, for the regression of the buy-side transactions, β̂b1

are 0.20 (t-stat=3.64), 0.39 (t-stat=3.15), and 0.80 (t-stat=3.08) when τ corresponds to

intervals of one-month, one-quarter, and one-year, respectively. This indicates that insurers’

purchases have higher persistency in the long term. Moreover, the economic and statistic

magnitude of β̂b2 is much smaller than β̂b1, implying that persistence in buy purchases is

higher for robust cash flow group. For insurers’ sell transactions, however, persistence is

stronger for bonds sold by weak cash flow insurers. For example, in the case of τ equal

to 1 month, β̂s1 is 0.03 with a t-statistic of 0.79 while β̂s2 is 0.05 with a t-statistic of 1.97.

Clearly, the magnitude of sell side persistence is much weaker than that of insurers’ buy-side

transactions.

Moreover, reported in Panel C of Table 3, we analyze the persistence in insurers’ buy

and sell transactions during the crisis period, which is from July 2007 to April 2009.10

Inferred from the reported results, the persistence in buy and sell transactions during the

crisis period is largely consistent with that of the analysis using the full sample. A larger

difference between buy and sell persistence in this subsample indicates that insurers are more

likely to be persistent buyers during the crisis period.

We subsequently perform a persistence analysis in the financial crisis after separately

counting buy and sell transactions with regards to robust and weak cash flow insurers.

10There were several major market deterioration events in July 2007. Among them, Bear Stearns liquidated
two hedge funds that invested in various types of mortgage-backed securities; Standard and Poor’s placed
612 securities backed by subprime mortgages on a credit watch. The span of financial crisis here is consistent
with other studies such as Bao, O’Hara, and Zhou (2018).
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Shown in Panel D of Table 3, the results show a strong buy-side persistence for robust

cash flow insurers (the estimated coefficients, β̂b1, are respectively 0.24, 0.45, and 0.89 in the

regressions for the monthly, quarterly and yearly values of τ), and this level of persistence

appears to be much higher than that of weak cash flow insurers (β̂b2 = 0.07, 0.10, and 0.33,

respectively). Moreover, the difference between buy and sell persistence is greater in the

crisis period compared to the analysis using the full sample period. As reported in Panel B,

for example, in the full sample period β1 estimates for robust cash flow insurers’ buy and

sell in the following year are respectively 0.80 (t-stat=3.08) and 0.25 (t-stat=2.38), resulting

in a difference of 0.55 in two coefficients; in the financial crisis period, the corresponding

estimates are 0.89 (t-stat=3.35) and 0.21 (t-stat=2.29) which produce a difference of 0.68.

Further along, we check whether insurers’ bond transactions are correlated across time

with the transactions of other bonds with similar characteristics, i.e., persistence in buy

or sell transactions across bonds. To conserve space, we cover the empirical findings of

cross-bond persistence in buy or sell transactions in the Internet Appendix (Table A3). We

identify matching bonds of insurer traded bonds in a particular month if they have the same

bond rating, maturity difference within a year and are in the same liquidity quintile group.

On average, each bond bought or sold by insurers in a month is matched with 6 bonds not

bought or sold in our final sample. Using m to denote a matching bond to a specific bond i

purchased by insurers in month t, we estimate the persistence across matching bonds using

the following regression:

Buym,t+τ = αb + βbBuyi,t + µbt + εbi,t+τ

Sellm,t+τ = αs + βsSelli,t + µst + εsi,t+τ . (8)

Once again, we use the same values of τ : one month, one quarter, and one year. As shown

in Panel A of Table A3, insurers’ buy transactions lead to an increase in buy transactions

of matching bonds. βb are estimated to be 0.06 (t-stat=5.33), 0.15 (t-stat=6.02) and 0.42

(t-stat=6.19) when τ is taken to be one month, one quarter and one year, respectively. We

further separate transactions by insurers with robust and weak cash flows. As reported in

Panel B of Table A3, the buy side cross persistence is higher for robust cash flow insurers.
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Furthermore, we perform the persistence analysis across bonds during the crisis period and

report the results in Panel C of Table A3. Likewise, we find stronger levels of persistence

at the buy side. Finally, we examine the role of insurers’ cash flow on cross bond trading

persistence during the financial crisis period. We find that buy transactions of insurers’ with

robust cash flow positions have strong influence on the purchase of matching bonds in the

subsequent period.

In summary, the analysis indicates that insurers’ buy transactions are more persistent

than sell transactions, and this persistence is mainly driven by robust cash flow insurers.

The effect is also stronger in the crisis period.

5.2 Asymmetric Buy and Sell Effects

We begin the analysis on insurers’ rainy day liquidity role by looking at the effect of insurers’

buy and sell transactions on bond liquidity in general. Our model predicts that in times of

market stress, insurer buy (sell) transactions can improve (reduce) bond liquidity whereas in

normal conditions, the autocorrelation in insurance order flow will be detrimental to bond

liquidity for both sides of transactions. Thus, the net effect is unclear as it could depend on

the magnitude of the effects and the durations of the normal and stressful conditions. This

becomes ultimately an empirical question.

We test whether insurers’ buy and sell transactions improve bond liquidity using the

following regression:

∆ILQi,t = α + β1Buyi,t−1 + β2Selli,t−1 + β3ILQi,t−1 + Controli,t−1 + µt−1 + εi,t (9)

In Equation (9), the dependent variable is the change of bond illiquidity, measured by

Roll, Amihud, and Highlow respectively, in two consecutive months. The key independent

variables are the fractional buy and sell amount of an individual bond by all insurers in our

sample in a given month. To control for heterogeneity across bonds, we follow Campbell and

Taksler (2003) and Dick-Nielsen, Feldhütter, and Lando (2012) to controls for lagged illiq-

uidity, ILQi,t−1, as well as important bond characteristics including bond coupon rates, bond
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age, bond size, bond maturity, dummy variables for individual bond ratings,11 and indicator

variables for callable bonds, puttable bonds, exchangeable bonds, convertible bonds, credit

enhancements bonds, senior bonds, and secured bonds which are measured at the beginning

of that period. µt−1, the month fixed effects, are included to address time series variations

for the change in bond illiquidity.

In Columns (1) through (3) of Table 4, we report the regressions without the inclusion

of control variables. Regardless of the use of illiquidity measures, the estimated coefficients

on insurers buy transactions, β̂1, are all significant at the 1% level – they are respectively

-1.53, -0.30, and -0.47 corresponding to the illiquidity measures, Roll, Amihud, and Highlow

– insurer purchases help to enhance bond liquidity. By contrast, β2 are all estimated to be

positive and significant, suggesting that insurer sales consume liquidity.

Columns (4) through (6) of Table 4 report the result of regressions specified in Equation

(9) with the full set of control variables. The estimated coefficients are similar to those

reported in Columns (1) through (3). Using Roll as the illiquidity measure, the coefficient

on Buy is -1.15 significant at the 1% level while the coefficient on Sell is 0.48 significant at

the 5% level.

We also report the p-values for the Wald test on the hypothesis that coefficients are the

same between insurers’ buy and sell transactions. This is located in the third last row. A

low p-value indicates the asymmetric effect of purchases and sales on bond liquidity. We find

that in five out six cases, p-values are less than 0.01, rejecting the null that the coefficients

on buy transactions are equal to those on sell transactions. Overall, our findings suggest

that insurers’ corporate bond purchases improve the bond liquidity in the subsequent period

whereas their sales decrease it.

It is worth mentioning that we also conduct regressions of Equation (9) using entire bond

transactions covered in TRACE. The coefficients of the market buy and sell, however, are

all insignificant when using all three liquidity measures. This finding suggests that insurer

trading has an important role in bond trading cost.

11Altogether, we include 22 rating dummies associated with different bond ratings based on the S&P
schedule.
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5.3 Liquidity Provision in Rainy Days

To investigate the rainy day liquidity hypothesis, we break down sample bonds into different

liquidity groups, rating groups, crisis and non-crisis periods, and examine whether liquidity

improvement of buy side transactions is much stronger under stressful conditions. Panel

regressions in form of Equation (9) are performed and reported in Table 5.

In Panel A of Table 5, we report the results of regressions for different liquidity groups.

Three liquidity groups are formed: the high liquidity group (HLG) holds bonds with the

highest 30 percent liquidity over all bonds in a month; the low liquidity group (LLG) holding

bonds with the lowest 30 percent liquidity over all bonds in that month; the rest is placed

in the median liquidity group (MLG).

First, we confirm the asymmetric impact of buy and sell transactions on bond liquidity.

As shown in Panel A, almost all of the coefficients on insurer purchases, β̂1, are significantly

negative. By contrast, the coefficients of insurers’ bond sells, β̂2, are either insignificantly

different from zero or even positive for regressions. More importantly, based on different

liquidity measures, β1 is highly negative in the lowest liquidity group. The coefficients on

Buy for low liquidity bonds are -2.51 (t-stat=-3.37), -0.31 (t-stat=-2.70), and -1.20 (t-stat=-

3.03) when bond illiquidity is respectively measured with Roll, Amihud, and Highlow. That

is, a 1% increase of insurers’ purchase of illiquid bonds in LLG reduces Roll, Amihud, and

Highlow measures by approximately a 1.6%, 1.2%, and 1.8% of their respective medians.12

We also report LMH, the difference of β1 between low and high liquidity groups. They are

negative and significant in all cases. LMH is -2.05 (t-stat=-2.62) when Roll is used as a

liquidity measure and it is -0.44 (t-stat=-2.94) when Amihud is used.

In addition, according to Panel A, among high liquidity bonds, the estimated β1 is mostly

insignificant. For example, using Roll for bond illiquidity, the estimated β1 is -0.46 with a

t-statistic of -1.26. The significant buying effect on bond liquidity reported in Section 5.2

mainly comes from illiquid bonds, a group of rainy bonds. This finding renders additional

12A 1% increase in insurers’ buy leads to a 2.51% decrease in bond illiquidity. Based on the statistics
reported in Table 2, this is a 1.6% decrease in terms of the median of the Roll measure (=-2.51*1%/1.56)
for example.
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support to the rainy liquidity provision hypothesis – insurers’ liquidity provision concentrates

in stressful conditions.

Next, in Panel B, we look at insurers’ liquidity provision across different rating groups.

Specifically, bonds in the sample are broken down into three groups based on their ratings:

superior (Sup), threshold (Thr), and inferior (Inf ). Superior bonds are those whose S&P

ratings are A- and above and the threshold group consists of bonds with a S&P rating

between BB and BBB+. Bonds in the inferior group are rated BB- or below.

For bonds in the superior bond group, β̂1 are 0.37 (t-stat=0.96), 0.08 (t-stat=0.76), and

-0.10 (t-stat=-0.70) for Roll, Amihud, and Highlow liquidity measures, implying that insurer

purchases do not strongly affect the subsequent liquidity of non-rainy day bonds. However,

for bonds in the threshold group, β1 are -2.35 (t-stat=-6.80), -0.34 (t-stat=-3.86), and -

0.77 (t-stat=-5.28). Finally, for bonds in the inferior group, coefficients are also significantly

negative, implying insurers’ bond purchase improves the liquidity of poor quality junk bonds

as well. TMS is the difference in coefficients between bonds in the threshold and superior

group. We find that for each liquidity measure, the difference between the coefficients is

significantly negative. In terms of economic significance, a 1% insurers’ purchase leads to

approximately a 1.5%, 1.4%, and 1.1% decrease in Roll, Amihud, and Highlow measures,

respectively, for bonds in the threshold group.

Finally, in Panel C, we report the results of panel regressions for insurer trading in

different subsample periods around the financial crisis. The sample is broken into three

periods: before-crisis period (Before Crisis), crisis period (Crisis), and after-crisis period

(After Crisis). The before-crisis period is from July 2002 to June 2007. The crisis period is

from July 2007 to April 2009. The after-crisis period is from May 2009 to December 2014.

During pre-crisis period, β̂1 is -0.33 (t-stat=-1.01), 0.14 (t-stat=1.91), and -0.21 (t-stat=-

1.39) for Roll, Amihud, and Highlow measure respectively. This indicates that insurer pur-

chases in the non-crisis period do not positively affect bond liquidity. Conversely, during

the financial crisis, β̂1 are statistically significant for all three measures of illiquidity. For

example, β̂1 of the regression in the crisis period is -4.71 (t-stat=-3.86) when Roll is the
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liquidity measure. Economically, a 1% increase of insurers’ purchases produce 3% liquidity

when Roll is the illiquidity measure.

Our untabulated results also support that liquidity enhancement in the crisis is stronger

among threshold bonds than bonds of other rating groups. To be specific, we perform

regressions to compare the effects of insurers’ purchase of threshold bonds before the crisis

and in the crisis period. We find that the coefficient on insurers purchase is -6.22 (t-stat=-

4.58) in the crisis, and it is -1.87 (t-stat=-2.30) in the pre-crisis period.

