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Abstract

We consider an economy in which investors believe dividend growth is predictable,

when in reality it is not. We show that these beliefs lead to excess volatility and

return predictability. We also show that these beliefs are reasonable in the face of evi-

dence on dividend growth. We apply this framework to explaining the value premium,

predictability of bond returns, and the violation of uncovered interest rate parity.

Keywords: Excess volatility, Extrapolative expectations, Rare events, Overconfidence

JEL codes: G12, G15, G41

∗We thank Nicholas Barberis, Simcha Barkai, John Campbell, Anna Cieslak, Marco Grotteria, Campbell
Harvey, David Hirshleifer, Michael Kahana, Karen Lewis, Andrei Shleifer, Adrien Verdelhan, and seminar
participants at Boston University, Duke, EPFL/University of Lausanne, London Business School, MIT, and
at Wharton for helpful comments.
†Department of Finance, The Wharton School, University of Pennsylvania. Email:

hoguo@wharton.upenn.edu
‡Department of Finance, The Wharton School, University of Pennsylvania and NBER; Email:

jwachter@wharton.upenn.edu;



1 Introduction

Why is aggregate stock price volatility so high? Starting with Shiller (1981) and Campbell

and Shiller (1988), an influential literature shows that stock market volatility is too large to

arise from rational expectations of future dividends. In response, the literature has proposed

several explanations that maintain the notion of the rational investor. The “excess” volatility

could arise from time-varying discount rates, which could in turn be driven by time-varying

volatility of dividends (Bansal and Yaron, 2004; Calvet and Fisher, 2007; Lettau et al., 2008),

or time-varying risk aversion Campbell and Cochrane (1999). Stock price volatility could

also arise from time-varying forecasts of the occurrence or impact of rare events (Gabaix,

2012; Wachter, 2013).

These models of fully rational investors have considerable appeal. They hold out the

promise that asset pricing puzzles can be solved in a world that is complicated and unpre-

dictable, yet well-understood by investors. The careful development of these models have

led to specific tests, which have not always worked in the models’ favor. Problems in-

clude counterfactual predictions for the term structure of dividend claims (Binsbergen et al.,

2012; Lettau and Wachter, 2007), interest rates (Backus et al., 2014) and variance risk (Dew-

Becker et al., 2017). Some models do not extend well to economies where agents in aggregate

can transfer resources across states and time (Lettau and Uhlig, 2000; Kaltenbrunner and

Lochstoer, 2010). Finally, because these models are rational, risk premia must ultimately

represent a return for bearing risk. Empirical studies have looked for this relation and failed

to find it (Duffee, 2005; Moreira and Muir, 2017).1

This paper proposes a model for stock return volatility that does not assume rational

investors with full information. This is not the same as assuming investors are irrational, it

simply means that investors have a biased prior on the data generating process. Inspired by

1Models with time-varying rare events would seem to hold out the best hope, among rational models,
for disentangling the relation between risk and return. However, requiring infinitely precise knowledge of a
difficult-to-measure time-varying quantity does not seem like a victory.
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the literature on behavioral finance (Barberis et al., 2003; Shiller, 2003; Hirshleifer, 2015),

we motivate beliefs based on psychological studies. We take as motivation the classic animal

learning study of Skinner (1948). In Skinner’s study, hungry pigeons were presented food

at regular intervals. Most of the pigeons developed bizarre habits of behavior, the reason

for which is that they happened to have displayed that specific behavior when the food was

offered.

What do these pigeons have to do with investors? While the pigeons’ associations be-

tween behavior and food may seem ridiculous, their behavior illustrates a tendency to create

structure out of randomness. The strong tendency to find structure where none exists char-

acterizes human subjects as well, both in the laboratory and real-world situations (Bar-Hillel

and Wagenaar, 1991). It persists even when subjects are trained to know what is random

and what is not (Neuringer, 1986).

In our base case, we assume (for simplicity) that investors are risk-neutral. They believe

they can forecast dividend growth using a persistent signal, though dividend growth is in fact

iid. Like the pigeons they believe events can be forecasted (dividend growth, as opposed to

food) even when they are completely random. We show that this condition itself is sufficient

to generate excess volatility and return predictability seen in the data. Prices embed the

incorrect beliefs about dividend growth, and thus are excessively volatile. Moreover, prices

revert to more correct values as the expected growth fails to materialize, generating excess

returns that appear to vary over time. However, in this risk-neutral environment, true risk

premia are always equal to zero.

A slightly generalized model can produce an unconditional equity premium assuming

investors have time-additive CRRA utility and rare disasters that occur with constant prob-

ability(Barro, 2006; Rietz, 1988). In such a model, there is no time series relation between

risk and return. Moreover, time-additive CRRA utility implies flat average term structures

of equity and interest rates, rather than a counterfactual upward-sloping term structure of

equities and a downward-sloping term structure of interest rates.
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Finally, we extend the model to address other asset pricing puzzles. A longstanding puzzle

is the high abnormal returns on value stocks (Fama and French, 1992). We show that the

same mechanism that explains excess volatility in the time series can explain this abnormal

performance. We show that a belief in an excessive amount of interest rate predictability

can explain the ability of the yield spread to forecast excess returns (Campbell and Shiller,

1991). We apply the model to forecastability of exchange rates, and shows it accounts for

the failure of uncovered interest rate parity and the forward premium puzzle.

Our paper relates to a literature on subjective expectations and asset pricing. This

literature has proposed a number of interesting mechanisms by which investors’ beliefs may

fail to match reality. Early work on this subject includes Barsky and De Long (1993) and

Cecchetti et al. (2000). A recent literature focuses on extrapolative expectations: agents

incorrectly believe the future will look like the past. However, the difficulty with “price

extrapolation” – namely the tendency, as measured in survey data, to believe positive stock

market outcomes will be followed by further outcomes – is that it is hard to incorporate into

a quantitative asset pricing model. One strand of the literature focuses on counterfactual

CARA utility with normally distributed returns (Fuster et al., 2010; Barberis et al., 2015),

or lead to excess consumption volatility (Adam et al., 2017).2 A second strand assumes

“fundamentals extrapolation” (Alti and Tetlock, 2014; Hirshleifer et al., 2015), which is

easier to incorporate but does not have a basis in survey evidence and appears to require a

long-run-risk type mechanism (Bansal and Yaron, 2004) for quantitative significance.

Related to the idea of fundamentals extrapolation is the difficulty that agents have in

learning about the true data generating process.3 Learning on its own can produce excess

volatility, but effects eventually dissipate (Timmermann, 1993; Veronesi, 1999; Lewellen and

Shanken, 2002). The literature has proposed several ways in which learning might be persis-

tent or impaired. These include ambiguity aversion (Hansen and Sargent, 2010; Bidder and

2See Jin and Sui (2018) for a recent exception.
3See Pastor and Veronesi (2009) for a survey on learning and asset prices.
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Dew-Becker, 2016), overconfidence (Scheinkman and Xiong, 2003; Dumas et al., 2009; Daniel

and Hirshleifer, 2015), deviations from Bayesian updating (Nagel and Xu, 2018), and a per-

sistent failure of the data to match the likelihood that the investors assume (Jagannathan

and Liu, 2019). Our paper, which takes as an underlying assumption that investors believe in

persistent dividend growth when no such persistence exists, is in principle consistent with a

wide range of psychological theories of bias or impaired learning.4 In fact, the precise form of

this belief in persistence need not be specified. In contrast to models of fundamentals-based

extrapolation, which have no direct support in survey evidence, the mechanism in our paper

is supported by survey evidence, as shown by de la O and Myers (2018). Specifically, de la

O and Myers (2018) show that valuations are nearly entirely driven by beliefs, as opposed

to discount rates, just as our model implies.

Our further contribution relative to this literature is to quantitatively explain a number

of seemingly unrelated asset pricing anomalies (e.g. stock return predictability, stock return

volatility, the value premium, the success of the value-minus-growth factor, the failure of the

expectations hypothesis and of uncovered interest rate parity) with a single behavioral mech-

anism that has a long-established psychological foundation. As noted above, our mechanism

is consistent with many behavioral models that have already been proposed. What matters

is that that the expectation varies over time and over assets, indicating that investors think

they know more than they in fact do. Regardless of the form of the expectation, it is embed-

ded into the asset price, creating the myriad of anomalies described above, which together

are very difficult to explain in a fully rational model.

The remainder of this paper is organized as follows. In Section 2, we present our bench-

mark model for the aggregate stock market, which explains stock market volatility. Section 3

explores the quantitative implications of this model. Section 4 shows that the beliefs in

4One advantage our framework has over several previous ones is that we do not require a belief in
over-persistence of consumption growth. Persistence in consumption growth is harder to find in the data
than persistence in dividend growth, and hence this belief is less reasonable. Moreover, the iid nature of
consumption growth in our model greatly simplifies the analysis.
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the model could arise from a Bayesian statistician computing the predictability in dividend

growth. Section 5 extends the model to one of the cross-section of returns, the term structure

of interest rates, and the carry trade. Section 6 concludes.

2 Model

In this section, we describe our benchmark model in two stages. Section 2.1 focuses on

pricing and returns in the case of a risk-neutral investor. Section 2.2 considers the case of a

risk averse investor who faces a constant probability of rare disaster.5 The implications for

volatility are virtually the same in the two cases, though the latter case also accounts for

the equity premium.

2.1 Risk-neutral model

Consider an infinite-horizon discrete time economy with risk-neutral investors. Let Dt denote

the aggregate dividend at time t, and dt = logDt. Assume that investors believe

∆dt+1 = xt + ut+1, (1)

where

xt+1 = φxt + vt+1, (2)

and  ut

vt

 iid∼ N

0,

 σ2
u 0

0 σ2
v

 (3)

5While we could also consider the rare disaster case with risk neutrality, the impact on pricing would be
minimal.
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Assume 0 < φ < 1, so that dividend growth is stationary and positively autocorrelated. The

assumption that realized and expected dividends are uncorrelated is for convenience.6

Under risk neutrality and assuming a discount factor δ, the absence of arbitrage implies

that the value today of a dividend paid an integer n ≥ 0 periods in the future is

Pnt = E∗t [δ
nDt+n], (4)

where we use the notation E∗ to denote the expectations of investors. The law of iterated

expectations then implies the following recursion for (4):

Pnt = E∗t [δPn−1,t+1], n ≥ 1, (5)

with boundary condition P0t = Dt. The asset priced in (4) is an “equity strip” (see Lettau

and Wachter (2007)), analogous to a zero-coupon bond.

Equations (1–3) define a Markov structure for dividend growth, so if we divide both sides

of (4) by Dt, we obtain a function of xt. Let

Fn(xt) =
Pnt
Dt

. (6)

The recursion (5) pins down the functions Fn(·):

Fn(xt) = E∗t

[
δFn−1(xt+1)

Dt+1

Dt

]
(7)

with boundary condition F0(xt) = 1. The solution is

Fn(xt) = ean+bnxt , (8)

6Dividend data alone is not sufficient to identify the correlation in (3).
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where the coefficients are defined recursively as

an = an−1 +
1

2
b2
n−1σ

2
v +

1

2
σ2
u + log δ

bn = bn−1φ+ 1.

(9)

with boundary conditions a0 = b0 = 0. The recursion for bn has the well-known solution

bn =
1− φn

1− φ
. (10)

The price-dividend ratio on the aggregate stock market is a sum of these claims:

Pt
Dt

=
∞∑
n=1

Pnt
Dt

=
∞∑
n=1

Fn(xt). (11)

The return on the equity strip with maturity n equals

1 +Rn,t+1 =
Pn−1,t+1

Pnt

=
Fn−1(xt+1)

Fn(xt)

Dt+1

Dt

. (12)

Defining Rm
t as the net return on the aggregate market and Rn,t+1 as that on the n-period

equity strip, it follows from (11) that

Rm
t+1 ≡

Pt+1 − Pt +Dt+1

Pt
=
∞∑
n=1

(
Pnt∑∞
k=1 Pkt

)
Rn,t+1. (13)

Namely, the market return is a weighted average of the returns on the equity strips.7 The

7The intermediate steps in this calculation are as follows:

Rmt+1 =

∑∞
n=1 Pn,t+1 +Dt+1∑∞

n=1 Pnt
− 1 =

∑∞
n=1 Pn−1,t+1∑∞

n=1 Pnt
− 1 =

∞∑
n=1

(
Pnt∑∞
k=1 Pkt

)(
Pn−1,t+1

Pnt
− 1

)
.
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weights depend on the value of xt (an increase in xt shifts the weight toward high-maturity

claims), but this effect is second-order under our distributional assumptions. It will also be

useful, in what follows, to note that an alternative characterization of prices and of Fn(xt),

following directly from the recursion (7), is

Pnt
Dt

= Fn(xt) = E∗t

[
δne

∑n
s=1 ∆dt+s

]
(14)

In the remainder of this section, we give intuition for why this model can easily describe

return patterns. We focus on the returns on an equity strip (12) because it makes the

calculations easier and, because of (13), the intuition carries over to the market. However, in

the subsequent section, we report quantitative implications for the returns on the aggregate

market (11).

Suppose first that the investor’s beliefs match reality, so that (1–3) represent the physical

process for dividends. Substituting (1) and (8) into (12), we find

log(1 +R∗n,t+1) = an−1 − an + bn−1xt+1 − bnxt + xt + ut+1

= an−1 − an + (bn−1φ− bn + 1)xt + bn−1vt+1 + ut+1,

where we use R∗ to denote returns when the physical distribution matches the subjective

one. Substituting from (9) implies that

log(1 +R∗n,t+1) = an−1 − an + bn−1vt+1 + ut+1. (15)

When dividend growth is in fact predictable, returns are iid. Prices incorporate all available

information, and so any innovation to returns must come from an innovation to expected

dividend growth represented by vt+1, or an innovation to dividend growth itself, represented

by ut+1. Furthermore, (9) implies E∗[R∗t ] = δ−1, namely there is zero risk premium, as must
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be the case because investors are risk neutral.

Assume however, that investors’ beliefs do not match reality. The physical process for

dividends is not (1–3), but rather

∆dt+1 = ut+1. (16)

For simplicity, we assume investors are correct about the evolution of the state variable xt,

namely (2) represents the physical process. Additional effects could arise from incorrect

beliefs concerning the persistence of xt. For simplicity, we do not consider these here.8 The

contrast between (1) and (16) is what we mean by superstition in this paper. Dividend

growth is simply white noise. However, investors believe it is partially forecastable. It may

be forecastable based on previous prices, previous dividends, or on something else entirely.

Regardless of what is driving xt, this forecastability will lead to the observed dynamics in

the data.

We can clearly illustrate this intuition by computing returns. First note that prices reflect

agents’ (incorrect) beliefs and are given by (8) and (9). These prices are identical under both

correct and incorrect beliefs and, because they accurately represent some form of beliefs, are

arbitrage-free. However, consider returns:

log(1 +Rn,t+1) = log

(
Fn−1(xt+1)

Fn(xt)

Dt+1

Dt

)
(17)

= an−1 − an + bn−1xt+1 − bnxt + ut+1 (18)

= an−1 − an + bn−1(φxt + vt+1)− bnxt + ut+1. (19)

8Cochrane (2008) argues that dividend growth is in fact unpredictable. The strength of the predictability
in the data depends on how dividends are measured, a point made by van Binsbergen and Koijen (2010),
Larrain and Yogo (2008). Dividend predictability, to the extent it exists, appears to be transient (Lettau
and Ludvigson, 2005; Li and Wang, 2018). While we focus, for clarity, on the case in which investors believe
there is no persistence in dividend growth, what matters for our mechanism is that investors overestimate
the persistence of expected dividend growth.
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Thus,

log(1 +Rn,t+1) = an−1 − an − xt + bn−1vt+1 + ut+1, (20)

and, under the physical expectation,

logEt [1 +Rn,t+1] = − log δ − xt.

Unlike the case where investors’ beliefs are correct (see Eq.15) excess returns are predictable.

When xt is high, prices are high and future returns are low.

Equation (20) shows that superstition on the part of investors leads to return predictabil-

ity. It also leads to return volatility. It is again useful to contrast superstition with rational

(i.e. correct) beliefs. When the physical and subjective distributions coincide,

Var(log(1 +R∗nt)) = b2
n−1σ

2
v + σ2

u, (21)

whereas

Var(log(1 +Rnt)) = σ2
x + b2

n−1σ
2
v + σ2

u, (22)

where

σ2
x ≡

σ2
v

1− φ2
.

At first glance, it appears that return volatility arises from the term σ2
x, because this is

the source of predictability. Also, this is missing in the case of rationality. However, the

link between superstition and volatility is more subtle. In fact, almost all of the volatility

arises, in both cases, from the σ2
v term: as discussed in the next paragraph, this term is an

order of magnitude bigger than the others. It appears in both the rational and superstition

cases, and in both cases it represents changes in investors subjective expectations about

dividend growth. In the rational case, however, these expectations coincide with the true
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distribution. In the case with superstition, it will appear, ex post, as a time-varying discount

rate. Volatility is similar in both cases; in one case it is accompanied by predictable dividends

(counterfactually) whereas in the other it is accompanied by predictable returns.

We now return to the question of the volatility decomposition in (22). In the paragraph

above, we claimed that nearly all the volatility in returns arises from the volatility in expected

dividends, as represented by b2
n−1σ

2
v . We now explain why this is so. First note that σ2

u is the

volatility of realized dividends. This 0.072 per annum in postwar data. On the other hand,

the volatility of shocks to xt, σv, and the unconditional volatility of xt, σx, are unobserved.

To understand the magnitude of the remaining terms, we turn to the prices of dividend

claims, normalized by current dividends. These are denoted by Fn(xt) and given in (8) and

(9).

Recall that the price-dividend ratio on the market is a sum of these component price-

dividend ratios. Furthermore, even if the persistence φ is high, decay is geometric, and so

for n sufficiently large, bn ≈ (1−φ)−1. If we let σ2
pd be the variance of the log price-dividend

ratio on the market, roughly speaking,9

σ2
pd ≡ lim

n→∞
Var(logFn(xt)) =

σ2
x

(1− φ)2

Then, for long-maturity equity strips (which, due to the properties of geometric decay, best

represents the return on the market) the decomposition (22) takes the form

lim
n→∞

Var(log(1 +Rnt)) = σ2
x +

σ2
v

(1− φ)2
+ σ2

u

≈ (1− φ)2σ2
pd + (1− φ2)σ2

pd + σ2
u. (23)

9Note that the log price-dividend ratio equals

pd = log

∞∑
n=1

Fn(xt) ≈
∞∑
n=1

an + bnxt = a∗ + b∗xt.

Because of geometric decay, b∗ ≈ (1− φ)−1.

11



While σu ≈ 0.07, σpd ≈ 0.42. The persistence φ will equal the persistence of the price-

dividend ratio. At φ = 0.92, the first term in (23) equals (0.08× 0.42)2, whereas the second

term equals (0.39 × 0.42)2. The second term, representing the effect of innovations to xt is

thus roughly 25 times larger than the term representing xt itself, and roughly 5 times larger

than the term representing dividend volatility.10 Finally note that these terms add up to

(0.18)2, thus (roughly) accounting for the annual volatility in stock returns.

This accounting exercise suggests that this simple model can explain return volatility,

predictability in excess returns, together with the lack of predictability in dividends. As yet,

it has nothing to say about the equity premium. Below, we address this lack, and perform

a more formal calibration exercise.

2.2 Model with IID Disasters

We now show that a realistic equity premium can be incorporated into the model above.