Overall, Panel A to Panel C of Table 5 present a strong support to the rainy day liquidity

provision hypothesis. These results align with our first hypothesis in the sense that insurers

are more likely to offer liquidity under adverse market conditions, on relatively illiquid bonds

and threshold rating bonds. Although insurers potentially experience negative shocks during

crisis periods, our results suggest that the magnitude of such shocks on insurers’ profitability

and equity value is milder than that of other financial institutions (e.g., Chodorow-Reich

et al., 2019; Koijen and Yogo, 2015, 2016).

5.4 Liquidity Spillover

In this section, we formally test the second hypothesis that insurers’ bond purchases could

favorably influence the liquidity of similar bonds under rainy conditions. This hypothesis

builds on empirical evidence reported in Table A3 included in the Internet Appendix that

insurers’ buy transactions lead to an increase in buy transactions of matching bonds. It is

also consistent with prior studies presenting evidence on the commonality of liquidity across

securities i.e., liquidity has been shown to covary strongly across securities (e.g., Chordia

et al., 2000; Koch et al., 2016). Alternatively, there is a potential competition/substitution

effect, under which insurers’ purchase of one bond reduces the liquidity of matching bonds

because of the lack of capital after the buy transaction. We differentiate between these effects

of insurers’ bond trading on the liquidity of other bonds with similar characteristics.

To test the cross-bond liquidity spillover effect, we regress the change of the liquidity of
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a matching bond onto insurers’ buy and sell transactions of a sample bond.

∆ILQmi,t
= α + β1Buyi,t−1 + β2Selli,t−1 + β3ILQmi,t−1 + Controlmi,t−1 + µt−1 + εmi,t (10)

where ILQmi,t is the illiquidity of the bond matched to ith bond, ILQmi,t−1 is the illiquidity

of matching bond in the previous month, Buyi,t−1 and Selli,t−1 are the par values of purchases

and sales performed by insurance companies on the sample bond, i, in the previous month,

scaled by the bond’s aggregate par value. The same matching procedure prescribed in Section

(sec:persist) is applied. Control variables corresponding to the matching bond are the same

as those in Equation (9).

First, we separate sample bonds into three groups based on their illiquidity like what

we did in Panel A of Table 5. Panel A of Table 6 reports the results of panel regressions

for insurer trading on the illiquidity of the matched bonds for each liquidity group. For all

three liquidity measures, the coefficients on insurer purchases for the bonds in low-liquidity

(high-liquidity) group are negative (positive). These findings imply that insurers’ purchase of

sample bonds has a significant contagion effect on the set of matched bonds. The difference

in the coefficients for the low-liquidity and high-liquidity group is -0.65 (t-stat=-2.37), -0.26

(t-stat=-3.01), and -0.41 (t-stat=-3.04), respectively. These results imply that the effect of

insurer purchases on low liquidity bonds’ illiquidity is significantly higher compared to the

effect on high liquidity bonds’ illiquidity.

Panel B of Table 6 reports the results of panel regressions for the effect of insurer trading

on the set of matched bonds within rating groups. The coefficients on insurers’ buy transac-

tions are -0.51 (t-stat=-2.66), -0.12 (t-stat=-2.87), and -0.18 (t-stat=-3.02), respectively, for

bonds in the threshold group. These estimates are much more negative when compared to

the coefficients obtained for superior and inferior bonds. In the superior bonds group, the co-

efficients on insurers’ buy are 0.59 (t-stat=2.40), 0.08 (t-stat=2.03), and 0.11 (t-stat=2.66).

The differences in the coefficients between bonds in the threshold and superior group are

-1.10 (t-stat=-4.85), -0.20 (t-stat=-3.40), and -0.29 (t-stat=-4.42), respectively. This find-

ing suggests that insurers’ bond purchases may have further contagion effects on the set of

matched bonds. Namely, we observe that for the bonds in the threshold category, insurers’
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buy transactions can improve the liquidity of the bonds that have similar characteristics to

the traded bond.

Finally, to examine the relationship during the financial crisis, we break down the sample

into different subsample periods as we did in Table 5 Panel C. Reported in Table 6 Panel

C, we present the regression results on the effect of insurers’ trading on matching bonds’

subsequent liquidity in alternative subsample periods. In the financial crisis, the coefficients

on Buy are -1.50 (t-stat=-2.95), -0.37 (t-stat=-3.96), and -0.58 (t-stat=-3.25), respectively.

These significant estimates suggest that insurers bond purchases in the crisis period have

a spillover effect on the subsequent liquidity of the matched bonds. The differences in

the coefficients between crisis and before-crisis periods are -1.52 (t-stat=-2.90), -0.17 (t-

stat=-2.26), and -0.69 (t-stat=-3.21), respectively, which echo that insurers’ purchases have

stronger spillover impact during the financial crisis.

Taken together, when we examine the cross-bond liquidity effects for bonds having lower

liquidity, threshold rating, or bonds traded during the crisis period, the buy-side cross trad-

ing effect on illiquidity turns out to be negative. This constitutes strong evidence to Hy-

pothesis 2 as rainy day liquidity provision is not only limited to the bonds purchased by

insurers—namely, the liquidity of bonds with similar characteristics to the purchased bonds

also increases subsequently during stressful periods.

5.5 Effects of Insurer Funding and Holding Horizon on Rainy Day

Liquidity

An insurer’s ability to supply rainy day liquidity should depend on its funding condition. For

this reason, we conjecture that insurers with higher funding ability will engage in stronger

rainy day liquidity provision. Insurers’ funding liquidity is stronger for those insurers with

stable cash flow and with longer holding horizon. We expect that insurers with more robust

funding and longer investment horizon will offer more rainy day liquidity.
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5.5.1 Role of Insurer Cash Flow

First, we empirically verify the weak correlation between insurers’ cash flow and the aggregate

market condition. We compute the time-series correlations between individual insurers’ cash

flow from operations (scaled by total assets) and S&P 500 index returns. Across all insurers,

the mean correlation turns out to be 0.003 and the standard deviation is 0.28, implying a

p-value of 0.61 for the null hypothesis that the average correlation is zero.13 This finding

confirms that insurer cash flows are not correlated with overall capital market fluctuations.

Next, we perform the cross-sectional analysis to test whether insurers with a strong cash

flow position purchase more threshold bonds than insurers with a weak cash flow position.

We then test whether the purchases of strong cash flow insurers improve bond liquidity more

than the purchases of weak cash flow insurers. Both predictions from the results reported in

Section 5.1 show that insurers with robust cash flow positions have more persistence in their

bond purchases. Formally, we evaluate an insurer’s cash flow position using the three-year

average cash flow scaled by the firm’s total assets, then break down insurers into a “robust”

cash flow group and a “weak” cash flow group based on whether its cash flow ratio is above

or below the annual median of the cash flow ratios.

Let k denote an insurer’s cash flow type, which equals to R for insurers with robust cash

flow and W for insurers with weak cash flow. We then compute Buyki,t, the purchase of bond

i by a robust or weak insurance group k in month t, calculated as
∑

j∈k Buyi,j,t

Pari,t−1
.

The following regressions on Buyki,t, bond purchase of strong and weak insurers, are

performed to see their investments in threshold and poorly rated junk bonds.

Buyki,t = αk + βk1 Thri,t−1 + βk2 Infi,t−1 + Controli,t−1 + µt−1 + εi,t k = R,W (11)

where threshold rating bonds dummy (Thr) equals 1 if bonds are rated between BB and

BBB+, inferior rating bonds dummy (Inf ) equals 1 for bonds rated BB- and below. Control

variables include bond coupon rates, bond age, bond size, bond maturity, indicators for

13When performing the similar analysis using operations cash flow of Compustat firms, we find that the
average correlation is 0.042, with a p-value of 0.01.
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callable bonds, puttable bonds, exchangeable bonds, convertible bonds, credit enhancements

bonds, senior bonds, and secured bonds.

Notably, in Equation (11), the intercept of the above regression, αk, captures the average

insurers’ purchase of superior bonds after netting the effect of control variables. βR1 (βR2 )

quantifies the average difference in the purchase of threshold (inferior) bonds and superior

bonds among robust insurers and βW1 (βW2 ) quantifies the average difference in the purchase

of threshold (inferior) bonds and superior bonds among weak insurers. We expect βR1 , βW1 ,

and βR1 − βW1 to be positive.

In Table 7, we report the findings of Equation (11) regressions in the first three columns

of Panel A. Shown in the first column, β̂R1 is 0.10 (t-stat=4.78), suggesting that robust cash

flow insurers purchase more threshold bonds than superiorly rated bonds. In contrast, the

estimated β̂W1 reported in the second column is 0.05 (t-stat=2.76), showing weak cash flow

insurers also have a purchasing preference on threshold bonds than superior choices. The

significantly positive value of the difference, reported in the third column, between β̂R1 and

β̂W1 , 0.05 (t-stat=3.31), is supportive to the third hypothesis that insurers will be more

active in threshold bonds when they have more adequate funding. All β̂2 nonetheless are

significantly negative. For example, β̂R2 is -0.12 with a t-statistic of -8.39. This indicates

that insurers do not aggressively invest in inferior bonds relative to their purchase of superior

bonds.

Further, we analyze the net buy measure, defined as insurers’ bond purchases net of sales,

and check whether well-funded insurers are net buyers of threshold bonds. The net purchase

of bond i by a robust or weak insurance group k in month t, Netki,t, is defined as:

Netki,t =

∑
j∈k Buyi,j,t −

∑
j∈k Selli,j,t

Pari,t−1

(12)

Similar to the analysis for Buyki,t, we perform the regression analysis on insurers’ net

bond purchases. The results are reported in the subsequent three columns of Panel A,

Table 7. Again, the finding suggests that robust cash flow insurers have higher net purchase

of threshold bonds compared to weak cash flow insurers. The estimated β1 is 0.02, with

a t-statistic of 2.03, in the regression for robust insurers’ net purchases, suggesting that
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robust insurers’ purchases of threshold bonds exceed their sales by a larger magnitude when

compared to the difference in superior bond transactions. We continue to see the difference

to be significant and positive (0.02 with a t-statistic of 2.95) in terms of net purchases of

threshold bonds between robust and weak insurers.

Subsequently, we run panel regressions of illiquidity changes of individual bonds on insur-

ers’ transactions when these transactions are separated into robust and weak transactions

based on insurers’ cash flow positions. Bond control variables are the same as those in

Equation (9).

∆ILQi,t = α + β1

∑
j∈R

Buyi,j,t−1 + β2

∑
j∈W

Buyi,j,t−1 + β3

∑
j∈R

Selli,j,t−1 + β4

∑
j∈W

Selli,j,t−1

+ β5ILQi,t−1 + Controli,t−1 + µt−1 + εi,t (13)

β1 and β2, respectively, measure the purchasing effect of robust cash flow insurers and

weak cash flow insurers on bond liquidity. We expect β1 to be more negative than β2 for

threshold rating bonds according to the third hypothesis. As reported in Table 7 Panel B,

for regressions corresponding to the threshold bond group, β̂1 are significantly lower than

β̂2.

5.5.2 Effect of Holding Horizon

Investors are heterogeneous in their holding horizons while long-term investors can better

insulate themselves from market fluctuations (Chodorow-Reich et al., 2019). Cella et al.

(2013) and Morris and Shin (2004) show that, in stressful markets, short-horizon investors,

fearing weak demand from other market participants and possible price declines in the near

future, sell their holdings more aggressively compared to long horizon investors who have the

possibility of waiting out the storm and hold onto their shares. Chen et al. (2018) show that

corporate bonds held by more long-term investors have a lower liquidity premium. In the

context of this evidence, we consider holding horizon as an alternative measure for investors’

ability to fund “rainy” day liquidity.

We measure insurers’ holding horizon based on insurers’ portfolio turnovers, which are
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inversely related to their holding horizons. An insurer’s corporate bond portfolio turnover

is the minimum of the aggregate market value of securities purchased by an insurer and the

aggregate value of securities sold by the insurer in each year, scaled by the aggregate portfolio

value at the end of the year. Insurers are divided into two groups based on their holding

horizons in each year: the “long” (“short”) horizon group includes firms whose holding

horizon are above (below) the annual median measure. Consistent with the prior subsection,

we first study how insurer holding horizons affect their threshold bond purchase, and we then

examine the differential liquidity effects of long and short-horizon insurers’ transactions.

Panel A of Table 8 reports the results. The significantly positive value of the difference

between β̂L1 and β̂S1 is 0.03 (t-stat=2.86) and 0.02 (t-stat=2.71) when using purchase and

net purchase as the dependent variables respectively. These findings align with the third

hypothesis in the extent that long holding horizon insurers are be more active in threshold

bonds.

Furthermore, we conduct panel regressions of corporate bond illiquidity on insurers’ trans-

actions after separating corporate bond transactions based on insurers’ holding horizons. As

reported in Table 8 Panel B, for threshold bonds, the coefficient on long horizon insurers’

purchase, β̂1, are respectively -3.10 (t-stat=-6.01), -0.58 (t-stat=-4.46), and -1.04 (t-stat=-

4.60) when using Roll, Amihud, and Highlow as liquidity measures, which are significantly

lower than the coefficient of short horizon insurers’ purchase.