Assume a representative agent who maximizes a time-additive utility function with constant

relative risk aversion:

E
∞∑
t=0

δt
C1−γ
t − 1

1− γ
,

where γ is relative risk aversion and δ remains the time discount factor. The agent holds the

following beliefs about the consumption and dividend growth processes:

∆ct+1 = µ+ ut+1 + wt+1, (24)

∆dt+1 = µ+ xt + ut+1 + wt+1, (25)

10This will also be true in a rational model with prices driven by discount rate variation. Most of the
variation in realized returns comes from innovations in the discount rate, which are unpredictable. Very
little comes from the variation in the discount rate itself.
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where xt is as in (2) above, with shocks ut+1 and vt+1 distributed as in (3). We further

assume, following Barro (2006), that

wt
iid∼

 ξ probability = p

0 probability = 1− p
(26)

where ξ is a constant and wt is independent of ut and vt.
11

In equilibrium, the aggregate market and the riskfree rate are priced using the represen-

tative investor’s Euler equation. That is, if we let Pnt be the price of an n period ahead

equity strip, then Pnt satisfies the recursion

Pnt = E∗t

[
δ

(
Ct+1

Ct

)−γ
Pn−1,t+1

]
,

where E∗ denote expectations taken with respect to the subjective distribution, and where

P0t = Dt. Defining Fn(xt) = Pnt/Dt, as in the previous section, we have

Fn(xt) = E∗t

[
δ

(
Ct+1

Ct

)−γ
Fn−1(xt+1)

Dt+1

Dt

]
(27)

with boundary condition F0(xt) = 1. The solution is again

Fn(xt) = ean+bnxt , (28)

where an follows the modified recursion

an = an−1 + log δ + (1− γ)µ+
1

2
b2
n−1σ

2
v +

1

2
(1− γ)2σ2

u + log(pe(1−γ)ξ + (1− p)) (29)

11Given the process for consumption and dividends, the agent should be able to back out xt. We assume
that the agent does not do this; alternatively we could make the standard assumption that dividends contain
an additional shock relative to consumption so that one cannot be perfectly inferred from the other.
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with a0 = 0. The recursion for bn is the same, and so bn = (1− φn)/(1− φ) still holds.

The riskfree asset is also priced using the investor’s Euler equation. Let Rf be the

one-period riskfree rate. Then:

E∗

[
δ

(
Ct+1

Ct

)−γ
(1 +Rf )

]
= 1,

implying

log(1 +Rf ) = − log δ + γµ− 1

2
γ2σ2

u − log(pe−γξ + (1− p)). (30)

We assume that the investor has correct beliefs about the consumption distribution (24).

Moreover, the investor correctly assumes that dividends are equally subject to disasters as

are consumption. However, the investor believes that dividends are predictable, when in

reality they are not. We parsimoniously capture these assumptions by setting the physical

distribution of ∆dt+1 equal to ∆ct+1.

Defining Rn,t+1, as in the previous section, as the return on the n-period dividend claim:

log(1 +Rn,t+1) = log

(
Fn−1(xt+1)

Fn(xt)

Dt+1

Dt

)
= an−1 − an + bn−1xt+1 − bnxt + µ+ ut+1 + wt+1

= an−1 − an + µ− xt + bn−1vt+1 + ut+1 + wt+1.

We therefore have, under the physical measure,

logEt [1 +Rn,t+1] = an−1 − an + µ− xt +
1

2
b2
n−1σ

2
v +

1

2
σ2
u + log(peξ + (1− p)),
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and, for the expected excess return under the physical measure:

logEt
[
(1 +Rn,t+1)/(1 +Rf )

]
= −xt + γσ2

u+

log(peξ + (1− p)) + log(pe−γξ + (1− p))− log(pe(1−γ)ξ + (1− p)).

For small p (or, as the time interval shrinks):

logEt
[
(1 +Rn,t+1)/(1 +Rf )

]
≈ −xt + γσ2

u − p(1− e−γξ)(1− eξ), (31)

where we have used, e.g., log(peξ + (1− p)) = log(1 + p(eξ − 1)) ≈ p(eξ − 1). The expected

excess return has its usual unconditional component, γσ2
u−p(1−e−γξ)(1−eξ), the first term

of which represents the normal risk, and the second term of which represents the risk of

disasters. This term captures the negative covariance between returns and marginal utility

during disaster periods. These components represent a risk premium, namely a return to

bearing the risk of equity, which might go down during a disaster. The first term, xt, does

not represent a return to bearing risk, but rather is mispricing.12

Note that our assumption that the agent correctly assesses disaster risk is to discipline

the model. We would find nearly the same equity premium if the agent overly assessed

disaster risk; i.e. was pessimistic. If the values here represent an optimistic assessment of

disaster risk (namely, disasters should have occurred with probability greater than 2%), then

that simply implies that we were lucky and that the equity premium is not as much of a

puzzle as believed. Also, allowing the agent to believe consumption growth is forecastable

would also not affect our results; however we believe this is less of a plausible assumption.

As discussed above, the literature shows less predictability in consumption growth than in

dividend growth. As we show below, beliefs in favor of dividend growth predictability are

12As described in the previous section, the variance of xt is relatively small. Thus the wedge between the
unconditional expectation of (31) and the true unconditional equity premium is small as well.
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reasonable (though not required) given the data.

3 Data and Calibration Results

3.1 Data

We use the value-weighted CRSP index to represent the market. We compute an annual

dividend by taking monthly dividends and summing. The dividend-price-ratio of the market

is the trailing one year aggregate dividend divided by the ex-dividend price of the market.

We use 3-month Treasury bill returns to proxy for the riskfree rate. We use the CPI index

to go from nominal returns and dividend growth to real returns and dividend growth. The

full sample for this study ranges from 1927 to 2017, and the post-war subsample ranges from

1948 to 2017. All data are annual.

3.2 Parameter Values

Table 1 shows the parameter choices for our simulations, done at an annual frequency. We

choose σu to be the volatility of log real dividend growth in the data. We choose φ = 0.95

to match the observed first-order autocorrelation in the log dividend price ratio in postwar

data. The discount factor δ, provided it is within a reasonable range and high enough to

ensure convergence, has a second-order effect on the results. We choose δ = 0.97, which is

consistent with a low riskfree rate, and still allows for convergence of the infinite sum (11).

For the risk-neutral model, the remaining parameter is σv, which we choose to be 0.01. This

generates the correct volatility of the price-dividend ratio under risk neutrality.

For the model with disaster risk, we follow Barro (2006) and choose risk aversion γ to be

3, the average growth rate of consumption µ to be 2%, the annual disaster probability p to

be 2%, and the size of the disaster to be 33%. We set the time-discount factor δ to match

the average return on the riskfree asset, which we set at the average annual (real) return on
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three-month Treasury bills.

3.3 Results

We simulate 4000 samples of either 91 years of data (to represent the 1927–2017 sample) or

70 years of data (to represent the 1948 to 2017 sample). We report three types of results:

the results for the risk neutral model with the longer simulation, the results for the disaster

model, with the longer simulation, and the results from the disaster model for the shorter

simulation, in which we consider only samples with no disasters. Reporting the risk-neutral

results for the shorter simulations would be repetitive, as the only difference is in the degree

of small-sample bias of some of the statistics.

Table 2 show the results for the 1927–2017 sample, and compare these to the model.

This comparison confirms the informal analysis in Section 2: the model can simultaneously

match the standard-deviation of returns, of the price-dividend ratio, of dividend growth.

The model fits the slight negative autocorrelation of annual returns. However, the model,

by construction does not fit the slight autocorrelation in dividend growth, which is 20% at

an annual horizon.

Including rare disasters in the model, which account for a high equity premium and low

riskfree rate, have little impact on the second moments. While there is a slight reduction

in the standard deviation of the divided-price ratio (due to the duration effect; the equity

premium causes a down-weighting of long-horizon claims which are the most sensitive to

changes in expectations), the data value remains well-within the 10% confidence bounds.

Table 3 show similar results for the postwar sample.

Table 4 reports reports from regressions of excess returns on the price-dividend ratio.

The first panel replicates the well-known result that excess returns are indeed predictable by

the dividend-price ratio. This result also holds in post-war data (Table 5). Coefficients are

statistically significant at nearly all horizons, with R2 statistics increasing from 2% to 28%.
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Table 6 shows that, in contrast, dividend growth is significantly forecastable only at the 1-

year horizon.13 This forecastability is transient, in that the R2 statistics do not increase with

horizon. Even this short-horizon effect becomes insignificant in post-war data (Table 7).

These tables also show simulations from the model. Note that by simulating the series

of the correct length under a model that captures the correlational structure of the data,

we capture the source of bias in the model that is also in the data (Stambaugh, 1999). The

superstitious investor model captures the correct magnitude of return predictability, and

the lack of dividend growth predictability. The amount of dividend growth predictability in

the data (with the exception of the shortest horizon in the 1927–2017 series) can easily be

accounted for by finite-sample noise. The superstitious investor model captures the econom-

ically and statistically significant predictability. However, returns are not too predictable in

the model; the data coefficients lie within the confidence intervals. It is not easy to take

advantage of the superstitious agent because there is a sense in which he is correct.

Finally, Figure 1 shows a time series plot of the level of prices and the level of dividends,

post-1926. On the figure, the level of dividends is multiplied by a constant so the average

level of the series are the same. Consistent with the superstition model, but inconsistent

with a model in which investors have correct beliefs, deviations from the mean of the price-

dividend ratio are usually followed by adjustments in prices, rather than adjustments in

dividends. This is a graphical illustration of the results in Table 4. Figure 2 shows that this

effect holds more dramatically in postwar data.

4 A Bayesian view of dividend predictability

A possible objection to the model in Section 2 is that, over time, investors would learn that

dividends are in fact unpredictable. If investors did learn the correct distribution, prices

13This and earlier statements of significance are under the assumption of a single test. Accounting for
multiple comparisons would likely further decrease the significance of dividend growth predictability.
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would remain volatile, but return predictability would dissipate. In this section, we confront

the hypothesized beliefs with data. We consider an investor whose prior beliefs include

the possibility of dividend growth predictability. The agent updates these beliefs given the

historical time series, seen through the lens of the likelihood implied by (1–3). Our evidence

speaks to the difficulty of learning the true process for dividend growth.

We assume, as in Section 2, the agent believes that dividend growth contains a pre-

dictable component. Should this predictable component exist, it follows from the reasoning

in Section 2 that it should be captured by the price-dividend ratio.14 The agent therefore

considers the predictive system:

∆dt+1 = βx̂t + ut+1 (32)

x̂t+1 = φ̂x̂t + v̂t+1, (33)

where x̂t = pt − dt, the log price-dividend ratio, and where ut

v̂t

 iid∼ N

0,

 σ2
u 0

0 σ̂2
v

 . (34)

We refer to the predictor variable as x̂t in contrast to xt. Up to linearization error, the

assumptions in Section 2 imply that x̂ and x differ only by a scale factor, approximately

equal to 1/(1− φ). For convenience, we de-mean both variables.15

Under conditions described in Appendix A, it suffices to consider a prior on the param-

eters of the dividend process and the marginal likelihood for the dividend process, taking

observations on x̂t as given. That is, the time-series regression (32) for dividend growth is,

in this case, equivalent to standard OLS in which the regressor is strictly exogenous.

14To the extent that the price-dividend ratio fails to capture this component, we are biased against finding
dividend growth predictability, and therefore proving the beliefs to be less justifiable than otherwise.

15De-meaning the variables simplifies the analysis, and only affects the conclusions through a degree-of-
freedom adjustment that becomes negligible as the same size grows.
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We assume a prior inverse-gamma distribution for σ2
u and, conditional on σ2

u, a normal

distribution for the predictive coefficient β:

β |σu ∼ N(β0, g
−1σ2

uΛ
−1
0 ) (35)

σ2
u ∼ IG(a0, b0). (36)

We set parameters a0 and b0 so that the prior on σ2
u is diffuse.16 Equation 36 implies a

conjugate prior on β (Zellner, 1996). As explained below, Λ0 is a scale factor that will allow

us to interpet g as indexing the strength of the prior.

Given the priors (35) and (36), and the likelihood defined by (32–34), the agent forms a

posterior. Let x̂t = {x̂0, . . . , x̂t}, namely the set of observations on x̂s, up to and including

time t. Let yt = {∆d1, . . .∆dt} be the dividend growth observations up to and including

time t. The agent calculates

p(β, σu | x̂t,yt) ∝ L(yt | x̂t, β, σu)p(β, σu), (37)

where p(β, σu) is the prior specified in (35) and (36) and L(yt | x̂t, β, σu) is the likelihood of

observing the dividend growth data given the predictor variable and the parameters.

We fix time T as the last data point observed. We stack the observations on x̂t and ∆dt

into vectors:

Y =


∆d1

...

∆dT

 , X =


x̂0

...

x̂T−1

 .
Note that the OLS estimate of β equals

β̂ = (X>X)−1X>Y,

16Because our focus will be on the posterior mean of β, these play no further role in our analysis.
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and that (32) implies

Y = βX + U,

where U ∼ N(0, σ2
uI), and I is the T × T identity matrix. It follows that the posterior (37)

is given by

p(β, σu |, x̂T ,yT ) ∝ σ−nu exp

{
− 1

2σu
(Y −Xβ)>(Y −Xβ)

}
σ−1
u exp

{
−gΛ0(β − β0)2

2σ2
u

}

where ∝ means up to a proportionality factor that does not depend on β and σu. Completing

the square implies

p(β, σu |, x̂T ,yT ) ∝ σ−1
u exp

{
−(X>X + gΛ0)(β − β̄)2

2σ2
u

}
× p(σu | x̂T ,yT ), (38)

where

β̄ = (gΛ0 +X>X)−1(gΛ0β0 +X>Y )

= (gΛ0 +X>X)−1(gΛ0β0 + (X>X)β̂),

and where p(σu | x̂T ,yT ) is a term that does not depend on β and is therefore the marginal

posterior of σu (see (Zellner, 1996, Chapter 8) for more detail). It is clear from (38) that

the posterior of β conditional on σu is normal with posterior mean β̄. Note also that β̄ is

a weighted average between the prior mean β0 and the sample mean β̂, with the weights

determined by the precisions of the prior and of the sample respectively.

If we, ex post, set Λ0 = X>X, then g corresponds to the weight on β0 as a percent of

the weight on β̂, so that g = 0.1 implies that the prior receives 1/10 of the weight of the

sample, and g = 0.01 means it receives 1/100 of the weight. We set the prior mean of β to

a value consistent with the agent’s beliefs in Section 2. For comparability with Tables 4–

7, which show regressions on the dividend-price ratio, Figure 3 shows the negative of the
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posterior mean of β. We consider an informative prior, with g = 0.10, and a diffuse prior,

with g = 0.01.

Figure 3 shows that the agent does indeed revise her prior beliefs, at least at first. She

revises it to imply more, not less predictability of dividend growth. Indeed, from the 1930s to

the 1970s, it appears that dividend growth was more predictable than later in the sample.17

Only when nearly the full sample is used, namely around 2000, does the posterior mean

converge to the sample estimate, which happens to be close to, though implying slightly

more predictability than, the prior. Note that the convergence implies that the prior does

not matter when the full sample is used.

Thus an agent, viewing the evidence on annual dividend growth rates in isolation, would

be justified in maintaining a belief that dividend growth rates are predictable. This agent,

however, is not fully rational. He incorrectly extrapolates the predictability from the one-

year horizon to long horizons. Moreover, he fails to notice that excess returns are also

predictable.

5 Extensions

Cochrane (2011) notes that predictability, both in the time series and in the cross-section,

appears to be ubiquitous. He attributes this predictability to variation in discount rates

across time and across assets. He notes that, within a no-arbitrage setting (like the current

paper), discount-rate based explanations of phenomena and belief-based explanations are

isomorphic (see Harrison and Kreps (1979)). However, the fact that one can be mapped into

the other does not necessarily make them equally good explanations, as the discount-rate

equivalent of a belief-based model might be complicated (and likewise, for a belief-based

equivalent of an discount-rate explanation). Furthermore, time-varying discount rates are

17Jagannathan and Liu (2019) also show that dividend growth predictability features striking instability
over the sample, declining after 1970.
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ideally viewed as an endogenous outcome of an economic model. In most models, time-

varying discount rates are tied to time-varying risk, providing testable implications discussed

in the introduction. Discount rates might also vary because risk aversion varies, or a rare

event probability varies; yet this would suggest a co-movement in measures of discount rates,

which is absent in the data Lettau and Wachter (2011).18

On the other hand, if investors display superstitious behavior about aggregate market

dividends, it is natural to assume that this behavior could be seen in other asset classes,

and would produce the kind of (ex post) predictability seen in the data. We give specific

parametric examples below.

5.1 The value premium

Fama and French (1992) show that stocks with high ratios of book equity to market equity

(value stocks) exhibit significantly higher excess returns than those with low ratios (growth

stocks). Moreover, market betas line up in roughly the opposite direction of the expected

returns, as do standard deviations. Thus standard risk-based stories fail to account for the

observed value premium. Here, we show that a simple extension to the model presented in

Section 2 naturally accounts for this finding.

As is well known, the value premium result extends to ratios of other fundamentals to

price, such as earnings to price (see, e.g. Lettau and Wachter (2007)). What appears to be

important is having price in the denominator and a plausible non-price scaling variable in the

numerator. For our model, the most natural scaling variable is payouts, namely dividends,

though these could be connected, through a standard production framework, to book value.

We focus on the earnings-to-price ratio in the data because dividends are to some extent

arbitrary.

18Differential time-varying exposure to rare events offers another potential route for unifying this evidence
(Gabaix, 2012). Moreover, existing models of time-varying risk aversion or rare events do not in practice
entirely break the link between first and second moments.
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Assume n risky assets. Let Djt denote the time-t dividend, and ∆djt log dividend growth,

for stock j, where j = 1, ..., n. Investors believe that dividend growth is predictable, as

before. However, besides a component that affects all firms in the same way, there is a

second component that affects firms differentially. That is,

∆dj,t+1 = xt + βz,jzt + uj,t+1, (39)

where

xt+1 = φxxt + vx,t+1 (40)

zt+1 = φzzt + vz,t+1. (41)

We assume the shocks uj,t+1 (for j = 1, . . . , n), vx,t+1, and vz,t+1, are normally distributed,

independent of one another, and independent over time, with variances σ2
u (∀j), σ2

vx, and σ2
vz

respectively.

Equation 39 indicates that subjective expectations are driven by xt and zt. Firms are

affected by xt in the same way, while they are differentially affected by zt. So that xt has the

interpretation of expected dividend growth in the aggregate, we assume that
∑

j βz,j = 0.

We assume risk-neutral investors with discount rate δ. Let P j
t denote the price of stock

j. As in Section 2,

P j
t =

∞∑
n=1

P j
n,t,

where P j
n,t is the price of the n-period dividend strip for stock j. Prices P j

n,t satisfy a recursion

analogous to (7). Conjecture that the solution takes the form

P j
n,t

Dj,t

= F j
n(xt, zt) = eaj,n+bx,nxt+βz,jbz,nzt . (42)
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Using a recursion analogous to (7), we find the difference equations

aj,n = aj,n−1 +
1

2
b2
x,n−1σ

2
vx +

1

2
β2
z,jb

2
z,n−1σ

2
vz +

1

2
σ2
u + log δ

bx,n = bx,n−1φx + 1

bz,n = bz,n−1φz + 1,

(43)

with P j
0,t/Djt = 1 implying boundary conditions aj,0 = bx,0 = bz,0 = 0. Thus

bx,n =
1− φnx
1− φx

bz,n =
1− φnz
1− φz

.

It is also useful to note that:

P j
n,t

Dj,t

= E∗t

[
δne

∑n
s=1 ∆dj,t+s

]
= exp{aj,n + bx,nxt + βz,jbz,nzt}, (44)

with aj,n, bx,n, bz,n as above.