Investment horizon essentially captures investors’ ability to hold undervalued assets

(Chodorow-Reich et al., 2019). In this sense, life insurers shall share the similar traits as they

have more deterministic liability schedule than property and casualty (P&C) companies. We

confirm this by finding a high correlation between a dummy variable for life insurers and

insurers’ investment horizons (0.74). That is, life insurers tend to hold bonds for a longer

horizon than P&C insurers do. With the results reported in the Internet Appendix Table A4,

we further estimate the regressions specified in Equation (11) and (13) with the trading data

corresponding to P&C and life insurers, respectively. The result is consistent with the prior

investment horizon analysis. Compared to P&C insurers, life insurers are less likely to sell
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speculative-grade bonds during the financial crisis, confirming the argument made in Ellul

et al. (2015) that, recognizing most speculative bonds using their historical costs, instead of

market value, U.S. life insurers utilize market value recognition to a lower extent than P&C

insurers do.

Collectively, our finding supports that insurers’ funding strongly influences their net

purchases of threshold bonds, rendering support to the argument that improvements in

rainy day market liquidity are directly linked to insurers’ ability to fund the position.

5.6 Dodd-Frank Act and Insurers’ Liquidity Provision

Liquidity in the corporate bond market was substantially low in the financial crisis. De-

spite post-crisis improvement, bond liquidity has remained a serious concern owing to the

implementation of the Dodd-Frank Act which restricts banks’ proprietary trading activities.

Since the crisis, inventories held by bond dealers have shrunk 50%, while bonds outstanding

have almost doubled (Dick-Nielsen and Rossi, 2018). Bessembinder et al. (2018) specifically

show a decrease in bank-affiliated dealer capital commitment after the implementation of the

Dodd-Frank Act in 2012. In this section, we use the implementation of the Dodd-Frank Act

as a natural experiment to test insurers’ ability to offer liquidity when there is a shortage in

bank dealers’ liquidity provision.

Noted in the data section, Schedule D not only provides information about transactions

insurers engage in but also offer details on the counterparties involved in the transactions.

This allows us to test whether or not insurers offer liquidity to bond transactions during the

post-crisis regulation period. To do so, we focus on insurers’ buy transactions and classify

them being from bank-affiliated dealers and nonbank dealers. The top 100 dealers account

for nearly 95% bond transactions and thus we focus on this group of bond dealers. 30 of

them are identified as commercial bank-affiliated dealers.14

14Because the Dodd-Frank Act aims to prevent commercial banks from involving in speculative and/or
proprietary trading for profit, transactions affected by the Dodd-Frank Act are those executed by commercial
banks affiliated dealers. We treat dealers affiliated with Goldman Sachs and Morgan Stanley, as bank-
affiliated dealers because both became bank holding companies in 2008, in the same way as Bessembinder
et al. (2018).
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According to our model, in times of higher selling pressure or dealer inventory costs, an

increase in the arrival rate of insurance companies or their persistence in bond purchases

can lead to higher liquidity improvements compared to less stressful periods in terms of

order imbalance and inventory costs (as illustrated in Figure 2). Motivated by this finding,

we expect that insurers’ purchases from bank-affiliated dealers (who face higher inventory

costs in our model’s terminology) will help increase the liquidity of rainy bonds more during

the Dodd-Frank period. We test this by comparing illiquidity changes of individual bonds

for insurers’ transactions with bank-affiliated dealers (B) and with nonbank dealers (N ) by

running the following regression:

∆ILQi,t = α + β1

∑
j∈B

Buyi,j,t−1 + β2

∑
j∈N

Buyi,j,t−1 + β3

∑
j∈B

Buyi,j,t−1DFt

+ β4

∑
j∈N

Buyi,j,t−1DFt + β5

∑
j∈B

Selli,j,t−1 + β6

∑
j∈N

Selli,j,t−1

+ β7

∑
j∈B

Selli,j,t−1DFt + β8

∑
j∈N

Selli,j,t−1DFt + Controli,t−1 + µt−1 + εi,t (14)

where Buyi,j,t (Selli,j,t) is the fraction of insurer j’s purchase (sell) in month t in the aggregate

par value of the bond i, and DFt is the indicator for the post-crisis Dodd-Frank regulated

period.15 Bond control variables include the Dodd-Frank period dummy, lagged illiquidity,

and the same as those in Equation (11). We exclude data from the financial crisis period

(from July 2007 to April 2009) and restrict the sample to threshold bonds in order to focus

on the effect of the Dodd-Frank Act on insurers’ role in liquidity provision to rainy bonds.16

In Equation (14), β1 and β2, respectively, measure the effect of insurers’ purchase from

bank-affiliated dealers and nonbank dealers on bond liquidity during pre-crisis period. Fur-

thermore, β3 and β4 measure the difference of purchasing effect on bond liquidity from

pre-crisis period to the Dodd-Frank restricted period for bank-affiliated dealers and nonbank

dealers, respectively. Because bank-affiliated dealers have higher inventory costs during the

15The Dodd-Frank Act was enacted in July 2010 and implemented in January 2011. We thus consider
post financial crisis period as the regulated period given the fact that financial institutions face tightened
regulations after the financial crisis. We also perform additional analysis to check the effect of Volcker Rule
on insurers’ purchases. Consistent with Bao et al. (2018), we consider the period after April 2014 as the
active Volcker Rule period and find consistent results.

16We obtain consistent results when restricting the sample to junk bonds rated BB and above.
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Dodd-Frank period, we expect that insurers’ buy transactions with bank-affiliated dealers

will improve threshold bond liquidity more in the Dodd-Frank period (β3 is expected to be

more negative than β4). As reported in Table 9, we find that β̂3 is smaller than β̂4 for all

liquidity measures. Further, the low p-value of the Wald test on the equality of β̂3 and β̂4 sug-

gests that insurers’ threshold bond purchases from bank-affiliated dealers improve liquidity

more than those from nonbank dealers during the Dodd-Frank period. On the other hand,

we also look at the effect of insurers’ sells on bond liquidity and do not find a significant

difference between insurers’ sells to bank-affiliated dealers and nonbank dealers. None of the

coefficients of insurers’ sells are significant during the pre-crisis period and the Dodd-Frank

period.

6 Conclusion

This study examines the important role of insurance firms in the corporate bond market as

“rainy day liquidity providers.” We theoretically model a dealer’s optimal market making

policy in times of selling pressure and insurers’ auto-correlated trading needs. Motivated by

insurers’ buy-and-hold investment style, we specifically consider a regime where buy orders

are more persistent than the sell orders. In this model, insurers buy transactions can signal

the dealer that eliminating a short position in the future can be easier, which then induces

the dealer to provide liquidity to distressed sellers.

We empirically test the predictions of the model with regards to rainy day liquidity

provision. We show that insurers provide liquidity for illiquid and threshold bonds, and

during the financial crisis. We further show that rainy day liquidity provision effect goes

beyond bonds purchased by insurers – the liquidity of bonds with similar characteristics as the

purchased (sold) bonds also increases in rainy days. Our empirical analysis also establishes

the link between insurers’ funding ability and their rainy-day liquidity provision. Finally, we

show that after the implementation of the Dodd-Frank Act, the liquidity improvement for

bonds that insurers purchase from bank-affiliated dealers is greater than the improvement

for bonds purchase from nonbank dealers.
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Duffie, D., N. Gârleanu, and L. H. Pedersen (2007). Valuation in over-the-counter markets.

Review of Financial Studies 20 (6), 1865–1900.

Edwards, A. K., L. E. Harris, and M. S. Piwowar (2007). Corporate bond market transaction

costs and transparency. Journal of Finance 62 (3), 1421–1451.

Ellul, A., C. Jotikasthira, and C. T. Lundblad (2011). Regulatory pressure and fire sales in

the corporate bond market. Journal of Financial Economics 101, 596–620.

40



Ellul, A., C. Jotikasthira, C. T. Lundblad, and Y. Wang (2015). Is historical cost account-

ing a panacea? Market stress, incentive distortions, and gains trading. The Journal of

Finance 70 (6), 2489–2538.

Ge, S. and M. Weisbach (2019). How financial management affects institutional investors’

portfolio choices: Evidence from insurers. Working paper.

Harrington, S., G. Niehaus, and T. Yu (2013). Insurance price volatility and underwriting

cycles. Handbook of Insurance: Second edition, edited by Georges Dionne, 647–667.

He, Z., B. Kelly, and A. Manela (2017). Intermediary asset pricing: New evidence from

many asset classes. Journal of Financial Economics 126 (1), 1–35.

He, Z. and A. Krishnamurthy (2013). Intermediary asset pricing. American Economic

Review 103, 732–770.

He, Z. and K. Milbradt (2014). Endogenous liquidity and defaultable bonds. Economet-

rica 82 (4), 1443–1508.

He, Z. and W. Xiong (2012). Rollover risk and credit risk. Journal of Finance 67, 391–430.

Hendershott, T., D. Li, D. Livdan, and N. Schürhoff (2017). Relationship trading in OTC
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Table 1: Sample Construction

This table outlines the main steps in the construction of final sample using data from the NAIC Schedule
D, the FISD, and the TRACE. The sample period is from July 2002 to December 2014.

Panel A: Insurer Bond Daily Observations

Number of Purchases Number of Sales

Insurer-bond daily transactions from Schedule D 3,401,354 2,610,027
excluding non-trading events, e.g., maturity,
payments, redemptions, calls

Corporate bond trades after merging 1,125,068 809,541
with the FISD

Applying a discrepancy filter to get clean 958,798 630,200
insurer-bond observations

Panel B: Insurer-Bond Monthly Observations

Number of Purchases Number of Sales

Insurer-bond monthly trades from daily 924,895 603,178
insurer-bond trades

Merge insurer-bond monthly transactions with bond 1,136,537 872,853
illiquidity data (monthly) generated from TRACE; set 0 for
an insurer-bond-month observation does not have a trading amount

Observations with non-zero trading value 707,153 444,356
Observations with zero trading value 429,384 428,497

Observations at least 60 days after initial offerings 829,967 784,317
and at least 360 days before bond maturity

Panel C: Individual Bond Monthly Observations

Number of Observations

Bond-month observations after summing insurers’ 572,951
trading of the same bond

Bonds with positive par value, 571,700
non-missing bond age and remaining maturity

Bonds with a valid rating 557,018
from S&P, Moody’s, or Fitch

Deleting negligible no insurer trading 487,601
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Table 2: Summary Statistics

Panel A of the table reports the cross-sectional distributions of three illiquidity measures and other key
variables for the entire sample. We restrict the sample to the U.S. plain-vanilla corporate bonds which
have positive shares outstanding and non-missing credit ratings. The distributions characteristics include
the number of observations, 5%, 25%, 75%, 95%, mean, median, and standard deviation. The reported
variables are three illiquidity measures including Roll (in percent), Amihud (per million), and Highlow (in
percent), Maturity (remaining time to maturity, in years), Rating (the rating score for AAA rated bonds is
22 and that of D rated bonds is 1), Coupon (coupon rate, in percent), BondAge (the age of a bond since
its inception, in years), BondSize (the nature logarithm of outstanding par value), buy (the aggregate par
value of a bond purchased by insurers in a month scaled by the bond’s aggregate par value, in percent), sell
(the aggregate par value of a bond sold by insurers in a month scaled by the bond’s aggregate par value, in
percent). Definitions of the illiquidity measures are provided in the Internet Appendix C. We obtain each
statistic in each month and then take the average over time. Panel B reports the correlation matrix of those
10 variables considered in Panel A, where the correlations in each month are estimated and then averaged
over time.

Panel A: Summary Statistics of Bond Characteristics

N P5 P25 Mean Median P75 P95 SD

Roll 448,746 0.01 0.79 1.99 1.56 2.72 5.49 1.73
Amihud 487,601 0.01 0.04 0.40 0.25 0.49 1.98 0.57
Highlow 487,601 0.15 0.37 0.95 0.68 1.26 2.69 0.83
Maturity 487,601 1.65 3.62 8.90 6.13 9.39 27.41 8.27
Rating 487,601 6.47 11.45 13.92 14.26 16.84 19.35 4.04
Coupon 483,438 3.08 5.10 6.21 6.23 7.32 9.36 1.93
BondAge 487,601 0.47 1.58 4.33 3.24 5.95 12.58 3.83
BondSize 487,601 11.93 12.54 13.04 12.99 13.49 14.39 0.77
Buy (%) 487,601 0 0 0.44 0.01 0.22 2.37 1.41
Sell (%) 487,601 0 0 0.41 0.01 0.21 2.29 1.38

Panel B: Correlations among Liquidity and Characteristics

Roll Amihud Highlow Maturity Rating Coupon BongAge BondSize Buy Sell

Roll 1.00
Amihud 0.55 1.00
Highlow 0.51 0.39 1.00
Maturity 0.25 0.20 0.26 1.00
Rating -0.13 -0.05 -0.14 0.06 1.00
Coupon 0.09 0.06 0.11 0.02 -0.50 1.00
BondAge 0.26 0.38 0.27 0.06 0.05 0.22 1.00
BondSize -0.21 -0.37 -0.17 -0.01 0.24 -0.17 -0.32 1.00
Buy 0.01 0.02 0.01 0.09 0.05 -0.05 -0.10 -0.02 1.00
Sell 0.01 -0.02 0.01 0.01 0.01 -0.02 0.02 -0.06 0.12 1.00
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Table 3: Persistence of Insurer Buy and Sell Transactions

This table reports the results of the analysis on the persistence in insurers’ buy and sell transactions. Panel
A reports the results for the full sample period. The dependent variable is the aggregate par value purchased
(sold) by all insurance companies in the subsequent month/quarter/year scaled by the par value of the bond
in the corresponding month. The independent variable is the aggregate par value purchased (sold) by all
insurance companies in a month scaled by the par value of the bond in that month. Panel B reports the
effect of insurers’ cash flow on their trading persistence. In each year, we break down insurers into two
groups based on cash flow, measured as insurers’ cash flow from insurance operations cash flow scaled by
total assets. Robust cash flow insurers are those whose cash flow above the annual sample median; weak
cash flow insurers are those below the annual sample median. R and W represent, respectively, the robust
and weak cash flow insurer groups. The dependent variable is the aggregate par value purchased (sold) by
all insurance companies in the subsequent month/quarter/year scaled by the par value of the bond. The
independent variable is the aggregate par value purchased (sold) by robust insurers and weak insurers in a
month scaled by the par value of the bond in that month. Panel C reports the analysis of the persistence in
insurers’ buy and sell transactions during the financial crisis. Panel D reports the analysis of the persistence
in insurers’ buy and sell transactions of robust and weak cash flow insurers during the financial crisis. The
full sample period is from July 2002 to December 2014. The crisis period is from July 2007 to April 2009. The
regressions include the month fixed effects. The t-statistics reported in the parentheses are based on two-way
clustered (by time and by bond issuer) standard errors. *, **, and *** indicate statistical significance at the
10%, 5%, and 1% level, respectively.

Panel A: Persistence in Insurer Bond Transactions: Full Sample

Following Month Following Quarter Following Year

Buyt+1 Sellt+1 Buyt+1 Sellt+1 Buyt+1 Sellt+1

Buy 0.16*** 0.31*** 0.70***
(6.96) (7.41) (7.84)

Sell 0.05*** 0.12*** 0.26***
(3.46) (4.84) (4.28)

Adj R2 0.05 0.02 0.08 0.03 0.10 0.04
N 487,601 487,601 487,601 487,601 487,601 487,601

Panel B: Insurer Cash Flow and Trading Persistence: Full Sample

Following Month Following Quarter Following Year

Buyt+1 Sellt+1 Buyt+1 Sellt+1 Buyt+1 Sellt+1∑
j∈RBuyj 0.20*** 0.39*** 0.80***

(3.64) (3.15) (3.08)∑
j∈W Buyj 0.10* 0.15** 0.53***

(1.94) (2.01) (3.08)∑
j∈RSellj 0.03 0.09 0.25**

(0.79) (1.56) (2.38)∑
j∈W Sellj 0.05* 0.13** 0.27***

(1.97) (2.34) (3.23)
Adj R2 0.04 0.02 0.07 0.04 0.12 0.05
N 487,601 487,601 487,601 487,601 487,601 487,601
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Panel C: Persistence in Insurer Bond Transactions: Financial Crisis

Following Month Following Quarter Following Year

Buyt+1 Sellt+1 Buyt+1 Sellt+1 Buyt+1 Sellt+1

Buy 0.15*** 0.30*** 0.68***
(6.27) (6.43) (7.78)

Sell 0.04*** 0.09*** 0.18***
(2.73) (3.46) (2.94)

Adj R2 0.03 0.02 0.04 0.02 0.07 0.03
N 59,096 59,096 59,096 59,096 59,096 59,096

Panel D: Insurer Cash Flow and Trading Persistence: Financial Crisis

Following Month Following Quarter Following Year

Buyt+1 Sellt+1 Buyt+1 Sellt+1 Buyt+1 Sellt+1∑
j∈RBuyj 0.24*** 0.45*** 0.89***

(3.64) (3.76) (3.35)∑
j∈W Buyj 0.07* 0.10* 0.33*

(1.87) (1.73) (1.84)∑
j∈RSellj 0.05** 0.09** 0.21**

(2.16) (1.96) (2.29)∑
j∈W Sellj 0.04** 0.10** 0.17**

(2.07) (2.34) (2.36)
Adj R2 0.04 0.03 0.04 0.03 0.08 0.04
N 59,096 59,096 59,096 59,096 59,096 59,096
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Table 4: Panel Regressions of Bond Illiquidity Changes

This table reports the results of panel regressions for bond illiquidity changes as:

∆ILQi,t = α+ β1Buyi,t−1 + β2Selli,t−1 + β3ILQi,t−1 + µt−1 + Controli,t−1 + εi,t

The dependent variable is the change of bond illiquidity (ILQ), proxied by Roll (in percent), Amihud (per
million), or Highlow (in percent). Independent variables include lagged insurer buys, lagged insurer sells,
lagged illiquidity, bond coupon rates, bond age, bond size, bond maturity, rating dummies, and indicator
variables for callable bonds, puttable bonds, exchangeable bonds, convertible bonds, credit enhancements
bonds, senior bonds, and secured bonds which are defined in Section 4.4. Buy (Sell) is the aggregate par
value purchased (sold) by all insurance companies in the sample scaled by the par value of a bond. Lagged
illiquidity, lagged insurer buys, and lagged insurer sales are measured in one month before the current. All
other independent variables are measured in the beginning of current month. The regressions include the
month fixed effects. p-values are for the null hypothesis that coefficients are the same between Buy and Sell
using the Wald test. The t-statistics reported in the parentheses are based on two-way clustered (by time
and by bond issuer) standard errors. *, **, and *** indicate statistical significance at the 10%, 5%, and 1%
level, respectively.
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∆Roll ∆Amihud ∆Highlow ∆Roll ∆Amihud ∆Highlow
Buy -1.53*** -0.30*** -0.47*** -1.15*** -0.14** -0.42***

(-5.01) (-3.00) (-4.41) (-4.04) (-1.98) (-4.01)
Sell 1.04** 0.19** 0.35*** 0.48** 0.03 0.25***

(2.32) (2.41) (3.58) (2.23) (0.34) (3.20)
ILQ -0.60*** -0.47*** -0.36*** -0.71*** -0.59*** -0.45***

(-24.12) (-26.81) (-23.62) (-26.12) (-27.04) (-24.65)
Coupon -0.04*** -0.01*** -0.01***

(-6.87) (-6.10) (-7.13)
BondAge 0.06*** 0.02*** 0.02***

(7.32) (7.03) (7.14)
BondSize -0.18*** -0.12*** -0.03***

(-7.14) (-8.43) (-2.86)
Maturity 0.04*** 0.01*** 0.01***

(9.25) (8.63) (8.95)
Callable -0.14*** -0.03*** -0.04***

(-6.58) (-4.49) (-5.63)
Puttable -0.35*** -0.08*** -0.15***

(-5.35) (-3.74) (-7.15)
Exch 0.03 0.07** -0.08***

(0.36) (1.96) (-2.64)
Conv -0.06 0.02 -0.12***

(-0.95) (0.96) (-6.31)
Enhanced -0.12*** -0.02*** -0.09***

(-7.90) (-3.07) (-7.32)
Senior 0.06** 0.04*** 0.01

(2.36) (6.08) (1.46)
Secured -0.07*** 0.01 -0.01

(-2.81) (1.46) (-1.43)
Rating Dummies No No No Yes Yes Yes
p-value on Equality 0.00 0.00 0.00 0.00 0.10 0.00
Adj R2 0.27 0.24 0.28 0.33 0.30 0.35
N 432,715 434,352 434,391 432,715 434,352 434,391
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Table 5: Panel Regressions of Bond Illiquidity: Rainy Day Effect

This table reports the results of panel regressions for bond illiquidity changes across different groups. The
dependent variable, change of bond illiquidity, is based on the Roll, Amihud, and Highlow respectively. The
independent variables include lagged insurer buys, lagged insurer sales, lagged illiquidity, bond coupon rate,
bond age, bond size, bond maturity, bond rating dummy, and indicator variables for callable bonds, puttable
bonds, exchangeable bonds, convertible bonds, credit enhancements bonds, senior bonds, and secured bonds.
Buy (Sell) is the aggregate par value purchased (sold) by all insurance companies in the sample scaled by
the par value of a bond. Other variables are defined in Table 2. Lagged illiquidity, lagged insurer buys,
and lagged insurer sales are measured in one month before the current. Panel A reports the results of panel
regressions for insurer tradings by illiquidity groups. Sample bonds are divided into three groups from high
liquidity group to low liquidity group. High liquidity group (HLG) has bonds with the highest 30 percent
liquidity over all bonds in that month. Low liquidity group (LLG) has bonds with the lowest 30 percent
liquidity over all bonds in that month. Panel B reports the results of panel regressions for insurer tradings by
different rating groups. All bonds in the sample are separated into three groups: Superior (Sup), Threshold
(Thr), and Inferior (Inf ). Superior bonds are rated A- or above. Threshold bonds are rated between BB
and BBB+. Inferior bonds are rated BB- or below. Panel C reports the results of panel regressions for
insurer tradings in different subsample periods around the financial crisis. The sample is broken into the
before-crisis period (Before Crisis), crisis period (Crisis), and the after-crisis period (After Crisis). The
before-crisis period is from July 2002 to June 2007. The crisis period is from July 2007 to April 2009. The
after-crisis period is from May 2009 to December 2014. All other independent variables are measured in
the beginning of current month. “LMH” is the coefficients difference between low liquidity bonds and high
liquidity bonds. “TMS” is the coefficients difference between threshold bonds and superior bonds. “CMB”
is the coefficients difference between crisis period and before crisis period. The regressions include the month
fixed effects. The coefficients on some control variables as well as the regression intercepts are suppressed to
preserve space. The t-statistics reported in the parentheses are based on two-way clustered (by time and by
bond issuer) standard errors. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level,
respectively.

Panel A: By Illiquidity

ILQ measure: Roll ILQ measure: Amihud ILQ measure: Highlow

HLG MLG LLG LMH HLG MLG LLG LMH HLG MLG LLG LMH

Buy -0.46 -1.30*** -2.51*** -2.05*** 0.06 -0.10** -0.31*** -0.44*** -0.19* -0.36** -1.20*** -1.01**
(-1.26) (-3.36) (-3.37) (-2.62) (1.03) (-2.01) (-2.70) (-2.94) (-1.68) (-2.04) (-3.03) (-2.45)

Sell 0.11 0.88** 0.33 0.22 -0.47** 0.38** 0.45** 0.92*** -0.02 0.32** 0.67*** 0.69***
(0.87) (2.29) (1.12) (0.33) (-2.00) (2.32) (2.42) (2.86) (-0.12) (2.15) (2.83) (2.88)

ILQ -1.68*** -0.66*** -0.79*** 1.04*** -0.45*** -0.72*** -0.43*** -0.53*** -0.53***
(-21.65) (-11.43) (-24.50) (5.17) (-6.78) (-13.26) (-17.61) (-9.79) (-21.31)

Coupon -0.03*** -0.04*** -0.08*** -0.00*** 0.00 -0.03*** 0.00 -0.02*** -0.02**
(-4.32) (-7.06) (-5.57) (-3.02) (0.22) (-5.30) (0.44) (-8.60) (-2.53)

BondAge 0.09*** 0.05*** 0.05*** 0.01*** 0.01*** 0.02*** 0.02*** 0.02*** 0.02***
(7.81) (6.49) (6.24) (7.21) (6.84) (7.37) (6.94) (6.75) (7.18)

BondSize -0.22*** -0.14*** -0.17*** -0.06*** -0.12*** -0.19*** -0.09*** -0.07*** 0.08***
(-9.26) (-6.08) (-3.91) (-9.11) (-9.05) (-7.03) (-4.36) (-3.70) (3.01)

Maturity 0.04*** 0.03*** 0.03*** 0.00*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01***
(9.51) (9.25) (7.52) (7.85) (8.65) (7.91) (8.65) (9.12) (5.57)

Adj R2 0.31 0.23 0.31 0.26 0.26 0.32 0.34 0.28 0.33
N 129,014 173,086 123,615 131,505 173,740 129,107 130,917 173,756 129,718
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Panel B: By Rating

ILQ measure: Roll ILQ measure: Amihud ILQ measure: Highlow

Sup Thr Inf TMS Sup Thr Inf TMS Sup Thr Inf TMS

Buy 0.37 -2.35*** -2.74** -2.71*** 0.08 -0.34*** -0.81*** -0.43*** -0.10 -0.77*** -0.74** -0.67***
(0.96) (-6.80) (-2.43) (-6.04) (0.76) (-3.86) (-4.10) (-3.00) (-0.70) (-5.28) (-2.48) (-3.55)