Equation 42 implies a cross-section of scaled-price ratios as long as there is a cross-section

of exposures βz,j. Following the empirical literature, we refer to stocks with high price ratios

as growth and those with low price ratios as value. For example, if zt > 0, then growth

stocks will have high βzj and value stocks will have low βzj. On the other hand, if zt < 0,

the reverse pattern will be the case.19 Note that all that is required to produce a spread in

price-dividend ratios is variation in the loadings βz,j. Value stocks need not be pre-assigned

some βz,j.

We assume, as in Section 2, that dividend growth is in fact unpredictable. We define

the market portfolio to be the weighted average of the individual assets. We take this

19We disregard for the moment the Jensen’s inequality adjustments in the aj,n terms. In our calibration,
these are small.
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simple model to the data.20 Table 8 reports means of portfolios formed on earnings-to-

price ratios in postwar data, and in simulations from the model. In historical data, firms

are sorted into quintiles based on earnings-to-price ratios (details can be found on Kenneth

French’s website). In the data, value firms (those with high earnings-to-price ratios) have

high expected returns relative to growth firms. Except for the extreme value quintile, they

have lower standard deviations and lower betas with respect to the market. Thus the Capital

Asset Pricing Model does not explain the spread in expected returns, and abnormal returns

are large.

Table 8 shows that the model can replicate the high returns on value stocks and low

returns on growth stocks. True risk premia are zero in the model, however, measured risk

premia are not. Thus the entire value-minus-growth return is attributable to alpha.

To understand the intuition behind this result, consider, as in Section 2, the realized

returns on a dividend strip:

log(1 +Rj
n,t+1) = logP j

n−1,t+1 − logP j
n,t

= aj,n−1 − aj,n + bx,n−1xt+1 − bx,nxt + βz,j(bz,n−1zt+1 − bz,nzt) + uj,t+1

= aj,n−1 − aj,n − xt − βz,jzt + bx,n−1vx,t+1 + βz,jbz,n−1vz,t+1 + uj,t+1. (45)

Thus the differential return between a stock j and k equals:

log(1 +Rj
n,t+1)− log(1 +Rk

n,t+1)

= (aj,n−1 − aj,n − (ak,n−1 − ak,n))−(βz,j − βz,k)zt︸ ︷︷ ︸
value premium

+

(βz,j − βz,k)bz,n−1vz,t+1 + uj,t+1 − uk,t+1. (46)

20The persistences φx = φz = 0.85. The volatilities σvx = σvz = 2.5%, while σu = 20%. log δ = −5.7%
so that prices converge. The loading on zt, βjz ranges from -1 to 1.
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To fix ideas, assume zt > 0 and βz,k > βz,j. Stock k is now overpriced (investors forecast

high future dividend growth), relative to stock j. It follows from (44) that k has a high

price-earnings ratio (and will be identified as a growth stock), whereas j has a low one (and

will be identified as a value stock). When dividends are realized – and they are in fact an iid

shock rather than predictable as investors believe – the growth stock experiences a negative

return relative to the value stock.

In fact, one can compute the expected excess return on value-minus-growth. It is equal

to

logEt
[
1 +Rj

n,t+1

]
− logEt

[
1 +Rk

n,t+1

]
= (βz,k − βz,j)zt (47)

Because zt > 0, value stocks appear to offer a premium over growth stocks. It follows that

the value factor always has a positive average return.

The question remains: why might we think that differences in beliefs drive the difference

in value and growth returns? Evidence in favor of a belief-driven model comes directly from

analysts expectations in IBES and subsequent realizations.21 Figure 4 compares realizations

of earnings relative to earnings expectations. Also shown are previous years earnings (again,

scaled by expectations). Over our sample, expectations were systematically inflated for all

stocks, perhaps reflecting agency problems on the part of the analysts.22 However, whereas

value stocks were did not underperform by much (realized earnings were more than 80% of

expected earnings), the realization of earnings on growth stocks was less than 60% of what

analysts forecast. While a full analysis of IBES data is outside the scope of this paper,

this result suggests that disappointment in growth stocks drives at least part of the value

premium.

A second question is how our findings could be differentiated from alternative belief-driven

21Earnings realization data come from Compustat. IBES provides EPS forecasts for fiscal year 1 and fiscal
year 2. We interpolate the two EPS forecasts to form a forward one-year EPS expectation. We multiple this
EPS expectation by shares outstanding in IBES to form the forward one-year earnings expectation.

22See Bordalo et al. (2019) for a discussion.
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explanations of differences in returns in the cross-section. A previous literature considered

over-reaction as an explanation of the value premium (Barberis et al., 1998; Daniel et al.,

1998; Hong and Stein, 1999). Most recently, Alti and Tetlock (2014) write down an ex-

trapolative expectations model. Building on earlier work by La Porta (1996), Bordalo et al.

(2019) propose a diagnostic-expectations model for why firms with high long-term analysists’

growth forecasts in IBES subsequently underperform. They do not explicitly address the

value premium, but their idea could be potentially applied to do so. Along a different line,

Tsai and Wachter (2016) consider a rational expectations model of rare booms; when these

fail to realize, a value premium is observed.

With the exception of Tsai and Wachter (2016), these models imply over or under-

optimism for individual stocks. They are not models of a common component in expected

dividend growth that investors believe is there but may not be.23 It is this common time-

series component that connects our model in this section to the model in Section 2. This

common time-series component appears necessary to explain the data. As Cochrane (2011)

emphasizes, the value premium is “explained” by the HML, the return on a value-minus-

growth portfolio (Fama and French, 1993). On its face, this suggests a risk-based explanation.

However, our model provides a natural explanation. Again consider the return differential

(46) in the case of j a value stock and k a growth stock. We can interpret (46) as a time-series

HML factor. From (45), we see that stocks such that βz,j is negative will have a positive

loading on the factor, whereas stocks for which it is positive will have have a negative loading.

Moreover, including the factor in a cross-sectional regression will soak up the excess return.

Table 9 shows that indeed, including HML in the regression leads to zero abnormal returns

in model, just as in the data.

To summarize, the model offers a simple explanation of the finding that value stocks

23Perhaps the models could be reconfigured in this way. As in the previous section, it is not our purpose
to argue that our mechanism is substantially different from others that have been proposed, but rather it is
perhaps the simplest possible implementation of a variety of mechanisms.
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outperform growth stocks. Similarly to the model in Section 2, the underlying cause is that

investors believe that they can predict dividend growth when in fact it is unpredictable.

Data on analyst forecast errors offer direct evidence in favor of a belief-driven explanation,

while time-series regressions suggest a belief-driven explanation of the form we describe.

5.2 Violations of the expectations hypothesis of interest rates

We now apply these ideas to the pricing of Treasury bonds. Assume that investors believe

that the continuously-compounded short-term interest rate rt follows a first-order autore-

gressive process, so that

∆rt+1 = (φ− 1)(rt − r̄) + vt+1 (48)

where ∆rt+1 = rt+1 − rt, |φ| < 1, r̄ is the unconditional mean of rt, and vt+1
iid∼ N(0, σ2

v).

Note that φ is the first-order autocorrelation of rt.
24

As with dividend growth, investors believe that changes in interest rates are more fore-

castable than they are in reality. That is, while (48) represent beliefs, the true process is

governed by

∆rt+1 = (ζ − 1)(rt − r̄) + vt+1, (49)

with

|ζ − 1| < |φ− 1|. (50)

24The analysis in this section takes the short-term interest rate rt as a given. Perhaps the simplest way to
micro-found variation in this rate is to consider a risk-neutral investor with discount rate δ and an exogenous
inflation process ∆πt+1 such that

∆πt+1 = π̄ + zt + ut+1

and
zt+1 = φzt + vt+1,

with ut+1 and vt+1 distributed as in (3). The interest rate rt then solves

Et
[
δe−∆πt+1+rt

]
= 1.

Under these assumptions, the analysis proceeds exactly as described.
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We focus on the case where ζ, φ ∈ [0, 1] so that (50) implies ζ > φ. In forecasting next

period’s interest rate, (50) implies that investors put more weight on previous values of the

interest rate than they should. Alternatively stated, interest rates are closer to a random

walk (they mean revert more slowly) in the data than investors believe (ζ > η).

We consider risk-neutral pricing for bonds. The dynamics thus far define a discrete-time

Vasicek (1977) model.25 Let Bn(rt) denote the price of the n-period bond as a function of

the riskfree rate between periods t and t+ 1. Then bond prices satisfy the recursion

Bn(rt) = E∗t
[
e−rtBn−1(rt+1)

]
, (51)

with B0(rt) = 1 and B1(rt) = e−rt . It follows that

logBn(rt) = −an − bnrt (52)

with

an = an−1 + bn−1(1− φ)r̄ − 1

2
b2
n−1σ

2
v

bn = 1 + bn−1φ

(53)

and a0 = b0 = 0. Note that a1 = 0 and b1 = 1, so that B1(rt) = e−rt . The solution for bn is

again

bn =
1− φn

1− φ
. (54)

Defining the continuously compounded yield on the n-period bond as

ynt = − 1

n
logBn(rt)

25A substantial literature on latent factor models strongly rejects a single-factor model in favor of multi-
factor alternatives (Dai and Singleton, 2002; Duffee, 2002). Piazzesi et al. (2015) show how subjective
expectations can be incorporated into a model with richer dynamics. For the purpose of illustrating our
mechanism, however, this simple model suffices.
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It follows from (54) that the yield spread equals

ynt − y1t = constant +

(
1

n

1− φn

1− φ
− 1

)
rt

(recall that y1t = rt). The (continuously compounded) holding period return on the n-period

bond is given by

rn,t+1 = logBn−1(rt+1)− logBn(rt)

(note that r1,t+1 = rt). Substituting in for (52), (54), and for the physical evolution of rt,

(49), we find the following equation for continuously-compounded excess returns:

rxn,t+1 = rn,t+1 − r1,t+1 = constant + (ζ − φ)
bn−1

1− (1/n)bn
(ynt − y1t) + bn−1vt+1.

When ζ = φ, we recover the equilibrium with correct beliefs in which excess returns are

unpredictable. However, when ζ > φ, the yield spread will predict excess returns with a

positive sign, as in the data.

The economic intuition is similar to that of predictability in equity ratios. Yields fluctuate

based on forecasts of future interest rates. Relatively high values of long-term yields indicate

investor forecasts of rising short-term interest rates. Short-term rates are not as predictable

as investors think, and on average, when the yield spread is high, interest rates fall relative to

investor’s expectations. As a result, an above-average yield spread forecasts positive excess

returns on bonds.

The ability of the yield spread to forecast excess bond returns was first noted in the

data by Campbell and Shiller (1991). According to the expectations hypothesis of interest

rates, yields on long-term bonds should reflect forecasts of future short-term interest rates.26

26There are slight differences depending on whether this hypothesis is articulated in logs or levels (Camp-
bell, 1986).
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Indeed, the recursion (51) implies

ynt = − 1

n
logE∗t

[
e
∑n−1
τ=0 rt+τ

]
.

If investors correctly anticipate yields, then bond returns will be unpredictable. However,

Campbell and Shiller (1991), Fama and Bliss (1987) and a large subsequent literature show

that excess bond returns are strongly forecastable. We replicate this finding in Table 10,

which reports coefficients from regressing bond returns on yield spreads using the Fama-Bliss

data set for zero-coupon bonds.

As an illustrative calculation, we calibrate σv and φ to jointly match the volatility and

first-order autocorrelations of yields. This implies σv = 1.5% per annum and an annual

autocorrelation ζ of (roughly) 0.90. Given these parameters, φ = 0.45 gives us roughly the

amount of predictability in the data.

Table 10 shows results from historical data and from simulating 1000 samples of length

70 years. We run the regression

rxn,t+1 = αn + βn(ynt − y1t) + εt+1

for zero-coupon bonds for maturities ranging from 2 to 5 years. Bond excess returns are

strongly predictable in both data and model.

Though there are aspects of the data that this one factor model cannot match (for exam-

ple, yield spreads are less persistent then yields themselves), it offers a simple explanation

for a difficult feature of the data: namely, why investors appear to require, at some points in

time, very different term premia for long-term bonds. In this model, the answer is that they

do not require such premia, but rather, they do not know the correct process for interest

rates. Recent empirical work has assembled direct evidence in favor for this hypothesis. Cies-

lak (2018) shows that survey errors are forecastable, and that the forecastable component
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predicts excess return on bonds, in the decreasing pattern shown in Table 10. Moreover,

Cieslak (2018) and Piazzesi et al. (2015) show that, over the 1980–2010 period, which fea-

tured a decline in interest rates, survey expectations were systematically above expectations

formed based on an econometric model. Consistent with (50), it appears that investors kept

expecting a reversion to the mean, and were surprised, time and again, that such a reversion

failed to occur.

5.3 Uncovered interest rate parity

While a full account of the behavior of currencies and international interest rates is far

outside the scope of this paper, we offer a simple extension of the previous ideas to the

forward premium anomaly, otherwise known as the failure of uncovered interest rate parity.27

Let St be the exchange rate in units of foreign currency per U.S. dollar. Let Rt+1 be

the nominal interest rate in the U.S. available between times t and t + 1, and R̃t+1 be the

nominal interest rate in the foreign country, denominated in that country’s currency. Let Ft

be the forward price of the foreign currency. That is, at time t, one dollar can be converted

into Ft units of the foreign currency at time t + 1. We consider nominal rates, and assume

no risk of sovereign default, so that Rt+1 and R̃t+1 are known at time t.

Risk-neutral pricing for the U.S. investor requires that expected rates of return be equal

when computed with respect to the investor’s probability distribution:

E∗t

[
1 +Rt+1 −

St
St+1

(1 + R̃t+1)

]
= 0. (55)

That is, returns from investing risk-free in the U.S. should be equal, in expectation, to

investing in the foreign country’s riskfree rate. Of course, one first needs to convert U.S.

27The potential for distorted beliefs to resolve exchange rate puzzles has also been noted by Gourinchas
and Tornell (2004) and Burnside et al. (2011). The field of international finance offers a rich array of puzzles
in which mis-specified beliefs could play a role, as shown in Dumas et al. (2017). Frankel and Froot (1987)
offer survey evidence that is consistent with the explanation we propose here.
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dollars into the foreign currency, and then back again in the following period.28 Equation 55

can be rewritten as:
1 + R̃t+1

1 +Rt+1

=

(
E∗t

[
St
St+1

])−1

. (56)

Furthermore, no-arbitrage implies covered interest rate parity. That is, investing at the

U.S. interest rate must equal buying the foreign currency today, investing at the foreign

country’s interest rate, and then converting back via a forward contract:

1 +Rt+1 =
St
Ft

(1 + R̃t+1). (57)

Combining (56) and (57) implies that the so-called forward discount Ft/St is related to

appreciation (or depreciation) in the exchange rate via the expectation:

Ft
St

=

(
E∗t

[
St
St+1

])−1

. (58)

That is, high forward discounts indicate investors expect appreciation of the currency.

Equations 56 and 58, each constituting uncovered interest rate parity, have been exten-

sively tested and found to fail in the time series and in the cross section of currencies. For

example, Lustig et al. (2011) sort currencies on the basis of the left-hand-side of (58) and

then compute subsequent changes in exchange rates. Contrary to (58), they find no relation

between a high forward discount and future appreciation of the currency. Nor is there a

relation between the interest rate differential (56) and future appreciation. What they do

find is a relation between the forward discount and excess returns on the foreign currency.

28The risk-neutral investor cares about expected returns being equated in real terms. Thus, if ∆πt+1 is
log inflation between t and t+ 1 in the U.S., (55) should have, inside the square brackets, e∆−πt+1 . By using
(55), we effectively assume (for simplicity) that U.S. inflation is uncorrelated with innovations in the foreign
exchange rate.
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Specifically, define the continuously-compounded excess return on the currency as

rxt+1 = log

(
St
St+1

(1 + R̃t+1)

)
− log(1 +Rt+1). (59)

Lustig et al. (2011) show sorting on the forward discount produces a large spread in excess

currency returns in the next period. We show their results in the data row of Table 11.

The currencies with the lowest forward discount have a subsequent excess currency return

of -3%, while those with the highest have a return of 6%. However, their volatilities are ap-

proximately the same. This result parallels a time-series finding that high forward discounts

(equivalently, high interest rate differentials), predict high excess returns on the currency

(Backus et al., 2001).

To understand these results, we consider a very simple model for the exchange rate.

Consider a set of countries indexed by j, j = 1, . . . , n. Let sjt = logSjt, and ∆sj,t+1 =

sj,t+1 − sjt. Assume that

∆sj,t+1 = xjt + σjuj,t+1, (60)

for some random variable xjt, with uj,t+1
iid∼ N(0, 1). It follows from (58) that the log of the

forward discount fjt − sjt = log(Fjt/Sjt) equals

fjt − sjt = xjt −
1

2
σ2
j (61)

Define continuously-compounded returns r̃j,t+1 = log(1 + R̃j,t+1) and rt+1 = log(1 + Rt+1).
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Consider the excess return on the foreign currency, defined in (59).

rxj,t+1 = sjt − sj,t+1 + r̃j,t+1 − rj,t+1

= −∆sj,t+1 + fjt − sjt (62)

= −xjt − σjuj,t+1 + xjt −
1

2
σ2
j (63)

= −σjuj,t+1 −
1

2
σ2
j , (64)

where (62) follows from (57), and (63) imposes equality between the subjective and physical

distribution, and uses (60). Thus continuously compounded excess returns are unpredictable.

In the cross-section, E[rxj,t+1] depend only σ2
j , a Jensen’s inequality effect. On the other

hand, exchange rates should be predictable by the forward discount, as is clear from com-

paring (61) and (60). This predictability is absent in the data.

Suppose instead that the true process for exchange rates is a random walk:

∆sj,t+1 = σjuj,t+1.

In this case,

rxj,t+1 = −∆sj,t+1 + fjt − sjt (65)

= −σjuj,t+1 + fjt − sjt (66)

where uj,t+1 is an iid shock. Clearly excess returns on currencies will be forecastable, both in

the time series and the cross-section, by the forward discount. Table 11 shows that indeed

this is the case, and that the model replicates the magnitude of the cross-sectional relation.29

Note that, unlike previous results, the one-period nature of the forward-premium re-

29The results of Lustig et al. (2011) indicate an HML-type factor in currency premia. To capture this
common factor, one could proceed as in Section 5.1 and model differential loadings on a common forecast.
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gressions implies that we need not specify a process for xjt. Bringing in term structure

information, such as in Lustig et al. (2018), would help pin down such a process. We leave

such extensions to future work.

6 Conclusion

Like the pigeons in Skinner’s classic (1948) experiment, investors discover meaning in ran-

domness. In this paper, we have shown that this simple insight has far-reaching consequences

for asset pricing. An asset price is today’s forecast of the future outcome of a random pro-

cess, such as a company’s dividend, or a country’s exchange rate. Any information investors

think they have about this future outcome will be in today’s price. And yet if the process in

question is not in fact forecastable, the price will adjust to meet reality, rather than reality

adjusting to meet the price. We have shown, in four distinct settings, that the former is

what occurs. For the aggregate stock market, prices have adjusted to meet dividends. For

the cross-section of stocks, those with high prices relative to earnings see their prices fall.

Long-term bond prices adjust to meet stable short-term interest rates, rather than the other

way around. Forward prices of currencies adjust to meet spot prices.