Sell -0.12 0.67** 1.08*** 0.79* -0.15 0.02 0.03 0.17 0.15 0.51*** 0.42** 0.36**
(-0.28) (2.00) (2.96) (1.74) (-1.13) (0.15) (0.14) (0.89) (0.79) (3.02) (2.32) (2.42)

ILQ -0.74*** -0.73*** -0.71*** -0.65*** -0.61*** -0.54*** -0.48*** -0.46*** -0.43***
(-24.98) (-24.76) (-27.05) (-28.80) (-21.59) (-11.16) (-20.70) (-25.74) (-27.93)

Coupon -0.04*** -0.03*** -0.08*** -0.01*** -0.01*** -0.02*** -0.02*** -0.01*** -0.02***
(-3.37) (-4.11) (-7.52) (-2.74) (-3.86) (-7.28) (-5.25) (-4.21) (-6.29)

BondAge 0.06*** 0.04*** 0.07*** 0.02*** 0.02*** 0.02*** 0.02*** 0.02*** 0.02***
(7.25) (7.02) (6.97) (6.87) (7.12) (6.89) (7.42) (6.85) (6.83)

BondSize -0.14*** -0.25*** -0.20*** -0.13*** -0.14*** -0.10*** -0.02*** -0.05*** -0.02**
(-6.87) (-7.78) (-6.47) (-9.01) (-9.65) (-6.62) (-2.95) (-4.12) (-2.39)

Maturity 0.04*** 0.03*** 0.02*** 0.01*** 0.01*** 0.01*** 0.02*** 0.01*** 0.01***
(9.88) (8.15) (3.11) (8.87) (6.93) (5.92) (9.32) (7.65) (5.44)

Adj R2 0.37 0.37 0.36 0.33 0.32 0.27 0.35 0.33 0.37
N 177,002 164,516 91,197 177,322 165,144 91,886 177,324 165,175 91,892

Panel C: Around the Financial Crisis

ILQ measure: Roll ILQ measure: Amihud ILQ measure: Highlow

Before Crisis After CMB Before Crisis After CMB Before Crisis After CMB
Crisis Crisis Crisis Crisis Crisis Crisis

Buy -0.33 -4.71*** -3.21*** -4.38*** 0.14* -0.78*** -0.60** -0.92*** -0.21 -1.87*** -0.88*** -1.59***
(-1.01) (-3.86) (-2.68) (-3.14) (1.91) (-2.68) (-2.54) (-2.70) (-1.39) (-3.52) (-2.67) (-2.99)

Sell 1.03** -0.86 -0.12 -1.89** 0.08 -0.01 -0.36*** -0.10 0.60** -0.43 0.26 -1.03***
(2.53) (-1.10) (-0.35) (-2.18) (0.74) (-0.02) (-3.53) (-0.20) (2.53) (-1.00) (1.57) (-2.59)

ILQ -0.70*** -0.69*** -0.70*** -0.64*** -0.60*** -0.60*** -0.42*** -0.56*** -0.44***
(-28.48) (-16.89) (-28.81) (-28.19) (-15.35) (-28.44) (-24.11) (-20.14) (-25.20)

Coupon -0.06*** -0.16*** -0.01** -0.02*** -0.05*** -0.00** -0.02*** -0.06*** -0.00**
(-6.92) (-8.16) (-2.14) (-4.78) (-6.70) (-2.03) (-7.12) (-7.92) (-2.35)

BondAge 0.08*** 0.06*** 0.04*** 0.03*** 0.04*** 0.02*** 0.03*** 0.03*** 0.01***
(7.16) (6.29) (7.47) (7.20) (6.46) (7.24) (7.15) (7.04) (7.15)

BondSize -0.15*** -0.21*** -0.20*** -0.13*** -0.18*** -0.12*** -0.03*** 0.02 -0.05***
(-7.10) (-6.95) (-7.74) (-8.82) (-6.23) (-8.74) (-2.97) (1.20) (-4.05)

Maturity 0.04*** 0.06*** 0.03*** 0.01*** 0.02*** 0.01*** 0.01*** 0.02*** 0.01***
(9.85) (9.71) (8.71) (9.02) (8.11) (7.79) (9.27) (8.84) (8.25)

Adj R2 0.36 0.40 0.36 0.33 0.31 0.31 0.32 0.38 0.33
N 162,050 50,453 220,212 162,868 50,837 220,647 162,873 50,855 220,663
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Table 6: Panel Regression on Illiquidity Changes for Matching Bonds

This table reports the results of panel regressions for insurer trading on matching bonds as:

∆ILQm,t = α+ β1Buyi,t−1 + β2Selli,t−1 + β3ILQm,t−1 + Controlm,t−1 + µt−1 + εm,t

A matching bond is defined as a bond with the same bond rating, with a maturity difference within a year,
and in the same liquidity quintile group. Panel A reports the results of panel regressions for insurer tradings
by illiquidity groups: the high liquidity group (HLG) is for bonds with the highest 30 percent liquidity over
all bonds in that month; the low liquidity group (LLG) contains bonds with the lowest 30 percent liquidity
over all bonds in that month; the rest are in the median liquidity group (MLG). Panel B reports the results
of panel regressions for insurer tradings by different rating groups. All bonds in the sample are separated into
three groups: Superior (Sup), Threshold (Thr), and Inferior (Inf ). Superior bonds are rated A- or above.
Threshold bonds are rated between BB and BBB+. Inferior bonds are rated BB- or below. Panel C reports
the results of panel regressions for insurer tradings in different subsample periods around the financial crisis.
The sample is broken into the before-crisis period (Before Crisis), crisis period (Crisis), and the after-crisis
period (After Crisis). The before-crisis period is from July 2002 to June 2007. The crisis period is from July
2007 to April 2009. The after-crisis period is from May 2009 to December 2014. The dependent variable,
change of matching bonds’ illiquidity, is based on Roll, Amihud, and Highlow respectively. The independent
variables include lagged insurer buys of sample bond, lagged insurer sales of sample bond, lagged illiquidity
of matching bond, bond coupon rate, bond age, bond size, bond maturity, and bond rating dummy. Buy
(Sell) is the aggregate par value purchased (sold) by all insurance companies in the sample scaled by the
par value of a bond. Other variables are defined in Table 2. Lagged illiquidity, lagged insurer buys, and
lagged insurer sales are measured in one month before the current. All other independent variables are
measured in the beginning of current month. “LMH” is the coefficients difference between low liquidity
bonds and high liquidity bonds. “TMS” is the coefficients difference between threshold bonds and superior
bonds. “CMB” is the coefficients difference between crisis period and before crisis period. The regressions
include the month fixed effects. The coefficients on some control variables and the regression intercepts are
suppressed to preserve space. The t-statistics reported in the parentheses are based on bond issuer clustered
standard errors. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively.

Panel A: By Illiquidity

ILQ measure: Roll ILQ measure: Amihud ILQ measure: Highlow

HLG MLG LLG LMH HLG MLG LLG LMH HLG MLG LLG LMH

Buy 0.22** 0.02 -0.43** -0.65** 0.10** -0.11*** -0.15*** -0.26*** 0.08* 0.03 -0.34** -0.41***
(2.06) (0.16) (-2.03) (-2.37) (2.19) (-2.78) (-2.89) (-3.01) (1.77) (0.25) (-2.37) (-3.04)

Sell 0.13 0.18 -0.18* -0.31** 0.04 -0.01 -0.05 -0.09 0.08* 0.07 -0.09 -0.17**
(1.10) (1.54) (-1.68) (-2.21) (0.96) (-0.28) (-1.19) (-1.54) (1.65) (1.50) (-1.31) (-2.02)

Adj R2 0.26 0.22 0.23 0.21 0.18 0.23 0.30 0.25 0.27
N 882,560 1,015,161 640,182 853,842 1,019,298 675,102 871,691 1,019,443 657,436

Panel B: By Rating

ILQ measure: Roll ILQ measure: Amihud ILQ measure: Highlow

Sup Thr Inf TMS Sup Thr Inf TMS Sup Thr Inf TMS

Buy 0.59** -0.51*** -0.11 -1.10*** 0.08** -0.12*** -0.08 -0.20*** 0.11*** -0.18*** 0.02 -0.29***
(2.40) (-2.66) (-0.40) (-4.85) (2.03) (-2.87) (-1.00) (-3.40) (2.66) (-3.02) (0.22) (-4.42)

Sell 0.21** -0.19** -0.45** -0.40*** 0.02 -0.06** -0.09 -0.08** 0.10*** -0.07** -0.07 -0.17***
(2.41) (-2.31) (-1.98) (-3.34) (0.57) (-2.42) (-1.38) (-2.05) (2.58) (-2.25) (-0.82) (-3.42)

Adj R2 0.24 0.21 0.23 0.17 0.19 0.21 0.31 0.26 0.28
N 1,265,375 976,961 299,387 1,266,851 980,068 301,504 1,266,864 980,304 301,414
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Panel C: Around the Financial Crisis

ILQ measure: Roll ILQ measure: Amihud ILQ measure: Highlow

Before Crisis After CMB Before Crisis After CMB Before Crisis After CMB
Crisis Crisis Crisis Crisis Crisis Crisis

Buy 0.01 -1.50*** -0.47*** -1.52*** -0.19*** -0.37*** -0.15*** -0.17** 0.11** -0.58*** -0.09** -0.69***
(0.15) (-2.95) (-2.59) (-2.90) (-3.05) (-3.96) (-3.22) (-2.26) (2.05) (-3.25) (-2.04) (-3.21)

Sell 0.12 -0.80*** -0.03 -0.92*** -0.02 -0.19** -0.00 -0.17** 0.04 -0.27*** 0.01 -0.32***
(1.37) (-2.96) (-0.57) (-3.27) (-0.76) (-2.49) (-0.15) (-2.09) (1.27) (-2.64) (0.50) (-2.93)

Adj R2 0.21 0.23 0.25 0.22 0.23 0.23 0.27 0.25 0.27
N 798,506 224,162 1,519,096 801,446 225,586 1,521,413 801,470 225,711 1,521,504
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Table 7: Insurer Cash Flow and Rainy Day Liquidity Provision

This table is on the role of insurers’ cash flow on insurers’ rainy day liquidity provision. In each year, we
break down insurers into two groups based on cash flow, measured as insurers’ cash flow from insurance
operations cash flow scaled by total assets. Robust cash flow insurers are those whose cash flow above the
annual sample median; weak cash flow insurers are those below the annual sample median. Panel A reports
the result for the test of how insurer cash flow affects the purchase of threshold and inferior corporate bonds.
Two insurer purchase measures are used as the dependent variable: buy (results reported in the first three
columns) and net buy (results reported in the subsequent three columns). Independent variables are the
threshold bond dummy (Thr), the inferior bond dummy (Inf ), and the same set of bond control variables
used in Table 4. Diff is the difference in regression coefficients between robust cash flow insurers and weak
cash flow insurers. Panel B reports the results for the panel regressions of corporate bond illiquidity on
insurers’ transactions when we separate corporate bond transactions based on insurers’ cash flow positions.
In both panels, the regressions include month fixed effects, and the coefficients on some bond control variables
as well as the regression intercepts are suppressed to preserve space. p-value is for the null hypothesis on
the equality between the coefficients on

∑
j∈RBuyj and on

∑
j∈W Buyj using the Wald test. The t-statistics

reported in the parentheses are based on two-way clustered (by time and by bond issuer) standard errors.
*, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively.

Panel A: Insurers’ Threshold Bond Purchase and Net Purchase

Buy Net

Robust Weak Diff Robust Weak Diff

Thr 0.10*** 0.05*** 0.05*** 0.02** -0.00 0.02***
(4.78) (2.76) (3.31) (2.03) (-0.48) (2.95)

Inf -0.12*** -0.13*** 0.00 -0.10*** -0.12*** 0.02**
(-8.39) (-8.70) (0.74) (-7.61) (-7.09) (2.23)

Adj R2 0.07 0.06 0.06 0.06

Panel B: High and Low Cash Flow Insurers’ Purchases and Liquidity Provision

ILQ measure: Roll ILQ measure: Amihud ILQ measure: Highlow

Sup Thr Inf Sup Thr Inf Sup Thr Inf

(1)
∑

j∈RBuyj 0.47 -2.38*** -2.83** 0.08 -0.58*** -1.07** 0.03 -0.89*** -1.27**

(1.07) (-6.42) (-2.48) (0.53) (-3.24) (-2.36) (0.15) (-3.78) (-2.55)
(2)

∑
j∈W Buyj 0.13 -1.61** -1.90 0.05 -0.22** -0.77** -0.41 -0.53** -0.71

(0.17) (-2.56) (-1.59) (0.21) (-1.97) (-2.51) (-1.49) (-2.55) (-1.37)∑
j∈RSellj 0.12 0.92* 1.46** -0.16 -0.01 0.08 0.09 0.54** 1.16**

(0.23) (1.93) (2.47) (-0.94) (-0.09) (0.27) (0.36) (2.38) (2.53)∑
j∈W Sellj -0.46 0.23 0.94 -0.18 0.08 -0.02 0.23 0.46** -0.34

(-0.60) (0.35) (0.79) (-0.63) (0.35) (-0.04) (0.81) (2.01) (-0.64)
p-value on (1)=(2) 0.18 0.09 0.14 0.43 0.04 0.18 0.19 0.08 0.17
Adj R2 0.39 0.38 0.38 0.35 0.35 0.30 0.36 0.35 0.39
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Table 8: Investment Horizon and Rainy Day Liquidity Provision

This table is on the effect of insurers’ investment horizons on insurers’ rainy day liquidity provision. In each
year, we break down insurers into two groups based on their holding horizons, the inverse of the turnover
ratios of individual insurers’ corporate bond portfolios which are measured as the minimum of the aggregate
market value of securities purchased by an insurer and the aggregate value of securities sold by the insurer in
each year, scaled by the aggregate portfolio value at the end of the year. Panel A reports the test results of
how insurers’ holding horizon affects their purchases of threshold bonds and inferiorly rated corporate bonds.
Two insurer purchase measures are used as the dependent variable: buy (results reported in the first three
columns) and net buy (results reported in the subsequent three columns). Independent variables are the
threshold bond dummy (Thr), the inferior bond dummy (Inf ), and the same set of bond control variables
used in Table 4. Diff is the coefficients difference between long horizon insurers and short horizon insurers.
Panel B reports the results for the panel regressions of corporate bond illiquidity on insurers’ transactions
when we separate corporate bond transactions based on insurers’ investment horizons. In both panels, the
regressions include month fixed effects, and the coefficients on some bond control variables as well as the
regression intercepts are suppressed to preserve space. p-value is for the null hypothesis on the equality
between the coefficients on

∑
j∈LBuyj and on

∑
j∈SBuyj using the Wald test. The t-statistics reported in

the parentheses are based on two-way clustered (by time and by bond issuer) standard errors. *, **, and
*** indicate statistical significance at the 10%, 5%, and 1% level, respectively.

Panel A: Insurers’ Threshold Bond Purchase and Net Purchase

Buy Net

Long Short Diff Long Short Diff

Threshold 0.10*** 0.06*** 0.03*** 0.02*** 0.00 0.02***
(5.38) (3.54) (2.86) (2.82) (0.32) (2.71)

Inferior -0.10*** -0.11*** 0.01 -0.11*** -0.13*** 0.02**
(-5.76) (-6.19) (0.95) (-5.10) (-6.46) (2.25)

Adj R2 0.07 0.07 0.06 0.06

Panel B: Long and Short Horizon Insurers’ Purchases and Liquidity Provision

ILQ measure: Roll ILQ measure: Amihud ILQ measure: Highlow

Sup Thr Inf Sup Thr Inf Sup Thr Inf

(1)
∑

j∈LBuyj 0.42 -3.10*** -3.44*** 0.06 -0.58*** -1.14*** -0.26 -1.04*** -1.01**

(0.94) (-6.01) (-3.29) (0.27) (-4.46) (-3.52) (-1.01) (-4.60) (-2.22)
(2)

∑
j∈SBuyj 0.30 -2.14*** -1.83 0.22 -0.25*** -0.68** -0.06 -0.67*** -0.60

(0.82) (-4.35) (-0.76) (1.20) (-2.69) (-2.21) (-0.26) (-2.67) (-1.56)∑
j∈LSellj 0.35 1.15* 1.05* -0.06 0.44** -0.08 0.54* 0.90*** 0.38

(0.44) (1.69) (1.88) (-0.26) (2.38) (-0.24) (1.67) (3.33) (0.73)∑
j∈SSellj -0.84 0.10 1.69* -0.39** -0.29 0.62 -0.43* 0.13 0.64

(-1.43) (0.16) (1.85) (-2.06) (-1.01) (1.48) (-1.82) (0.45) (1.56)
p-value on (1)=(2) 0.38 0.07 0.04 0.25 0.04 0.13 0.27 0.06 0.14
Adj R2 0.39 0.39 0.38 0.34 0.33 0.30 0.36 0.35 0.40

54



Table 9: Dodd-Frank Act and Insurer Bond Purchase Effect on Bond Liquidity

This table reports the results for the panel regressions to test the liquidity effect of insurers’ corporate
bond transactions. Corporate bond transactions are classified to those with bank-affiliated dealers and
with nonbank dealers. Only threshold rating bonds (bonds are rated between BB and BBB+) during the
pre-crisis period (from July 2002 to June 2007) and the Dodd-Frank restricted period (from May 2009
to December 2014) are included in the sample. Independent variables include the aggregate par value
purchased (sold) of individual bonds from bank-affiliated dealers (B) and nonbank dealers (N ) scaled by their
respective par values, the interactions between transactions and the dummy variable for the Dodd-Frank
restricted period (DF ). The control variables include the dummy variable for the Dodd-Frank restricted
period, lagged illiquidity, and the same set of bond control variables used in Table 4. The regressions include
the month fix effects. The coefficients on some control variables as well as the regression intercepts are
suppressed to preserve space. p-values on (1)=(2) is for the null hypothesis on the equality between the
coefficients on

∑
j∈BBuyj ∗DF and on

∑
j∈NBuyj ∗DF , p-values on (3)=(4) is for the null hypothesis on

the equality between the coefficients on
∑

j∈BSellj ∗DF and on
∑

j∈NSellj ∗DF . The t-statistics reported
in the parentheses are based on two-way clustered (by time and by bond issuer) standard errors. *, **, and
*** indicate statistical significance at the 10%, 5%, and 1% level, respectively.

ILQ measure: Roll ILQ measure: Amihud ILQ measure: Highlow∑
j∈BBuyj -1.85*** -0.84** -0.93***

(-2.96) (-2.43) (-3.02)∑
j∈NBuyj -1.28*** -0.48** -0.29

(-2.69) (-2.40) (-1.64)
(1)

∑
j∈BBuyj ∗DF -0.78*** -0.27*** -0.52**

(-2.75) (-2.77) (-2.02)
(2)

∑
j∈NBuyj ∗DF -0.25 -0.13 -0.19

(-1.24) (-0.84) (-0.80)∑
j∈BSellj 0.88 0.24 0.78*

(1.22) (0.87) (1.94)∑
j∈NSellj 0.30 0.11 0.16

(1.47) (0.56) (1.21)
(3)

∑
j∈BSellj ∗DF 0.42* 0.11 0.27*

(1.76) (0.43) (1.69)
(4)

∑
j∈NSellj ∗DF 0.24 0.04 0.13

(0.72) (0.25) (0.70)
p-value on (1)=(2) 0.03 0.14 0.05
p-value on (3)=(4) 0.39 0.33 0.39
Adj R2 0.38 0.34 0.32
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Figure 1: This figure plots the fraction of the time the dealer quotes in both directions as a
function of p (left) and the arrival rate of insurance orders, µ (right). µ is the Poisson intensity for
insurance companies (ICs) arriving to the market. p is the conditional probability that on a buy
order, the next IC order is a buy order.
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Figure 2: This figure plots the fraction of the time the dealer quotes in both directions as
a function of p in periods with low and high selling pressure (top-left) and with low and high
inventory cost (top-right) and the fraction of the time the dealer quotes in both directions as a
function of µ in periods with low and high selling pressure (bottom-left) and with low and high
inventory cost (bottom-right).
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Figure 3: The figure depicts corporate bonds illiquidity over time. The illiquidity measures are i) Roll, ii) Amihud, and iii)
Highlow. The reported numbers are weighted by bonds par value.
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Figure 4: The figure depicts the average insurers holding, insurer purchases, and sales across bond ratings. Insurers holding
is the aggregate par value held by all insurers scaled by the bond par value at the end of each month. Insurers purchase (sale)
is the aggregate par value purchased (sold) by all insurers scaled by the bond par value. We compute bonds par value weighted
averages across bond ratings in each month and then take the averages over time.
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Figure 5: The figure depicts the average insurer holding, insurer purchase, and sales across bond maturity groups. Bond
maturities are rounded up to the nearest integers to form maturity groups. Bonds with maturities longer than 30 years are placed
in maturity group “> 30”. Insurers holding is the aggregate par value held by all insurers scaled by the bond par value at the end
of each month. Insurers purchase (sale) is the aggregate par value purchased (sold) by all insurers scaled by the bond par value.
We compute bonds par value weighted averages across bond maturities in each month and then take the averages over time.
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Rainy Day Liquidity

(Internet Appendix)



A Discrete-time equivalent formulation

We start by recalling the definition of a discounted infinite horizon Markov Decision Process

(MDP), before showing that our continuous-time dealer optimization problem can be rep-

resented as a MDP. A MDP is defined by a 4-tuple, (I, Ai,P(.|i, a),R(.|i, a)), in which I is

the state space, Ai is the action space, i.e., the set of possible actions that a decision maker

can take when the state is i ∈ I, P(.|i, a) is the probability transition matrix determining

the state of the system in the next decision time, and finally R(.|i, a) is the reward matrix,

specifying the reward obtained using action a when the state is in i. The decision maker

seeks a policy that maximizes the expected discounted reward

v(i) = max
`

E

[
∞∑
t=0

αtR(it+1|it, `(it))|i0 = i

]
, (A1)

where α is the discount rate. An admissible stationary policy ` maps each state i ∈ I to

an action in Ai. Under mild technical conditions, we can guarantee the existence of optimal

stationary policies (see Puterman, 2014). Conditioning on the first transition from i to i′,

we obtain the Hamilton-Jacobi-Bellman optimality equation

v(i) = max
`

{∑
i′

P(i′|i, `(i))

(
R(i′|i, `(i)) + αE

[
∞∑
t=1

αt−1R(it+1|it, `(it))|i1 = i′

])}

= max
`

{∑
i′

P(i′|i, `(i))

(
R(i′|i, `(i)) + αE

[
∞∑
k=0

αkR(ik+1|ik, `(ik))|ik = i′

])}

= max
a∈Ai

{∑
i′

P(i′|i, a) (R(i′|i, a) + αv(i′))

}
.

(A2)

A.1 Transition Probabilities

We now calculate the transition probabilities at each state of the dealer. First, note that the

state transitions occur at a rate of λ+ µ and the rate is the same for all states and actions.

Let P((x′, s′)|(x, s), (`b, `a)) be the probability of reaching state (x′, s′) when the system is in

state (x, s) and the trader takes the actions of `b and `a.

Suppose that the current state of the dealer is (x, s). Since the inter-arrival times are

exponentially distributed, we can use the following property regarding the probability of
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the event types: If Z1, . . . , Zn are each exponentially distributed with mean 1/zi, then

P (Zk = min {Z1, . . . , Zn}) = zk/(z1 + . . .+ zn).

First, if the dealer does not quote, we obtain

P ((x′, s′)|(x, s), (0, 0)) =



λ+pµ
µ+λ

if x = x′, s = s′ = B,

(1−p)µ
µ+λ

if x = x′, s = B, s′ = S,

λ+qµ
µ+λ

if x = x′, s = s′ = S,

(1−q)µ
µ+λ

if x = x′, s = S, s′ = B,

0 otherwise.

If the dealer does not quote, his inventory cannot change. However, if ICs contact the dealer,

there may be change in the expected sign of the incoming IC order.

When the dealer takes action (1, 0), we have the following transition probabilities:

P ((x′, s′)|(x, s), (1, 0)) =



(1−y)λ+pµ
µ+λ

if x = x′, s = s′ = B,

yλ
µ+λ

if x+ 1 = x′, s = s′ = B,

(1−p)µ
µ+λ

if x+ 1 = x′, s = B, s′ = S,

yλ+qµ
µ+λ

if x+ 1 = x′, s = s′ = S,

(1−y)λ
µ+λ

if x = x′, s = s′ = S,

(1−q)µ
µ+λ

if x = x′, s = S, s′ = B,

0 otherwise.

When the dealer takes the action (1, 0), he may increase his inventory by trading with the
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incoming sell orders. Similarly, for dealer action (0, 1), we have

P ((x′, s′)|(x, s), (0, 1)) =



(1−y)λ+pµ
µ+λ

if x− 1 = x′, s = s′ = B,

yλ
µ+λ

if x = x′, s = s′ = B,

(1−p)µ
µ+λ

if x = x′, s = B, s′ = S,

yλ+qµ
µ+λ

if x = x′, s = s′ = S,

(1−y)λ
µ+λ

if x− 1 = x′, s = s′ = S,

(1−q)µ
µ+λ

if x− 1 = x′, s = S, s′ = B,

0 otherwise.