A difficult and interesting question is how investors form their expectations. We have

shown that, regardless of the specifics of this process, a tendency to find structure in ran-

domness leaves a signature pattern in asset prices, one which we can observe in a strikingly

consistent way.
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Appendix

A Bayesian analysis of predictive regressions

Consider the predictive system

yt+1 = β0 + βxt + ut+1 (A.1)

xt+1 = φ0 + φxt + vt+1 (A.2)

The agent observes x0, . . . , xT and y1, . . . , yT , perhaps because yt represents a return or a

growth rate (and so one observation is lost relative to xt). We assume

 ut

vt

 iid∼ N (0,Σ) (A.3)

for a positive-semidefinite matrix Σ, representing the variance-covariance matrix.

Define

B =

 β0 φ0

β φ


and xt,yt, analogously to Section 4. Let L denote the joint likelihood of the data. The agent

forms the posterior

p(B,Σ |xT ,yT ) ∝ L(xT ,yT |B,Σ)p(B,Σ), (A.4)

where ∝ denotes up to a factor that does not depend on B and Σ.

We make the following assumptions, to reduce the problem to the one considered in

Section 4.

Assumption 1. The matrix Σ is diagonal.

Assumption 2. The parameters β0, β1 and σu are independent, under the prior, of φ0, φ1

and σv, where σ2
u is the first, and σ2

v the second, diagonal element of Σ.
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As shown below, these assumptions guarantee strict exogeneity of xt in relation to yt. If

these assumptions hold approximately, i.e. if the contemporaneous correlation between yt+1

and xt+1 is small, then it is likely that inference will not be strongly effected. See Wachter

and Warusawitharana (2015) for the analysis when these don’t hold, as is the case when yt

represents stock returns.

We now show the marginal posterior for β0, β and σu reduces to (37). Define l(xt+1, yt+1 |xt, B,Σ)

as the likelihood of the time-t observation. Note that (A.1–A.3) imply

l(xt+1, yt+1 |xt, B,Σ) = l(xt+1, yt+1 |xt,ytB,Σ).

Conditional probability calculations imply

L(xT ,yT |B,Σ) =
T−1∏
t=0

l(xt+1, yt+1 |xt, B,Σ)l(x0 |B,Σ),

where we use l(x0 |B,Σ) to denote the likelihood of the initial observation.

Assumption 1 implies that, conditional on xt and on the parameters, yt+1 is independent

of xt+1. We can factor l as follows:

l(xt+1, yt+1 |xt, B,Σ) = l(yt+1 |xt, xt+1, B,Σ)l(xt+1 |xt, B,Σ)

= l(yt+1 |xt, B,Σ)l(xt+1 |xt, B,Σ) (A.5)

= l(yt+1 |xt, β0, β, σu)l(xt+1 |xt, φ0, φ1, σv) (A.6)

Note that (A.5) does indeed require Assumption 1. If this assumption does not hold, then

realizations of xt+1 give additional information about the shocks ut+1. Given (A.5), (A.6)

follows from the form of (A.1) and the definition of Σ.
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We apply Assumption 2 and (A.6) to find the following form of the posterior:

p(B,Σ |xT ,yT ) ∝
T−1∏
t=0

l(yt+1 |xt, β0, β, σu)
T−1∏
t=0

l(xt+1 |xt, φ0, φ, σv)l(x0 |φ0, φ1, σv)

× p(β0, β, σu)p(φ0, φ, σv). (A.7)

Furthermore,

p(B,Σ |xT ,yT ) = p(β0, β, σu |φ0, φ, σv,xT ,yT )p(φ0, φ, σv |xT ,yT ). (A.8)

The right hand side of (A.7) factors into two terms, one of which depends on (β0, β, σu), and

one of which depends on (φ0, φ, σv). Thus we can write:

p(φ0, φ, σv |xT ,yT ) ∝
T−1∏
t=0

l(xt+1 |xt, φ0, φ, σv)l(x0 |φ0, φ1, σv)p(φ0, φ, σv),

and, from (A.8),

p(β0, β, σu |xT ,yT ) ∝
T−1∏
t=0

l(yt+1 |xt, β0, β, σu)p(β0, β, σu).

This proves that (37) is the correct posterior.
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Table 1: Parameters Used in Simulations

Parameter Risk Neutral Disaster
Shock to realized log dividend growth σu 0.11 0.11
Shock to expected log dividend growth σv 0.01 0.01
Subjective persistence in expected log dividend growth φ 0.95 0.95
Time-discount factorδ 0.97 0.95
Expected dividend growth µ 0 0.02
Relative risk aversion γ 0 3.00
Disaster probability p 0 0.02
Disaster size 1− eξ - 0.33

The table shows parameters used in the simulations. For the model with disasters, the agent
has constant relative risk aversion with parameter γ. The physical distribution of aggregate
consumption growth is the same as that of dividends growth and is not subject to bias. The
model is simulated at an annual frequency.
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Table 2: Empirical and Simulated Moments for the Aggregate Market, Full Sample

Data Model: Risk Neutral Model: Disaster
1927-2017 5 50 95 5 50 95

σ(Rm) 0.20 0.20 0.23 0.26 0.17 0.19 0.22
AC of Rm -0.01 -0.19 -0.02 0.14 -0.18 -0.01 0.16
σ(d− p) 0.45 0.30 0.46 0.71 0.21 0.33 0.52
AC of d− p 0.88 0.80 0.91 0.96 0.80 0.91 0.96
σ(∆d) 0.11 0.10 0.11 0.12 0.10 0.12 0.14
AC of ∆d 0.19 -0.18 -0.01 0.16 -0.19 -0.01 0.16
E[Rm] 0.09 0.00 0.03 0.06 0.03 0.06 0.09
E[Rf ] 0.01 0.03 0.03 0.03 0.01 0.01 0.01

We simulate 4000 samples each consisting of 91 years of data from the model with risk-
neutral investors, and the model with risk-averse investors and rare disasters. The table
reports moments from the 1927–2017 sample (second column), and medians, 5th percentile
values, and 95th percentile values (remaining columns). Rm denotes the net return on the
market, d− p the log dividend-price ratio,∆d log dividend growth, and Rf the riskfree rate.
AC refers to the first-order autocorrelation and σ(·) the standard deviation. The model is
simulated at an annual frequency.

Table 3: Empirical and Simulated Moments for the Aggregate Market, Post-war

Data Model: Disaster, No Realization
1948-2017 5 50 95

σ(Rm) 0.17 0.16 0.19 0.22
AC of Rm -0.07 -0.22 -0.02 0.17
σ(d− p) 0.42 0.19 0.31 0.50
AC of d− p 0.92 0.76 0.90 0.96
σ(∆d) 0.07 0.10 0.11 0.12
AC of ∆d 0.24 -0.21 -0.01 0.18
E[Rm] 0.09 0.04 0.07 0.10
E[rf ] 0.01 0.01 0.01 0.01

We simulate 4000 samples each consisting of 70 years of data from the model with rare
disasters. We remove samples that contain disaster realizations. The table reports moments
from the 1947–2017 sample (second column), and medians, 5th percentile values, and 95th
percentile values (remaining three columns). Rm denotes the net return on the market, d−p
the log dividend-price ratio,∆d log dividend growth, and Rf the riskfree rate. AC refers to
the first-order autocorrelation and σ(·) the standard deviation. The model is simulated at
an annual frequency.

50



Table 4: Predictability of Stock Market Excess Return, Full Sample

Horizon in Years
1 2 4 6 8 10

Panel A: Data 1927-2017
β 0.07 0.16 0.26 0.36 0.49 0.59
t-stat [1.39] [1.95] [2.72] [2.71] [2.86] [2.75]

R2 0.02 0.06 0.10 0.16 0.25 0.28
Panel B: Risk Neutral Model

β 0.09 0.18 0.34 0.48 0.60 0.71
5th percentile 0.02 0.05 0.09 0.12 0.15 0.17
95th percentile 0.22 0.41 0.72 0.97 1.16 1.30

R2 0.04 0.07 0.14 0.20 0.25 0.29
Panel C: Disaster Model

β 0.11 0.22 0.41 0.58 0.73 0.86
5th percentile 0.03 0.07 0.12 0.16 0.20 0.21
95th percentile 0.25 0.46 0.85 1.13 1.39 1.60

R2 0.04 0.08 0.15 0.21 0.26 0.30

This table reports predictive coefficients and R2-statistics from regressions of the form

H∑
i=1

rmt+i − r
f
t+i = β0 + β(dt − pt) + εt+H ,

where rmt+i = log(1+Rm
t+i) is the continuously-compounded aggregate market return between

t+ i− 1 and t+ i, rft+i = log(1 +Rf
t+i) is the continuously-compounded Treasury Bill return

between t + i − 1 and t + i, and dt − pt = logDt/Pt is the aggregate dividend-price ratio.
Panel A reports results from the 1927–2017 sample. Panel B and Panel C report medians and
5th and 95th percentile values from simulated data for predictive regressions, and medians
for R2-statistics as described in Table 2. For the data panel, t-statistics are adjusted for
heteroskedasticity and autocorrelation.
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Table 5: Predictability of Stock Market Excess Return, Post-war

Horizon in Years
1 2 4 6 8 10

Panel A: Data 1948-2017
β 0.10 0.20 0.28 0.40 0.51 0.59
t-stat [2.27] [2.59] [2.90] [2.91] [2.87] [2.71]

R2 0.07 0.13 0.16 0.22 0.27 0.31
Panel B: Disaster Model No Realization

β 0.12 0.24 0.44 0.62 0.77 0.89
5th percentile 0.03 0.06 0.11 0.13 0.16 0.16
95th percentile 0.30 0.55 0.95 1.28 1.53 1.74

R2 0.05 0.09 0.18 0.24 0.30 0.34

This table reports predictive coefficients and R2-statistics from regressions of the form

H∑
i=1

rmt+i − r
f
t+i = β0 + β(dt − pt) + εt+H ,

where rmt+i = log(1+Rm
t+i) is the continuously-compounded aggregate market return between

t+ i− 1 and t+ i, rft+i = log(1 +Rf
t+i) is the continuously-compounded Treasury Bill return

between t + i − 1 and t + i, and dt − pt = logDt/Pt is the aggregate dividend-price ratio.
Panel A reports results from the 1947–2017 sample. Panel B and Panel C report medians and
5th and 95th percentile values from simulated data for predictive regressions, and medians
for R2-statistics as described in Table 3. For the data panel, t-statistics are adjusted for
heteroskedasticity and autocorrelation.
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Table 6: Predictability of Aggregate Dividend Growth, Full Sample

Horizon in Years
1 2 4 6 8 10

Panel A: Data 1927-2017
β -0.07 -0.10 -0.12 -0.14 -0.14 -0.13
t-stat [-2.14] [-1.54] [-1.72] [-1.85] [-1.45] [-1.18]

R2 0.09 0.07 0.06 0.07 0.08 0.07
Panel B: Risk Neutral Model

β 0.00 0.00 0.00 0.00 -0.00 -0.00
5th percentile -0.04 -0.09 -0.17 -0.24 -0.31 -0.37
95th percentile 0.05 0.09 0.17 0.24 0.32 0.39

R2 0.01 0.01 0.02 0.03 0.04 0.05
Panel C: Disaster Model

β -0.00 -0.00 -0.01 -0.00 -0.00 -0.00
5th percentile -0.07 -0.13 -0.26 -0.38 -0.48 -0.59
95th percentile 0.07 0.14 0.26 0.38 0.49 0.59

R2 0.01 0.01 0.02 0.03 0.04 0.05

This table reports predictive coefficients and R2-statistics from regressions of the form

H∑
i=1

∆dt+i = β0 + β(dt − pt) + εt+H ,

where ∆dt+i is the change in log aggregate dividends between t + i − 1 and t + i and
dt − pt = logDt/Pt is the aggregate dividend-price ratio. Panel A reports results from the
1927–2017 sample. Panel B and Panel C report medians and 5th and 95th percentile values
from simulated data for predictive regressions, and medians for R2-statistics as described in
Table 2. For the data panel, t-statistics are adjusted for heteroskedasticity and autocorrela-
tion.
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Table 7: Predictability of Aggregate Dividend Growth, Post-war

Horizon in Years
1 2 4 6 8 10

Panel A: Data 1948-2017
β -0.01 -0.01 -0.04 -0.08 -0.09 -0.12
t-stat [-0.59] [-0.29] [-0.72] [-1.00] [-0.83] [-0.86]

R2 0.01 0.00 0.01 0.04 0.05 0.06
Panel B: Disaster Model No Realization

β -0.00 -0.00 -0.00 0.00 -0.01 -0.01
5th percentile -0.07 -0.15 -0.29 -0.41 -0.52 -0.61
95th percentile 0.08 0.15 0.28 0.42 0.52 0.63

R2 0.01 0.01 0.03 0.04 0.05 0.06

This table reports predictive coefficients and R2-statistics from regressions of the form

H∑
i=1

∆dt+i = β0 + β(dt − pt) + εt+H ,

where ∆dt+i is the change in log aggregate dividends between t + i − 1 and t + i and
dt − pt = logDt/Pt is the aggregate dividend-price ratio. Panel A reports results from the
1947–2017 sample. Panel B and Panel C report medians and 5th and 95th percentile values
from simulated data for predictive regressions, and medians for R2-statistics as described in
Table 3. For the data panel, t-statistics are adjusted for heteroskedasticity and autocorrela-
tion.
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Table 8: Return Statistics for Value and Growth Portfolios

1 (Low) 2 3 4 5 (High) 5 - 1
Panel A: Data 1952-2017

E[R] 6.46 7.61 8.96 11.34 13.65 7.19
t-stat [2.72] [3.73] [4.25] [4.86] [4.79] [3.46]
σ(R) 19.29 16.60 17.13 18.97 23.17 16.87

α -2.05 -0.05 1.20 2.96 3.77 5.82
t-stat [-1.99] [-0.09] [1.59] [2.74] [2.72] [2.58]

βmkt 1.03 0.93 0.94 1.01 1.19 0.17
Panel B: Model

E[R] -0.14 -0.14 0.39 1.37 2.67 2.83
σ(R) 21.63 17.65 16.19 17.00 19.51 25.18

α -1.01 -1.01 -0.42 0.57 1.89 2.93

βmkt 1.07 1.02 0.99 0.97 0.95 -0.12

Each year we form portfolios based on the earnings-to-price ratio and compute value-weighted
portfolio returns over the subsequent year. Panel A reports the mean, standard deviation,
CAPM alpha and beta with respect to the market in annual data from 1952 to 2017. Panel
B reports the 50th percentiles of these statistics over 1000 simulations of length designed to
match the data, each with 1000 stocks in the cross section.
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Table 9: Value and Growth Performance Relative to a Two-Factor Model

1 (Low) 2 3 4 5 (High)
Panel A: Data 1952-2017

α 0.27 0.08 -0.05 0.95 0.27
t-stat [0.57] [0.12] [-0.09] [1.47] [0.57]

βmkt 1.10 0.93 0.90 0.96 1.10

βhml -0.40 -0.02 0.22 0.35 0.60
Panel B: Model

α 0.49 -0.30 -0.48 -0.18 0.49

βmkt 1.01 1.00 1.00 1.00 1.01

βhml -0.52 -0.24 0.02 0.26 0.48

Each year we form portfolios based on the earnings-to-price ratio and compute value-weighted
portfolio returns over the subsequent year. Panel A reports coefficients generated from the
regression ri,t = α + βhmlhmlt + βmktmktt where ri,t is the portfolio return in excess of the
riskfree rate, hmlt is the return on the 5th quintile (high) minus that of the 1st quintile
(low), and mktt is the average excess return on all 5 portfolios. Panel B reports the 50th
percentiles of those coefficients over 1000 simulated samples of length designed to match the
data. Data are annual, from 1952 to 2017.

56



Table 10: Moments of Bond Yields

Maturity in Years
1 2 3 4 5

Panel A: Data 1952-2017
βn 1.61 2.13 2.39 2.50
t-stat [2.92] [3.51] [3.81] [3.60]

σ(yn) 3.10 3.05 2.97 2.92 2.85
AC(yn) 0.88 0.90 0.90 0.91 0.91
σ(yn − y1) 0.33 0.54 0.69 0.81
AC(yn − y1) 0.40 0.46 0.52 0.55

Panel B: Model
βn 1.45 1.29 1.17 1.08

σ(yn) 2.80 2.03 1.54 1.22 1.00
AC(yn) 0.85 0.85 0.85 0.85 0.85
σ(yn − y1) 0.77 1.26 1.58 1.80
AC(yn − y1) 0.85 0.85 0.85 0.85

Panel A of the table reports the volatility and the first-order autocorrelation of zero-coupon
bond yields and yields spread, as well as the regression coefficients βn as in rxn,t+1 = αn +
βn(ynt − y1t) + εt+1, where rxn,t+1 is the return of n-year bond in excess of y1 over period
t + 1. The t-statistics adjust for heteroskedasticity. Panel B report the percentiles of those
moments computed over 1000 simulations, each with 66 years of length. Data are from 1952
to 2017.
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Table 11: Moments of Portfolios Sorted on Forward Discount

1 (Low) 2 3 4 5 6 (High)
Panel A: Data 1983-2008

µ(rx) -2.92 0.02 1.40 3.66 3.54 5.90
σ(rx) 8.22 7.36 7.46 7.53 7.85 9.26

µ(f − s) -3.90 -1.30 -0.15 0.94 2.55 7.78
σ(f − s) 1.57 0.49 0.48 0.53 0.59 2.09

Panel B: Model
µ(rx) -7.80 -4.66 -2.86 -1.15 0.71 3.80
σ(rx) 8.24 8.22 8.19 8.20 8.20 8.23

µ(f − s) -7.82 -4.71 -2.84 -1.16 0.71 3.81
σ(f − s) 1.07 0.85 0.79 0.79 0.85 1.07

Panel A of the table reports means and standard deviations of average log excess currency
returns rx and log forward discount f − s within each of 6 currency portfolios formed on the
forward discount. Data, from Lustig et al. (2011), are monthly, from 1983–2018. Panel B
reports the 50th percentiles of those moments over 1000 simulations of the model, each with
293 monthly observations.
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Figure 1: Log Real Dividend and Log Real Price Level of the Aggregate Market, Full Sample
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This figure plots the annual frequency log price level and log dividend of the US stock
market in the post-1926 era. The log real dividend is multiplied by 27.43, the mean P/D
ratio post-1926. The dividend and the price are adjusted for inflation.
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Figure 2: Log Real Dividends and Log Real Price Level of the Aggregate market, Post-War
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This figure plots the annual frequency log price level and log dividend of the US stock
market in the post-1948 era. The log real dividend is multiplied by 27.43, the mean P/D
ratio post-1948. The dividend and the price are adjusted for inflation.
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Figure 3: Predicting dividend growth using the dividend-price ratio
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This figure shows the posterior mean of the predictive coefficient in a regression of one-year
ahead dividend growth on the dividend-price ratio. The posterior mean is calculated using
Bayesian methods, assuming an informative prior, where g indexes the degree of informa-
tiveness. For each year in the sample, the agent uses all available data to form a posterior
for the predictive coefficient. Data begin in 1927. A prior parameter of g = 0.1 implies that
the prior mean of the coefficient receives a weight of 10% relative to the sample estimate,
whereas a prior parameter of g = 0.01 implies that the prior mean receives a weight of 1%.
Shaded areas denote plus and minus 2 posterior standard deviations.
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Figure 4: Earnings Expectations and Realizations
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For each month, we sort stocks in the S&P 500 index into 3 bins based on their trail-
ing one-year earnings-to-price ratio. For each bin, we compute trailing one-year earnings,
forward one-year earnings forecasts from IBES, and earnings realization over the following
year. We then compute two ratios: trailing one-year earnings over forward one-year earn-
ings forecasts and forward one-year earnings over forward one-year earnings forecasts. We
report the average ratios and standard error bars representing 2 standard errors (adjusted
for heteroskedasticity and autocorrelation). Data are from 1985 to 2015.
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