Finally, when the dealer quotes on both sides of the market, we obtain

P ((x′, s′)|(x, s), (1, 1)) =



(1−y)λ+pµ
µ+λ

if x− 1 = x′, s = s′ = B,

yλ
µ+λ

if x+ 1 = x′, s = s′ = B,

(1−p)µ
µ+λ

if x+ 1 = x′, s = B, s′ = S,

yλ+qµ
µ+λ

if x+ 1 = x′, s = s′ = S,

(1−y)λ
µ+λ

if x− 1 = x′, s = s′ = S,

(1−q)µ
µ+λ

if x− 1 = x′, s = S, s′ = B,

0 otherwise.

A.2 Reward Function

Let R((x′, s′)|(x, s), (`b, `a)) be the total reward achieved by the dealer when the system is

in state (x, s), the dealer chooses quoting actions `b and `a and the system reaches the state

(x′, s′). We would like to write the dealer’s objective in (1) in the form of an MDP objective

function as in (A1). We first introduce the following notation. Let tk be the time of the kth

state transition due to an order from an NIT or IC (by convention t0 = 0) and let τk be the

length of this cycle, i.e., τk = tk− tk−1. We start with the first two terms in (1) that measure
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the spreads earned by the dealer when there is a trade. First observe that

δ

∞∑
i=1

e−βT
sell
i 11

(
`b
T buy
i

= 1
)

+ δ

∞∑
j=1

e−βT
b
j 11
(
`aT b

j
= 1
)

= δ
∞∑
k=1

e−βtkR+(xtk |xtk−1
, `btk−1

, `atk−1
),

where we define R+(x′|x, `b, `a) = 11 (x 6= x′) 11
(
`a = 1 or `b = 1

)
. We can take the expec-

tation of the dealer’s discounted earnings using the independence of each cycle length, τi,

which is an exponentially distributed random variable with mean 1/(λ+ µ):

E
[
δ
∑∞

k=1 e
−βtkR+(xtk |xtk−1

, `btk−1
, `atk−1

)
]

= δ
∑∞

k=1 E
[
e−β

∑k
i=1 τi

]
E
[
R+(xtk |xtk−1

, `btk−1
, `atk−1

)
]

= δ
∑∞

k=1 E
[
e−βτ1

]k E [R+(xtk |xtk−1
, `btk−1

, `atk−1
)
]

= δ
∑∞

k=1

(∫∞
0

(λ+ µ)e−(λ+µ+β)tdt
)k E [R+(xtk |xtk−1

, `btk−1
, `atk−1

)
]

= δ
∑∞

k=1

(
λ+µ

λ+µ+β

)k
E
[
R+(xtk |xtk−1

, `btk−1
, `atk−1

)
]

= αδ
∑∞

k=0 α
kE
[
R+(xtk+1

|xtk , `btk , `
a
tk

)
]
.

where α is the “adjusted discount factor,” defined in (2).

Inventory costs in the third term of (1) can be simplified as

E
[
Γ
∫∞

0
e−βt|xt|dt

]
= Γ

∑∞
k=0 E

[∫ tk+1

tk
e−βt|xt|dt

]
= Γ

∑∞
k=0 E

[∫ tk+1

tk
e−βtdt

]
E [|xtk |]

= Γ
β

∑∞
k=0 E

[
e−βtk

] (
1− E

[
e−βτk+1

])
E [|xtk |]

= Γ
β

∑∞
k=0 α

k
(

β
λ+µ+β

)
E [|xtk |]

= Γ
λ+µ+β

∑∞
k=0 α

kE [|xtk |] .

Let R((x′, s′)|(x, s), (`b, `a)) be the reward of switching to (x′, s′) from state (x, s) when the

trader takes the actions of `b and `a. We are now ready to define the total reward matrix.

Let

R
(
(x′, s′)|(x, s), (`b, `a)

)
= αδ11 (x 6= x′) 11

(
`a = 1 or `b = 1

)
− γ|x| ∀(s, s′), (A3)

where αδ and γ, defined in (2) are the “adjusted spread” and “adjusted inventory aversion”

parameters for the discrete-time formulation. Then, the dealer maximizes

v(x, s) = max
`

E`
[
∞∑
k=0

αkR
(
(xtk+1

, stk+1
)|(xtk , stk), (`btk , `

a
tk

)
) ∣∣∣(x0, s0) = (x, s)

]
, (A4)

starting from his initial state, (x, s), following the policy implied by `. Note that this

representation is in the requisite MDP form described in Section A.
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B Determination and Computation of the Optimal

Policy

B.1 Value Function

We have now transformed our continuous-time problem into an equivalent discrete-time

MDP. Using the Hamilton-Jacobi-Bellman optimality equation given in (A2), v(x, s) in (A4)

can be computed by solving the following set of equations:

v(x, s) = max
`b, `a

∑
(x′,s′)

P
(
(x′, s′)|(x, s), (`b, `a)

) {
R
(
(x′, s′)|(x, s), (`b, `a)

)
+ δv(x′, s′)

} .

(A5)

By substituting the corresponding expressions for P
(
.|(x, s), (`b, `a)

)
and R

(
.|(x, s), (`b, `a)

)
,

Proposition 1 simplifies the implicit equations for the value functions in (A5) and shows that

the optimal decisions on `b and `a are separable. The result of the lemma shows that the

maximum taken over all possible actions in (A5) can actually be separated into two maxima

in each of which the dealer decides to quote or not to quote at the best bid or at the best

ask.

B.2 Optimal Market Making Solution

Proof of Theorem 1. Using the value iteration algorithm, we first establish by induction that

v(x,B) and v(x, S) are concave functions. Let v(0)(x,B) = 0 and v(0)(x, S) = 0 for all x.

Then, the base case states that

v(1)(x,B) = −γ|x|+ αδ, v(1)(x, S) = −γ|x|+ αδ
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which are both concave functions of x. Assume that v(n)(x,B) and v(n)(x, S) are concave.

Then,

v(n+1)(x,B) = −γ|x|+ α

λ+ µ

(
max

{
δ(yλ+ (1− p)µ) + v(n)(x+ 1, B)yλ+ v(n)(x+ 1, S)(1− p)µ,

v(n)(x,B)yλ+ v(n)(x, S)(1− p)µ
}

+ max
{
δ((1− y)λ+ pµ) + v(n)(x− 1, B) ((1− y)λ+ pµ) ,

v(n)(x,B)((1− y)λ+ pµ)
})

In order to establish the concavity of v(n+1)(x,B), we need the following lemma.

Lemma 1. Fix z ∈ R and define g(i) , max {z + f(i+ 1), f(i)}. g(i) is concave if f(i) is

concave.

Proof. Define i∗ , min {i : f(i) > z + f(i+ 1)}. For i∗ ≤ i − 2, g(i) − g(i + 1) = f(i +

1) − f(i + 2) ≤ z and is nondecreasing in i as f(i) is assumed to be concave. If i ≥ i∗,

g(i)− g(i+ 1) = f(i)− f(i+ 1) > z and is also nondecreasing in i due to concavity of f(i).

If i = i∗ − 1, g(i)− g(i+ 1) = r + f(i+ 1)− f(i+ 1) = z. Thus, for all i, g(i)− g(i+ 1) is

nondecreasing which makes g(i) concave.

A direct application of Lemma 1 also asserts that g(i) , max {z + f(i− 1), f(i)} is

also concave as it can be rewritten as g(i) = z + max {f(i− 1), f(i)− z}. Using

Lemma 1, v(n+1)(x,B) becomes concave as the expressions can be written in the form of

max {z + f(x+ 1), f(x)}. Since v(n)(x,B) converges to v(x,B), v(x,B) is concave in x.

Due to the same structure in v(n+1)(x, S), v(x, S) is also concave. Since the expressions can

be written in the form of max {z + f(x+ 1), f(x)} where f is concave, f(x+ 1)− f(x) must

be non-decreasing in x. Therefore, there exists L∗bB and L∗aB such that

`∗b(x,B) =

1 x < L∗bB,

0 x ≥ L∗bB.

`∗a(x,B) =

1 x > L∗aB,

0 x ≤ L∗aB.

The proof is identical for the case of s = S.
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Figure A1: The fraction of the time the dealer quotes in both directions as a function of p

(left) and the arrival rate of insurance orders, µ (right). The model’s parameters are as follows:

δ = $5000, Γ = $10000, q = 0.55, y = 0.75, µ = 5, λ = 20, β = 0.04%.

B.3 Alternative Calibrations

In this section, we rerun the empirical predictions of the model with regards to p and µ in

different calibrations. In Figure A1, we use smaller assumptions for δ and Γ compared to

the base calibration reported in the paper. In this case, the dealer makes δ = $5,000 which

amounts to 0.5% of the par value and his inventory costs are given by Γ = $10,000 which

amounts to 1% of the par value. In Figure A2, we increase the arrival rate of the orders for

both types but the ratio of IC orders are smaller. In this case, µ = 10 and λ = 100, and the

remaining parameters remain the same.

C Liquidity Measures

In this section, we briefly describe our monthly illiquidity measures. Following Roll (1984),

we get Roll measure which captures the negative auto-covariance of trade price changes.
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Figure A2: The fraction of the time the dealer quotes in both directions as a function of p

(left) and the arrival rate of insurance orders, µ (right). The model’s parameters are as follows:

δ = $20000, Γ = $50000, q = 0.55, y = 0.75, µ = 10, λ = 100, β = 0.04%.

Specially, we compute the monthly Roll measure as:

Rollj,m = 2
√
−cov(Rj,t,m, Rj,t−1,m) (A6)

where Rj,t,m and Rj,t−1,m are returns of two consecutive available trading days, and the

covariance is computed for bond j in the same month m. Roll is set to be zero when the

monthly covariance is positive.

Following Amihud (2002), we utilize bond returns and trading dollar volume to construct

Amihud illiquidity ratio. Specially, the monthly Amihud measure is:

Amihudj,m =
1

N

N∑
t=1

Rj,t

Qj,t

(A7)

where N is the number of positive-volume trading days for bond j in a given month m. Rj,t

and Qj,t are the return and dollar trading volume, per million dollars, for bond j when there

is at least a trade in day t of month m. The return Rj,t is calculated from daily closing prices

on day t and its most recent trading day.
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The third measure is the spread between the high and low daily transaction prices. Corwin

and Schultz (2012) propose that daily high prices correspond to buy orders and low prices

are likely from sell orders. They utilize the Highlow ratio on consecutive days to separate

security’s variance and the bid-ask spread. Because the variance component is proportional

to time while the bid-ask spread should be constant, we follow them to construct Highlow

illiquidity measure as:

Highlow =
2 · (eα − 1)

1 + eα
(A8)

where

α =

√
2 · β −

√
β

3− 2 ·
√

2
−
√

γ

3− 2 ·
√

2
, (A9)

β =
1∑
j=0

(
log

(
Ht+j

Lt+j

))2

, (A10)

γ =

(
log

(
Ht,t+1

Lt,t+1

))2

(A11)

Ht and Lt are the highest and lowest price on day t. We use the mean value of daily Highlow

values in a month to get a monthly Highlow illiquidity measure for each bond.
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Table A1: 15 Largest Insurer Corporate Bond Buyers and Sellers

This list provides the top 15 insurers most frequently purchasing and selling corporate bonds based on aggre-
gate par values of bond transactions. The sample data are from Schedule D of insurers’ annual statements
filed to state insurance departments. The sample period is from 2000 to 2014.

Top 15 Buyers Top 15 Sellers

Northwestern Mutual Life Insurance Company Northwestern Mutual Life Insurance Company

Teachers Insurance & Annuity Association Of America Prudential Insurance Company of America

Prudential Insurance Company Of America Metropolitan Life Insurance Company

Metropolitan Life Insurance Company PFL Life Insurance Company

American General Annuity Insurance Company Teachers Insurance & Annuity Association of America

PFL Life Insurance Company American General Annuity Insurance Company

Allianz Life Insurance Company of North America American General Life Insurance Company

New York Life Insurance Company Allstate Life Insurance Company

American General Life Insurance Company Continental Casualty Company

Lincoln National Life Insurance Company New York Life Insurance Company

Jackson National Life Insurance Company Jackson National Life Insurance Company

Continental Casualty Company American Life Insurance Company

New York Life Insurance & Annuity Company Guardian Life Insurance Company of America

Allstate Life Insurance Company Travelers Insurance Company life

Guardian Life Insurance Company Of America Variable Annuity Life Insurance Company

10



Table A2: Determinants of Insurer Transactions

This table reports the results of panel regressions for insurers’ bond transactions. The dependent variable is
the aggregate par value purchased (sold) by all insurance companies in the sample scaled by the par value of a
bond. The independent variables include bond rating dummy, bond illiquidity, bond coupon rate, bond age,
bond size, bond maturity, and indicator variables for callable bonds, puttable bonds, exchangeable bonds,
convertible bonds, credit enhancements bonds, senior bonds, and secured bonds. All bonds in the sample
are divided into three groups, threshold bonds dummy (Thr) equals 1 if bonds are rated between BB and
BBB+, inferior bonds dummy (Inf ) equals 1 for bonds rated BB- and below. Illiquidity measures are Roll,
Amihud, and Highlow respectively. Other variables are defined in Table 2. The full sample period is from
July 2002 to December 2014. The crisis period is from July 2007 to April 2009. The regressions include the
month fixed effects. The t-statistics reported in the parentheses are based on two-way clustered (by time
and by bond issuer) standard errors. *, **, and *** indicate statistical significance at the 10%, 5%, and 1%
level, respectively.

ILQ measure: Roll ILQ measure: Amihud ILQ measure: Highlow

Full Crisis Full Crisis Full Crisis

Buy Sell Buy Sell Buy Sell Buy Sell Buy Sell Buy Sell

Thr 0.08*** 0.07*** 0.05*** 0.04*** 0.08*** 0.07*** 0.05*** 0.03*** 0.08*** 0.07*** 0.05*** 0.04***
(3.79) (4.31) (2.96) (2.82) (3.70) (3.99) (2.97) (2.63) (4.39) (4.32) (2.74) (2.86)

Inf -0.10*** 0.03*** -0.05*** 0.01 -0.10*** 0.04*** -0.06*** 0.00 -0.10*** 0.03*** -0.05*** 0.01
(-6.07) (3.11) (-4.19) (0.46) (-6.91) (3.67) (-4.32) (0.07) (-6.08) (3.19) (-4.27) (0.34)

ILQ 0.02*** -0.01** 0.02** -0.02 0.02** -0.04*** 0.06*** -0.05*** 0.03*** -0.00 0.04*** -0.01
(3.03) (-2.19) (2.02) (-1.00) (2.29) (-5.75) (4.41) (-2.68) (4.19) (-0.50) (3.20) (-0.69)

Coupon 0.50** -3.05*** 1.25*** -0.61 0.53** -3.21*** 1.17*** -0.94 0.53** -3.06*** 1.22*** -0.67
(2.22) (-7.69) (3.72) (-1.03) (2.33) (-7.81) (3.48) (-1.61) (2.35) (-7.67) (3.61) (-1.14)

BondAge -0.21*** 0.04*** -0.15*** 0.03*** -0.20*** 0.05*** -0.14*** 0.04*** -0.20*** 0.04*** -0.15*** 0.03***
(-6.45) (3.02) (-4.83) (3.08) (-5.93) (3.81) (-4.72) (3.29) (-5.75) (2.82) (-4.82) (3.04)

BondSize -0.07***-0.06***-0.06***-0.07*** -0.08***-0.08***-0.08***-0.09*** -0.07***-0.06***-0.06***-0.07***
(-5.91) (-5.41) (-5.18) (-5.81) (-6.24) (-6.55) (-6.21) (-6.75) (-5.41) (-5.21) (-6.33) (-6.44)

Maturity 0.12*** 0.01 0.05*** -0.08** 0.13*** 0.02 0.05*** -0.06* 0.13*** 0.01 0.06*** -0.07**
(8.16) (0.78) (5.15) (-2.28) (8.33) (1.25) (4.92) (-1.91) (8.61) (0.65) (5.43) (-2.12)

Callable 0.06*** 0.08*** 0.09*** 0.06*** 0.06*** 0.08*** 0.09*** 0.05*** 0.06*** 0.08*** 0.09*** 0.06***
(3.75) (5.14) (5.32) (3.12) (3.47) (5.27) (5.34) (2.59) (3.23) (5.35) (5.44) (3.24)

Puttable -0.06** 0.02 0.01 0.16*** -0.06** 0.01 0.01 0.15*** -0.06** 0.02 0.00 0.16***
(-2.14) (0.71) (0.31) (2.98) (-2.22) (0.28) (0.30) (2.75) (-2.40) (0.91) (0.10) (2.93)

Exch -0.22***-0.32*** -0.12** -0.30*** -0.22***-0.31*** -0.12** -0.31*** -0.23***-0.32*** -0.13** -0.30***
(-2.68) (-3.10) (-2.16) (-2.88) (-2.84) (-2.91) (-2.17) (-3.11) (-2.94) (-3.01) (-2.33) (-2.92)

Conv -0.22***-0.34***-0.11***-0.33*** -0.22***-0.34***-0.11***-0.36*** -0.23***-0.34***-0.12***-0.34***
(-3.26) (-4.24) (-3.31) (-5.44) (-3.29) (-4.49) (-3.55) (-6.05) (-3.58) (-4.28) (-3.73) (-5.56)

Enhanced-0.04***-0.04***-0.06*** -0.02 -0.04***-0.05***-0.06*** -0.03 -0.04***-0.04***-0.06*** -0.02
(-5.11) (-5.80) (-4.84) (-1.21) (-5.15) (-6.56) (-4.92) (-1.57) (-5.78) (-5.58) (-5.17) (-1.06)

Senior -0.01 0.01 0.02** -0.03 -0.01 0.02* 0.03** -0.02 -0.01 0.01 0.02** -0.03
(-1.32) (1.13) (2.03) (-1.34) (-1.15) (1.69) (2.41) (-1.10) (-1.22) (1.10) (2.01) (-1.38)

Secured -0.01 -0.03** 0.09*** -0.01 -0.01 -0.03** 0.09*** -0.02 -0.01 -0.03** 0.09*** -0.01
(-1.04) (-2.51) (2.86) (-0.36) (-0.79) (-2.46) (2.87) (-0.53) (-0.91) (-2.36) (2.79) (-0.39)

Adj R2 0.07 0.02 0.05 0.01 0.07 0.02 0.05 0.01 0.07 0.02 0.05 0.01
N 475,975 475,975 55,865 55,865 476,969 476,969 56,092 56,092 476,969 476,969 56,101 56,101
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Table A3: Cross Persistence of Matching Bonds

This table reports the results of the analysis on cross persistence of bonds with matching characteristics
with insurers trading bonds. A matching bond is defined as a bond with the same bond rating, maturity
difference within a year, and the same liquidity quintile group as the sample bond in a month. Panel A
reports the analysis of the persistence in insurers’ buy and sell transactions in the sample period across
bonds. The dependent variable is the aggregate par value purchased (sold) by all insurance companies in the
subsequent month/quarter/year scaled by the par value of the matching bond. The independent variable is
the aggregate par value purchased (sold) by all insurance companies in a month scaled by the par value of
the sample bond in that month. Panel B is on the effect of insurers’ cash flow on their trading persistence.
In each year, we break down insurers into two groups based on cash flow, measured as insurers’ cash flow
from insurance operations cash flow scaled by total assets. Robust cash flow insurers are those whose cash
flow above the annual sample median; weak cash flow insurers are those below the annual sample median.
R and W represent, respectively, the robust and weak cash flow insurer groups. The dependent variable is
the aggregate par value purchased (sold) by all insurance companies in the subsequent month/quarter/year
scaled by the par value of the matching bond. The independent variable is the aggregate par value purchased
(sold) by robust or weak insurance companies in a month scaled by the par value of the sample bond in that
month. Panel C reports the analysis of the persistence in insurers’ buy and sell transactions across bonds
during the financial crisis. Panel D reports the analysis of the persistence in robust and weak cash flow
insurers’ buy and sell transactions across bonds during the financial crisis. The full sample period is from
July 2002 to December 2014. The crisis period is from July 2007 to April 2009. The regressions include the
month fixed effects. The t-statistics reported in the parentheses are based on bond issuer clustered standard
errors. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively.

Panel A: Trading Persistence across Bonds: Full Sample

Following Month Following Quarter Following Year

Buyt+1 Sellt+1 Buyt+1 Sellt+1 Buyt+1 Sellt+1

Buy 0.06*** 0.15*** 0.42***
(5.33) (6.02) (6.19)

Sell 0.01** 0.04** 0.13**
(2.40) (2.21) (2.38)

Adj R2 0.03 0.01 0.04 0.01 0.06 0.02
N 2,841,548 2,841,548 2,841,548 2,841,548 2,841,548 2,841,548

Panel B: Insurer Cash Flow and Trading Persistence across Bonds: Full Sample

Following Month Following Quarter Following Year

Buyt+1 Sellt+1 Buyt+1 Sellt+1 Buyt+1 Sellt+1∑
j∈RBuyj 0.08*** 0.18*** 0.46***

(2.87) (2.76) (2.81)∑
j∈W Buyj 0.04** 0.13** 0.39**

(2.03) (2.31) (2.19)∑
j∈RSellj 0.01 0.03 0.09*

(0.98) (0.85) (1.91)∑
j∈W Sellj 0.02 0.04** 0.12**

(1.31) (1.98) (2.13)
Adj R2 0.03 0.02 0.06 0.04 0.11 0.04
N 2,841,548 2,841,548 2,841,548 2,841,548 2,841,548 2,841,548
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Panel C: Trading Persistence across Bonds: Financial Crisis

Following Month Following Quarter Following Year

Buyt+1 Sellt+1 Buyt+1 Sellt+1 Buyt+1 Sellt+1

Buy 0.04*** 0.16*** 0.39***
(4.35) (5.02) (5.75)

Sell 0.01*** 0.03*** 0.10***
(2.65) (3.05) (2.74)

Adj R2 0.01 0.01 0.02 0.01 0.03 0.02
N 297,298 297,298 297,298 297,298 297,298 297,298

Panel D: Insurer Cash Flow and Trading Persistence across Bonds: Financial Crisis

Following Month Following Quarter Following Year

Buyt+1 Sellt+1 Buyt+1 Sellt+1 Buyt+1 Sellt+1∑
j∈RBuyj 0.08*** 0.21*** 0.54***

(2.95) (2.99) (3.02)∑
j∈W Buyj 0.03* 0.12** 0.32***

(1.85) (2.14) (2.63)∑
j∈RSellj 0.01 0.04 0.08*

(0.77) (1.28) (1.87)∑
j∈W Sellj 0.02 0.03** 0.11**

(1.23) (2.00) (2.07)
Adj R2 0.02 0.02 0.05 0.03 0.09 0.04
N 297,298 297,298 297,298 297,298 297,298 297,298
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Table A4: Rainy Day Liquidity Provision for Life and PC Insurers

This table reports the different rainy day liquidity provision effects of life and PC insurance companies. Panel
A reports the results of life and PC insurer purchases of threshold bonds and inferiorly rated corporate bonds.
Two insurer purchase measures are used as the dependent variable: buy (results reported in the first three
columns) and net buy (results reported in the subsequent three columns). Independent variables include the
threshold bond dummy (Thr), the inferior bond dummy (Inf ), and the same set of bond control variables
used in Table 4. Diff is the coefficients difference between life insurers and PC insurers. Panel B reports
the results for the panel regressions of corporate bond illiquidity on insurers’ transactions when we separate
corporate bond transactions based on life or PC insurers. In both panels, the regressions include time fixed
effects, and the coefficients on some bond control variables as well as the regression intercepts are suppressed
to preserve space. p-value is for the null hypothesis on the equality between the coefficients on

∑
j∈LifeBuyj

and on
∑

j∈PCBuyj using the Wald test. The t-statistics reported in the parentheses are based on two-way
clustered (by time and by bond issuer) standard errors. *, **, and *** indicate statistical significance at the
10%, 5%, and 1% level, respectively.

Panel A: Threshold Bond Purchase: Life vs. PC Insurers

Buy Net

Life PC Diff Life PC Diff

Threshold 0.11*** 0.06*** 0.05*** 0.02** 0.00 0.02**
(4.77) (2.74) (2.92) (2.12) (0.04) (2.01)

Inferior -0.09*** -0.11*** 0.02 -0.10*** -0.13*** 0.03**
(-3.97) (-4.12) (1.34) (-4.09) (-5.68) (2.46)

Adj R2 0.07 0.07 0.06 0.06

Panel B: Life and PC Insurers’ Purchases and Liquidity Provision

ILQ measure: Roll ILQ measure: Amihud ILQ measure: Highlow

Sup Thr Inf Sup Thr Inf Sup Thr Inf∑
j∈LifeBuyj 0.41 -3.04*** -2.66* 0.13 -0.48*** -0.79*** -0.14 -0.85*** -0.78**

(0.91) (-7.76) (-1.85) (1.00) (-4.54) (-3.22) (-0.86) (-5.76) (-2.54)∑
j∈PCBuyj -0.65 -2.30*** -2.49 -0.03 -0.30* -1.14* 0.19 -0.78** -0.24

(-0.84) (-2.94) (-1.13) (-0.22) (-1.82) (-1.78) (0.51) (-2.24) (-0.22)∑
j∈LifeSellj -0.33 0.49 2.01*** -0.16 0.01 -0.13 0.25 0.57*** 0.63***

(-0.74) (1.18) (2.82) (-1.14) (0.10) (-0.43) (1.06) (3.13) (3.21)∑
j∈PCSellj 1.03 1.66* 1.03 -0.43 0.51 1.14 0.57 0.87** 0.54

(0.78) (1.73) (1.47) (-1.46) (1.23) (1.60) (1.41) (2.34) (1.60)
p-value 0.18 0.07 0.35 0.16 0.09 0.15 0.21 0.13 0.04
Adj R2 0.38 0.39 0.38 0.34 0.34 0.29 0.36 0.35 0.39
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